summaryrefslogtreecommitdiff
path: root/deps/v8/src/arm64/instructions-arm64.h
blob: bb1791becb5f3f3d1d2c89183997551685da9605 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_ARM64_INSTRUCTIONS_ARM64_H_
#define V8_ARM64_INSTRUCTIONS_ARM64_H_

#include "src/arm64/constants-arm64.h"
#include "src/arm64/utils-arm64.h"
#include "src/assembler.h"
#include "src/globals.h"
#include "src/utils.h"

namespace v8 {
namespace internal {

// ISA constants. --------------------------------------------------------------

typedef uint32_t Instr;

extern const float16 kFP16PositiveInfinity;
extern const float16 kFP16NegativeInfinity;
extern const float kFP32PositiveInfinity;
extern const float kFP32NegativeInfinity;
extern const double kFP64PositiveInfinity;
extern const double kFP64NegativeInfinity;

// This value is a signalling NaN as both a double and as a float (taking the
// least-significant word).
extern const double kFP64SignallingNaN;
extern const float kFP32SignallingNaN;

// A similar value, but as a quiet NaN.
extern const double kFP64QuietNaN;
extern const float kFP32QuietNaN;

// The default NaN values (for FPCR.DN=1).
extern const double kFP64DefaultNaN;
extern const float kFP32DefaultNaN;
extern const float16 kFP16DefaultNaN;

unsigned CalcLSDataSize(LoadStoreOp op);
unsigned CalcLSPairDataSize(LoadStorePairOp op);

enum ImmBranchType {
  UnknownBranchType = 0,
  CondBranchType    = 1,
  UncondBranchType  = 2,
  CompareBranchType = 3,
  TestBranchType    = 4
};

enum AddrMode {
  Offset,
  PreIndex,
  PostIndex
};

enum FPRounding {
  // The first four values are encodable directly by FPCR<RMode>.
  FPTieEven = 0x0,
  FPPositiveInfinity = 0x1,
  FPNegativeInfinity = 0x2,
  FPZero = 0x3,

  // The final rounding modes are only available when explicitly specified by
  // the instruction (such as with fcvta). They cannot be set in FPCR.
  FPTieAway,
  FPRoundOdd
};

enum Reg31Mode {
  Reg31IsStackPointer,
  Reg31IsZeroRegister
};

// Instructions. ---------------------------------------------------------------

class Instruction {
 public:
  V8_INLINE Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
  }

  V8_INLINE void SetInstructionBits(Instr new_instr) {
    *reinterpret_cast<Instr*>(this) = new_instr;
  }

  int Bit(int pos) const {
    return (InstructionBits() >> pos) & 1;
  }

  uint32_t Bits(int msb, int lsb) const {
    return unsigned_bitextract_32(msb, lsb, InstructionBits());
  }

  int32_t SignedBits(int msb, int lsb) const {
    int32_t bits = *(reinterpret_cast<const int32_t*>(this));
    return signed_bitextract_32(msb, lsb, bits);
  }

  Instr Mask(uint32_t mask) const {
    return InstructionBits() & mask;
  }

  V8_INLINE const Instruction* following(int count = 1) const {
    return InstructionAtOffset(count * static_cast<int>(kInstructionSize));
  }

  V8_INLINE Instruction* following(int count = 1) {
    return InstructionAtOffset(count * static_cast<int>(kInstructionSize));
  }

  V8_INLINE const Instruction* preceding(int count = 1) const {
    return following(-count);
  }

  V8_INLINE Instruction* preceding(int count = 1) {
    return following(-count);
  }

#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
  int32_t Name() const { return Func(HighBit, LowBit); }
  INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
  #undef DEFINE_GETTER

  // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
  // formed from ImmPCRelLo and ImmPCRelHi.
  int ImmPCRel() const {
    DCHECK(IsPCRelAddressing());
    int offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
    int width = ImmPCRelLo_width + ImmPCRelHi_width;
    return signed_bitextract_32(width - 1, 0, offset);
  }

  uint64_t ImmLogical();
  unsigned ImmNEONabcdefgh() const;
  float ImmFP32();
  double ImmFP64();
  float ImmNEONFP32() const;
  double ImmNEONFP64() const;

  unsigned SizeLS() const {
    return CalcLSDataSize(static_cast<LoadStoreOp>(Mask(LoadStoreMask)));
  }

  unsigned SizeLSPair() const {
    return CalcLSPairDataSize(
        static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
  }

  int NEONLSIndex(int access_size_shift) const {
    int q = NEONQ();
    int s = NEONS();
    int size = NEONLSSize();
    int index = (q << 3) | (s << 2) | size;
    return index >> access_size_shift;
  }

  // Helpers.
  bool IsCondBranchImm() const {
    return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
  }

  bool IsUncondBranchImm() const {
    return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
  }

  bool IsCompareBranch() const {
    return Mask(CompareBranchFMask) == CompareBranchFixed;
  }

  bool IsTestBranch() const {
    return Mask(TestBranchFMask) == TestBranchFixed;
  }

  bool IsImmBranch() const {
    return BranchType() != UnknownBranchType;
  }

  static float Imm8ToFP32(uint32_t imm8) {
    //   Imm8: abcdefgh (8 bits)
    // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
    // where B is b ^ 1
    uint32_t bits = imm8;
    uint32_t bit7 = (bits >> 7) & 0x1;
    uint32_t bit6 = (bits >> 6) & 0x1;
    uint32_t bit5_to_0 = bits & 0x3f;
    uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);

    return bit_cast<float>(result);
  }

  static double Imm8ToFP64(uint32_t imm8) {
    //   Imm8: abcdefgh (8 bits)
    // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
    // where B is b ^ 1
    uint32_t bits = imm8;
    uint64_t bit7 = (bits >> 7) & 0x1;
    uint64_t bit6 = (bits >> 6) & 0x1;
    uint64_t bit5_to_0 = bits & 0x3f;
    uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);

    return bit_cast<double>(result);
  }

  bool IsLdrLiteral() const {
    return Mask(LoadLiteralFMask) == LoadLiteralFixed;
  }

  bool IsLdrLiteralX() const {
    return Mask(LoadLiteralMask) == LDR_x_lit;
  }

  bool IsPCRelAddressing() const {
    return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
  }

  bool IsAdr() const {
    return Mask(PCRelAddressingMask) == ADR;
  }

  bool IsBrk() const { return Mask(ExceptionMask) == BRK; }

  bool IsUnresolvedInternalReference() const {
    // Unresolved internal references are encoded as two consecutive brk
    // instructions.
    return IsBrk() && following()->IsBrk();
  }

  bool IsLogicalImmediate() const {
    return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
  }

  bool IsAddSubImmediate() const {
    return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
  }

  bool IsAddSubShifted() const {
    return Mask(AddSubShiftedFMask) == AddSubShiftedFixed;
  }

  bool IsAddSubExtended() const {
    return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
  }

  // Match any loads or stores, including pairs.
  bool IsLoadOrStore() const {
    return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
  }

  // Match any loads, including pairs.
  bool IsLoad() const;
  // Match any stores, including pairs.
  bool IsStore() const;

  // Indicate whether Rd can be the stack pointer or the zero register. This
  // does not check that the instruction actually has an Rd field.
  Reg31Mode RdMode() const {
    // The following instructions use sp or wsp as Rd:
    //  Add/sub (immediate) when not setting the flags.
    //  Add/sub (extended) when not setting the flags.
    //  Logical (immediate) when not setting the flags.
    // Otherwise, r31 is the zero register.
    if (IsAddSubImmediate() || IsAddSubExtended()) {
      if (Mask(AddSubSetFlagsBit)) {
        return Reg31IsZeroRegister;
      } else {
        return Reg31IsStackPointer;
      }
    }
    if (IsLogicalImmediate()) {
      // Of the logical (immediate) instructions, only ANDS (and its aliases)
      // can set the flags. The others can all write into sp.
      // Note that some logical operations are not available to
      // immediate-operand instructions, so we have to combine two masks here.
      if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
        return Reg31IsZeroRegister;
      } else {
        return Reg31IsStackPointer;
      }
    }
    return Reg31IsZeroRegister;
  }

