aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/arm64/codegen-arm64.cc
blob: 8e927bfd9051ca63961b6533b0ce516829b80237 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/arm64/codegen-arm64.h"

#if V8_TARGET_ARCH_ARM64

#include "src/arm64/simulator-arm64.h"
#include "src/codegen.h"
#include "src/macro-assembler.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

#if defined(USE_SIMULATOR)
byte* fast_exp_arm64_machine_code = NULL;
double fast_exp_simulator(double x) {
  Simulator * simulator = Simulator::current(Isolate::Current());
  Simulator::CallArgument args[] = {
      Simulator::CallArgument(x),
      Simulator::CallArgument::End()
  };
  return simulator->CallDouble(fast_exp_arm64_machine_code, args);
}
#endif


UnaryMathFunction CreateExpFunction() {
  if (!FLAG_fast_math) return &std::exp;

  // Use the Math.exp implemetation in MathExpGenerator::EmitMathExp() to create
  // an AAPCS64-compliant exp() function. This will be faster than the C
  // library's exp() function, but probably less accurate.
  size_t actual_size;
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
  if (buffer == NULL) return &std::exp;

  ExternalReference::InitializeMathExpData();
  MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
  masm.SetStackPointer(csp);

  // The argument will be in d0 on entry.
  DoubleRegister input = d0;
  // Use other caller-saved registers for all other values.
  DoubleRegister result = d1;
  DoubleRegister double_temp1 = d2;
  DoubleRegister double_temp2 = d3;
  Register temp1 = x10;
  Register temp2 = x11;
  Register temp3 = x12;

  MathExpGenerator::EmitMathExp(&masm, input, result,
                                double_temp1, double_temp2,
                                temp1, temp2, temp3);
  // Move the result to the return register.
  masm.Fmov(d0, result);
  masm.Ret();

  CodeDesc desc;
  masm.GetCode(&desc);
  DCHECK(!RelocInfo::RequiresRelocation(desc));

  Assembler::FlushICacheWithoutIsolate(buffer, actual_size);
  base::OS::ProtectCode(buffer, actual_size);

#if !defined(USE_SIMULATOR)
  return FUNCTION_CAST<UnaryMathFunction>(buffer);
#else
  fast_exp_arm64_machine_code = buffer;
  return &fast_exp_simulator;
#endif
}


UnaryMathFunction CreateSqrtFunction() {
  return &std::sqrt;
}


// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
  masm->EnterFrame(StackFrame::INTERNAL);
  DCHECK(!masm->has_frame());
  masm->set_has_frame(true);
}


void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
  masm->LeaveFrame(StackFrame::INTERNAL);
  DCHECK(masm->has_frame());
  masm->set_has_frame(false);
}


// -------------------------------------------------------------------------
// Code generators

void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
    MacroAssembler* masm,
    Register receiver,
    Register key,
    Register value,
    Register target_map,
    AllocationSiteMode mode,
    Label* allocation_memento_found) {
  ASM_LOCATION(
      "ElementsTransitionGenerator::GenerateMapChangeElementsTransition");
  DCHECK(!AreAliased(receiver, key, value, target_map));

  if (mode == TRACK_ALLOCATION_SITE) {
    DCHECK(allocation_memento_found != NULL);
    __ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11,
                                         allocation_memento_found);
  }

  // Set transitioned map.
  __ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ RecordWriteField(receiver,
                      HeapObject::kMapOffset,
                      target_map,
                      x10,
                      kLRHasNotBeenSaved,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


void ElementsTransitionGenerator::GenerateSmiToDouble(
    MacroAssembler* masm,
    Register receiver,
    Register key,
    Register value,
    Register target_map,
    AllocationSiteMode mode,
    Label* fail) {
  ASM_LOCATION("ElementsTransitionGenerator::GenerateSmiToDouble");
  Label gc_required, only_change_map;
  Register elements = x4;
  Register length = x5;
  Register array_size = x6;
  Register array = x7;

  Register scratch = x6;

  // Verify input registers don't conflict with locals.
  DCHECK(!AreAliased(receiver, key, value, target_map,
                     elements, length, array_size, array));

  if (mode == TRACK_ALLOCATION_SITE) {
    __ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11, fail);
  }

  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ JumpIfRoot(elements, Heap::kEmptyFixedArrayRootIndex, &only_change_map);

  __ Push(lr);
  __ Ldrsw(length, UntagSmiFieldMemOperand(elements,
                                           FixedArray::kLengthOffset));

  // Allocate new FixedDoubleArray.
  __ Lsl(array_size, length, kDoubleSizeLog2);
  __ Add(array_size, array_size, FixedDoubleArray::kHeaderSize);
  __ Allocate(array_size, array, x10, x11, &gc_required, DOUBLE_ALIGNMENT);
  // Register array is non-tagged heap object.

