summaryrefslogtreecommitdiff
path: root/deps/v8/src/arm64/instructions-arm64.cc
blob: d6f106b8000eb1a9cf15e1b152f97a0bf2085cbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_ARM64

#include "src/arm64/assembler-arm64-inl.h"
#include "src/arm64/instructions-arm64.h"

namespace v8 {
namespace internal {

bool Instruction::IsLoad() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) != 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
    switch (op) {
      case LDRB_w:
      case LDRH_w:
      case LDR_w:
      case LDR_x:
      case LDRSB_w:
      case LDRSB_x:
      case LDRSH_w:
      case LDRSH_x:
      case LDRSW_x:
      case LDR_b:
      case LDR_h:
      case LDR_s:
      case LDR_d:
      case LDR_q:
        return true;
      default: return false;
    }
  }
}


bool Instruction::IsStore() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) == 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
    switch (op) {
      case STRB_w:
      case STRH_w:
      case STR_w:
      case STR_x:
      case STR_b:
      case STR_h:
      case STR_s:
      case STR_d:
      case STR_q:
        return true;
      default: return false;
    }
  }
}


static uint64_t RotateRight(uint64_t value,
                            unsigned int rotate,
                            unsigned int width) {
  DCHECK(width <= 64);
  rotate &= 63;
  return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
         (value >> rotate);
}


static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
                                    uint64_t value,
                                    unsigned width) {
  DCHECK((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
         (width == 32));
  DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
  uint64_t result = value & ((1UL << width) - 1UL);
  for (unsigned i = width; i < reg_size; i *= 2) {
    result |= (result << i);
  }
  return result;
}


// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are not
// met.
uint64_t Instruction::ImmLogical() {
  unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
  int32_t n = BitN();
  int32_t imm_s = ImmSetBits();
  int32_t imm_r = ImmRotate();

  // An integer is constructed from the n, imm_s and imm_r bits according to
  // the following table:
  //
  //  N   imms    immr    size        S             R
  //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
  //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
  //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
  //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
  //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
  //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
  // (s bits must not be all set)
  //
  // A pattern is constructed of size bits, where the least significant S+1
  // bits are set. The pattern is rotated right by R, and repeated across a
  // 32 or 64-bit value, depending on destination register width.
  //

  if (n == 1) {
    if (imm_s == 0x3F) {
      return 0;
    }
    uint64_t bits = (1UL << (imm_s + 1)) - 1;
    return RotateRight(bits, imm_r, 64);
  } else {
    if ((imm_s >> 1) == 0x1F) {
      return 0;
    }
    for (int width = 0x20; width >= 0x2; width >>= 1) {
      if ((imm_s & width) == 0) {
        int mask = width - 1;
        if ((imm_s & mask) == mask) {
          return 0;
        }
        uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
        return RepeatBitsAcrossReg(reg_size,
                                   RotateRight(bits, imm_r & mask, width),
                                   width);
      }
    }
  }
  UNREACHABLE();
}

uint32_t Instruction::ImmNEONabcdefgh() const {
  return ImmNEONabc() << 5 | ImmNEONdefgh();
}

float Instruction::ImmFP32() { return Imm8ToFP32(ImmFP()); }

double Instruction::ImmFP64() { return Imm8ToFP64(ImmFP()); }

float Instruction::ImmNEONFP32() const { return Imm8ToFP32(ImmNEONabcdefgh()); }

double Instruction::ImmNEONFP64() const {
  return Imm8ToFP64(ImmNEONabcdefgh());
}

unsigned CalcLSDataSize(LoadStoreOp op) {
  DCHECK_EQ(static_cast<unsigned>(LSSize_offset + LSSize_width),
            kInstructionSize * 8);
  unsigned size = static_cast<Instr>(op) >> LSSize_offset;
  if ((op & LSVector_mask) != 0) {
    // Vector register memory operations encode the access size in the "size"
    // and "opc" fields.
    if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
      size = kQRegSizeLog2;
    }
  }
  return size;
}