  // Indicate whether Rn can be the stack pointer or the zero register. This
  // does not check that the instruction actually has an Rn field.
  Reg31Mode RnMode() const {
    // The following instructions use sp or wsp as Rn:
    //  All loads and stores.
    //  Add/sub (immediate).
    //  Add/sub (extended).
    // Otherwise, r31 is the zero register.
    if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
      return Reg31IsStackPointer;
    }
    return Reg31IsZeroRegister;
  }

  ImmBranchType BranchType() const {
    if (IsCondBranchImm()) {
      return CondBranchType;
    } else if (IsUncondBranchImm()) {
      return UncondBranchType;
    } else if (IsCompareBranch()) {
      return CompareBranchType;
    } else if (IsTestBranch()) {
      return TestBranchType;
    } else {
      return UnknownBranchType;
    }
  }

  static int ImmBranchRangeBitwidth(ImmBranchType branch_type) {
    switch (branch_type) {
      case UncondBranchType:
        return ImmUncondBranch_width;
      case CondBranchType:
        return ImmCondBranch_width;
      case CompareBranchType:
        return ImmCmpBranch_width;
      case TestBranchType:
        return ImmTestBranch_width;
      default:
        UNREACHABLE();
    }
  }

  // The range of the branch instruction, expressed as 'instr +- range'.
  static int32_t ImmBranchRange(ImmBranchType branch_type) {
    return
      (1 << (ImmBranchRangeBitwidth(branch_type) + kInstructionSizeLog2)) / 2 -
      kInstructionSize;
  }

  int ImmBranch() const {
    switch (BranchType()) {
      case CondBranchType: return ImmCondBranch();
      case UncondBranchType: return ImmUncondBranch();
      case CompareBranchType: return ImmCmpBranch();
      case TestBranchType: return ImmTestBranch();
      default: UNREACHABLE();
    }
    return 0;
  }

  int ImmUnresolvedInternalReference() const {
    DCHECK(IsUnresolvedInternalReference());
    // Unresolved references are encoded as two consecutive brk instructions.
    // The associated immediate is made of the two 16-bit payloads.
    int32_t high16 = ImmException();
    int32_t low16 = following()->ImmException();
    return (high16 << 16) | low16;
  }

  bool IsUnconditionalBranch() const {
    return Mask(UnconditionalBranchMask) == B;
  }

  bool IsBranchAndLink() const { return Mask(UnconditionalBranchMask) == BL; }

  bool IsBranchAndLinkToRegister() const {
    return Mask(UnconditionalBranchToRegisterMask) == BLR;
  }

  bool IsMovz() const {
    return (Mask(MoveWideImmediateMask) == MOVZ_x) ||
           (Mask(MoveWideImmediateMask) == MOVZ_w);
  }

  bool IsMovk() const {
    return (Mask(MoveWideImmediateMask) == MOVK_x) ||
           (Mask(MoveWideImmediateMask) == MOVK_w);
  }

  bool IsMovn() const {
    return (Mask(MoveWideImmediateMask) == MOVN_x) ||
           (Mask(MoveWideImmediateMask) == MOVN_w);
  }

  bool IsNop(int n) {
    // A marking nop is an instruction
    //   mov r<n>,  r<n>
    // which is encoded as
    //   orr r<n>, xzr, r<n>
    return (Mask(LogicalShiftedMask) == ORR_x) &&
           (Rd() == Rm()) &&
           (Rd() == n);
  }

  // Find the PC offset encoded in this instruction. 'this' may be a branch or
  // a PC-relative addressing instruction.
  // The offset returned is unscaled.
  int64_t ImmPCOffset();