  // Set the destination FixedDoubleArray's length and map.
  Register map_root = array_size;
  __ LoadRoot(map_root, Heap::kFixedDoubleArrayMapRootIndex);
  __ SmiTag(x11, length);
  __ Str(x11, MemOperand(array, FixedDoubleArray::kLengthOffset));
  __ Str(map_root, MemOperand(array, HeapObject::kMapOffset));

  __ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
                      kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);

  // Replace receiver's backing store with newly created FixedDoubleArray.
  __ Add(x10, array, kHeapObjectTag);
  __ Str(x10, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ RecordWriteField(receiver, JSObject::kElementsOffset, x10,
                      scratch, kLRHasBeenSaved, kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);

  // Prepare for conversion loop.
  Register src_elements = x10;
  Register dst_elements = x11;
  Register dst_end = x12;
  __ Add(src_elements, elements, FixedArray::kHeaderSize - kHeapObjectTag);
  __ Add(dst_elements, array, FixedDoubleArray::kHeaderSize);
  __ Add(dst_end, dst_elements, Operand(length, LSL, kDoubleSizeLog2));

  FPRegister nan_d = d1;
  __ Fmov(nan_d, rawbits_to_double(kHoleNanInt64));

  Label entry, done;
  __ B(&entry);

  __ Bind(&only_change_map);
  __ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ B(&done);

  // Call into runtime if GC is required.
  __ Bind(&gc_required);
  __ Pop(lr);
  __ B(fail);

  // Iterate over the array, copying and coverting smis to doubles. If an
  // element is non-smi, write a hole to the destination.
  {
    Label loop;
    __ Bind(&loop);
    __ Ldr(x13, MemOperand(src_elements, kPointerSize, PostIndex));
    __ SmiUntagToDouble(d0, x13, kSpeculativeUntag);
    __ Tst(x13, kSmiTagMask);
    __ Fcsel(d0, d0, nan_d, eq);
    __ Str(d0, MemOperand(dst_elements, kDoubleSize, PostIndex));

    __ Bind(&entry);
    __ Cmp(dst_elements, dst_end);
    __ B(lt, &loop);
  }

  __ Pop(lr);
  __ Bind(&done);
}


void ElementsTransitionGenerator::GenerateDoubleToObject(
    MacroAssembler* masm,
    Register receiver,
    Register key,
    Register value,
    Register target_map,
    AllocationSiteMode mode,
    Label* fail) {
  ASM_LOCATION("ElementsTransitionGenerator::GenerateDoubleToObject");
  Register elements = x4;
  Register array_size = x6;
  Register array = x7;
  Register length = x5;

  // Verify input registers don't conflict with locals.
  DCHECK(!AreAliased(receiver, key, value, target_map,
                     elements, array_size, array, length));

  if (mode == TRACK_ALLOCATION_SITE) {
    __ JumpIfJSArrayHasAllocationMemento(receiver, x10, x11, fail);
  }

  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  Label only_change_map;

  __ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ JumpIfRoot(elements, Heap::kEmptyFixedArrayRootIndex, &only_change_map);

  __ Push(lr);
  // TODO(all): These registers may not need to be pushed. Examine
  // RecordWriteStub and check whether it's needed.
  __ Push(target_map, receiver, key, value);
  __ Ldrsw(length, UntagSmiFieldMemOperand(elements,
                                           FixedArray::kLengthOffset));
  // Allocate new FixedArray.
  Label gc_required;
  __ Mov(array_size, FixedDoubleArray::kHeaderSize);
  __ Add(array_size, array_size, Operand(length, LSL, kPointerSizeLog2));
  __ Allocate(array_size, array, x10, x11, &gc_required, NO_ALLOCATION_FLAGS);

  // Set destination FixedDoubleArray's length and map.
  Register map_root = array_size;
  __ LoadRoot(map_root, Heap::kFixedArrayMapRootIndex);
  __ SmiTag(x11, length);
  __ Str(x11, MemOperand(array, FixedDoubleArray::kLengthOffset));
  __ Str(map_root, MemOperand(array, HeapObject::kMapOffset));

