aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/arm/macro-assembler-arm.cc
blob: 6ad8918f17618beb0f6a6e96638fe73a2ceedf1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <limits.h>  // For LONG_MIN, LONG_MAX.

#include "v8.h"

#if defined(V8_TARGET_ARCH_ARM)

#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "runtime.h"

namespace v8 {
namespace internal {

MacroAssembler::MacroAssembler(void* buffer, int size)
    : Assembler(buffer, size),
      generating_stub_(false),
      allow_stub_calls_(true),
      code_object_(Heap::undefined_value()) {
}


// We always generate arm code, never thumb code, even if V8 is compiled to
// thumb, so we require inter-working support
#if defined(__thumb__) && !defined(USE_THUMB_INTERWORK)
#error "flag -mthumb-interwork missing"
#endif


// We do not support thumb inter-working with an arm architecture not supporting
// the blx instruction (below v5t).  If you know what CPU you are compiling for
// you can use -march=armv7 or similar.
#if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS)
# error "For thumb inter-working we require an architecture which supports blx"
#endif


// Using bx does not yield better code, so use it only when required
#if defined(USE_THUMB_INTERWORK)
#define USE_BX 1
#endif


void MacroAssembler::Jump(Register target, Condition cond) {
#if USE_BX
  bx(target, cond);
#else
  mov(pc, Operand(target), LeaveCC, cond);
#endif
}


void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
                          Condition cond) {
#if USE_BX
  mov(ip, Operand(target, rmode), LeaveCC, cond);
  bx(ip, cond);
#else
  mov(pc, Operand(target, rmode), LeaveCC, cond);
#endif
}


void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode,
                          Condition cond) {
  ASSERT(!RelocInfo::IsCodeTarget(rmode));
  Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
}


void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
                          Condition cond) {
  ASSERT(RelocInfo::IsCodeTarget(rmode));
  // 'code' is always generated ARM code, never THUMB code
  Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}


void MacroAssembler::Call(Register target, Condition cond) {
#if USE_BLX
  blx(target, cond);
#else
  // set lr for return at current pc + 8
  mov(lr, Operand(pc), LeaveCC, cond);
  mov(pc, Operand(target), LeaveCC, cond);
#endif
}


void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode,
                          Condition cond) {
#if USE_BLX
  // On ARMv5 and after the recommended call sequence is:
  //  ldr ip, [pc, #...]
  //  blx ip

  // The two instructions (ldr and blx) could be separated by a constant
  // pool and the code would still work. The issue comes from the
  // patching code which expect the ldr to be just above the blx.
  { BlockConstPoolScope block_const_pool(this);
    // Statement positions are expected to be recorded when the target
    // address is loaded. The mov method will automatically record
    // positions when pc is the target, since this is not the case here
    // we have to do it explicitly.
    positions_recorder()->WriteRecordedPositions();

    mov(ip, Operand(target, rmode), LeaveCC, cond);
    blx(ip, cond);
  }

  ASSERT(kCallTargetAddressOffset == 2 * kInstrSize);
#else
  // Set lr for return at current pc + 8.
  mov(lr, Operand(pc), LeaveCC, cond);
  // Emit a ldr<cond> pc, [pc + offset of target in constant pool].
  mov(pc, Operand(target, rmode), LeaveCC, cond);

  ASSERT(kCallTargetAddressOffset == kInstrSize);
#endif
}


void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode,
                          Condition cond) {
  ASSERT(!RelocInfo::IsCodeTarget(rmode));
  Call(reinterpret_cast<intptr_t>(target), rmode, cond);
}


void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
                          Condition cond) {
  ASSERT(RelocInfo::IsCodeTarget(rmode));
  // 'code' is always generated ARM code, never THUMB code
  Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}


void MacroAssembler::Ret(Condition cond) {
#if USE_BX
  bx(lr, cond);
#else
  mov(pc, Operand(lr), LeaveCC, cond);
#endif
}


void MacroAssembler::Drop(int count, Condition cond) {
  if (count > 0) {
    add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
  }
}


void MacroAssembler::Swap(Register reg1,
                          Register reg2,
                          Register scratch,
                          Condition cond) {
  if (scratch.is(no_reg)) {
    eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
    eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
    eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
  } else {
    mov(scratch, reg1, LeaveCC, cond);
    mov(reg1, reg2, LeaveCC, cond);
    mov(reg2, scratch, LeaveCC, cond);
  }
}


void MacroAssembler::Call(Label* target) {
  bl(target);
}


void MacroAssembler::Move(Register dst, Handle<Object> value) {
  mov(dst, Operand(value));
}


void MacroAssembler::Move(Register dst, Register src) {
  if (!dst.is(src)) {
    mov(dst, src);
  }
}


void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
                         Condition cond) {
  if (!src2.is_reg() &&
      !src2.must_use_constant_pool() &&
      src2.immediate() == 0) {
    mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, cond);

  } else if (!src2.is_single_instruction() &&
             !src2.must_use_constant_pool() &&
             CpuFeatures::IsSupported(ARMv7) &&
             IsPowerOf2(src2.immediate() + 1)) {
    ubfx(dst, src1, 0, WhichPowerOf2(src2.immediate() + 1), cond);

  } else {
    and_(dst, src1, src2, LeaveCC, cond);
  }
}


void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
                          Condition cond) {
  ASSERT(lsb < 32);
  if (!CpuFeatures::IsSupported(ARMv7)) {
    int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    and_(dst, src1, Operand(mask), LeaveCC, cond);
    if (lsb != 0) {
      mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
    }
  } else {
    ubfx(dst, src1, lsb, width, cond);
  }
}


void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
                          Condition cond) {
  ASSERT(lsb < 32);
  if (!CpuFeatures::IsSupported(ARMv7)) {
    int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    and_(dst, src1, Operand(mask), LeaveCC, cond);
    int shift_up = 32 - lsb - width;
    int shift_down = lsb + shift_up;
    if (shift_up != 0) {
      mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
    }
    if (shift_down != 0) {
      mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
    }
  } else {
    sbfx(dst, src1, lsb, width, cond);
  }
}


void MacroAssembler::Bfc(Register dst, int lsb, int width, Condition cond) {
  ASSERT(lsb < 32);
  if (!CpuFeatures::IsSupported(ARMv7)) {
    int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    bic(dst, dst, Operand(mask));
  } else {
    bfc(dst, lsb, width, cond);
  }
}


void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
                          Condition cond) {
  if (!CpuFeatures::IsSupported(ARMv7)) {
    ASSERT(!dst.is(pc) && !src.rm().is(pc));
    ASSERT((satpos >= 0) && (satpos <= 31));

    // These asserts are required to ensure compatibility with the ARMv7
    // implementation.
    ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL));
    ASSERT(src.rs().is(no_reg));

    Label done;
    int satval = (1 << satpos) - 1;

    if (cond != al) {
      b(NegateCondition(cond), &done);  // Skip saturate if !condition.
    }
    if (!(src.is_reg() && dst.is(src.rm()))) {
      mov(dst, src);
    }
    tst(dst, Operand(~satval));
    b(eq, &done);
    mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, mi);  // 0 if negative.
    mov(dst, Operand(satval), LeaveCC, pl);  // satval if positive.
    bind(&done);
  } else {
    usat(dst, satpos, src, cond);
  }
}


void MacroAssembler::SmiJumpTable(Register index, Vector<Label*> targets) {
  // Empty the const pool.
  CheckConstPool(true, true);
  add(pc, pc, Operand(index,
                      LSL,
                      assembler::arm::Instr::kInstrSizeLog2 - kSmiTagSize));
  BlockConstPoolBefore(pc_offset() + (targets.length() + 1) * kInstrSize);
  nop();  // Jump table alignment.
  for (int i = 0; i < targets.length(); i++) {
    b(targets[i]);
  }
}


void MacroAssembler::LoadRoot(Register destination,
                              Heap::RootListIndex index,
                              Condition cond) {
  ldr(destination, MemOperand(roots, index << kPointerSizeLog2), cond);
}


void MacroAssembler::StoreRoot(Register source,
                               Heap::RootListIndex index,
                               Condition cond) {
  str(source, MemOperand(roots, index << kPointerSizeLog2), cond);
}


void MacroAssembler::RecordWriteHelper(Register object,
                                       Register address,
                                       Register scratch) {
  if (FLAG_debug_code) {
    // Check that the object is not in new space.
    Label not_in_new_space;
    InNewSpace(object, scratch, ne, &not_in_new_space);
    Abort("new-space object passed to RecordWriteHelper");
    bind(&not_in_new_space);
  }