  // Find the target of this instruction. 'this' may be a branch or a
  // PC-relative addressing instruction.
  Instruction* ImmPCOffsetTarget();

  static bool IsValidImmPCOffset(ImmBranchType branch_type, ptrdiff_t offset);
  bool IsTargetInImmPCOffsetRange(Instruction* target);
  // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
  // a PC-relative addressing instruction.
  void SetImmPCOffsetTarget(const AssemblerOptions& options,
                            Instruction* target);
  void SetUnresolvedInternalReferenceImmTarget(const AssemblerOptions& options,
                                               Instruction* target);
  // Patch a literal load instruction to load from 'source'.
  void SetImmLLiteral(Instruction* source);

  uintptr_t LiteralAddress() {
    int offset = ImmLLiteral() << kLoadLiteralScaleLog2;
    return reinterpret_cast<uintptr_t>(this) + offset;
  }

  enum CheckAlignment { NO_CHECK, CHECK_ALIGNMENT };

  V8_INLINE const Instruction* InstructionAtOffset(
      int64_t offset, CheckAlignment check = CHECK_ALIGNMENT) const {
    // The FUZZ_disasm test relies on no check being done.
    DCHECK(check == NO_CHECK || IsAligned(offset, kInstructionSize));
    return this + offset;
  }

  V8_INLINE Instruction* InstructionAtOffset(
      int64_t offset, CheckAlignment check = CHECK_ALIGNMENT) {
    // The FUZZ_disasm test relies on no check being done.
    DCHECK(check == NO_CHECK || IsAligned(offset, kInstructionSize));
    return this + offset;
  }

  template<typename T> V8_INLINE static Instruction* Cast(T src) {
    return reinterpret_cast<Instruction*>(src);
  }

  V8_INLINE ptrdiff_t DistanceTo(Instruction* target) {
    return reinterpret_cast<Address>(target) - reinterpret_cast<Address>(this);
  }


  static const int ImmPCRelRangeBitwidth = 21;
  static bool IsValidPCRelOffset(ptrdiff_t offset) { return is_int21(offset); }
  void SetPCRelImmTarget(const AssemblerOptions& options, Instruction* target);
  void SetBranchImmTarget(Instruction* target);
};

// Functions for handling NEON vector format information.
enum VectorFormat {
  kFormatUndefined = 0xffffffff,
  kFormat8B = NEON_8B,
  kFormat16B = NEON_16B,
  kFormat4H = NEON_4H,
  kFormat8H = NEON_8H,
  kFormat2S = NEON_2S,
  kFormat4S = NEON_4S,
  kFormat1D = NEON_1D,
  kFormat2D = NEON_2D,

  // Scalar formats. We add the scalar bit to distinguish between scalar and
  // vector enumerations; the bit is always set in the encoding of scalar ops
  // and always clear for vector ops. Although kFormatD and kFormat1D appear
  // to be the same, their meaning is subtly different. The first is a scalar
  // operation, the second a vector operation that only affects one lane.
  kFormatB = NEON_B | NEONScalar,
  kFormatH = NEON_H | NEONScalar,
  kFormatS = NEON_S | NEONScalar,
  kFormatD = NEON_D | NEONScalar
};

VectorFormat VectorFormatHalfWidth(VectorFormat vform);
VectorFormat VectorFormatDoubleWidth(VectorFormat vform);
VectorFormat VectorFormatDoubleLanes(VectorFormat vform);
VectorFormat VectorFormatHalfLanes(VectorFormat vform);
VectorFormat ScalarFormatFromLaneSize(int lanesize);
VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform);
VectorFormat VectorFormatFillQ(VectorFormat vform);
VectorFormat ScalarFormatFromFormat(VectorFormat vform);
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
int LaneSizeInBytesFromFormat(VectorFormat vform);
unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
int LaneCountFromFormat(VectorFormat vform);
int MaxLaneCountFromFormat(VectorFormat vform);
bool IsVectorFormat(VectorFormat vform);
int64_t MaxIntFromFormat(VectorFormat vform);
int64_t MinIntFromFormat(VectorFormat vform);
uint64_t MaxUintFromFormat(VectorFormat vform);

