summaryrefslogtreecommitdiff
path: root/deps/v8/src/arm64/assembler-arm64.h
blob: d5c2936dc2f2f19b3453ca3da951dc1873fdd546 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_ARM64_ASSEMBLER_ARM64_H_
#define V8_ARM64_ASSEMBLER_ARM64_H_

#include <deque>
#include <list>
#include <map>
#include <vector>

#include "src/arm64/instructions-arm64.h"
#include "src/assembler.h"
#include "src/globals.h"
#include "src/utils.h"


namespace v8 {
namespace internal {


// -----------------------------------------------------------------------------
// Registers.
// clang-format off
#define GENERAL_REGISTER_CODE_LIST(R)                     \
  R(0)  R(1)  R(2)  R(3)  R(4)  R(5)  R(6)  R(7)          \
  R(8)  R(9)  R(10) R(11) R(12) R(13) R(14) R(15)         \
  R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23)         \
  R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)

#define GENERAL_REGISTERS(R)                              \
  R(x0)  R(x1)  R(x2)  R(x3)  R(x4)  R(x5)  R(x6)  R(x7)  \
  R(x8)  R(x9)  R(x10) R(x11) R(x12) R(x13) R(x14) R(x15) \
  R(x16) R(x17) R(x18) R(x19) R(x20) R(x21) R(x22) R(x23) \
  R(x24) R(x25) R(x26) R(x27) R(x28) R(x29) R(x30) R(x31)

#define ALLOCATABLE_GENERAL_REGISTERS(R)                  \
  R(x0)  R(x1)  R(x2)  R(x3)  R(x4)  R(x5)  R(x6)  R(x7)  \
  R(x8)  R(x9)  R(x10) R(x11) R(x12) R(x13) R(x14) R(x15) \
  R(x18) R(x19) R(x20) R(x21) R(x22) R(x23) R(x24) R(x27)

#define FLOAT_REGISTERS(V)                                \
  V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  \
  V(s8)  V(s9)  V(s10) V(s11) V(s12) V(s13) V(s14) V(s15) \
  V(s16) V(s17) V(s18) V(s19) V(s20) V(s21) V(s22) V(s23) \
  V(s24) V(s25) V(s26) V(s27) V(s28) V(s29) V(s30) V(s31)

#define DOUBLE_REGISTERS(R)                               \
  R(d0)  R(d1)  R(d2)  R(d3)  R(d4)  R(d5)  R(d6)  R(d7)  \
  R(d8)  R(d9)  R(d10) R(d11) R(d12) R(d13) R(d14) R(d15) \
  R(d16) R(d17) R(d18) R(d19) R(d20) R(d21) R(d22) R(d23) \
  R(d24) R(d25) R(d26) R(d27) R(d28) R(d29) R(d30) R(d31)

#define SIMD128_REGISTERS(V)                              \
  V(q0)  V(q1)  V(q2)  V(q3)  V(q4)  V(q5)  V(q6)  V(q7)  \
  V(q8)  V(q9)  V(q10) V(q11) V(q12) V(q13) V(q14) V(q15)

#define ALLOCATABLE_DOUBLE_REGISTERS(R)                   \
  R(d0)  R(d1)  R(d2)  R(d3)  R(d4)  R(d5)  R(d6)  R(d7)  \
  R(d8)  R(d9)  R(d10) R(d11) R(d12) R(d13) R(d14) R(d16) \
  R(d17) R(d18) R(d19) R(d20) R(d21) R(d22) R(d23) R(d24) \
  R(d25) R(d26) R(d27) R(d28)
// clang-format on

static const int kRegListSizeInBits = sizeof(RegList) * kBitsPerByte;


// Some CPURegister methods can return Register and FPRegister types, so we
// need to declare them in advance.
struct Register;
struct FPRegister;


struct CPURegister {
  enum Code {
#define REGISTER_CODE(R) kCode_##R,
    GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
        kAfterLast,
    kCode_no_reg = -1
  };

  enum RegisterType {
    // The kInvalid value is used to detect uninitialized static instances,
    // which are always zero-initialized before any constructors are called.
    kInvalid = 0,
    kRegister,
    kFPRegister,
    kNoRegister
  };

  static CPURegister Create(int code, int size, RegisterType type) {
    CPURegister r = {code, size, type};
    return r;
  }

  int code() const;
  RegisterType type() const;
  RegList Bit() const;
  int SizeInBits() const;
  int SizeInBytes() const;
  bool Is32Bits() const;
  bool Is64Bits() const;
  bool IsValid() const;
  bool IsValidOrNone() const;
  bool IsValidRegister() const;
  bool IsValidFPRegister() const;
  bool IsNone() const;
  bool Is(const CPURegister& other) const;
  bool Aliases(const CPURegister& other) const;

  bool IsZero() const;
  bool IsSP() const;

  bool IsRegister() const;
  bool IsFPRegister() const;

  Register X() const;
  Register W() const;
  FPRegister D() const;
  FPRegister S() const;

  bool IsSameSizeAndType(const CPURegister& other) const;

  // V8 compatibility.
  bool is(const CPURegister& other) const { return Is(other); }
  bool is_valid() const { return IsValid(); }

  int reg_code;
  int reg_size;
  RegisterType reg_type;
};


struct Register : public CPURegister {
  static Register Create(int code, int size) {
    return Register(CPURegister::Create(code, size, CPURegister::kRegister));
  }

  Register() {
    reg_code = 0;
    reg_size = 0;
    reg_type = CPURegister::kNoRegister;
  }

  explicit Register(const CPURegister& r) {
    reg_code = r.reg_code;
    reg_size = r.reg_size;
    reg_type = r.reg_type;
    DCHECK(IsValidOrNone());
  }

  Register(const Register& r) {  // NOLINT(runtime/explicit)
    reg_code = r.reg_code;
    reg_size = r.reg_size;
    reg_type = r.reg_type;
    DCHECK(IsValidOrNone());
  }

  bool IsValid() const {
    DCHECK(IsRegister() || IsNone());
    return IsValidRegister();
  }

  static Register XRegFromCode(unsigned code);
  static Register WRegFromCode(unsigned code);

  // Start of V8 compatibility section ---------------------
  // These memebers are necessary for compilation.
  // A few of them may be unused for now.

  static const int kNumRegisters = kNumberOfRegisters;
  STATIC_ASSERT(kNumRegisters == Code::kAfterLast);
  static int NumRegisters() { return kNumRegisters; }

  // We allow crankshaft to use the following registers:
  //   - x0 to x15
  //   - x18 to x24
  //   - x27 (also context)
  //
  // TODO(all): Register x25 is currently free and could be available for
  // crankshaft, but we don't use it as we might use it as a per function
  // literal pool pointer in the future.
  //
  // TODO(all): Consider storing cp in x25 to have only two ranges.
  // We split allocatable registers in three ranges called
  //   - "low range"
  //   - "high range"
  //   - "context"

  static Register from_code(int code) {
    // Always return an X register.
    return Register::Create(code, kXRegSizeInBits);
  }

  // End of V8 compatibility section -----------------------
};

static const bool kSimpleFPAliasing = true;

struct FPRegister : public CPURegister {
  enum Code {
#define REGISTER_CODE(R) kCode_##R,
    DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
        kAfterLast,
    kCode_no_reg = -1
  };

  static FPRegister Create(int code, int size) {
    return FPRegister(
        CPURegister::Create(code, size, CPURegister::kFPRegister));
  }

  FPRegister() {
    reg_code = 0;
    reg_size = 0;
    reg_type = CPURegister::kNoRegister;
  }

  explicit FPRegister(const CPURegister& r) {
    reg_code = r.reg_code;
    reg_size = r.reg_size;
    reg_type = r.reg_type;
    DCHECK(IsValidOrNone());
  }

  FPRegister(const FPRegister& r) {  // NOLINT(runtime/explicit)
    reg_code = r.reg_code;
    reg_size = r.reg_size;
    reg_type = r.reg_type;
    DCHECK(IsValidOrNone());
  }

  bool IsValid() const {
    DCHECK(IsFPRegister() || IsNone());
    return IsValidFPRegister();
  }

  static FPRegister SRegFromCode(unsigned code);
  static FPRegister DRegFromCode(unsigned code);

  // Start of V8 compatibility section ---------------------
  static const int kMaxNumRegisters = kNumberOfFPRegisters;
  STATIC_ASSERT(kMaxNumRegisters == Code::kAfterLast);

  // Crankshaft can use all the FP registers except:
  //   - d15 which is used to keep the 0 double value
  //   - d30 which is used in crankshaft as a double scratch register
  //   - d31 which is used in the MacroAssembler as a double scratch register
  static FPRegister from_code(int code) {
    // Always return a D register.
    return FPRegister::Create(code, kDRegSizeInBits);
  }
  // End of V8 compatibility section -----------------------
};


STATIC_ASSERT(sizeof(CPURegister) == sizeof(Register));
STATIC_ASSERT(sizeof(CPURegister) == sizeof(FPRegister));