  // Calculate page address.
  Bfc(object, 0, kPageSizeBits);

  // Calculate region number.
  Ubfx(address, address, Page::kRegionSizeLog2,
       kPageSizeBits - Page::kRegionSizeLog2);

  // Mark region dirty.
  ldr(scratch, MemOperand(object, Page::kDirtyFlagOffset));
  mov(ip, Operand(1));
  orr(scratch, scratch, Operand(ip, LSL, address));
  str(scratch, MemOperand(object, Page::kDirtyFlagOffset));
}


void MacroAssembler::InNewSpace(Register object,
                                Register scratch,
                                Condition cc,
                                Label* branch) {
  ASSERT(cc == eq || cc == ne);
  and_(scratch, object, Operand(ExternalReference::new_space_mask()));
  cmp(scratch, Operand(ExternalReference::new_space_start()));
  b(cc, branch);
}


// Will clobber 4 registers: object, offset, scratch, ip.  The
// register 'object' contains a heap object pointer.  The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object,
                                 Operand offset,
                                 Register scratch0,
                                 Register scratch1) {
  // The compiled code assumes that record write doesn't change the
  // context register, so we check that none of the clobbered
  // registers are cp.
  ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp));

  Label done;

  // First, test that the object is not in the new space.  We cannot set
  // region marks for new space pages.
  InNewSpace(object, scratch0, eq, &done);

  // Add offset into the object.
  add(scratch0, object, offset);

  // Record the actual write.
  RecordWriteHelper(object, scratch0, scratch1);

  bind(&done);

  // Clobber all input registers when running with the debug-code flag
  // turned on to provoke errors.
  if (FLAG_debug_code) {
    mov(object, Operand(BitCast<int32_t>(kZapValue)));
    mov(scratch0, Operand(BitCast<int32_t>(kZapValue)));
    mov(scratch1, Operand(BitCast<int32_t>(kZapValue)));
  }
}


// Will clobber 4 registers: object, address, scratch, ip.  The
// register 'object' contains a heap object pointer.  The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object,
                                 Register address,
                                 Register scratch) {
  // The compiled code assumes that record write doesn't change the
  // context register, so we check that none of the clobbered
  // registers are cp.
  ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp));

  Label done;

  // First, test that the object is not in the new space.  We cannot set
  // region marks for new space pages.
  InNewSpace(object, scratch, eq, &done);

  // Record the actual write.
  RecordWriteHelper(object, address, scratch);

  bind(&done);

  // Clobber all input registers when running with the debug-code flag
  // turned on to provoke errors.
  if (FLAG_debug_code) {
    mov(object, Operand(BitCast<int32_t>(kZapValue)));
    mov(address, Operand(BitCast<int32_t>(kZapValue)));
    mov(scratch, Operand(BitCast<int32_t>(kZapValue)));
  }
}


// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
  // Safepoints expect a block of contiguous register values starting with r0:
  ASSERT(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
  // Safepoints expect a block of kNumSafepointRegisters values on the
  // stack, so adjust the stack for unsaved registers.
  const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
  ASSERT(num_unsaved >= 0);
  sub(sp, sp, Operand(num_unsaved * kPointerSize));
  stm(db_w, sp, kSafepointSavedRegisters);
}


void MacroAssembler::PopSafepointRegisters() {
  const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
  ldm(ia_w, sp, kSafepointSavedRegisters);
  add(sp, sp, Operand(num_unsaved * kPointerSize));
}


int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
  // The registers are pushed starting with the highest encoding,
  // which means that lowest encodings are closest to the stack pointer.
  ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
  return reg_code;
}


void MacroAssembler::Ldrd(Register dst1, Register dst2,
                          const MemOperand& src, Condition cond) {
  ASSERT(src.rm().is(no_reg));
  ASSERT(!dst1.is(lr));  // r14.
  ASSERT_EQ(0, dst1.code() % 2);
  ASSERT_EQ(dst1.code() + 1, dst2.code());

  // Generate two ldr instructions if ldrd is not available.
  if (CpuFeatures::IsSupported(ARMv7)) {
    CpuFeatures::Scope scope(ARMv7);
    ldrd(dst1, dst2, src, cond);
  } else {
    MemOperand src2(src);
    src2.set_offset(src2.offset() + 4);
    if (dst1.is(src.rn())) {
      ldr(dst2, src2, cond);
      ldr(dst1, src, cond);
    } else {
      ldr(dst1, src, cond);
      ldr(dst2, src2, cond);
    }
  }
}


void MacroAssembler::Strd(Register src1, Register src2,
                          const MemOperand& dst, Condition cond) {
  ASSERT(dst.rm().is(no_reg));
  ASSERT(!src1.is(lr));  // r14.
  ASSERT_EQ(0, src1.code() % 2);
  ASSERT_EQ(src1.code() + 1, src2.code());

  // Generate two str instructions if strd is not available.
  if (CpuFeatures::IsSupported(ARMv7)) {
    CpuFeatures::Scope scope(ARMv7);
    strd(src1, src2, dst, cond);
  } else {
    MemOperand dst2(dst);
    dst2.set_offset(dst2.offset() + 4);
    str(src1, dst, cond);
    str(src2, dst2, cond);
  }
}


void MacroAssembler::EnterFrame(StackFrame::Type type) {
  // r0-r3: preserved
  stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
  mov(ip, Operand(Smi::FromInt(type)));
  push(ip);
  mov(ip, Operand(CodeObject()));
  push(ip);
  add(fp, sp, Operand(3 * kPointerSize));  // Adjust FP to point to saved FP.
}


void MacroAssembler::LeaveFrame(StackFrame::Type type) {
  // r0: preserved
  // r1: preserved
  // r2: preserved

  // Drop the execution stack down to the frame pointer and restore
  // the caller frame pointer and return address.
  mov(sp, fp);
  ldm(ia_w, sp, fp.bit() | lr.bit());
}


void MacroAssembler::EnterExitFrame(bool save_doubles) {
  // r0 is argc.
  // Compute callee's stack pointer before making changes and save it as
  // ip register so that it is restored as sp register on exit, thereby
  // popping the args.

  // ip = sp + kPointerSize * #args;
  add(ip, sp, Operand(r0, LSL, kPointerSizeLog2));

  // Compute the argv pointer and keep it in a callee-saved register.
  sub(r6, ip, Operand(kPointerSize));

  // Prepare the stack to be aligned when calling into C. After this point there
  // are 5 pushes before the call into C, so the stack needs to be aligned after
  // 5 pushes.
  int frame_alignment = ActivationFrameAlignment();
  int frame_alignment_mask = frame_alignment - 1;
  if (frame_alignment != kPointerSize) {
    // The following code needs to be more general if this assert does not hold.
    ASSERT(frame_alignment == 2 * kPointerSize);
    // With 5 pushes left the frame must be unaligned at this point.
    mov(r7, Operand(Smi::FromInt(0)));
    tst(sp, Operand((frame_alignment - kPointerSize) & frame_alignment_mask));
    push(r7, eq);  // Push if aligned to make it unaligned.
  }

  // Push in reverse order: caller_fp, sp_on_exit, and caller_pc.
  stm(db_w, sp, fp.bit() | ip.bit() | lr.bit());
  mov(fp, Operand(sp));  // Setup new frame pointer.

  mov(ip, Operand(CodeObject()));
  push(ip);  // Accessed from ExitFrame::code_slot.