// Where Instruction looks at instructions generated by the Assembler,
// InstructionSequence looks at instructions sequences generated by the
// MacroAssembler.
class InstructionSequence : public Instruction {
 public:
  static InstructionSequence* At(Address address) {
    return reinterpret_cast<InstructionSequence*>(address);
  }

  // Sequences generated by MacroAssembler::InlineData().
  bool IsInlineData() const;
  uint64_t InlineData() const;
};


// Simulator/Debugger debug instructions ---------------------------------------
// Each debug marker is represented by a HLT instruction. The immediate comment
// field in the instruction is used to identify the type of debug marker. Each
// marker encodes arguments in a different way, as described below.

// Indicate to the Debugger that the instruction is a redirected call.
const Instr kImmExceptionIsRedirectedCall = 0xca11;

// Represent unreachable code. This is used as a guard in parts of the code that
// should not be reachable, such as in data encoded inline in the instructions.
const Instr kImmExceptionIsUnreachable = 0xdebf;

// A pseudo 'printf' instruction. The arguments will be passed to the platform
// printf method.
const Instr kImmExceptionIsPrintf = 0xdeb1;
// Most parameters are stored in ARM64 registers as if the printf
// pseudo-instruction was a call to the real printf method:
//      x0: The format string.
//   x1-x7: Optional arguments.
//   d0-d7: Optional arguments.
//
// Also, the argument layout is described inline in the instructions:
//  - arg_count: The number of arguments.
//  - arg_pattern: A set of PrintfArgPattern values, packed into two-bit fields.
//
// Floating-point and integer arguments are passed in separate sets of registers
// in AAPCS64 (even for varargs functions), so it is not possible to determine
// the type of each argument without some information about the values that were
// passed in. This information could be retrieved from the printf format string,
// but the format string is not trivial to parse so we encode the relevant
// information with the HLT instruction.
const unsigned kPrintfArgCountOffset = 1 * kInstructionSize;
const unsigned kPrintfArgPatternListOffset = 2 * kInstructionSize;
const unsigned kPrintfLength = 3 * kInstructionSize;

const unsigned kPrintfMaxArgCount = 4;

// The argument pattern is a set of two-bit-fields, each with one of the
// following values:
enum PrintfArgPattern {
  kPrintfArgW = 1,
  kPrintfArgX = 2,
  // There is no kPrintfArgS because floats are always converted to doubles in C
  // varargs calls.
  kPrintfArgD = 3
};
static const unsigned kPrintfArgPatternBits = 2;

// A pseudo 'debug' instruction.
const Instr kImmExceptionIsDebug = 0xdeb0;
// Parameters are inlined in the code after a debug pseudo-instruction:
// - Debug code.
// - Debug parameters.
// - Debug message string. This is a nullptr-terminated ASCII string, padded to
//   kInstructionSize so that subsequent instructions are correctly aligned.
// - A kImmExceptionIsUnreachable marker, to catch accidental execution of the
//   string data.
const unsigned kDebugCodeOffset = 1 * kInstructionSize;
const unsigned kDebugParamsOffset = 2 * kInstructionSize;
const unsigned kDebugMessageOffset = 3 * kInstructionSize;

// Debug parameters.
// Used without a TRACE_ option, the Debugger will print the arguments only
// once. Otherwise TRACE_ENABLE and TRACE_DISABLE will enable or disable tracing
// before every instruction for the specified LOG_ parameters.
//
// TRACE_OVERRIDE enables the specified LOG_ parameters, and disabled any
// others that were not specified.
//
// For example:
//
// __ debug("print registers and fp registers", 0, LOG_REGS | LOG_VREGS);
// will print the registers and fp registers only once.
//
// __ debug("trace disasm", 1, TRACE_ENABLE | LOG_DISASM);
// starts disassembling the code.
//
// __ debug("trace rets", 2, TRACE_ENABLE | LOG_REGS);
// adds the general purpose registers to the trace.
//
// __ debug("stop regs", 3, TRACE_DISABLE | LOG_REGS);
// stops tracing the registers.
const unsigned kDebuggerTracingDirectivesMask = 3 << 6;
enum DebugParameters {
  NO_PARAM = 0,
  BREAK = 1 << 0,
  LOG_DISASM = 1 << 1,    // Use only with TRACE. Disassemble the code.
  LOG_REGS = 1 << 2,      // Log general purpose registers.
  LOG_VREGS = 1 << 3,     // Log NEON and floating-point registers.
  LOG_SYS_REGS = 1 << 4,  // Log the status flags.
  LOG_WRITE = 1 << 5,     // Log any memory write.