#if defined(ARM64_DEFINE_REG_STATICS)
#define INITIALIZE_REGISTER(register_class, name, code, size, type)      \
  const CPURegister init_##register_class##_##name = {code, size, type}; \
  const register_class& name = *reinterpret_cast<const register_class*>( \
                                    &init_##register_class##_##name)
#define ALIAS_REGISTER(register_class, alias, name)                       \
  const register_class& alias = *reinterpret_cast<const register_class*>( \
                                     &init_##register_class##_##name)
#else
#define INITIALIZE_REGISTER(register_class, name, code, size, type) \
  extern const register_class& name
#define ALIAS_REGISTER(register_class, alias, name) \
  extern const register_class& alias
#endif  // defined(ARM64_DEFINE_REG_STATICS)

// No*Reg is used to indicate an unused argument, or an error case. Note that
// these all compare equal (using the Is() method). The Register and FPRegister
// variants are provided for convenience.
INITIALIZE_REGISTER(Register, NoReg, 0, 0, CPURegister::kNoRegister);
INITIALIZE_REGISTER(FPRegister, NoFPReg, 0, 0, CPURegister::kNoRegister);
INITIALIZE_REGISTER(CPURegister, NoCPUReg, 0, 0, CPURegister::kNoRegister);

// v8 compatibility.
INITIALIZE_REGISTER(Register, no_reg, 0, 0, CPURegister::kNoRegister);

#define DEFINE_REGISTERS(N)                                                  \
  INITIALIZE_REGISTER(Register, w##N, N,                                     \
                      kWRegSizeInBits, CPURegister::kRegister);              \
  INITIALIZE_REGISTER(Register, x##N, N,                                     \
                      kXRegSizeInBits, CPURegister::kRegister);
GENERAL_REGISTER_CODE_LIST(DEFINE_REGISTERS)
#undef DEFINE_REGISTERS

INITIALIZE_REGISTER(Register, wcsp, kSPRegInternalCode, kWRegSizeInBits,
                    CPURegister::kRegister);
INITIALIZE_REGISTER(Register, csp, kSPRegInternalCode, kXRegSizeInBits,
                    CPURegister::kRegister);

#define DEFINE_FPREGISTERS(N)                                                  \
  INITIALIZE_REGISTER(FPRegister, s##N, N,                                     \
                      kSRegSizeInBits, CPURegister::kFPRegister);              \
  INITIALIZE_REGISTER(FPRegister, d##N, N,                                     \
                      kDRegSizeInBits, CPURegister::kFPRegister);
GENERAL_REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
#undef DEFINE_FPREGISTERS

#undef INITIALIZE_REGISTER

// Registers aliases.
ALIAS_REGISTER(Register, ip0, x16);
ALIAS_REGISTER(Register, ip1, x17);
ALIAS_REGISTER(Register, wip0, w16);
ALIAS_REGISTER(Register, wip1, w17);
// Root register.
ALIAS_REGISTER(Register, root, x26);
ALIAS_REGISTER(Register, rr, x26);
// Context pointer register.
ALIAS_REGISTER(Register, cp, x27);
// We use a register as a JS stack pointer to overcome the restriction on the
// architectural SP alignment.
// We chose x28 because it is contiguous with the other specific purpose
// registers.
STATIC_ASSERT(kJSSPCode == 28);
ALIAS_REGISTER(Register, jssp, x28);
ALIAS_REGISTER(Register, wjssp, w28);
ALIAS_REGISTER(Register, fp, x29);
ALIAS_REGISTER(Register, lr, x30);
ALIAS_REGISTER(Register, xzr, x31);
ALIAS_REGISTER(Register, wzr, w31);

// Keeps the 0 double value.
ALIAS_REGISTER(FPRegister, fp_zero, d15);
// Crankshaft double scratch register.
ALIAS_REGISTER(FPRegister, crankshaft_fp_scratch, d29);
// MacroAssembler double scratch registers.
ALIAS_REGISTER(FPRegister, fp_scratch, d30);
ALIAS_REGISTER(FPRegister, fp_scratch1, d30);
ALIAS_REGISTER(FPRegister, fp_scratch2, d31);

#undef ALIAS_REGISTER


Register GetAllocatableRegisterThatIsNotOneOf(Register reg1,
                                              Register reg2 = NoReg,
                                              Register reg3 = NoReg,
                                              Register reg4 = NoReg);


// AreAliased returns true if any of the named registers overlap. Arguments set
// to NoReg are ignored. The system stack pointer may be specified.
bool AreAliased(const CPURegister& reg1,
                const CPURegister& reg2,
                const CPURegister& reg3 = NoReg,
                const CPURegister& reg4 = NoReg,
                const CPURegister& reg5 = NoReg,
                const CPURegister& reg6 = NoReg,
                const CPURegister& reg7 = NoReg,
                const CPURegister& reg8 = NoReg);

// AreSameSizeAndType returns true if all of the specified registers have the
// same size, and are of the same type. The system stack pointer may be
// specified. Arguments set to NoReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
bool AreSameSizeAndType(const CPURegister& reg1,
                        const CPURegister& reg2,
                        const CPURegister& reg3 = NoCPUReg,
                        const CPURegister& reg4 = NoCPUReg,
                        const CPURegister& reg5 = NoCPUReg,
                        const CPURegister& reg6 = NoCPUReg,
                        const CPURegister& reg7 = NoCPUReg,
                        const CPURegister& reg8 = NoCPUReg);

typedef FPRegister FloatRegister;
typedef FPRegister DoubleRegister;

// TODO(arm64) Define SIMD registers.
typedef FPRegister Simd128Register;

// -----------------------------------------------------------------------------
// Lists of registers.
class CPURegList {
 public:
  explicit CPURegList(CPURegister reg1,
                      CPURegister reg2 = NoCPUReg,
                      CPURegister reg3 = NoCPUReg,
                      CPURegister reg4 = NoCPUReg)
      : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
        size_(reg1.SizeInBits()), type_(reg1.type()) {
    DCHECK(AreSameSizeAndType(reg1, reg2, reg3, reg4));
    DCHECK(IsValid());
  }

  CPURegList(CPURegister::RegisterType type, int size, RegList list)
      : list_(list), size_(size), type_(type) {
    DCHECK(IsValid());
  }

  CPURegList(CPURegister::RegisterType type, int size, int first_reg,
             int last_reg)
      : size_(size), type_(type) {
    DCHECK(((type == CPURegister::kRegister) &&
            (last_reg < kNumberOfRegisters)) ||
           ((type == CPURegister::kFPRegister) &&
            (last_reg < kNumberOfFPRegisters)));
    DCHECK(last_reg >= first_reg);
    list_ = (1UL << (last_reg + 1)) - 1;
    list_ &= ~((1UL << first_reg) - 1);
    DCHECK(IsValid());
  }

  CPURegister::RegisterType type() const {
    DCHECK(IsValid());
    return type_;
  }

  RegList list() const {
    DCHECK(IsValid());
    return list_;
  }

  inline void set_list(RegList new_list) {
    DCHECK(IsValid());
    list_ = new_list;
  }

  // Combine another CPURegList into this one. Registers that already exist in
  // this list are left unchanged. The type and size of the registers in the
  // 'other' list must match those in this list.
  void Combine(const CPURegList& other);

  // Remove every register in the other CPURegList from this one. Registers that
  // do not exist in this list are ignored. The type of the registers in the
  // 'other' list must match those in this list.
  void Remove(const CPURegList& other);

  // Variants of Combine and Remove which take CPURegisters.
  void Combine(const CPURegister& other);
  void Remove(const CPURegister& other1,
              const CPURegister& other2 = NoCPUReg,
              const CPURegister& other3 = NoCPUReg,
              const CPURegister& other4 = NoCPUReg);

  // Variants of Combine and Remove which take a single register by its code;
  // the type and size of the register is inferred from this list.
  void Combine(int code);
  void Remove(int code);

  // Remove all callee-saved registers from the list. This can be useful when
  // preparing registers for an AAPCS64 function call, for example.
  void RemoveCalleeSaved();

  CPURegister PopLowestIndex();
  CPURegister PopHighestIndex();

  // AAPCS64 callee-saved registers.
  static CPURegList GetCalleeSaved(int size = kXRegSizeInBits);
  static CPURegList GetCalleeSavedFP(int size = kDRegSizeInBits);

  // AAPCS64 caller-saved registers. Note that this includes lr.
  static CPURegList GetCallerSaved(int size = kXRegSizeInBits);
  static CPURegList GetCallerSavedFP(int size = kDRegSizeInBits);