  // Save the frame pointer and the context in top.
  mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
  str(fp, MemOperand(ip));
  mov(ip, Operand(ExternalReference(Top::k_context_address)));
  str(cp, MemOperand(ip));

  // Setup argc and the builtin function in callee-saved registers.
  mov(r4, Operand(r0));
  mov(r5, Operand(r1));

  // Optionally save all double registers.
  if (save_doubles) {
    // TODO(regis): Use vstrm instruction.
    // The stack alignment code above made sp unaligned, so add space for one
    // more double register and use aligned addresses.
    ASSERT(kDoubleSize == frame_alignment);
    // Mark the frame as containing doubles by pushing a non-valid return
    // address, i.e. 0.
    ASSERT(ExitFrameConstants::kMarkerOffset == -2 * kPointerSize);
    mov(ip, Operand(0));  // Marker and alignment word.
    push(ip);
    int space = DwVfpRegister::kNumRegisters * kDoubleSize + kPointerSize;
    sub(sp, sp, Operand(space));
    for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
      DwVfpRegister reg = DwVfpRegister::from_code(i);
      vstr(reg, sp, i * kDoubleSize + kPointerSize);
    }
    // Note that d0 will be accessible at fp - 2*kPointerSize -
    // DwVfpRegister::kNumRegisters * kDoubleSize, since the code slot and the
    // alignment word were pushed after the fp.
  }
}


void MacroAssembler::InitializeNewString(Register string,
                                         Register length,
                                         Heap::RootListIndex map_index,
                                         Register scratch1,
                                         Register scratch2) {
  mov(scratch1, Operand(length, LSL, kSmiTagSize));
  LoadRoot(scratch2, map_index);
  str(scratch1, FieldMemOperand(string, String::kLengthOffset));
  mov(scratch1, Operand(String::kEmptyHashField));
  str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
  str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
}


int MacroAssembler::ActivationFrameAlignment() {
#if defined(V8_HOST_ARCH_ARM)
  // Running on the real platform. Use the alignment as mandated by the local
  // environment.
  // Note: This will break if we ever start generating snapshots on one ARM
  // platform for another ARM platform with a different alignment.
  return OS::ActivationFrameAlignment();
#else  // defined(V8_HOST_ARCH_ARM)
  // If we are using the simulator then we should always align to the expected
  // alignment. As the simulator is used to generate snapshots we do not know
  // if the target platform will need alignment, so this is controlled from a
  // flag.
  return FLAG_sim_stack_alignment;
#endif  // defined(V8_HOST_ARCH_ARM)
}


void MacroAssembler::LeaveExitFrame(bool save_doubles) {
  // Optionally restore all double registers.
  if (save_doubles) {
    // TODO(regis): Use vldrm instruction.
    for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
      DwVfpRegister reg = DwVfpRegister::from_code(i);
      // Register d15 is just below the marker.
      const int offset = ExitFrameConstants::kMarkerOffset;
      vldr(reg, fp, (i - DwVfpRegister::kNumRegisters) * kDoubleSize + offset);
    }
  }

  // Clear top frame.
  mov(r3, Operand(0, RelocInfo::NONE));
  mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
  str(r3, MemOperand(ip));

  // Restore current context from top and clear it in debug mode.
  mov(ip, Operand(ExternalReference(Top::k_context_address)));
  ldr(cp, MemOperand(ip));
#ifdef DEBUG
  str(r3, MemOperand(ip));
#endif

  // Pop the arguments, restore registers, and return.
  mov(sp, Operand(fp));  // respect ABI stack constraint
  ldm(ia, sp, fp.bit() | sp.bit() | pc.bit());
}


void MacroAssembler::InvokePrologue(const ParameterCount& expected,
                                    const ParameterCount& actual,
                                    Handle<Code> code_constant,
                                    Register code_reg,
                                    Label* done,
                                    InvokeFlag flag) {
  bool definitely_matches = false;
  Label regular_invoke;

  // Check whether the expected and actual arguments count match. If not,
  // setup registers according to contract with ArgumentsAdaptorTrampoline:
  //  r0: actual arguments count
  //  r1: function (passed through to callee)
  //  r2: expected arguments count
  //  r3: callee code entry

  // The code below is made a lot easier because the calling code already sets
  // up actual and expected registers according to the contract if values are
  // passed in registers.
  ASSERT(actual.is_immediate() || actual.reg().is(r0));
  ASSERT(expected.is_immediate() || expected.reg().is(r2));
  ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));

  if (expected.is_immediate()) {
    ASSERT(actual.is_immediate());
    if (expected.immediate() == actual.immediate()) {
      definitely_matches = true;
    } else {
      mov(r0, Operand(actual.immediate()));
      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
      if (expected.immediate() == sentinel) {
        // Don't worry about adapting arguments for builtins that
        // don't want that done. Skip adaption code by making it look
        // like we have a match between expected and actual number of
        // arguments.
        definitely_matches = true;
      } else {
        mov(r2, Operand(expected.immediate()));
      }
    }
  } else {
    if (actual.is_immediate()) {
      cmp(expected.reg(), Operand(actual.immediate()));
      b(eq, &regular_invoke);
      mov(r0, Operand(actual.immediate()));
    } else {
      cmp(expected.reg(), Operand(actual.reg()));
      b(eq, &regular_invoke);
    }
  }

  if (!definitely_matches) {
    if (!code_constant.is_null()) {
      mov(r3, Operand(code_constant));
      add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
    }

    Handle<Code> adaptor =
        Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
    if (flag == CALL_FUNCTION) {
      Call(adaptor, RelocInfo::CODE_TARGET);
      b(done);
    } else {
      Jump(adaptor, RelocInfo::CODE_TARGET);
    }
    bind(&regular_invoke);
  }
}


void MacroAssembler::InvokeCode(Register code,
                                const ParameterCount& expected,
                                const ParameterCount& actual,
                                InvokeFlag flag) {
  Label done;

  InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
  if (flag == CALL_FUNCTION) {
    Call(code);
  } else {
    ASSERT(flag == JUMP_FUNCTION);
    Jump(code);
  }

  // Continue here if InvokePrologue does handle the invocation due to
  // mismatched parameter counts.
  bind(&done);
}


void MacroAssembler::InvokeCode(Handle<Code> code,
                                const ParameterCount& expected,
                                const ParameterCount& actual,
                                RelocInfo::Mode rmode,
                                InvokeFlag flag) {
  Label done;

  InvokePrologue(expected, actual, code, no_reg, &done, flag);
  if (flag == CALL_FUNCTION) {
    Call(code, rmode);
  } else {
    Jump(code, rmode);
  }

  // Continue here if InvokePrologue does handle the invocation due to
  // mismatched parameter counts.
  bind(&done);
}


void MacroAssembler::InvokeFunction(Register fun,
                                    const ParameterCount& actual,
                                    InvokeFlag flag) {
  // Contract with called JS functions requires that function is passed in r1.
  ASSERT(fun.is(r1));

  Register expected_reg = r2;
  Register code_reg = r3;

  ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
  ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
  ldr(expected_reg,
      FieldMemOperand(code_reg,
                      SharedFunctionInfo::kFormalParameterCountOffset));
  mov(expected_reg, Operand(expected_reg, ASR, kSmiTagSize));
  ldr(code_reg,
      FieldMemOperand(r1, JSFunction::kCodeEntryOffset));

  ParameterCount expected(expected_reg);
  InvokeCode(code_reg, expected, actual, flag);
}


void MacroAssembler::InvokeFunction(JSFunction* function,
                                    const ParameterCount& actual,
                                    InvokeFlag flag) {
  ASSERT(function->is_compiled());

  // Get the function and setup the context.
  mov(r1, Operand(Handle<JSFunction>(function)));
  ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));