unsigned CalcLSPairDataSize(LoadStorePairOp op) {
  static_assert(kXRegSize == kDRegSize, "X and D registers must be same size.");
  static_assert(kWRegSize == kSRegSize, "W and S registers must be same size.");
  switch (op) {
    case STP_q:
    case LDP_q:
      return kQRegSizeLog2;
    case STP_x:
    case LDP_x:
    case STP_d:
    case LDP_d:
      return kXRegSizeLog2;
    default:
      return kWRegSizeLog2;
  }
}


int64_t Instruction::ImmPCOffset() {
  int64_t offset;
  if (IsPCRelAddressing()) {
    // PC-relative addressing. Only ADR is supported.
    offset = ImmPCRel();
  } else if (BranchType() != UnknownBranchType) {
    // All PC-relative branches.
    // Relative branch offsets are instruction-size-aligned.
    offset = ImmBranch() << kInstructionSizeLog2;
  } else if (IsUnresolvedInternalReference()) {
    // Internal references are always word-aligned.
    offset = ImmUnresolvedInternalReference() << kInstructionSizeLog2;
  } else {
    // Load literal (offset from PC).
    DCHECK(IsLdrLiteral());
    // The offset is always shifted by 2 bits, even for loads to 64-bits
    // registers.
    offset = ImmLLiteral() << kInstructionSizeLog2;
  }
  return offset;
}


Instruction* Instruction::ImmPCOffsetTarget() {
  return InstructionAtOffset(ImmPCOffset());
}


bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
                                     ptrdiff_t offset) {
  return is_intn(offset, ImmBranchRangeBitwidth(branch_type));
}


bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
  return IsValidImmPCOffset(BranchType(), DistanceTo(target));
}

void Instruction::SetImmPCOffsetTarget(Assembler::IsolateData isolate_data,
                                       Instruction* target) {
  if (IsPCRelAddressing()) {
    SetPCRelImmTarget(isolate_data, target);
  } else if (BranchType() != UnknownBranchType) {
    SetBranchImmTarget(target);
  } else if (IsUnresolvedInternalReference()) {
    SetUnresolvedInternalReferenceImmTarget(isolate_data, target);
  } else {
    // Load literal (offset from PC).
    SetImmLLiteral(target);
  }
}

void Instruction::SetPCRelImmTarget(Assembler::IsolateData isolate_data,
                                    Instruction* target) {
  // ADRP is not supported, so 'this' must point to an ADR instruction.
  DCHECK(IsAdr());

  ptrdiff_t target_offset = DistanceTo(target);
  Instr imm;
  if (Instruction::IsValidPCRelOffset(target_offset)) {
    imm = Assembler::ImmPCRelAddress(static_cast<int>(target_offset));
    SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
  } else {
    PatchingAssembler patcher(isolate_data, reinterpret_cast<byte*>(this),
                              PatchingAssembler::kAdrFarPatchableNInstrs);
    patcher.PatchAdrFar(target_offset);
  }
}


void Instruction::SetBranchImmTarget(Instruction* target) {
  DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
  DCHECK(IsValidImmPCOffset(BranchType(),
                            DistanceTo(target) >> kInstructionSizeLog2));
  int offset = static_cast<int>(DistanceTo(target) >> kInstructionSizeLog2);
  Instr branch_imm = 0;
  uint32_t imm_mask = 0;
  switch (BranchType()) {
    case CondBranchType: {
      branch_imm = Assembler::ImmCondBranch(offset);
      imm_mask = ImmCondBranch_mask;
      break;
    }
    case UncondBranchType: {
      branch_imm = Assembler::ImmUncondBranch(offset);
      imm_mask = ImmUncondBranch_mask;
      break;
    }
    case CompareBranchType: {
      branch_imm = Assembler::ImmCmpBranch(offset);
      imm_mask = ImmCmpBranch_mask;
      break;
    }
    case TestBranchType: {
      branch_imm = Assembler::ImmTestBranch(offset);
      imm_mask = ImmTestBranch_mask;
      break;
    }
    default: UNREACHABLE();
  }
  SetInstructionBits(Mask(~imm_mask) | branch_imm);
}