  // Registers saved as safepoints.
  static CPURegList GetSafepointSavedRegisters();

  bool IsEmpty() const {
    DCHECK(IsValid());
    return list_ == 0;
  }

  bool IncludesAliasOf(const CPURegister& other1,
                       const CPURegister& other2 = NoCPUReg,
                       const CPURegister& other3 = NoCPUReg,
                       const CPURegister& other4 = NoCPUReg) const {
    DCHECK(IsValid());
    RegList list = 0;
    if (!other1.IsNone() && (other1.type() == type_)) list |= other1.Bit();
    if (!other2.IsNone() && (other2.type() == type_)) list |= other2.Bit();
    if (!other3.IsNone() && (other3.type() == type_)) list |= other3.Bit();
    if (!other4.IsNone() && (other4.type() == type_)) list |= other4.Bit();
    return (list_ & list) != 0;
  }

  int Count() const {
    DCHECK(IsValid());
    return CountSetBits(list_, kRegListSizeInBits);
  }

  int RegisterSizeInBits() const {
    DCHECK(IsValid());
    return size_;
  }

  int RegisterSizeInBytes() const {
    int size_in_bits = RegisterSizeInBits();
    DCHECK((size_in_bits % kBitsPerByte) == 0);
    return size_in_bits / kBitsPerByte;
  }

  int TotalSizeInBytes() const {
    DCHECK(IsValid());
    return RegisterSizeInBytes() * Count();
  }

 private:
  RegList list_;
  int size_;
  CPURegister::RegisterType type_;

  bool IsValid() const {
    const RegList kValidRegisters = 0x8000000ffffffff;
    const RegList kValidFPRegisters = 0x0000000ffffffff;
    switch (type_) {
      case CPURegister::kRegister:
        return (list_ & kValidRegisters) == list_;
      case CPURegister::kFPRegister:
        return (list_ & kValidFPRegisters) == list_;
      case CPURegister::kNoRegister:
        return list_ == 0;
      default:
        UNREACHABLE();
        return false;
    }
  }
};


// AAPCS64 callee-saved registers.
#define kCalleeSaved CPURegList::GetCalleeSaved()
#define kCalleeSavedFP CPURegList::GetCalleeSavedFP()


// AAPCS64 caller-saved registers. Note that this includes lr.
#define kCallerSaved CPURegList::GetCallerSaved()
#define kCallerSavedFP CPURegList::GetCallerSavedFP()

// -----------------------------------------------------------------------------
// Immediates.
class Immediate {
 public:
  template<typename T>
  inline explicit Immediate(Handle<T> handle);

  // This is allowed to be an implicit constructor because Immediate is
  // a wrapper class that doesn't normally perform any type conversion.
  template<typename T>
  inline Immediate(T value);  // NOLINT(runtime/explicit)

  template<typename T>
  inline Immediate(T value, RelocInfo::Mode rmode);

  int64_t value() const { return value_; }
  RelocInfo::Mode rmode() const { return rmode_; }

 private:
  void InitializeHandle(Handle<Object> value);

  int64_t value_;
  RelocInfo::Mode rmode_;
};


// -----------------------------------------------------------------------------
// Operands.
const int kSmiShift = kSmiTagSize + kSmiShiftSize;
const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;

// Represents an operand in a machine instruction.
class Operand {
  // TODO(all): If necessary, study more in details which methods
  // TODO(all): should be inlined or not.
 public:
  // rm, {<shift> {#<shift_amount>}}
  // where <shift> is one of {LSL, LSR, ASR, ROR}.
  //       <shift_amount> is uint6_t.
  // This is allowed to be an implicit constructor because Operand is
  // a wrapper class that doesn't normally perform any type conversion.
  inline Operand(Register reg,
                 Shift shift = LSL,
                 unsigned shift_amount = 0);  // NOLINT(runtime/explicit)

  // rm, <extend> {#<shift_amount>}
  // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
  //       <shift_amount> is uint2_t.
  inline Operand(Register reg,
                 Extend extend,
                 unsigned shift_amount = 0);

  template<typename T>
  inline explicit Operand(Handle<T> handle);

  // Implicit constructor for all int types, ExternalReference, and Smi.
  template<typename T>
  inline Operand(T t);  // NOLINT(runtime/explicit)

  // Implicit constructor for int types.
  template<typename T>
  inline Operand(T t, RelocInfo::Mode rmode);

  inline bool IsImmediate() const;
  inline bool IsShiftedRegister() const;
  inline bool IsExtendedRegister() const;
  inline bool IsZero() const;

  // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
  // which helps in the encoding of instructions that use the stack pointer.
  inline Operand ToExtendedRegister() const;

  inline Immediate immediate() const;
  inline int64_t ImmediateValue() const;
  inline Register reg() const;
  inline Shift shift() const;
  inline Extend extend() const;
  inline unsigned shift_amount() const;

  // Relocation information.
  bool NeedsRelocation(const Assembler* assembler) const;

  // Helpers
  inline static Operand UntagSmi(Register smi);
  inline static Operand UntagSmiAndScale(Register smi, int scale);

 private:
  Immediate immediate_;
  Register reg_;
  Shift shift_;
  Extend extend_;
  unsigned shift_amount_;
};


// MemOperand represents a memory operand in a load or store instruction.
class MemOperand {
 public:
  inline MemOperand();
  inline explicit MemOperand(Register base,
                             int64_t offset = 0,
                             AddrMode addrmode = Offset);
  inline explicit MemOperand(Register base,
                             Register regoffset,
                             Shift shift = LSL,
                             unsigned shift_amount = 0);
  inline explicit MemOperand(Register base,
                             Register regoffset,
                             Extend extend,
                             unsigned shift_amount = 0);
  inline explicit MemOperand(Register base,
                             const Operand& offset,
                             AddrMode addrmode = Offset);

  const Register& base() const { return base_; }
  const Register& regoffset() const { return regoffset_; }
  int64_t offset() const { return offset_; }
  AddrMode addrmode() const { return addrmode_; }
  Shift shift() const { return shift_; }
  Extend extend() const { return extend_; }
  unsigned shift_amount() const { return shift_amount_; }
  inline bool IsImmediateOffset() const;
  inline bool IsRegisterOffset() const;
  inline bool IsPreIndex() const;
  inline bool IsPostIndex() const;

  // For offset modes, return the offset as an Operand. This helper cannot
  // handle indexed modes.
  inline Operand OffsetAsOperand() const;

  enum PairResult {
    kNotPair,   // Can't use a pair instruction.
    kPairAB,    // Can use a pair instruction (operandA has lower address).
    kPairBA     // Can use a pair instruction (operandB has lower address).
  };
  // Check if two MemOperand are consistent for stp/ldp use.
  static PairResult AreConsistentForPair(const MemOperand& operandA,
                                         const MemOperand& operandB,
                                         int access_size_log2 = kXRegSizeLog2);

 private:
  Register base_;
  Register regoffset_;
  int64_t offset_;
  AddrMode addrmode_;
  Shift shift_;
  Extend extend_;
  unsigned shift_amount_;
};


class ConstPool {
 public:
  explicit ConstPool(Assembler* assm)
      : assm_(assm),
        first_use_(-1),
        shared_entries_count(0) {}
  void RecordEntry(intptr_t data, RelocInfo::Mode mode);
  int EntryCount() const {
    return shared_entries_count + static_cast<int>(unique_entries_.size());
  }
  bool IsEmpty() const {
    return shared_entries_.empty() && unique_entries_.empty();
  }
  // Distance in bytes between the current pc and the first instruction
  // using the pool. If there are no pending entries return kMaxInt.
  int DistanceToFirstUse();
  // Offset after which instructions using the pool will be out of range.
  int MaxPcOffset();
  // Maximum size the constant pool can be with current entries. It always
  // includes alignment padding and branch over.
  int WorstCaseSize();
  // Size in bytes of the literal pool *if* it is emitted at the current
  // pc. The size will include the branch over the pool if it was requested.
  int SizeIfEmittedAtCurrentPc(bool require_jump);
  // Emit the literal pool at the current pc with a branch over the pool if
  // requested.
  void Emit(bool require_jump);
  // Discard any pending pool entries.
  void Clear();

 private:
  bool CanBeShared(RelocInfo::Mode mode);
  void EmitMarker();
  void EmitGuard();
  void EmitEntries();

  Assembler* assm_;
  // Keep track of the first instruction requiring a constant pool entry
  // since the previous constant pool was emitted.
  int first_use_;
  // values, pc offset(s) of entries which can be shared.
  std::multimap<uint64_t, int> shared_entries_;
  // Number of distinct literal in shared entries.
  int shared_entries_count;
  // values, pc offset of entries which cannot be shared.
  std::vector<std::pair<uint64_t, int> > unique_entries_;
};


// -----------------------------------------------------------------------------
// Assembler.

class Assembler : public AssemblerBase {
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is NULL, the assembler allocates and grows its own
  // buffer, and buffer_size determines the initial buffer size. The buffer is
  // owned by the assembler and deallocated upon destruction of the assembler.
  //
  // If the provided buffer is not NULL, the assembler uses the provided buffer
  // for code generation and assumes its size to be buffer_size. If the buffer
  // is too small, a fatal error occurs. No deallocation of the buffer is done
  // upon destruction of the assembler.
  Assembler(Isolate* arg_isolate, void* buffer, int buffer_size);

  virtual ~Assembler();

  virtual void AbortedCodeGeneration() {
    constpool_.Clear();
  }

  // System functions ---------------------------------------------------------
  // Start generating code from the beginning of the buffer, discarding any code
  // and data that has already been emitted into the buffer.
  //
  // In order to avoid any accidental transfer of state, Reset DCHECKs that the
  // constant pool is not blocked.
  void Reset();