  LOG_NONE = 0,
  LOG_STATE = LOG_REGS | LOG_VREGS | LOG_SYS_REGS,
  LOG_ALL = LOG_DISASM | LOG_STATE | LOG_WRITE,

  // Trace control.
  TRACE_ENABLE = 1 << 6,
  TRACE_DISABLE = 2 << 6,
  TRACE_OVERRIDE = 3 << 6
};

enum NEONFormat {
  NF_UNDEF = 0,
  NF_8B = 1,
  NF_16B = 2,
  NF_4H = 3,
  NF_8H = 4,
  NF_2S = 5,
  NF_4S = 6,
  NF_1D = 7,
  NF_2D = 8,
  NF_B = 9,
  NF_H = 10,
  NF_S = 11,
  NF_D = 12
};

static const unsigned kNEONFormatMaxBits = 6;

struct NEONFormatMap {
  // The bit positions in the instruction to consider.
  uint8_t bits[kNEONFormatMaxBits];

  // Mapping from concatenated bits to format.
  NEONFormat map[1 << kNEONFormatMaxBits];
};

class NEONFormatDecoder {
 public:
  enum SubstitutionMode { kPlaceholder, kFormat };

  // Construct a format decoder with increasingly specific format maps for each
  // substitution. If no format map is specified, the default is the integer
  // format map.
  explicit NEONFormatDecoder(const Instruction* instr);
  NEONFormatDecoder(const Instruction* instr, const NEONFormatMap* format);
  NEONFormatDecoder(const Instruction* instr, const NEONFormatMap* format0,
                    const NEONFormatMap* format1);
  NEONFormatDecoder(const Instruction* instr, const NEONFormatMap* format0,
                    const NEONFormatMap* format1, const NEONFormatMap* format2);

  // Set the format mapping for all or individual substitutions.
  void SetFormatMaps(const NEONFormatMap* format0,
                     const NEONFormatMap* format1 = nullptr,
                     const NEONFormatMap* format2 = nullptr);
  void SetFormatMap(unsigned index, const NEONFormatMap* format);

  // Substitute %s in the input string with the placeholder string for each
  // register, ie. "'B", "'H", etc.
  const char* SubstitutePlaceholders(const char* string);

  // Substitute %s in the input string with a new string based on the
  // substitution mode.
  const char* Substitute(const char* string, SubstitutionMode mode0 = kFormat,
                         SubstitutionMode mode1 = kFormat,
                         SubstitutionMode mode2 = kFormat);

  // Append a "2" to a mnemonic string based of the state of the Q bit.
  const char* Mnemonic(const char* mnemonic);

  VectorFormat GetVectorFormat(int format_index = 0);
  VectorFormat GetVectorFormat(const NEONFormatMap* format_map);

  // Built in mappings for common cases.

  // The integer format map uses three bits (Q, size<1:0>) to encode the
  // "standard" set of NEON integer vector formats.
  static const NEONFormatMap* IntegerFormatMap() {
    static const NEONFormatMap map = {
        {23, 22, 30},
        {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_UNDEF, NF_2D}};
    return &map;
  }

  // The long integer format map uses two bits (size<1:0>) to encode the
  // long set of NEON integer vector formats. These are used in narrow, wide
  // and long operations.
  static const NEONFormatMap* LongIntegerFormatMap() {
    static const NEONFormatMap map = {{23, 22}, {NF_8H, NF_4S, NF_2D}};
    return &map;
  }