  // Invoke the cached code.
  Handle<Code> code(function->code());
  ParameterCount expected(function->shared()->formal_parameter_count());
  if (V8::UseCrankshaft()) {
    // TODO(kasperl): For now, we always call indirectly through the
    // code field in the function to allow recompilation to take effect
    // without changing any of the call sites.
    ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
    InvokeCode(r3, expected, actual, flag);
  } else {
    InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag);
  }
}


#ifdef ENABLE_DEBUGGER_SUPPORT
void MacroAssembler::DebugBreak() {
  ASSERT(allow_stub_calls());
  mov(r0, Operand(0, RelocInfo::NONE));
  mov(r1, Operand(ExternalReference(Runtime::kDebugBreak)));
  CEntryStub ces(1);
  Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
#endif


void MacroAssembler::PushTryHandler(CodeLocation try_location,
                                    HandlerType type) {
  // Adjust this code if not the case.
  ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
  // The pc (return address) is passed in register lr.
  if (try_location == IN_JAVASCRIPT) {
    if (type == TRY_CATCH_HANDLER) {
      mov(r3, Operand(StackHandler::TRY_CATCH));
    } else {
      mov(r3, Operand(StackHandler::TRY_FINALLY));
    }
    ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
           && StackHandlerConstants::kFPOffset == 2 * kPointerSize
           && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
    stm(db_w, sp, r3.bit() | fp.bit() | lr.bit());
    // Save the current handler as the next handler.
    mov(r3, Operand(ExternalReference(Top::k_handler_address)));
    ldr(r1, MemOperand(r3));
    ASSERT(StackHandlerConstants::kNextOffset == 0);
    push(r1);
    // Link this handler as the new current one.
    str(sp, MemOperand(r3));
  } else {
    // Must preserve r0-r4, r5-r7 are available.
    ASSERT(try_location == IN_JS_ENTRY);
    // The frame pointer does not point to a JS frame so we save NULL
    // for fp. We expect the code throwing an exception to check fp
    // before dereferencing it to restore the context.
    mov(ip, Operand(0, RelocInfo::NONE));  // To save a NULL frame pointer.
    mov(r6, Operand(StackHandler::ENTRY));
    ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
           && StackHandlerConstants::kFPOffset == 2 * kPointerSize
           && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
    stm(db_w, sp, r6.bit() | ip.bit() | lr.bit());
    // Save the current handler as the next handler.
    mov(r7, Operand(ExternalReference(Top::k_handler_address)));
    ldr(r6, MemOperand(r7));
    ASSERT(StackHandlerConstants::kNextOffset == 0);
    push(r6);
    // Link this handler as the new current one.
    str(sp, MemOperand(r7));
  }
}


void MacroAssembler::PopTryHandler() {
  ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
  pop(r1);
  mov(ip, Operand(ExternalReference(Top::k_handler_address)));
  add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
  str(r1, MemOperand(ip));
}


void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
                                            Register scratch,
                                            Label* miss) {
  Label same_contexts;

  ASSERT(!holder_reg.is(scratch));
  ASSERT(!holder_reg.is(ip));
  ASSERT(!scratch.is(ip));

  // Load current lexical context from the stack frame.
  ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
  // In debug mode, make sure the lexical context is set.
#ifdef DEBUG
  cmp(scratch, Operand(0, RelocInfo::NONE));
  Check(ne, "we should not have an empty lexical context");
#endif

  // Load the global context of the current context.
  int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
  ldr(scratch, FieldMemOperand(scratch, offset));
  ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));

  // Check the context is a global context.
  if (FLAG_debug_code) {
    // TODO(119): avoid push(holder_reg)/pop(holder_reg)
    // Cannot use ip as a temporary in this verification code. Due to the fact
    // that ip is clobbered as part of cmp with an object Operand.
    push(holder_reg);  // Temporarily save holder on the stack.
    // Read the first word and compare to the global_context_map.
    ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
    LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
    cmp(holder_reg, ip);
    Check(eq, "JSGlobalObject::global_context should be a global context.");
    pop(holder_reg);  // Restore holder.
  }

  // Check if both contexts are the same.
  ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
  cmp(scratch, Operand(ip));
  b(eq, &same_contexts);

  // Check the context is a global context.
  if (FLAG_debug_code) {
    // TODO(119): avoid push(holder_reg)/pop(holder_reg)
    // Cannot use ip as a temporary in this verification code. Due to the fact
    // that ip is clobbered as part of cmp with an object Operand.
    push(holder_reg);  // Temporarily save holder on the stack.
    mov(holder_reg, ip);  // Move ip to its holding place.
    LoadRoot(ip, Heap::kNullValueRootIndex);
    cmp(holder_reg, ip);
    Check(ne, "JSGlobalProxy::context() should not be null.");

    ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
    LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
    cmp(holder_reg, ip);
    Check(eq, "JSGlobalObject::global_context should be a global context.");
    // Restore ip is not needed. ip is reloaded below.
    pop(holder_reg);  // Restore holder.
    // Restore ip to holder's context.
    ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
  }

  // Check that the security token in the calling global object is
  // compatible with the security token in the receiving global
  // object.
  int token_offset = Context::kHeaderSize +
                     Context::SECURITY_TOKEN_INDEX * kPointerSize;

  ldr(scratch, FieldMemOperand(scratch, token_offset));
  ldr(ip, FieldMemOperand(ip, token_offset));
  cmp(scratch, Operand(ip));
  b(ne, miss);

  bind(&same_contexts);
}


void MacroAssembler::AllocateInNewSpace(int object_size,
                                        Register result,
                                        Register scratch1,
                                        Register scratch2,
                                        Label* gc_required,
                                        AllocationFlags flags) {
  if (!FLAG_inline_new) {
    if (FLAG_debug_code) {
      // Trash the registers to simulate an allocation failure.
      mov(result, Operand(0x7091));
      mov(scratch1, Operand(0x7191));
      mov(scratch2, Operand(0x7291));
    }
    jmp(gc_required);
    return;
  }

  ASSERT(!result.is(scratch1));
  ASSERT(!result.is(scratch2));
  ASSERT(!scratch1.is(scratch2));

  // Make object size into bytes.
  if ((flags & SIZE_IN_WORDS) != 0) {
    object_size *= kPointerSize;
  }
  ASSERT_EQ(0, object_size & kObjectAlignmentMask);

  // Check relative positions of allocation top and limit addresses.
  // The values must be adjacent in memory to allow the use of LDM.
  // Also, assert that the registers are numbered such that the values
  // are loaded in the correct order.
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();
  ExternalReference new_space_allocation_limit =
      ExternalReference::new_space_allocation_limit_address();
  intptr_t top   =
      reinterpret_cast<intptr_t>(new_space_allocation_top.address());
  intptr_t limit =
      reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
  ASSERT((limit - top) == kPointerSize);
  ASSERT(result.code() < ip.code());

  // Set up allocation top address and object size registers.
  Register topaddr = scratch1;
  Register obj_size_reg = scratch2;
  mov(topaddr, Operand(new_space_allocation_top));
  mov(obj_size_reg, Operand(object_size));

  // This code stores a temporary value in ip. This is OK, as the code below
  // does not need ip for implicit literal generation.
  if ((flags & RESULT_CONTAINS_TOP) == 0) {
    // Load allocation top into result and allocation limit into ip.
    ldm(ia, topaddr, result.bit() | ip.bit());
  } else {
    if (FLAG_debug_code) {
      // Assert that result actually contains top on entry. ip is used
      // immediately below so this use of ip does not cause difference with
      // respect to register content between debug and release mode.
      ldr(ip, MemOperand(topaddr));
      cmp(result, ip);
      Check(eq, "Unexpected allocation top");
    }
    // Load allocation limit into ip. Result already contains allocation top.
    ldr(ip, MemOperand(topaddr, limit - top));
  }

  // Calculate new top and bail out if new space is exhausted. Use result
  // to calculate the new top.
  add(scratch2, result, Operand(obj_size_reg));
  cmp(scratch2, Operand(ip));
  b(hi, gc_required);
  str(scratch2, MemOperand(topaddr));