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  //
  // The descriptor (desc) can be NULL. In that case, the code is finalized as
  // usual, but the descriptor is not populated.
  void GetCode(CodeDesc* desc);

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);
  // Insert the smallest number of zero bytes possible to align the pc offset
  // to a mulitple of m. m must be a power of 2 (>= 2).
  void DataAlign(int m);

  inline void Unreachable();

  // Label --------------------------------------------------------------------
  // Bind a label to the current pc. Note that labels can only be bound once,
  // and if labels are linked to other instructions, they _must_ be bound
  // before they go out of scope.
  void bind(Label* label);


  // RelocInfo and pools ------------------------------------------------------

  // Record relocation information for current pc_.
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);

  // Return the address in the constant pool of the code target address used by
  // the branch/call instruction at pc.
  inline static Address target_pointer_address_at(Address pc);

  // Read/Modify the code target address in the branch/call instruction at pc.
  inline static Address target_address_at(Address pc, Address constant_pool);
  inline static void set_target_address_at(
      Isolate* isolate, Address pc, Address constant_pool, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
  static inline Address target_address_at(Address pc, Code* code);
  static inline void set_target_address_at(
      Isolate* isolate, Address pc, Code* code, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  // Return the code target address at a call site from the return address of
  // that call in the instruction stream.
  inline static Address target_address_from_return_address(Address pc);

  // Given the address of the beginning of a call, return the address in the
  // instruction stream that call will return from.
  inline static Address return_address_from_call_start(Address pc);

  // This sets the branch destination (which is in the constant pool on ARM).
  // This is for calls and branches within generated code.
  inline static void deserialization_set_special_target_at(
      Isolate* isolate, Address constant_pool_entry, Code* code,
      Address target);

  // This sets the internal reference at the pc.
  inline static void deserialization_set_target_internal_reference_at(
      Isolate* isolate, Address pc, Address target,
      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);

  // All addresses in the constant pool are the same size as pointers.
  static const int kSpecialTargetSize = kPointerSize;

  // The sizes of the call sequences emitted by MacroAssembler::Call.
  // Wherever possible, use MacroAssembler::CallSize instead of these constants,
  // as it will choose the correct value for a given relocation mode.
  //
  // Without relocation:
  //  movz  temp, #(target & 0x000000000000ffff)
  //  movk  temp, #(target & 0x00000000ffff0000)
  //  movk  temp, #(target & 0x0000ffff00000000)
  //  blr   temp
  //
  // With relocation:
  //  ldr   temp, =target
  //  blr   temp
  static const int kCallSizeWithoutRelocation = 4 * kInstructionSize;
  static const int kCallSizeWithRelocation = 2 * kInstructionSize;

  // Size of the generated code in bytes
  uint64_t SizeOfGeneratedCode() const {
    DCHECK((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
    return pc_ - buffer_;
  }

  // Return the code size generated from label to the current position.
  uint64_t SizeOfCodeGeneratedSince(const Label* label) {
    DCHECK(label->is_bound());
    DCHECK(pc_offset() >= label->pos());
    DCHECK(pc_offset() < buffer_size_);
    return pc_offset() - label->pos();
  }

  // Check the size of the code generated since the given label. This function
  // is used primarily to work around comparisons between signed and unsigned
  // quantities, since V8 uses both.
  // TODO(jbramley): Work out what sign to use for these things and if possible,
  // change things to be consistent.
  void AssertSizeOfCodeGeneratedSince(const Label* label, ptrdiff_t size) {
    DCHECK(size >= 0);
    DCHECK(static_cast<uint64_t>(size) == SizeOfCodeGeneratedSince(label));
  }

  // Return the number of instructions generated from label to the
  // current position.
  uint64_t InstructionsGeneratedSince(const Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstructionSize;
  }

  static const int kPatchDebugBreakSlotAddressOffset =  0;

  // Number of instructions necessary to be able to later patch it to a call.
  static const int kDebugBreakSlotInstructions = 5;
  static const int kDebugBreakSlotLength =
    kDebugBreakSlotInstructions * kInstructionSize;

  // Prevent contant pool emission until EndBlockConstPool is called.
  // Call to this function can be nested but must be followed by an equal
  // number of call to EndBlockConstpool.
  void StartBlockConstPool();

  // Resume constant pool emission. Need to be called as many time as
  // StartBlockConstPool to have an effect.
  void EndBlockConstPool();

  bool is_const_pool_blocked() const;
  static bool IsConstantPoolAt(Instruction* instr);
  static int ConstantPoolSizeAt(Instruction* instr);
  // See Assembler::CheckConstPool for more info.
  void EmitPoolGuard();

  // Prevent veneer pool emission until EndBlockVeneerPool is called.
  // Call to this function can be nested but must be followed by an equal
  // number of call to EndBlockConstpool.
  void StartBlockVeneerPool();

  // Resume constant pool emission. Need to be called as many time as
  // StartBlockVeneerPool to have an effect.
  void EndBlockVeneerPool();

  bool is_veneer_pool_blocked() const {
    return veneer_pool_blocked_nesting_ > 0;
  }

  // Block/resume emission of constant pools and veneer pools.
  void StartBlockPools() {
    StartBlockConstPool();
    StartBlockVeneerPool();
  }
  void EndBlockPools() {
    EndBlockConstPool();
    EndBlockVeneerPool();
  }

  // Debugging ----------------------------------------------------------------
  void RecordComment(const char* msg);

  // Record a deoptimization reason that can be used by a log or cpu profiler.
  // Use --trace-deopt to enable.
  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
                         int id);

  int buffer_space() const;

  // Mark generator continuation.
  void RecordGeneratorContinuation();

  // Mark address of a debug break slot.
  void RecordDebugBreakSlot(RelocInfo::Mode mode);

  // Record the emission of a constant pool.
  //
  // The emission of constant and veneer pools depends on the size of the code
  // generated and the number of RelocInfo recorded.
  // The Debug mechanism needs to map code offsets between two versions of a
  // function, compiled with and without debugger support (see for example
  // Debug::PrepareForBreakPoints()).
  // Compiling functions with debugger support generates additional code
  // (DebugCodegen::GenerateSlot()). This may affect the emission of the pools
  // and cause the version of the code with debugger support to have pools
  // generated in different places.
  // Recording the position and size of emitted pools allows to correctly
  // compute the offset mappings between the different versions of a function in
  // all situations.
  //
  // The parameter indicates the size of the pool (in bytes), including
  // the marker and branch over the data.
  void RecordConstPool(int size);


  // Instruction set functions ------------------------------------------------

  // Branch / Jump instructions.
  // For branches offsets are scaled, i.e. they in instrcutions not in bytes.
  // Branch to register.
  void br(const Register& xn);

  // Branch-link to register.
  void blr(const Register& xn);

  // Branch to register with return hint.
  void ret(const Register& xn = lr);

  // Unconditional branch to label.
  void b(Label* label);

  // Conditional branch to label.
  void b(Label* label, Condition cond);

  // Unconditional branch to PC offset.
  void b(int imm26);

  // Conditional branch to PC offset.
  void b(int imm19, Condition cond);

  // Branch-link to label / pc offset.
  void bl(Label* label);
  void bl(int imm26);

  // Compare and branch to label / pc offset if zero.
  void cbz(const Register& rt, Label* label);
  void cbz(const Register& rt, int imm19);

  // Compare and branch to label / pc offset if not zero.
  void cbnz(const Register& rt, Label* label);
  void cbnz(const Register& rt, int imm19);

  // Test bit and branch to label / pc offset if zero.
  void tbz(const Register& rt, unsigned bit_pos, Label* label);
  void tbz(const Register& rt, unsigned bit_pos, int imm14);

  // Test bit and branch to label / pc offset if not zero.
  void tbnz(const Register& rt, unsigned bit_pos, Label* label);
  void tbnz(const Register& rt, unsigned bit_pos, int imm14);

  // Address calculation instructions.
  // Calculate a PC-relative address. Unlike for branches the offset in adr is
  // unscaled (i.e. the result can be unaligned).
  void adr(const Register& rd, Label* label);
  void adr(const Register& rd, int imm21);

  // Data Processing instructions.
  // Add.
  void add(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Add and update status flags.
  void adds(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Compare negative.
  void cmn(const Register& rn, const Operand& operand);

  // Subtract.
  void sub(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Subtract and update status flags.
  void subs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Compare.
  void cmp(const Register& rn, const Operand& operand);

  // Negate.
  void neg(const Register& rd,
           const Operand& operand);