void Instruction::SetUnresolvedInternalReferenceImmTarget(
    Assembler::IsolateData isolate_data, Instruction* target) {
  DCHECK(IsUnresolvedInternalReference());
  DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
  DCHECK(is_int32(DistanceTo(target) >> kInstructionSizeLog2));
  int32_t target_offset =
      static_cast<int32_t>(DistanceTo(target) >> kInstructionSizeLog2);
  uint32_t high16 = unsigned_bitextract_32(31, 16, target_offset);
  uint32_t low16 = unsigned_bitextract_32(15, 0, target_offset);

  PatchingAssembler patcher(isolate_data, reinterpret_cast<byte*>(this), 2);
  patcher.brk(high16);
  patcher.brk(low16);
}


void Instruction::SetImmLLiteral(Instruction* source) {
  DCHECK(IsLdrLiteral());
  DCHECK(IsAligned(DistanceTo(source), kInstructionSize));
  DCHECK(Assembler::IsImmLLiteral(DistanceTo(source)));
  Instr imm = Assembler::ImmLLiteral(
      static_cast<int>(DistanceTo(source) >> kLoadLiteralScaleLog2));
  Instr mask = ImmLLiteral_mask;

  SetInstructionBits(Mask(~mask) | imm);
}


// TODO(jbramley): We can't put this inline in the class because things like
// xzr and Register are not defined in that header. Consider adding
// instructions-arm64-inl.h to work around this.
bool InstructionSequence::IsInlineData() const {
  // Inline data is encoded as a single movz instruction which writes to xzr
  // (x31).
  return IsMovz() && SixtyFourBits() && (Rd() == kZeroRegCode);
  // TODO(all): If we extend ::InlineData() to support bigger data, we need
  // to update this method too.
}


// TODO(jbramley): We can't put this inline in the class because things like
// xzr and Register are not defined in that header. Consider adding
// instructions-arm64-inl.h to work around this.
uint64_t InstructionSequence::InlineData() const {
  DCHECK(IsInlineData());
  uint64_t payload = ImmMoveWide();
  // TODO(all): If we extend ::InlineData() to support bigger data, we need
  // to update this method too.
  return payload;
}

VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
  DCHECK(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
         vform == kFormatH || vform == kFormatS || vform == kFormatD);
  switch (vform) {
    case kFormat8H:
      return kFormat8B;
    case kFormat4S:
      return kFormat4H;
    case kFormat2D:
      return kFormat2S;
    case kFormatH:
      return kFormatB;
    case kFormatS:
      return kFormatH;
    case kFormatD:
      return kFormatS;
    default:
      UNREACHABLE();
  }
}

VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
  DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
         vform == kFormatB || vform == kFormatH || vform == kFormatS);
  switch (vform) {
    case kFormat8B:
      return kFormat8H;
    case kFormat4H:
      return kFormat4S;
    case kFormat2S:
      return kFormat2D;
    case kFormatB:
      return kFormatH;
    case kFormatH:
      return kFormatS;
    case kFormatS:
      return kFormatD;
    default:
      UNREACHABLE();
  }
}

VectorFormat VectorFormatFillQ(VectorFormat vform) {
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B:
      return kFormat16B;
    case kFormatH:
    case kFormat4H:
    case kFormat8H:
      return kFormat8H;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:
      return kFormat4S;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:
      return kFormat2D;
    default:
      UNREACHABLE();
  }
}

VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
  switch (vform) {
    case kFormat4H:
      return kFormat8B;
    case kFormat8H:
      return kFormat16B;
    case kFormat2S:
      return kFormat4H;
    case kFormat4S:
      return kFormat8H;
    case kFormat1D:
      return kFormat2S;
    case kFormat2D:
      return kFormat4S;
    default:
      UNREACHABLE();
  }
}

VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
  DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
  switch (vform) {
    case kFormat8B:
      return kFormat16B;
    case kFormat4H:
      return kFormat8H;
    case kFormat2S:
      return kFormat4S;
    default:
      UNREACHABLE();
  }
}

VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
  DCHECK(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
  switch (vform) {
    case kFormat16B:
      return kFormat8B;
    case kFormat8H:
      return kFormat4H;
    case kFormat4S:
      return kFormat2S;
    default:
      UNREACHABLE();
  }
}

VectorFormat ScalarFormatFromLaneSize(int laneSize) {
  switch (laneSize) {
    case 8:
      return kFormatB;
    case 16:
      return kFormatH;
    case 32:
      return kFormatS;
    case 64:
      return kFormatD;
    default:
      UNREACHABLE();
  }
}

VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
  return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
}

unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
  return RegisterSizeInBitsFromFormat(vform) / 8;
}

unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
  DCHECK_NE(vform, kFormatUndefined);
  switch (vform) {
    case kFormatB:
      return kBRegSizeInBits;
    case kFormatH:
      return kHRegSizeInBits;
    case kFormatS:
      return kSRegSizeInBits;
    case kFormatD:
      return kDRegSizeInBits;
    case kFormat8B:
    case kFormat4H:
    case kFormat2S:
    case kFormat1D:
      return kDRegSizeInBits;
    default:
      return kQRegSizeInBits;
  }
}

unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
  DCHECK_NE(vform, kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B:
      return 8;
    case kFormatH:
    case kFormat4H:
    case kFormat8H:
      return 16;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:
      return 32;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:
      return 64;
    default:
      UNREACHABLE();
  }
}

int LaneSizeInBytesFromFormat(VectorFormat vform) {
  return LaneSizeInBitsFromFormat(vform) / 8;
}

int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
  DCHECK_NE(vform, kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B:
      return 0;
    case kFormatH:
    case kFormat4H:
    case kFormat8H:
      return 1;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:
      return 2;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:
      return 3;
    default:
      UNREACHABLE();
  }
}

int LaneCountFromFormat(VectorFormat vform) {
  DCHECK_NE(vform, kFormatUndefined);
  switch (vform) {
    case kFormat16B:
      return 16;
    case kFormat8B:
    case kFormat8H:
      return 8;
    case kFormat4H:
    case kFormat4S:
      return 4;
    case kFormat2S:
    case kFormat2D:
      return 2;
    case kFormat1D:
    case kFormatB:
    case kFormatH:
    case kFormatS:
    case kFormatD:
      return 1;
    default:
      UNREACHABLE();
  }
}

int MaxLaneCountFromFormat(VectorFormat vform) {
  DCHECK_NE(vform, kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B:
      return 16;
    case kFormatH:
    case kFormat4H:
    case kFormat8H:
      return 8;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:
      return 4;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:
      return 2;
    default:
      UNREACHABLE();
  }
}

// Does 'vform' indicate a vector format or a scalar format?
bool IsVectorFormat(VectorFormat vform) {
  DCHECK_NE(vform, kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormatH:
    case kFormatS:
    case kFormatD:
      return false;
    default:
      return true;
  }
}

int64_t MaxIntFromFormat(VectorFormat vform) {
  return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}

int64_t MinIntFromFormat(VectorFormat vform) {
  return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
}

uint64_t MaxUintFromFormat(VectorFormat vform) {
  return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}

NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr) {
  instrbits_ = instr->InstructionBits();
  SetFormatMaps(IntegerFormatMap());
}

NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
                                     const NEONFormatMap* format) {
  instrbits_ = instr->InstructionBits();
  SetFormatMaps(format);
}

NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
                                     const NEONFormatMap* format0,
                                     const NEONFormatMap* format1) {
  instrbits_ = instr->InstructionBits();
  SetFormatMaps(format0, format1);
}

NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
                                     const NEONFormatMap* format0,
                                     const NEONFormatMap* format1,
                                     const NEONFormatMap* format2) {
  instrbits_ = instr->InstructionBits();
  SetFormatMaps(format0, format1, format2);
}

void NEONFormatDecoder::SetFormatMaps(const NEONFormatMap* format0,
                                      const NEONFormatMap* format1,
                                      const NEONFormatMap* format2) {
  DCHECK_NOT_NULL(format0);
  formats_[0] = format0;
  formats_[1] = (format1 == NULL) ? formats_[0] : format1;
  formats_[2] = (format2 == NULL) ? formats_[1] : format2;
}

void NEONFormatDecoder::SetFormatMap(unsigned index,
                                     const NEONFormatMap* format) {
  DCHECK_LT(index, arraysize(formats_));
  DCHECK_NOT_NULL(format);
  formats_[index] = format;
}

const char* NEONFormatDecoder::SubstitutePlaceholders(const char* string) {
  return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
}

const char* NEONFormatDecoder::Substitute(const char* string,
                                          SubstitutionMode mode0,
                                          SubstitutionMode mode1,
                                          SubstitutionMode mode2) {
  snprintf(form_buffer_, sizeof(form_buffer_), string, GetSubstitute(0, mode0),
           GetSubstitute(1, mode1), GetSubstitute(2, mode2));
  return form_buffer_;
}

const char* NEONFormatDecoder::Mnemonic(const char* mnemonic) {
  if ((instrbits_ & NEON_Q) != 0) {
    snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
    return mne_buffer_;
  }
  return mnemonic;
}

VectorFormat NEONFormatDecoder::GetVectorFormat(int format_index) {
  return GetVectorFormat(formats_[format_index]);
}

VectorFormat NEONFormatDecoder::GetVectorFormat(
    const NEONFormatMap* format_map) {
  static const VectorFormat vform[] = {
      kFormatUndefined, kFormat8B, kFormat16B, kFormat4H, kFormat8H,
      kFormat2S,        kFormat4S, kFormat1D,  kFormat2D, kFormatB,
      kFormatH,         kFormatS,  kFormatD};
  DCHECK_LT(GetNEONFormat(format_map), arraysize(vform));
  return vform[GetNEONFormat(format_map)];
}

const char* NEONFormatDecoder::GetSubstitute(int index, SubstitutionMode mode) {
  if (mode == kFormat) {
    return NEONFormatAsString(GetNEONFormat(formats_[index]));
  }
  DCHECK_EQ(mode, kPlaceholder);
  return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
}

NEONFormat NEONFormatDecoder::GetNEONFormat(const NEONFormatMap* format_map) {
  return format_map->map[PickBits(format_map->bits)];
}

const char* NEONFormatDecoder::NEONFormatAsString(NEONFormat format) {
  static const char* formats[] = {"undefined", "8b", "16b", "4h", "8h",
                                  "2s",        "4s", "1d",  "2d", "b",
                                  "h",         "s",  "d"};
  DCHECK_LT(format, arraysize(formats));
  return formats[format];
}

const char* NEONFormatDecoder::NEONFormatAsPlaceholder(NEONFormat format) {
  DCHECK((format == NF_B) || (format == NF_H) || (format == NF_S) ||
         (format == NF_D) || (format == NF_UNDEF));
  static const char* formats[] = {
      "undefined", "undefined", "undefined", "undefined", "undefined",
      "undefined", "undefined", "undefined", "undefined", "'B",
      "'H",        "'S",        "'D"};
  return formats[format];
}

uint8_t NEONFormatDecoder::PickBits(const uint8_t bits[]) {
  uint8_t result = 0;
  for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
    if (bits[b] == 0) break;
    result <<= 1;
    result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
  }
  return result;
}
}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_ARM64