  // The FP format map uses two bits (Q, size<0>) to encode the NEON FP vector
  // formats: NF_2S, NF_4S, NF_2D.
  static const NEONFormatMap* FPFormatMap() {
    // The FP format map assumes two bits (Q, size<0>) are used to encode the
    // NEON FP vector formats: NF_2S, NF_4S, NF_2D.
    static const NEONFormatMap map = {{22, 30},
                                      {NF_2S, NF_4S, NF_UNDEF, NF_2D}};
    return &map;
  }

  // The load/store format map uses three bits (Q, 11, 10) to encode the
  // set of NEON vector formats.
  static const NEONFormatMap* LoadStoreFormatMap() {
    static const NEONFormatMap map = {
        {11, 10, 30},
        {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}};
    return &map;
  }

  // The logical format map uses one bit (Q) to encode the NEON vector format:
  // NF_8B, NF_16B.
  static const NEONFormatMap* LogicalFormatMap() {
    static const NEONFormatMap map = {{30}, {NF_8B, NF_16B}};
    return &map;
  }

  // The triangular format map uses between two and five bits to encode the NEON
  // vector format:
  // xxx10->8B, xxx11->16B, xx100->4H, xx101->8H
  // x1000->2S, x1001->4S,  10001->2D, all others undefined.
  static const NEONFormatMap* TriangularFormatMap() {
    static const NEONFormatMap map = {
        {19, 18, 17, 16, 30},
        {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B,
         NF_2S,    NF_4S,    NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B,
         NF_UNDEF, NF_2D,    NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B,
         NF_2S,    NF_4S,    NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B}};
    return &map;
  }

  // The scalar format map uses two bits (size<1:0>) to encode the NEON scalar
  // formats: NF_B, NF_H, NF_S, NF_D.
  static const NEONFormatMap* ScalarFormatMap() {
    static const NEONFormatMap map = {{23, 22}, {NF_B, NF_H, NF_S, NF_D}};
    return &map;
  }

  // The long scalar format map uses two bits (size<1:0>) to encode the longer
  // NEON scalar formats: NF_H, NF_S, NF_D.
  static const NEONFormatMap* LongScalarFormatMap() {
    static const NEONFormatMap map = {{23, 22}, {NF_H, NF_S, NF_D}};
    return &map;
  }

  // The FP scalar format map assumes one bit (size<0>) is used to encode the
  // NEON FP scalar formats: NF_S, NF_D.
  static const NEONFormatMap* FPScalarFormatMap() {
    static const NEONFormatMap map = {{22}, {NF_S, NF_D}};
    return &map;
  }

  // The triangular scalar format map uses between one and four bits to encode
  // the NEON FP scalar formats:
  // xxx1->B, xx10->H, x100->S, 1000->D, all others undefined.
  static const NEONFormatMap* TriangularScalarFormatMap() {
    static const NEONFormatMap map = {
        {19, 18, 17, 16},
        {NF_UNDEF, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B, NF_D, NF_B, NF_H,
         NF_B, NF_S, NF_B, NF_H, NF_B}};
    return &map;
  }

 private:
  // Get a pointer to a string that represents the format or placeholder for
  // the specified substitution index, based on the format map and instruction.
  const char* GetSubstitute(int index, SubstitutionMode mode);

  // Get the NEONFormat enumerated value for bits obtained from the
  // instruction based on the specified format mapping.
  NEONFormat GetNEONFormat(const NEONFormatMap* format_map);

  // Convert a NEONFormat into a string.
  static const char* NEONFormatAsString(NEONFormat format);

  // Convert a NEONFormat into a register placeholder string.
  static const char* NEONFormatAsPlaceholder(NEONFormat format);

  // Select bits from instrbits_ defined by the bits array, concatenate them,
  // and return the value.
  uint8_t PickBits(const uint8_t bits[]);

  Instr instrbits_;
  const NEONFormatMap* formats_[3];
  char form_buffer_[64];
  char mne_buffer_[16];
};
}  // namespace internal
}  // namespace v8


#endif  // V8_ARM64_INSTRUCTIONS_ARM64_H_