  // Negate and update status flags.
  void negs(const Register& rd,
            const Operand& operand);

  // Add with carry bit.
  void adc(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Add with carry bit and update status flags.
  void adcs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Subtract with carry bit.
  void sbc(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Subtract with carry bit and update status flags.
  void sbcs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Negate with carry bit.
  void ngc(const Register& rd,
           const Operand& operand);

  // Negate with carry bit and update status flags.
  void ngcs(const Register& rd,
            const Operand& operand);

  // Logical instructions.
  // Bitwise and (A & B).
  void and_(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bitwise and (A & B) and update status flags.
  void ands(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bit test, and set flags.
  void tst(const Register& rn, const Operand& operand);

  // Bit clear (A & ~B).
  void bic(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Bit clear (A & ~B) and update status flags.
  void bics(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bitwise or (A | B).
  void orr(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise nor (A | ~B).
  void orn(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise eor/xor (A ^ B).
  void eor(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise enor/xnor (A ^ ~B).
  void eon(const Register& rd, const Register& rn, const Operand& operand);

  // Logical shift left variable.
  void lslv(const Register& rd, const Register& rn, const Register& rm);

  // Logical shift right variable.
  void lsrv(const Register& rd, const Register& rn, const Register& rm);

  // Arithmetic shift right variable.
  void asrv(const Register& rd, const Register& rn, const Register& rm);

  // Rotate right variable.
  void rorv(const Register& rd, const Register& rn, const Register& rm);

  // Bitfield instructions.
  // Bitfield move.
  void bfm(const Register& rd, const Register& rn, int immr, int imms);

  // Signed bitfield move.
  void sbfm(const Register& rd, const Register& rn, int immr, int imms);

  // Unsigned bitfield move.
  void ubfm(const Register& rd, const Register& rn, int immr, int imms);

  // Bfm aliases.
  // Bitfield insert.
  void bfi(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK(width >= 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    bfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Bitfield extract and insert low.
  void bfxil(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK(width >= 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    bfm(rd, rn, lsb, lsb + width - 1);
  }

  // Sbfm aliases.
  // Arithmetic shift right.
  void asr(const Register& rd, const Register& rn, int shift) {
    DCHECK(shift < rd.SizeInBits());
    sbfm(rd, rn, shift, rd.SizeInBits() - 1);
  }

  // Signed bitfield insert in zero.
  void sbfiz(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK(width >= 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    sbfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Signed bitfield extract.
  void sbfx(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK(width >= 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    sbfm(rd, rn, lsb, lsb + width - 1);
  }

  // Signed extend byte.
  void sxtb(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 7);
  }

  // Signed extend halfword.
  void sxth(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 15);
  }

  // Signed extend word.
  void sxtw(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 31);
  }

  // Ubfm aliases.
  // Logical shift left.
  void lsl(const Register& rd, const Register& rn, int shift) {
    int reg_size = rd.SizeInBits();
    DCHECK(shift < reg_size);
    ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
  }

  // Logical shift right.
  void lsr(const Register& rd, const Register& rn, int shift) {
    DCHECK(shift < rd.SizeInBits());
    ubfm(rd, rn, shift, rd.SizeInBits() - 1);
  }

  // Unsigned bitfield insert in zero.
  void ubfiz(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK(width >= 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    ubfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Unsigned bitfield extract.
  void ubfx(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK(width >= 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    ubfm(rd, rn, lsb, lsb + width - 1);
  }

  // Unsigned extend byte.
  void uxtb(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 7);
  }

  // Unsigned extend halfword.
  void uxth(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 15);
  }

  // Unsigned extend word.
  void uxtw(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 31);
  }

  // Extract.
  void extr(const Register& rd, const Register& rn, const Register& rm,
            int lsb);

  // Conditional select: rd = cond ? rn : rm.
  void csel(const Register& rd,
            const Register& rn,
            const Register& rm,
            Condition cond);

  // Conditional select increment: rd = cond ? rn : rm + 1.
  void csinc(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional select inversion: rd = cond ? rn : ~rm.
  void csinv(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional select negation: rd = cond ? rn : -rm.
  void csneg(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional set: rd = cond ? 1 : 0.
  void cset(const Register& rd, Condition cond);

  // Conditional set minus: rd = cond ? -1 : 0.
  void csetm(const Register& rd, Condition cond);

  // Conditional increment: rd = cond ? rn + 1 : rn.
  void cinc(const Register& rd, const Register& rn, Condition cond);

  // Conditional invert: rd = cond ? ~rn : rn.
  void cinv(const Register& rd, const Register& rn, Condition cond);

  // Conditional negate: rd = cond ? -rn : rn.
  void cneg(const Register& rd, const Register& rn, Condition cond);

  // Extr aliases.
  void ror(const Register& rd, const Register& rs, unsigned shift) {
    extr(rd, rs, rs, shift);
  }

  // Conditional comparison.
  // Conditional compare negative.
  void ccmn(const Register& rn,
            const Operand& operand,
            StatusFlags nzcv,
            Condition cond);

  // Conditional compare.
  void ccmp(const Register& rn,
            const Operand& operand,
            StatusFlags nzcv,
            Condition cond);

  // Multiplication.
  // 32 x 32 -> 32-bit and 64 x 64 -> 64-bit multiply.
  void mul(const Register& rd, const Register& rn, const Register& rm);

  // 32 + 32 x 32 -> 32-bit and 64 + 64 x 64 -> 64-bit multiply accumulate.
  void madd(const Register& rd,
            const Register& rn,
            const Register& rm,
            const Register& ra);

  // -(32 x 32) -> 32-bit and -(64 x 64) -> 64-bit multiply.
  void mneg(const Register& rd, const Register& rn, const Register& rm);

  // 32 - 32 x 32 -> 32-bit and 64 - 64 x 64 -> 64-bit multiply subtract.
  void msub(const Register& rd,
            const Register& rn,
            const Register& rm,
            const Register& ra);

  // 32 x 32 -> 64-bit multiply.
  void smull(const Register& rd, const Register& rn, const Register& rm);

  // Xd = bits<127:64> of Xn * Xm.
  void smulh(const Register& rd, const Register& rn, const Register& rm);

  // Signed 32 x 32 -> 64-bit multiply and accumulate.
  void smaddl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Unsigned 32 x 32 -> 64-bit multiply and accumulate.
  void umaddl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Signed 32 x 32 -> 64-bit multiply and subtract.
  void smsubl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Unsigned 32 x 32 -> 64-bit multiply and subtract.
  void umsubl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Signed integer divide.
  void sdiv(const Register& rd, const Register& rn, const Register& rm);

  // Unsigned integer divide.
  void udiv(const Register& rd, const Register& rn, const Register& rm);

  // Bit count, bit reverse and endian reverse.
  void rbit(const Register& rd, const Register& rn);
  void rev16(const Register& rd, const Register& rn);
  void rev32(const Register& rd, const Register& rn);
  void rev(const Register& rd, const Register& rn);
  void clz(const Register& rd, const Register& rn);
  void cls(const Register& rd, const Register& rn);

  // Memory instructions.

  // Load integer or FP register.
  void ldr(const CPURegister& rt, const MemOperand& src);

  // Store integer or FP register.
  void str(const CPURegister& rt, const MemOperand& dst);

  // Load word with sign extension.
  void ldrsw(const Register& rt, const MemOperand& src);

  // Load byte.
  void ldrb(const Register& rt, const MemOperand& src);

  // Store byte.
  void strb(const Register& rt, const MemOperand& dst);

  // Load byte with sign extension.
  void ldrsb(const Register& rt, const MemOperand& src);

  // Load half-word.
  void ldrh(const Register& rt, const MemOperand& src);

  // Store half-word.
  void strh(const Register& rt, const MemOperand& dst);

  // Load half-word with sign extension.
  void ldrsh(const Register& rt, const MemOperand& src);

  // Load integer or FP register pair.
  void ldp(const CPURegister& rt, const CPURegister& rt2,
           const MemOperand& src);

  // Store integer or FP register pair.
  void stp(const CPURegister& rt, const CPURegister& rt2,
           const MemOperand& dst);

  // Load word pair with sign extension.
  void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);

  // Load literal to register from a pc relative address.
  void ldr_pcrel(const CPURegister& rt, int imm19);

  // Load literal to register.
  void ldr(const CPURegister& rt, const Immediate& imm);

  // Load-acquire word.
  void ldar(const Register& rt, const Register& rn);

  // Load-acquire exclusive word.
  void ldaxr(const Register& rt, const Register& rn);

  // Store-release word.
  void stlr(const Register& rt, const Register& rn);

  // Store-release exclusive word.
  void stlxr(const Register& rs, const Register& rt, const Register& rn);

  // Load-acquire byte.
  void ldarb(const Register& rt, const Register& rn);

  // Load-acquire exclusive byte.
  void ldaxrb(const Register& rt, const Register& rn);

  // Store-release byte.
  void stlrb(const Register& rt, const Register& rn);

  // Store-release exclusive byte.
  void stlxrb(const Register& rs, const Register& rt, const Register& rn);

  // Load-acquire half-word.
  void ldarh(const Register& rt, const Register& rn);

  // Load-acquire exclusive half-word.
  void ldaxrh(const Register& rt, const Register& rn);

  // Store-release half-word.
  void stlrh(const Register& rt, const Register& rn);

  // Store-release exclusive half-word.
  void stlxrh(const Register& rs, const Register& rt, const Register& rn);

  // Move instructions. The default shift of -1 indicates that the move
  // instruction will calculate an appropriate 16-bit immediate and left shift
  // that is equal to the 64-bit immediate argument. If an explicit left shift
  // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
  //
  // For movk, an explicit shift can be used to indicate which half word should
  // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
  // half word with zero, whereas movk(x0, 0, 48) will overwrite the
  // most-significant.