  // Prepare for conversion loop.
  Register src_elements = x10;
  Register dst_elements = x11;
  Register dst_end = x12;
  Register the_hole = x14;
  __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
  __ Add(src_elements, elements,
         FixedDoubleArray::kHeaderSize - kHeapObjectTag);
  __ Add(dst_elements, array, FixedArray::kHeaderSize);
  __ Add(dst_end, dst_elements, Operand(length, LSL, kPointerSizeLog2));

  // Allocating heap numbers in the loop below can fail and cause a jump to
  // gc_required. We can't leave a partly initialized FixedArray behind,
  // so pessimistically fill it with holes now.
  Label initialization_loop, initialization_loop_entry;
  __ B(&initialization_loop_entry);
  __ bind(&initialization_loop);
  __ Str(the_hole, MemOperand(dst_elements, kPointerSize, PostIndex));
  __ bind(&initialization_loop_entry);
  __ Cmp(dst_elements, dst_end);
  __ B(lt, &initialization_loop);

  __ Add(dst_elements, array, FixedArray::kHeaderSize);
  __ Add(array, array, kHeapObjectTag);

  Register heap_num_map = x15;
  __ LoadRoot(heap_num_map, Heap::kHeapNumberMapRootIndex);

  Label entry;
  __ B(&entry);

  // Call into runtime if GC is required.
  __ Bind(&gc_required);
  __ Pop(value, key, receiver, target_map);
  __ Pop(lr);
  __ B(fail);

  {
    Label loop, convert_hole;
    __ Bind(&loop);
    __ Ldr(x13, MemOperand(src_elements, kPointerSize, PostIndex));
    __ Cmp(x13, kHoleNanInt64);
    __ B(eq, &convert_hole);

    // Non-hole double, copy value into a heap number.
    Register heap_num = length;
    Register scratch = array_size;
    Register scratch2 = elements;
    __ AllocateHeapNumber(heap_num, &gc_required, scratch, scratch2,
                          x13, heap_num_map);
    __ Mov(x13, dst_elements);
    __ Str(heap_num, MemOperand(dst_elements, kPointerSize, PostIndex));
    __ RecordWrite(array, x13, heap_num, kLRHasBeenSaved, kDontSaveFPRegs,
                   EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);

    __ B(&entry);

    // Replace the-hole NaN with the-hole pointer.
    __ Bind(&convert_hole);
    __ Str(the_hole, MemOperand(dst_elements, kPointerSize, PostIndex));

    __ Bind(&entry);
    __ Cmp(dst_elements, dst_end);
    __ B(lt, &loop);
  }

  __ Pop(value, key, receiver, target_map);
  // Replace receiver's backing store with newly created and filled FixedArray.
  __ Str(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ RecordWriteField(receiver, JSObject::kElementsOffset, array, x13,
                      kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ Pop(lr);

  __ Bind(&only_change_map);
  __ Str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, x13,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


CodeAgingHelper::CodeAgingHelper() {
  DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
  // The sequence of instructions that is patched out for aging code is the
  // following boilerplate stack-building prologue that is found both in
  // FUNCTION and OPTIMIZED_FUNCTION code:
  PatchingAssembler patcher(young_sequence_.start(),
                            young_sequence_.length() / kInstructionSize);
  // The young sequence is the frame setup code for FUNCTION code types. It is
  // generated by FullCodeGenerator::Generate.
  MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);

#ifdef DEBUG
  const int length = kCodeAgeStubEntryOffset / kInstructionSize;
  DCHECK(old_sequence_.length() >= kCodeAgeStubEntryOffset);
  PatchingAssembler patcher_old(old_sequence_.start(), length);
  MacroAssembler::EmitCodeAgeSequence(&patcher_old, NULL);
#endif
}