  // Tag object if requested.
  if ((flags & TAG_OBJECT) != 0) {
    add(result, result, Operand(kHeapObjectTag));
  }
}


void MacroAssembler::AllocateInNewSpace(Register object_size,
                                        Register result,
                                        Register scratch1,
                                        Register scratch2,
                                        Label* gc_required,
                                        AllocationFlags flags) {
  if (!FLAG_inline_new) {
    if (FLAG_debug_code) {
      // Trash the registers to simulate an allocation failure.
      mov(result, Operand(0x7091));
      mov(scratch1, Operand(0x7191));
      mov(scratch2, Operand(0x7291));
    }
    jmp(gc_required);
    return;
  }

  ASSERT(!result.is(scratch1));
  ASSERT(!result.is(scratch2));
  ASSERT(!scratch1.is(scratch2));

  // Check relative positions of allocation top and limit addresses.
  // The values must be adjacent in memory to allow the use of LDM.
  // Also, assert that the registers are numbered such that the values
  // are loaded in the correct order.
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();
  ExternalReference new_space_allocation_limit =
      ExternalReference::new_space_allocation_limit_address();
  intptr_t top =
      reinterpret_cast<intptr_t>(new_space_allocation_top.address());
  intptr_t limit =
      reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
  ASSERT((limit - top) == kPointerSize);
  ASSERT(result.code() < ip.code());

  // Set up allocation top address.
  Register topaddr = scratch1;
  mov(topaddr, Operand(new_space_allocation_top));

  // This code stores a temporary value in ip. This is OK, as the code below
  // does not need ip for implicit literal generation.
  if ((flags & RESULT_CONTAINS_TOP) == 0) {
    // Load allocation top into result and allocation limit into ip.
    ldm(ia, topaddr, result.bit() | ip.bit());
  } else {
    if (FLAG_debug_code) {
      // Assert that result actually contains top on entry. ip is used
      // immediately below so this use of ip does not cause difference with
      // respect to register content between debug and release mode.
      ldr(ip, MemOperand(topaddr));
      cmp(result, ip);
      Check(eq, "Unexpected allocation top");
    }
    // Load allocation limit into ip. Result already contains allocation top.
    ldr(ip, MemOperand(topaddr, limit - top));
  }

  // Calculate new top and bail out if new space is exhausted. Use result
  // to calculate the new top. Object size may be in words so a shift is
  // required to get the number of bytes.
  if ((flags & SIZE_IN_WORDS) != 0) {
    add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2));
  } else {
    add(scratch2, result, Operand(object_size));
  }
  cmp(scratch2, Operand(ip));
  b(hi, gc_required);

  // Update allocation top. result temporarily holds the new top.
  if (FLAG_debug_code) {
    tst(scratch2, Operand(kObjectAlignmentMask));
    Check(eq, "Unaligned allocation in new space");
  }
  str(scratch2, MemOperand(topaddr));

  // Tag object if requested.
  if ((flags & TAG_OBJECT) != 0) {
    add(result, result, Operand(kHeapObjectTag));
  }
}


void MacroAssembler::UndoAllocationInNewSpace(Register object,
                                              Register scratch) {
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();

  // Make sure the object has no tag before resetting top.
  and_(object, object, Operand(~kHeapObjectTagMask));
#ifdef DEBUG
  // Check that the object un-allocated is below the current top.
  mov(scratch, Operand(new_space_allocation_top));
  ldr(scratch, MemOperand(scratch));
  cmp(object, scratch);
  Check(lt, "Undo allocation of non allocated memory");
#endif
  // Write the address of the object to un-allocate as the current top.
  mov(scratch, Operand(new_space_allocation_top));
  str(object, MemOperand(scratch));
}


void MacroAssembler::AllocateTwoByteString(Register result,
                                           Register length,
                                           Register scratch1,
                                           Register scratch2,
                                           Register scratch3,
                                           Label* gc_required) {
  // Calculate the number of bytes needed for the characters in the string while
  // observing object alignment.
  ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
  mov(scratch1, Operand(length, LSL, 1));  // Length in bytes, not chars.
  add(scratch1, scratch1,
      Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
  and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));

  // Allocate two-byte string in new space.
  AllocateInNewSpace(scratch1,
                     result,
                     scratch2,
                     scratch3,
                     gc_required,
                     TAG_OBJECT);

  // Set the map, length and hash field.
  InitializeNewString(result,
                      length,
                      Heap::kStringMapRootIndex,
                      scratch1,
                      scratch2);
}


void MacroAssembler::AllocateAsciiString(Register result,
                                         Register length,
                                         Register scratch1,
                                         Register scratch2,
                                         Register scratch3,
                                         Label* gc_required) {
  // Calculate the number of bytes needed for the characters in the string while
  // observing object alignment.
  ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
  ASSERT(kCharSize == 1);
  add(scratch1, length,
      Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize));
  and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));

  // Allocate ASCII string in new space.
  AllocateInNewSpace(scratch1,
                     result,
                     scratch2,
                     scratch3,
                     gc_required,
                     TAG_OBJECT);

  // Set the map, length and hash field.
  InitializeNewString(result,
                      length,
                      Heap::kAsciiStringMapRootIndex,
                      scratch1,
                      scratch2);
}


void MacroAssembler::AllocateTwoByteConsString(Register result,
                                               Register length,
                                               Register scratch1,
                                               Register scratch2,
                                               Label* gc_required) {
  AllocateInNewSpace(ConsString::kSize,
                     result,
                     scratch1,
                     scratch2,
                     gc_required,
                     TAG_OBJECT);

  InitializeNewString(result,
                      length,
                      Heap::kConsStringMapRootIndex,
                      scratch1,
                      scratch2);
}


void MacroAssembler::AllocateAsciiConsString(Register result,
                                             Register length,
                                             Register scratch1,
                                             Register scratch2,
                                             Label* gc_required) {
  AllocateInNewSpace(ConsString::kSize,
                     result,
                     scratch1,
                     scratch2,
                     gc_required,
                     TAG_OBJECT);

  InitializeNewString(result,
                      length,
                      Heap::kConsAsciiStringMapRootIndex,
                      scratch1,
                      scratch2);
}


void MacroAssembler::CompareObjectType(Register object,
                                       Register map,
                                       Register type_reg,
                                       InstanceType type) {
  ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
  CompareInstanceType(map, type_reg, type);
}


void MacroAssembler::CompareInstanceType(Register map,
                                         Register type_reg,
                                         InstanceType type) {
  ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
  cmp(type_reg, Operand(type));
}


void MacroAssembler::CheckMap(Register obj,
                              Register scratch,
                              Handle<Map> map,
                              Label* fail,
                              bool is_heap_object) {
  if (!is_heap_object) {
    BranchOnSmi(obj, fail);
  }
  ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
  mov(ip, Operand(map));
  cmp(scratch, ip);
  b(ne, fail);
}


void MacroAssembler::CheckMap(Register obj,
                              Register scratch,
                              Heap::RootListIndex index,
                              Label* fail,
                              bool is_heap_object) {
  if (!is_heap_object) {
    BranchOnSmi(obj, fail);
  }
  ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
  LoadRoot(ip, index);
  cmp(scratch, ip);
  b(ne, fail);
}


void MacroAssembler::TryGetFunctionPrototype(Register function,
                                             Register result,
                                             Register scratch,
                                             Label* miss) {
  // Check that the receiver isn't a smi.
  BranchOnSmi(function, miss);

  // Check that the function really is a function.  Load map into result reg.
  CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
  b(ne, miss);

  // Make sure that the function has an instance prototype.
  Label non_instance;
  ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
  tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
  b(ne, &non_instance);

  // Get the prototype or initial map from the function.
  ldr(result,
      FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));

  // If the prototype or initial map is the hole, don't return it and
  // simply miss the cache instead. This will allow us to allocate a
  // prototype object on-demand in the runtime system.
  LoadRoot(ip, Heap::kTheHoleValueRootIndex);
  cmp(result, ip);
  b(eq, miss);