  // Move and keep.
  void movk(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVK);
  }

  // Move with non-zero.
  void movn(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVN);
  }

  // Move with zero.
  void movz(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVZ);
  }

  // Misc instructions.
  // Monitor debug-mode breakpoint.
  void brk(int code);

  // Halting debug-mode breakpoint.
  void hlt(int code);

  // Move register to register.
  void mov(const Register& rd, const Register& rn);

  // Move NOT(operand) to register.
  void mvn(const Register& rd, const Operand& operand);

  // System instructions.
  // Move to register from system register.
  void mrs(const Register& rt, SystemRegister sysreg);

  // Move from register to system register.
  void msr(SystemRegister sysreg, const Register& rt);

  // System hint.
  void hint(SystemHint code);

  // Data memory barrier
  void dmb(BarrierDomain domain, BarrierType type);

  // Data synchronization barrier
  void dsb(BarrierDomain domain, BarrierType type);

  // Instruction synchronization barrier
  void isb();

  // Alias for system instructions.
  void nop() { hint(NOP); }

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    DEBUG_BREAK_NOP,
    INTERRUPT_CODE_NOP,
    ADR_FAR_NOP,
    FIRST_NOP_MARKER = DEBUG_BREAK_NOP,
    LAST_NOP_MARKER = ADR_FAR_NOP
  };

  void nop(NopMarkerTypes n) {
    DCHECK((FIRST_NOP_MARKER <= n) && (n <= LAST_NOP_MARKER));
    mov(Register::XRegFromCode(n), Register::XRegFromCode(n));
  }

  // FP instructions.
  // Move immediate to FP register.
  void fmov(FPRegister fd, double imm);
  void fmov(FPRegister fd, float imm);

  // Move FP register to register.
  void fmov(Register rd, FPRegister fn);

  // Move register to FP register.
  void fmov(FPRegister fd, Register rn);

  // Move FP register to FP register.
  void fmov(FPRegister fd, FPRegister fn);

  // FP add.
  void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP subtract.
  void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP multiply.
  void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP fused multiply and add.
  void fmadd(const FPRegister& fd,
             const FPRegister& fn,
             const FPRegister& fm,
             const FPRegister& fa);

  // FP fused multiply and subtract.
  void fmsub(const FPRegister& fd,
             const FPRegister& fn,
             const FPRegister& fm,
             const FPRegister& fa);

  // FP fused multiply, add and negate.
  void fnmadd(const FPRegister& fd,
              const FPRegister& fn,
              const FPRegister& fm,
              const FPRegister& fa);

  // FP fused multiply, subtract and negate.
  void fnmsub(const FPRegister& fd,
              const FPRegister& fn,
              const FPRegister& fm,
              const FPRegister& fa);

  // FP divide.
  void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP maximum.
  void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP minimum.
  void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP maximum.
  void fmaxnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP minimum.
  void fminnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP absolute.
  void fabs(const FPRegister& fd, const FPRegister& fn);

  // FP negate.
  void fneg(const FPRegister& fd, const FPRegister& fn);

  // FP square root.
  void fsqrt(const FPRegister& fd, const FPRegister& fn);

  // FP round to integer (nearest with ties to away).
  void frinta(const FPRegister& fd, const FPRegister& fn);

  // FP round to integer (toward minus infinity).
  void frintm(const FPRegister& fd, const FPRegister& fn);

  // FP round to integer (nearest with ties to even).
  void frintn(const FPRegister& fd, const FPRegister& fn);

  // FP round to integer (towards plus infinity).
  void frintp(const FPRegister& fd, const FPRegister& fn);

  // FP round to integer (towards zero.)
  void frintz(const FPRegister& fd, const FPRegister& fn);

  // FP compare registers.
  void fcmp(const FPRegister& fn, const FPRegister& fm);

  // FP compare immediate.
  void fcmp(const FPRegister& fn, double value);

  // FP conditional compare.
  void fccmp(const FPRegister& fn,
             const FPRegister& fm,
             StatusFlags nzcv,
             Condition cond);

  // FP conditional select.
  void fcsel(const FPRegister& fd,
             const FPRegister& fn,
             const FPRegister& fm,
             Condition cond);

  // Common FP Convert function
  void FPConvertToInt(const Register& rd,
                      const FPRegister& fn,
                      FPIntegerConvertOp op);

  // FP convert between single and double precision.
  void fcvt(const FPRegister& fd, const FPRegister& fn);

  // Convert FP to unsigned integer (nearest with ties to away).
  void fcvtau(const Register& rd, const FPRegister& fn);

  // Convert FP to signed integer (nearest with ties to away).
  void fcvtas(const Register& rd, const FPRegister& fn);

  // Convert FP to unsigned integer (round towards -infinity).
  void fcvtmu(const Register& rd, const FPRegister& fn);

  // Convert FP to signed integer (round towards -infinity).
  void fcvtms(const Register& rd, const FPRegister& fn);

  // Convert FP to unsigned integer (nearest with ties to even).
  void fcvtnu(const Register& rd, const FPRegister& fn);

  // Convert FP to signed integer (nearest with ties to even).
  void fcvtns(const Register& rd, const FPRegister& fn);

  // Convert FP to unsigned integer (round towards zero).
  void fcvtzu(const Register& rd, const FPRegister& fn);

  // Convert FP to signed integer (rounf towards zero).
  void fcvtzs(const Register& rd, const FPRegister& fn);

  // Convert signed integer or fixed point to FP.
  void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);

  // Convert unsigned integer or fixed point to FP.
  void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);

  // Instruction functions used only for test, debug, and patching.
  // Emit raw instructions in the instruction stream.
  void dci(Instr raw_inst) { Emit(raw_inst); }

  // Emit 8 bits of data in the instruction stream.
  void dc8(uint8_t data) { EmitData(&data, sizeof(data)); }

  // Emit 32 bits of data in the instruction stream.
  void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }

  // Emit 64 bits of data in the instruction stream.
  void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }

  // Emit an address in the instruction stream.
  void dcptr(Label* label);

  // Copy a string into the instruction stream, including the terminating NULL
  // character. The instruction pointer (pc_) is then aligned correctly for
  // subsequent instructions.
  void EmitStringData(const char* string);

  // Pseudo-instructions ------------------------------------------------------

  // Parameters are described in arm64/instructions-arm64.h.
  void debug(const char* message, uint32_t code, Instr params = BREAK);

  // Required by V8.
  void dd(uint32_t data) { dc32(data); }
  void db(uint8_t data) { dc8(data); }
  void dq(uint64_t data) { dc64(data); }
  void dp(uintptr_t data) { dc64(data); }

  // Code generation helpers --------------------------------------------------

  bool IsConstPoolEmpty() const { return constpool_.IsEmpty(); }

  Instruction* pc() const { return Instruction::Cast(pc_); }

  Instruction* InstructionAt(ptrdiff_t offset) const {
    return reinterpret_cast<Instruction*>(buffer_ + offset);
  }

  ptrdiff_t InstructionOffset(Instruction* instr) const {
    return reinterpret_cast<byte*>(instr) - buffer_;
  }

  // Register encoding.
  static Instr Rd(CPURegister rd) {
    DCHECK(rd.code() != kSPRegInternalCode);
    return rd.code() << Rd_offset;
  }

  static Instr Rn(CPURegister rn) {
    DCHECK(rn.code() != kSPRegInternalCode);
    return rn.code() << Rn_offset;
  }

  static Instr Rm(CPURegister rm) {
    DCHECK(rm.code() != kSPRegInternalCode);
    return rm.code() << Rm_offset;
  }

  static Instr Ra(CPURegister ra) {
    DCHECK(ra.code() != kSPRegInternalCode);
    return ra.code() << Ra_offset;
  }

  static Instr Rt(CPURegister rt) {
    DCHECK(rt.code() != kSPRegInternalCode);
    return rt.code() << Rt_offset;
  }

  static Instr Rt2(CPURegister rt2) {
    DCHECK(rt2.code() != kSPRegInternalCode);
    return rt2.code() << Rt2_offset;
  }

  static Instr Rs(CPURegister rs) {
    DCHECK(rs.code() != kSPRegInternalCode);
    return rs.code() << Rs_offset;
  }