#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
  return memcmp(candidate, old_sequence_.start(), kCodeAgeStubEntryOffset) == 0;
}
#endif


bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
  return MacroAssembler::IsYoungSequence(isolate, sequence);
}


void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
                               MarkingParity* parity) {
  if (IsYoungSequence(isolate, sequence)) {
    *age = kNoAgeCodeAge;
    *parity = NO_MARKING_PARITY;
  } else {
    byte* target = sequence + kCodeAgeStubEntryOffset;
    Code* stub = GetCodeFromTargetAddress(Memory::Address_at(target));
    GetCodeAgeAndParity(stub, age, parity);
  }
}


void Code::PatchPlatformCodeAge(Isolate* isolate,
                                byte* sequence,
                                Code::Age age,
                                MarkingParity parity) {
  PatchingAssembler patcher(sequence,
                            kNoCodeAgeSequenceLength / kInstructionSize);
  if (age == kNoAgeCodeAge) {
    MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
  } else {
    Code * stub = GetCodeAgeStub(isolate, age, parity);
    MacroAssembler::EmitCodeAgeSequence(&patcher, stub);
  }
}


void StringCharLoadGenerator::Generate(MacroAssembler* masm,
                                       Register string,
                                       Register index,
                                       Register result,
                                       Label* call_runtime) {
  DCHECK(string.Is64Bits() && index.Is32Bits() && result.Is64Bits());
  // Fetch the instance type of the receiver into result register.
  __ Ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ Ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ TestAndBranchIfAllClear(result, kIsIndirectStringMask, &check_sequential);

  // Dispatch on the indirect string shape: slice or cons.
  Label cons_string;
  __ TestAndBranchIfAllClear(result, kSlicedNotConsMask, &cons_string);

  // Handle slices.
  Label indirect_string_loaded;
  __ Ldr(result.W(),
         UntagSmiFieldMemOperand(string, SlicedString::kOffsetOffset));
  __ Ldr(string, FieldMemOperand(string, SlicedString::kParentOffset));
  __ Add(index, index, result.W());
  __ B(&indirect_string_loaded);

  // Handle cons strings.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ Bind(&cons_string);
  __ Ldr(result, FieldMemOperand(string, ConsString::kSecondOffset));
  __ JumpIfNotRoot(result, Heap::kempty_stringRootIndex, call_runtime);
  // Get the first of the two strings and load its instance type.
  __ Ldr(string, FieldMemOperand(string, ConsString::kFirstOffset));

  __ Bind(&indirect_string_loaded);
  __ Ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ Ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
  Label external_string, check_encoding;
  __ Bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ TestAndBranchIfAnySet(result, kStringRepresentationMask, &external_string);

  // Prepare sequential strings
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
  __ Add(string, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
  __ B(&check_encoding);

  // Handle external strings.
  __ Bind(&external_string);
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ Tst(result, kIsIndirectStringMask);
    __ Assert(eq, kExternalStringExpectedButNotFound);
  }
  // Rule out short external strings.
  STATIC_ASSERT(kShortExternalStringTag != 0);
  // TestAndBranchIfAnySet can emit Tbnz. Do not use it because call_runtime
  // can be bound far away in deferred code.
  __ Tst(result, kShortExternalStringMask);
  __ B(ne, call_runtime);
  __ Ldr(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));

  Label one_byte, done;
  __ Bind(&check_encoding);
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ TestAndBranchIfAnySet(result, kStringEncodingMask, &one_byte);
  // Two-byte string.
  __ Ldrh(result, MemOperand(string, index, SXTW, 1));
  __ B(&done);
  __ Bind(&one_byte);
  // One-byte string.
  __ Ldrb(result, MemOperand(string, index, SXTW));
  __ Bind(&done);
}


static MemOperand ExpConstant(Register base, int index) {
  return MemOperand(base, index * kDoubleSize);
}


void MathExpGenerator::EmitMathExp(MacroAssembler* masm,
                                   DoubleRegister input,
                                   DoubleRegister result,
                                   DoubleRegister double_temp1,
                                   DoubleRegister double_temp2,
                                   Register temp1,
                                   Register temp2,
                                   Register temp3) {
  // TODO(jbramley): There are several instances where fnmsub could be used
  // instead of fmul and fsub. Doing this changes the result, but since this is
  // an estimation anyway, does it matter?

  DCHECK(!AreAliased(input, result,
                     double_temp1, double_temp2,
                     temp1, temp2, temp3));
  DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
  DCHECK(!masm->serializer_enabled());  // External references not serializable.

  Label done;
  DoubleRegister double_temp3 = result;
  Register constants = temp3;

  // The algorithm used relies on some magic constants which are initialized in
  // ExternalReference::InitializeMathExpData().