  // If the function does not have an initial map, we're done.
  Label done;
  CompareObjectType(result, scratch, scratch, MAP_TYPE);
  b(ne, &done);

  // Get the prototype from the initial map.
  ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
  jmp(&done);

  // Non-instance prototype: Fetch prototype from constructor field
  // in initial map.
  bind(&non_instance);
  ldr(result, FieldMemOperand(result, Map::kConstructorOffset));

  // All done.
  bind(&done);
}


void MacroAssembler::CallStub(CodeStub* stub, Condition cond) {
  ASSERT(allow_stub_calls());  // stub calls are not allowed in some stubs
  Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
}


void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
  ASSERT(allow_stub_calls());  // stub calls are not allowed in some stubs
  Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
}


void MacroAssembler::IllegalOperation(int num_arguments) {
  if (num_arguments > 0) {
    add(sp, sp, Operand(num_arguments * kPointerSize));
  }
  LoadRoot(r0, Heap::kUndefinedValueRootIndex);
}


void MacroAssembler::IndexFromHash(Register hash, Register index) {
  // If the hash field contains an array index pick it out. The assert checks
  // that the constants for the maximum number of digits for an array index
  // cached in the hash field and the number of bits reserved for it does not
  // conflict.
  ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
         (1 << String::kArrayIndexValueBits));
  // We want the smi-tagged index in key.  kArrayIndexValueMask has zeros in
  // the low kHashShift bits.
  STATIC_ASSERT(kSmiTag == 0);
  Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
  mov(index, Operand(hash, LSL, kSmiTagSize));
}


void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg,
                                                       Register outHighReg,
                                                       Register outLowReg) {
  // ARMv7 VFP3 instructions to implement integer to double conversion.
  mov(r7, Operand(inReg, ASR, kSmiTagSize));
  vmov(s15, r7);
  vcvt_f64_s32(d7, s15);
  vmov(outLowReg, outHighReg, d7);
}


void MacroAssembler::ObjectToDoubleVFPRegister(Register object,
                                               DwVfpRegister result,
                                               Register scratch1,
                                               Register scratch2,
                                               Register heap_number_map,
                                               SwVfpRegister scratch3,
                                               Label* not_number,
                                               ObjectToDoubleFlags flags) {
  Label done;
  if ((flags & OBJECT_NOT_SMI) == 0) {
    Label not_smi;
    BranchOnNotSmi(object, &not_smi);
    // Remove smi tag and convert to double.
    mov(scratch1, Operand(object, ASR, kSmiTagSize));
    vmov(scratch3, scratch1);
    vcvt_f64_s32(result, scratch3);
    b(&done);
    bind(&not_smi);
  }
  // Check for heap number and load double value from it.
  ldr(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
  sub(scratch2, object, Operand(kHeapObjectTag));
  cmp(scratch1, heap_number_map);
  b(ne, not_number);
  if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
    // If exponent is all ones the number is either a NaN or +/-Infinity.
    ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
    Sbfx(scratch1,
         scratch1,
         HeapNumber::kExponentShift,
         HeapNumber::kExponentBits);
    // All-one value sign extend to -1.
    cmp(scratch1, Operand(-1));
    b(eq, not_number);
  }
  vldr(result, scratch2, HeapNumber::kValueOffset);
  bind(&done);
}


void MacroAssembler::SmiToDoubleVFPRegister(Register smi,
                                            DwVfpRegister value,
                                            Register scratch1,
                                            SwVfpRegister scratch2) {
  mov(scratch1, Operand(smi, ASR, kSmiTagSize));
  vmov(scratch2, scratch1);
  vcvt_f64_s32(value, scratch2);
}


// Tries to get a signed int32 out of a double precision floating point heap
// number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
// 32bits signed integer range.
void MacroAssembler::ConvertToInt32(Register source,
                                    Register dest,
                                    Register scratch,
                                    Register scratch2,
                                    Label *not_int32) {
  if (CpuFeatures::IsSupported(VFP3)) {
    CpuFeatures::Scope scope(VFP3);
    sub(scratch, source, Operand(kHeapObjectTag));
    vldr(d0, scratch, HeapNumber::kValueOffset);
    vcvt_s32_f64(s0, d0);
    vmov(dest, s0);
    // Signed vcvt instruction will saturate to the minimum (0x80000000) or
    // maximun (0x7fffffff) signed 32bits integer when the double is out of
    // range. When substracting one, the minimum signed integer becomes the
    // maximun signed integer.
    sub(scratch, dest, Operand(1));
    cmp(scratch, Operand(LONG_MAX - 1));
    // If equal then dest was LONG_MAX, if greater dest was LONG_MIN.
    b(ge, not_int32);
  } else {
    // This code is faster for doubles that are in the ranges -0x7fffffff to
    // -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to
    // the range of signed int32 values that are not Smis.  Jumps to the label
    // 'not_int32' if the double isn't in the range -0x80000000.0 to
    // 0x80000000.0 (excluding the endpoints).
    Label right_exponent, done;
    // Get exponent word.
    ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
    // Get exponent alone in scratch2.
    Ubfx(scratch2,
            scratch,
            HeapNumber::kExponentShift,
            HeapNumber::kExponentBits);
    // Load dest with zero.  We use this either for the final shift or
    // for the answer.
    mov(dest, Operand(0, RelocInfo::NONE));
    // Check whether the exponent matches a 32 bit signed int that is not a Smi.
    // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
    // the exponent that we are fastest at and also the highest exponent we can
    // handle here.
    const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30;
    // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we
    // split it up to avoid a constant pool entry.  You can't do that in general
    // for cmp because of the overflow flag, but we know the exponent is in the
    // range 0-2047 so there is no overflow.
    int fudge_factor = 0x400;
    sub(scratch2, scratch2, Operand(fudge_factor));
    cmp(scratch2, Operand(non_smi_exponent - fudge_factor));
    // If we have a match of the int32-but-not-Smi exponent then skip some
    // logic.
    b(eq, &right_exponent);
    // If the exponent is higher than that then go to slow case.  This catches
    // numbers that don't fit in a signed int32, infinities and NaNs.
    b(gt, not_int32);

    // We know the exponent is smaller than 30 (biased).  If it is less than
    // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
    // it rounds to zero.
    const uint32_t zero_exponent = HeapNumber::kExponentBias + 0;
    sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC);
    // Dest already has a Smi zero.
    b(lt, &done);

    // We have an exponent between 0 and 30 in scratch2.  Subtract from 30 to
    // get how much to shift down.
    rsb(dest, scratch2, Operand(30));

    bind(&right_exponent);
    // Get the top bits of the mantissa.
    and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
    // Put back the implicit 1.
    orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
    // Shift up the mantissa bits to take up the space the exponent used to
    // take. We just orred in the implicit bit so that took care of one and
    // we want to leave the sign bit 0 so we subtract 2 bits from the shift
    // distance.
    const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
    mov(scratch2, Operand(scratch2, LSL, shift_distance));
    // Put sign in zero flag.
    tst(scratch, Operand(HeapNumber::kSignMask));
    // Get the second half of the double. For some exponents we don't
    // actually need this because the bits get shifted out again, but
    // it's probably slower to test than just to do it.
    ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
    // Shift down 22 bits to get the last 10 bits.
    orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
    // Move down according to the exponent.
    mov(dest, Operand(scratch, LSR, dest));
    // Fix sign if sign bit was set.
    rsb(dest, dest, Operand(0, RelocInfo::NONE), LeaveCC, ne);
    bind(&done);
  }
}


void MacroAssembler::GetLeastBitsFromSmi(Register dst,
                                         Register src,
                                         int num_least_bits) {
  if (CpuFeatures::IsSupported(ARMv7)) {
    ubfx(dst, src, kSmiTagSize, num_least_bits);
  } else {
    mov(dst, Operand(src, ASR, kSmiTagSize));
    and_(dst, dst, Operand((1 << num_least_bits) - 1));
  }
}


void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
  // All parameters are on the stack.  r0 has the return value after call.