  // These encoding functions allow the stack pointer to be encoded, and
  // disallow the zero register.
  static Instr RdSP(Register rd) {
    DCHECK(!rd.IsZero());
    return (rd.code() & kRegCodeMask) << Rd_offset;
  }

  static Instr RnSP(Register rn) {
    DCHECK(!rn.IsZero());
    return (rn.code() & kRegCodeMask) << Rn_offset;
  }

  // Flags encoding.
  inline static Instr Flags(FlagsUpdate S);
  inline static Instr Cond(Condition cond);

  // PC-relative address encoding.
  inline static Instr ImmPCRelAddress(int imm21);

  // Branch encoding.
  inline static Instr ImmUncondBranch(int imm26);
  inline static Instr ImmCondBranch(int imm19);
  inline static Instr ImmCmpBranch(int imm19);
  inline static Instr ImmTestBranch(int imm14);
  inline static Instr ImmTestBranchBit(unsigned bit_pos);

  // Data Processing encoding.
  inline static Instr SF(Register rd);
  inline static Instr ImmAddSub(int imm);
  inline static Instr ImmS(unsigned imms, unsigned reg_size);
  inline static Instr ImmR(unsigned immr, unsigned reg_size);
  inline static Instr ImmSetBits(unsigned imms, unsigned reg_size);
  inline static Instr ImmRotate(unsigned immr, unsigned reg_size);
  inline static Instr ImmLLiteral(int imm19);
  inline static Instr BitN(unsigned bitn, unsigned reg_size);
  inline static Instr ShiftDP(Shift shift);
  inline static Instr ImmDPShift(unsigned amount);
  inline static Instr ExtendMode(Extend extend);
  inline static Instr ImmExtendShift(unsigned left_shift);
  inline static Instr ImmCondCmp(unsigned imm);
  inline static Instr Nzcv(StatusFlags nzcv);

  static bool IsImmAddSub(int64_t immediate);
  static bool IsImmLogical(uint64_t value,
                           unsigned width,
                           unsigned* n,
                           unsigned* imm_s,
                           unsigned* imm_r);

  // MemOperand offset encoding.
  inline static Instr ImmLSUnsigned(int imm12);
  inline static Instr ImmLS(int imm9);
  inline static Instr ImmLSPair(int imm7, LSDataSize size);
  inline static Instr ImmShiftLS(unsigned shift_amount);
  inline static Instr ImmException(int imm16);
  inline static Instr ImmSystemRegister(int imm15);
  inline static Instr ImmHint(int imm7);
  inline static Instr ImmBarrierDomain(int imm2);
  inline static Instr ImmBarrierType(int imm2);
  inline static LSDataSize CalcLSDataSize(LoadStoreOp op);

  static bool IsImmLSUnscaled(int64_t offset);
  static bool IsImmLSScaled(int64_t offset, LSDataSize size);
  static bool IsImmLLiteral(int64_t offset);

  // Move immediates encoding.
  inline static Instr ImmMoveWide(int imm);
  inline static Instr ShiftMoveWide(int shift);

  // FP Immediates.
  static Instr ImmFP32(float imm);
  static Instr ImmFP64(double imm);
  inline static Instr FPScale(unsigned scale);

  // FP register type.
  inline static Instr FPType(FPRegister fd);

  // Class for scoping postponing the constant pool generation.
  class BlockConstPoolScope {
   public:
    explicit BlockConstPoolScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockConstPool();
    }
    ~BlockConstPoolScope() {
      assem_->EndBlockConstPool();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstPoolScope);
  };

  // Check if is time to emit a constant pool.
  void CheckConstPool(bool force_emit, bool require_jump);

  void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
                                          ConstantPoolEntry::Access access,
                                          ConstantPoolEntry::Type type) {
    // No embedded constant pool support.
    UNREACHABLE();
  }

  // Returns true if we should emit a veneer as soon as possible for a branch
  // which can at most reach to specified pc.
  bool ShouldEmitVeneer(int max_reachable_pc,
                        int margin = kVeneerDistanceMargin);
  bool ShouldEmitVeneers(int margin = kVeneerDistanceMargin) {
    return ShouldEmitVeneer(unresolved_branches_first_limit(), margin);
  }

  // The maximum code size generated for a veneer. Currently one branch
  // instruction. This is for code size checking purposes, and can be extended
  // in the future for example if we decide to add nops between the veneers.
  static const int kMaxVeneerCodeSize = 1 * kInstructionSize;

  void RecordVeneerPool(int location_offset, int size);
  // Emits veneers for branches that are approaching their maximum range.
  // If need_protection is true, the veneers are protected by a branch jumping
  // over the code.
  void EmitVeneers(bool force_emit, bool need_protection,
                   int margin = kVeneerDistanceMargin);
  void EmitVeneersGuard() { EmitPoolGuard(); }
  // Checks whether veneers need to be emitted at this point.
  // If force_emit is set, a veneer is generated for *all* unresolved branches.
  void CheckVeneerPool(bool force_emit, bool require_jump,
                       int margin = kVeneerDistanceMargin);

  class BlockPoolsScope {
   public:
    explicit BlockPoolsScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockPools();
    }
    ~BlockPoolsScope() {
      assem_->EndBlockPools();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockPoolsScope);
  };

 protected:
  inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const;

  void LoadStore(const CPURegister& rt,
                 const MemOperand& addr,
                 LoadStoreOp op);

  void LoadStorePair(const CPURegister& rt, const CPURegister& rt2,
                     const MemOperand& addr, LoadStorePairOp op);
  static bool IsImmLSPair(int64_t offset, LSDataSize size);

  void Logical(const Register& rd,
               const Register& rn,
               const Operand& operand,
               LogicalOp op);
  void LogicalImmediate(const Register& rd,
                        const Register& rn,
                        unsigned n,
                        unsigned imm_s,
                        unsigned imm_r,
                        LogicalOp op);

  void ConditionalCompare(const Register& rn,
                          const Operand& operand,
                          StatusFlags nzcv,
                          Condition cond,
                          ConditionalCompareOp op);
  static bool IsImmConditionalCompare(int64_t immediate);

  void AddSubWithCarry(const Register& rd,
                       const Register& rn,
                       const Operand& operand,
                       FlagsUpdate S,
                       AddSubWithCarryOp op);

  // Functions for emulating operands not directly supported by the instruction
  // set.
  void EmitShift(const Register& rd,
                 const Register& rn,
                 Shift shift,
                 unsigned amount);
  void EmitExtendShift(const Register& rd,
                       const Register& rn,
                       Extend extend,
                       unsigned left_shift);

  void AddSub(const Register& rd,
              const Register& rn,
              const Operand& operand,
              FlagsUpdate S,
              AddSubOp op);

  static bool IsImmFP32(float imm);
  static bool IsImmFP64(double imm);

  // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
  // registers. Only simple loads are supported; sign- and zero-extension (such
  // as in LDPSW_x or LDRB_w) are not supported.
  static inline LoadStoreOp LoadOpFor(const CPURegister& rt);
  static inline LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
                                              const CPURegister& rt2);
  static inline LoadStoreOp StoreOpFor(const CPURegister& rt);
  static inline LoadStorePairOp StorePairOpFor(const CPURegister& rt,
                                               const CPURegister& rt2);
  static inline LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);

  // Remove the specified branch from the unbound label link chain.
  // If available, a veneer for this label can be used for other branches in the
  // chain if the link chain cannot be fixed up without this branch.
  void RemoveBranchFromLabelLinkChain(Instruction* branch,
                                      Label* label,
                                      Instruction* label_veneer = NULL);

 private:
  // Instruction helpers.
  void MoveWide(const Register& rd,
                uint64_t imm,
                int shift,
                MoveWideImmediateOp mov_op);
  void DataProcShiftedRegister(const Register& rd,
                               const Register& rn,
                               const Operand& operand,
                               FlagsUpdate S,
                               Instr op);
  void DataProcExtendedRegister(const Register& rd,
                                const Register& rn,
                                const Operand& operand,
                                FlagsUpdate S,
                                Instr op);
  void ConditionalSelect(const Register& rd,
                         const Register& rn,
                         const Register& rm,
                         Condition cond,
                         ConditionalSelectOp op);
  void DataProcessing1Source(const Register& rd,
                             const Register& rn,
                             DataProcessing1SourceOp op);
  void DataProcessing3Source(const Register& rd,
                             const Register& rn,
                             const Register& rm,
                             const Register& ra,
                             DataProcessing3SourceOp op);
  void FPDataProcessing1Source(const FPRegister& fd,
                               const FPRegister& fn,
                               FPDataProcessing1SourceOp op);
  void FPDataProcessing2Source(const FPRegister& fd,
                               const FPRegister& fn,
                               const FPRegister& fm,
                               FPDataProcessing2SourceOp op);
  void FPDataProcessing3Source(const FPRegister& fd,
                               const FPRegister& fn,
                               const FPRegister& fm,
                               const FPRegister& fa,
                               FPDataProcessing3SourceOp op);

  // Label helpers.