  // Load the address of the start of the array.
  __ Mov(constants, ExternalReference::math_exp_constants(0));

  // We have to do a four-way split here:
  //  - If input <= about -708.4, the output always rounds to zero.
  //  - If input >= about 709.8, the output always rounds to +infinity.
  //  - If the input is NaN, the output is NaN.
  //  - Otherwise, the result needs to be calculated.
  Label result_is_finite_non_zero;
  // Assert that we can load offset 0 (the small input threshold) and offset 1
  // (the large input threshold) with a single ldp.
  DCHECK(kDRegSize == (ExpConstant(constants, 1).offset() -
                              ExpConstant(constants, 0).offset()));
  __ Ldp(double_temp1, double_temp2, ExpConstant(constants, 0));

  __ Fcmp(input, double_temp1);
  __ Fccmp(input, double_temp2, NoFlag, hi);
  // At this point, the condition flags can be in one of five states:
  //  NZCV
  //  1000      -708.4 < input < 709.8    result = exp(input)
  //  0110      input == 709.8            result = +infinity
  //  0010      input > 709.8             result = +infinity
  //  0011      input is NaN              result = input
  //  0000      input <= -708.4           result = +0.0

  // Continue the common case first. 'mi' tests N == 1.
  __ B(&result_is_finite_non_zero, mi);

  // TODO(jbramley): Consider adding a +infinity register for ARM64.
  __ Ldr(double_temp2, ExpConstant(constants, 2));    // Synthesize +infinity.

  // Select between +0.0 and +infinity. 'lo' tests C == 0.
  __ Fcsel(result, fp_zero, double_temp2, lo);
  // Select between {+0.0 or +infinity} and input. 'vc' tests V == 0.
  __ Fcsel(result, result, input, vc);
  __ B(&done);

  // The rest is magic, as described in InitializeMathExpData().
  __ Bind(&result_is_finite_non_zero);

  // Assert that we can load offset 3 and offset 4 with a single ldp.
  DCHECK(kDRegSize == (ExpConstant(constants, 4).offset() -
                              ExpConstant(constants, 3).offset()));
  __ Ldp(double_temp1, double_temp3, ExpConstant(constants, 3));
  __ Fmadd(double_temp1, double_temp1, input, double_temp3);
  __ Fmov(temp2.W(), double_temp1.S());
  __ Fsub(double_temp1, double_temp1, double_temp3);

  // Assert that we can load offset 5 and offset 6 with a single ldp.
  DCHECK(kDRegSize == (ExpConstant(constants, 6).offset() -
                              ExpConstant(constants, 5).offset()));
  __ Ldp(double_temp2, double_temp3, ExpConstant(constants, 5));
  // TODO(jbramley): Consider using Fnmsub here.
  __ Fmul(double_temp1, double_temp1, double_temp2);
  __ Fsub(double_temp1, double_temp1, input);

  __ Fmul(double_temp2, double_temp1, double_temp1);
  __ Fsub(double_temp3, double_temp3, double_temp1);
  __ Fmul(double_temp3, double_temp3, double_temp2);

  __ Mov(temp1.W(), Operand(temp2.W(), LSR, 11));

  __ Ldr(double_temp2, ExpConstant(constants, 7));
  // TODO(jbramley): Consider using Fnmsub here.
  __ Fmul(double_temp3, double_temp3, double_temp2);
  __ Fsub(double_temp3, double_temp3, double_temp1);

  // The 8th constant is 1.0, so use an immediate move rather than a load.
  // We can't generate a runtime assertion here as we would need to call Abort
  // in the runtime and we don't have an Isolate when we generate this code.
  __ Fmov(double_temp2, 1.0);
  __ Fadd(double_temp3, double_temp3, double_temp2);

  __ And(temp2, temp2, 0x7ff);
  __ Add(temp1, temp1, 0x3ff);

  // Do the final table lookup.
  __ Mov(temp3, ExternalReference::math_exp_log_table());

  __ Add(temp3, temp3, Operand(temp2, LSL, kDRegSizeLog2));
  __ Ldp(temp2.W(), temp3.W(), MemOperand(temp3));
  __ Orr(temp1.W(), temp3.W(), Operand(temp1.W(), LSL, 20));
  __ Bfi(temp2, temp1, 32, 32);
  __ Fmov(double_temp1, temp2);

  __ Fmul(result, double_temp3, double_temp1);

  __ Bind(&done);
}

#undef __

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_ARM64