  // If the expected number of arguments of the runtime function is
  // constant, we check that the actual number of arguments match the
  // expectation.
  if (f->nargs >= 0 && f->nargs != num_arguments) {
    IllegalOperation(num_arguments);
    return;
  }

  // TODO(1236192): Most runtime routines don't need the number of
  // arguments passed in because it is constant. At some point we
  // should remove this need and make the runtime routine entry code
  // smarter.
  mov(r0, Operand(num_arguments));
  mov(r1, Operand(ExternalReference(f)));
  CEntryStub stub(1);
  CallStub(&stub);
}


void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
  CallRuntime(Runtime::FunctionForId(fid), num_arguments);
}


void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
  Runtime::Function* function = Runtime::FunctionForId(id);
  mov(r0, Operand(function->nargs));
  mov(r1, Operand(ExternalReference(function)));
  CEntryStub stub(1);
  stub.SaveDoubles();
  CallStub(&stub);
}


void MacroAssembler::CallExternalReference(const ExternalReference& ext,
                                           int num_arguments) {
  mov(r0, Operand(num_arguments));
  mov(r1, Operand(ext));

  CEntryStub stub(1);
  CallStub(&stub);
}


void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
                                               int num_arguments,
                                               int result_size) {
  // TODO(1236192): Most runtime routines don't need the number of
  // arguments passed in because it is constant. At some point we
  // should remove this need and make the runtime routine entry code
  // smarter.
  mov(r0, Operand(num_arguments));
  JumpToExternalReference(ext);
}


void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
                                     int num_arguments,
                                     int result_size) {
  TailCallExternalReference(ExternalReference(fid), num_arguments, result_size);
}


void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
#if defined(__thumb__)
  // Thumb mode builtin.
  ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
#endif
  mov(r1, Operand(builtin));
  CEntryStub stub(1);
  Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}


void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
                                   InvokeJSFlags flags) {
  GetBuiltinEntry(r2, id);
  if (flags == CALL_JS) {
    Call(r2);
  } else {
    ASSERT(flags == JUMP_JS);
    Jump(r2);
  }
}


void MacroAssembler::GetBuiltinFunction(Register target,
                                        Builtins::JavaScript id) {
  // Load the builtins object into target register.
  ldr(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
  // Load the JavaScript builtin function from the builtins object.
  ldr(target, FieldMemOperand(target,
                          JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}


void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
  ASSERT(!target.is(r1));
  GetBuiltinFunction(r1, id);
  // Load the code entry point from the builtins object.
  ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
}


void MacroAssembler::SetCounter(StatsCounter* counter, int value,
                                Register scratch1, Register scratch2) {
  if (FLAG_native_code_counters && counter->Enabled()) {
    mov(scratch1, Operand(value));
    mov(scratch2, Operand(ExternalReference(counter)));
    str(scratch1, MemOperand(scratch2));
  }
}


void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
                                      Register scratch1, Register scratch2) {
  ASSERT(value > 0);
  if (FLAG_native_code_counters && counter->Enabled()) {
    mov(scratch2, Operand(ExternalReference(counter)));
    ldr(scratch1, MemOperand(scratch2));
    add(scratch1, scratch1, Operand(value));
    str(scratch1, MemOperand(scratch2));
  }
}


void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
                                      Register scratch1, Register scratch2) {
  ASSERT(value > 0);
  if (FLAG_native_code_counters && counter->Enabled()) {
    mov(scratch2, Operand(ExternalReference(counter)));
    ldr(scratch1, MemOperand(scratch2));
    sub(scratch1, scratch1, Operand(value));
    str(scratch1, MemOperand(scratch2));
  }
}


void MacroAssembler::Assert(Condition cc, const char* msg) {
  if (FLAG_debug_code)
    Check(cc, msg);
}


void MacroAssembler::AssertRegisterIsRoot(Register reg,
                                          Heap::RootListIndex index) {
  if (FLAG_debug_code) {
    LoadRoot(ip, index);
    cmp(reg, ip);
    Check(eq, "Register did not match expected root");
  }
}


void MacroAssembler::AssertFastElements(Register elements) {
  if (FLAG_debug_code) {
    ASSERT(!elements.is(ip));
    Label ok;
    push(elements);
    ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
    LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
    cmp(elements, ip);
    b(eq, &ok);
    LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
    cmp(elements, ip);
    b(eq, &ok);
    Abort("JSObject with fast elements map has slow elements");
    bind(&ok);
    pop(elements);
  }
}


void MacroAssembler::Check(Condition cc, const char* msg) {
  Label L;
  b(cc, &L);
  Abort(msg);
  // will not return here
  bind(&L);
}


void MacroAssembler::Abort(const char* msg) {
  Label abort_start;
  bind(&abort_start);
  // We want to pass the msg string like a smi to avoid GC
  // problems, however msg is not guaranteed to be aligned
  // properly. Instead, we pass an aligned pointer that is
  // a proper v8 smi, but also pass the alignment difference
  // from the real pointer as a smi.
  intptr_t p1 = reinterpret_cast<intptr_t>(msg);
  intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
  ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
  if (msg != NULL) {
    RecordComment("Abort message: ");
    RecordComment(msg);
  }
#endif
  // Disable stub call restrictions to always allow calls to abort.
  set_allow_stub_calls(true);

  mov(r0, Operand(p0));
  push(r0);
  mov(r0, Operand(Smi::FromInt(p1 - p0)));
  push(r0);
  CallRuntime(Runtime::kAbort, 2);
  // will not return here
  if (is_const_pool_blocked()) {
    // If the calling code cares about the exact number of
    // instructions generated, we insert padding here to keep the size
    // of the Abort macro constant.
    static const int kExpectedAbortInstructions = 10;
    int abort_instructions = InstructionsGeneratedSince(&abort_start);
    ASSERT(abort_instructions <= kExpectedAbortInstructions);
    while (abort_instructions++ < kExpectedAbortInstructions) {
      nop();
    }
  }
}


void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
  if (context_chain_length > 0) {
    // Move up the chain of contexts to the context containing the slot.
    ldr(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX)));
    // Load the function context (which is the incoming, outer context).
    ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
    for (int i = 1; i < context_chain_length; i++) {
      ldr(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
      ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
    }
    // The context may be an intermediate context, not a function context.
    ldr(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
  } else {  // Slot is in the current function context.
    // The context may be an intermediate context, not a function context.
    ldr(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX)));
  }
}


void MacroAssembler::LoadGlobalFunction(int index, Register function) {
  // Load the global or builtins object from the current context.
  ldr(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  // Load the global context from the global or builtins object.
  ldr(function, FieldMemOperand(function,
                                GlobalObject::kGlobalContextOffset));
  // Load the function from the global context.
  ldr(function, MemOperand(function, Context::SlotOffset(index)));
}


void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
                                                  Register map,
                                                  Register scratch) {
  // Load the initial map. The global functions all have initial maps.
  ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
  if (FLAG_debug_code) {
    Label ok, fail;
    CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, false);
    b(&ok);
    bind(&fail);
    Abort("Global functions must have initial map");
    bind(&ok);
  }
}


void MacroAssembler::JumpIfNotBothSmi(Register reg1,
                                      Register reg2,
                                      Label* on_not_both_smi) {
  ASSERT_EQ(0, kSmiTag);
  tst(reg1, Operand(kSmiTagMask));
  tst(reg2, Operand(kSmiTagMask), eq);
  b(ne, on_not_both_smi);
}


void MacroAssembler::JumpIfEitherSmi(Register reg1,
                                     Register reg2,
                                     Label* on_either_smi) {
  ASSERT_EQ(0, kSmiTag);
  tst(reg1, Operand(kSmiTagMask));
  tst(reg2, Operand(kSmiTagMask), ne);
  b(eq, on_either_smi);
}


void MacroAssembler::AbortIfSmi(Register object) {
  ASSERT_EQ(0, kSmiTag);
  tst(object, Operand(kSmiTagMask));
  Assert(ne, "Operand is a smi");
}


void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
    Register first,
    Register second,
    Register scratch1,
    Register scratch2,
    Label* failure) {
  // Test that both first and second are sequential ASCII strings.
  // Assume that they are non-smis.
  ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
  ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
  ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
  ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));

  JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
                                               scratch2,
                                               scratch1,
                                               scratch2,
                                               failure);
}

void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
                                                         Register second,
                                                         Register scratch1,
                                                         Register scratch2,
                                                         Label* failure) {
  // Check that neither is a smi.
  ASSERT_EQ(0, kSmiTag);
  and_(scratch1, first, Operand(second));
  tst(scratch1, Operand(kSmiTagMask));
  b(eq, failure);
  JumpIfNonSmisNotBothSequentialAsciiStrings(first,
                                             second,
                                             scratch1,
                                             scratch2,
                                             failure);
}


// Allocates a heap number or jumps to the need_gc label if the young space
// is full and a scavenge is needed.
void MacroAssembler::AllocateHeapNumber(Register result,
                                        Register scratch1,
                                        Register scratch2,
                                        Register heap_number_map,
                                        Label* gc_required) {
  // Allocate an object in the heap for the heap number and tag it as a heap
  // object.
  AllocateInNewSpace(HeapNumber::kSize,
                     result,
                     scratch1,
                     scratch2,
                     gc_required,
                     TAG_OBJECT);

  // Store heap number map in the allocated object.
  AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
  str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
}


void MacroAssembler::AllocateHeapNumberWithValue(Register result,
                                                 DwVfpRegister value,
                                                 Register scratch1,
                                                 Register scratch2,
                                                 Register heap_number_map,
                                                 Label* gc_required) {
  AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
  sub(scratch1, result, Operand(kHeapObjectTag));
  vstr(value, scratch1, HeapNumber::kValueOffset);
}


// Copies a fixed number of fields of heap objects from src to dst.
void MacroAssembler::CopyFields(Register dst,
                                Register src,
                                RegList temps,
                                int field_count) {
  // At least one bit set in the first 15 registers.
  ASSERT((temps & ((1 << 15) - 1)) != 0);
  ASSERT((temps & dst.bit()) == 0);
  ASSERT((temps & src.bit()) == 0);
  // Primitive implementation using only one temporary register.

  Register tmp = no_reg;
  // Find a temp register in temps list.
  for (int i = 0; i < 15; i++) {
    if ((temps & (1 << i)) != 0) {
      tmp.set_code(i);
      break;
    }
  }
  ASSERT(!tmp.is(no_reg));

  for (int i = 0; i < field_count; i++) {
    ldr(tmp, FieldMemOperand(src, i * kPointerSize));
    str(tmp, FieldMemOperand(dst, i * kPointerSize));
  }
}


void MacroAssembler::CountLeadingZeros(Register zeros,   // Answer.
                                       Register source,  // Input.
                                       Register scratch) {
  ASSERT(!zeros.is(source) || !source.is(zeros));
  ASSERT(!zeros.is(scratch));
  ASSERT(!scratch.is(ip));
  ASSERT(!source.is(ip));
  ASSERT(!zeros.is(ip));
#ifdef CAN_USE_ARMV5_INSTRUCTIONS
  clz(zeros, source);  // This instruction is only supported after ARM5.
#else
  mov(zeros, Operand(0, RelocInfo::NONE));
  Move(scratch, source);
  // Top 16.
  tst(scratch, Operand(0xffff0000));
  add(zeros, zeros, Operand(16), LeaveCC, eq);
  mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq);
  // Top 8.
  tst(scratch, Operand(0xff000000));
  add(zeros, zeros, Operand(8), LeaveCC, eq);
  mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq);
  // Top 4.
  tst(scratch, Operand(0xf0000000));
  add(zeros, zeros, Operand(4), LeaveCC, eq);
  mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq);
  // Top 2.
  tst(scratch, Operand(0xc0000000));
  add(zeros, zeros, Operand(2), LeaveCC, eq);
  mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq);
  // Top bit.
  tst(scratch, Operand(0x80000000u));
  add(zeros, zeros, Operand(1), LeaveCC, eq);
#endif
}


void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
    Register first,
    Register second,
    Register scratch1,
    Register scratch2,
    Label* failure) {
  int kFlatAsciiStringMask =
      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
  int kFlatAsciiStringTag = ASCII_STRING_TYPE;
  and_(scratch1, first, Operand(kFlatAsciiStringMask));
  and_(scratch2, second, Operand(kFlatAsciiStringMask));
  cmp(scratch1, Operand(kFlatAsciiStringTag));
  // Ignore second test if first test failed.
  cmp(scratch2, Operand(kFlatAsciiStringTag), eq);
  b(ne, failure);
}


void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
                                                            Register scratch,
                                                            Label* failure) {
  int kFlatAsciiStringMask =
      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
  int kFlatAsciiStringTag = ASCII_STRING_TYPE;
  and_(scratch, type, Operand(kFlatAsciiStringMask));
  cmp(scratch, Operand(kFlatAsciiStringTag));
  b(ne, failure);
}


void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
  int frame_alignment = ActivationFrameAlignment();
  // Up to four simple arguments are passed in registers r0..r3.
  int stack_passed_arguments = (num_arguments <= 4) ? 0 : num_arguments - 4;
  if (frame_alignment > kPointerSize) {
    // Make stack end at alignment and make room for num_arguments - 4 words
    // and the original value of sp.
    mov(scratch, sp);
    sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
    ASSERT(IsPowerOf2(frame_alignment));
    and_(sp, sp, Operand(-frame_alignment));
    str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
  } else {
    sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
  }
}


void MacroAssembler::CallCFunction(ExternalReference function,
                                   int num_arguments) {
  mov(ip, Operand(function));
  CallCFunction(ip, num_arguments);
}


void MacroAssembler::CallCFunction(Register function, int num_arguments) {
  // Make sure that the stack is aligned before calling a C function unless
  // running in the simulator. The simulator has its own alignment check which
  // provides more information.
#if defined(V8_HOST_ARCH_ARM)
  if (FLAG_debug_code) {
    int frame_alignment = OS::ActivationFrameAlignment();
    int frame_alignment_mask = frame_alignment - 1;
    if (frame_alignment > kPointerSize) {
      ASSERT(IsPowerOf2(frame_alignment));
      Label alignment_as_expected;
      tst(sp, Operand(frame_alignment_mask));
      b(eq, &alignment_as_expected);
      // Don't use Check here, as it will call Runtime_Abort possibly
      // re-entering here.
      stop("Unexpected alignment");
      bind(&alignment_as_expected);
    }
  }
#endif

  // Just call directly. The function called cannot cause a GC, or
  // allow preemption, so the return address in the link register
  // stays correct.
  Call(function);
  int stack_passed_arguments = (num_arguments <= 4) ? 0 : num_arguments - 4;
  if (OS::ActivationFrameAlignment() > kPointerSize) {
    ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
  } else {
    add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
  }
}


#ifdef ENABLE_DEBUGGER_SUPPORT
CodePatcher::CodePatcher(byte* address, int instructions)
    : address_(address),
      instructions_(instructions),
      size_(instructions * Assembler::kInstrSize),
      masm_(address, size_ + Assembler::kGap) {
  // Create a new macro assembler pointing to the address of the code to patch.
  // The size is adjusted with kGap on order for the assembler to generate size
  // bytes of instructions without failing with buffer size constraints.
  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}


CodePatcher::~CodePatcher() {
  // Indicate that code has changed.
  CPU::FlushICache(address_, size_);

  // Check that the code was patched as expected.
  ASSERT(masm_.pc_ == address_ + size_);
  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}


void CodePatcher::Emit(Instr x) {
  masm()->emit(x);
}


void CodePatcher::Emit(Address addr) {
  masm()->emit(reinterpret_cast<Instr>(addr));
}
#endif  // ENABLE_DEBUGGER_SUPPORT


} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_ARM