  // Return an offset for a label-referencing instruction, typically a branch.
  int LinkAndGetByteOffsetTo(Label* label);

  // This is the same as LinkAndGetByteOffsetTo, but return an offset
  // suitable for fields that take instruction offsets.
  inline int LinkAndGetInstructionOffsetTo(Label* label);

  static const int kStartOfLabelLinkChain = 0;

  // Verify that a label's link chain is intact.
  void CheckLabelLinkChain(Label const * label);

  void RecordLiteral(int64_t imm, unsigned size);

  // Postpone the generation of the constant pool for the specified number of
  // instructions.
  void BlockConstPoolFor(int instructions);

  // Set how far from current pc the next constant pool check will be.
  void SetNextConstPoolCheckIn(int instructions) {
    next_constant_pool_check_ = pc_offset() + instructions * kInstructionSize;
  }

  // Emit the instruction at pc_.
  void Emit(Instr instruction) {
    STATIC_ASSERT(sizeof(*pc_) == 1);
    STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
    DCHECK((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));

    memcpy(pc_, &instruction, sizeof(instruction));
    pc_ += sizeof(instruction);
    CheckBuffer();
  }

  // Emit data inline in the instruction stream.
  void EmitData(void const * data, unsigned size) {
    DCHECK(sizeof(*pc_) == 1);
    DCHECK((pc_ + size) <= (buffer_ + buffer_size_));

    // TODO(all): Somehow register we have some data here. Then we can
    // disassemble it correctly.
    memcpy(pc_, data, size);
    pc_ += size;
    CheckBuffer();
  }

  void GrowBuffer();
  void CheckBufferSpace();
  void CheckBuffer();

  // Pc offset of the next constant pool check.
  int next_constant_pool_check_;

  // Constant pool generation
  // Pools are emitted in the instruction stream. They are emitted when:
  //  * the distance to the first use is above a pre-defined distance or
  //  * the numbers of entries in the pool is above a pre-defined size or
  //  * code generation is finished
  // If a pool needs to be emitted before code generation is finished a branch
  // over the emitted pool will be inserted.

  // Constants in the pool may be addresses of functions that gets relocated;
  // if so, a relocation info entry is associated to the constant pool entry.

  // Repeated checking whether the constant pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated. That also means that the sizing of the buffers is not
  // an exact science, and that we rely on some slop to not overrun buffers.
  static const int kCheckConstPoolInterval = 128;

  // Distance to first use after a which a pool will be emitted. Pool entries
  // are accessed with pc relative load therefore this cannot be more than
  // 1 * MB. Since constant pool emission checks are interval based this value
  // is an approximation.
  static const int kApproxMaxDistToConstPool = 64 * KB;

  // Number of pool entries after which a pool will be emitted. Since constant
  // pool emission checks are interval based this value is an approximation.
  static const int kApproxMaxPoolEntryCount = 512;

  // Emission of the constant pool may be blocked in some code sequences.
  int const_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_const_pool_before_;  // Block emission before this pc offset.

  // Emission of the veneer pools may be blocked in some code sequences.
  int veneer_pool_blocked_nesting_;  // Block emission if this is not zero.

  // Relocation info generation
  // Each relocation is encoded as a variable size value
  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  RelocInfoWriter reloc_info_writer;
  // Internal reference positions, required for (potential) patching in
  // GrowBuffer(); contains only those internal references whose labels
  // are already bound.
  std::deque<int> internal_reference_positions_;

  // Relocation info records are also used during code generation as temporary
  // containers for constants and code target addresses until they are emitted
  // to the constant pool. These pending relocation info records are temporarily
  // stored in a separate buffer until a constant pool is emitted.
  // If every instruction in a long sequence is accessing the pool, we need one
  // pending relocation entry per instruction.

  // The pending constant pool.
  ConstPool constpool_;

  // Relocation for a type-recording IC has the AST id added to it.  This
  // member variable is a way to pass the information from the call site to
  // the relocation info.
  TypeFeedbackId recorded_ast_id_;

  inline TypeFeedbackId RecordedAstId();
  inline void ClearRecordedAstId();

 protected:
  // Record the AST id of the CallIC being compiled, so that it can be placed
  // in the relocation information.
  void SetRecordedAstId(TypeFeedbackId ast_id) {
    DCHECK(recorded_ast_id_.IsNone());
    recorded_ast_id_ = ast_id;
  }

  // Code generation
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries, and debug strings encoded in the instruction
  // stream.
  static const int kGap = 128;

 public:
  class FarBranchInfo {
   public:
    FarBranchInfo(int offset, Label* label)
        : pc_offset_(offset), label_(label) {}
    // Offset of the branch in the code generation buffer.
    int pc_offset_;
    // The label branched to.
    Label* label_;
  };

 protected:
  // Information about unresolved (forward) branches.
  // The Assembler is only allowed to delete out-of-date information from here
  // after a label is bound. The MacroAssembler uses this information to
  // generate veneers.
  //
  // The second member gives information about the unresolved branch. The first
  // member of the pair is the maximum offset that the branch can reach in the
  // buffer. The map is sorted according to this reachable offset, allowing to
  // easily check when veneers need to be emitted.
  // Note that the maximum reachable offset (first member of the pairs) should
  // always be positive but has the same type as the return value for
  // pc_offset() for convenience.
  std::multimap<int, FarBranchInfo> unresolved_branches_;

  // We generate a veneer for a branch if we reach within this distance of the
  // limit of the range.
  static const int kVeneerDistanceMargin = 1 * KB;
  // The factor of 2 is a finger in the air guess. With a default margin of
  // 1KB, that leaves us an addional 256 instructions to avoid generating a
  // protective branch.
  static const int kVeneerNoProtectionFactor = 2;
  static const int kVeneerDistanceCheckMargin =
    kVeneerNoProtectionFactor * kVeneerDistanceMargin;
  int unresolved_branches_first_limit() const {
    DCHECK(!unresolved_branches_.empty());
    return unresolved_branches_.begin()->first;
  }
  // This is similar to next_constant_pool_check_ and helps reduce the overhead
  // of checking for veneer pools.
  // It is maintained to the closest unresolved branch limit minus the maximum
  // veneer margin (or kMaxInt if there are no unresolved branches).
  int next_veneer_pool_check_;

 private:
  // If a veneer is emitted for a branch instruction, that instruction must be
  // removed from the associated label's link chain so that the assembler does
  // not later attempt (likely unsuccessfully) to patch it to branch directly to
  // the label.
  void DeleteUnresolvedBranchInfoForLabel(Label* label);
  // This function deletes the information related to the label by traversing
  // the label chain, and for each PC-relative instruction in the chain checking
  // if pending unresolved information exists. Its complexity is proportional to
  // the length of the label chain.
  void DeleteUnresolvedBranchInfoForLabelTraverse(Label* label);

 private:
  friend class EnsureSpace;
  friend class ConstPool;
};

class PatchingAssembler : public Assembler {
 public:
  // Create an Assembler with a buffer starting at 'start'.
  // The buffer size is
  //   size of instructions to patch + kGap
  // Where kGap is the distance from which the Assembler tries to grow the
  // buffer.
  // If more or fewer instructions than expected are generated or if some
  // relocation information takes space in the buffer, the PatchingAssembler
  // will crash trying to grow the buffer.
  PatchingAssembler(Isolate* isolate, Instruction* start, unsigned count)
      : Assembler(isolate, reinterpret_cast<byte*>(start),
                  count * kInstructionSize + kGap) {
    StartBlockPools();
  }

  PatchingAssembler(Isolate* isolate, byte* start, unsigned count)
      : Assembler(isolate, start, count * kInstructionSize + kGap) {
    // Block constant pool emission.
    StartBlockPools();
  }

  ~PatchingAssembler() {
    // Const pool should still be blocked.
    DCHECK(is_const_pool_blocked());
    EndBlockPools();
    // Verify we have generated the number of instruction we expected.
    DCHECK((pc_offset() + kGap) == buffer_size_);
    // Verify no relocation information has been emitted.
    DCHECK(IsConstPoolEmpty());
    // Flush the Instruction cache.
    size_t length = buffer_size_ - kGap;
    Assembler::FlushICache(isolate(), buffer_, length);
  }

  // See definition of PatchAdrFar() for details.
  static const int kAdrFarPatchableNNops = 2;
  static const int kAdrFarPatchableNInstrs = kAdrFarPatchableNNops + 2;
  void PatchAdrFar(int64_t target_offset);
};


class EnsureSpace BASE_EMBEDDED {
 public:
  explicit EnsureSpace(Assembler* assembler) {
    assembler->CheckBufferSpace();
  }
};

}  // namespace internal
}  // namespace v8

#endif  // V8_ARM64_ASSEMBLER_ARM64_H_