aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/arm/macro-assembler-arm.cc
blob: 6dd9b8faab71ffae673bd2e06b425dc66afc726a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "runtime.h"

namespace v8 {
namespace internal {

MacroAssembler::MacroAssembler(void* buffer, int size)
    : Assembler(buffer, size),
      unresolved_(0),
      generating_stub_(false),
      allow_stub_calls_(true),
      code_object_(Heap::undefined_value()) {
}


// We always generate arm code, never thumb code, even if V8 is compiled to
// thumb, so we require inter-working support
#if defined(__thumb__) && !defined(USE_THUMB_INTERWORK)
#error "flag -mthumb-interwork missing"
#endif


// We do not support thumb inter-working with an arm architecture not supporting
// the blx instruction (below v5t).  If you know what CPU you are compiling for
// you can use -march=armv7 or similar.
#if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS)
# error "For thumb inter-working we require an architecture which supports blx"
#endif


// Using blx may yield better code, so use it when required or when available
#if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS)
#define USE_BLX 1
#endif

// Using bx does not yield better code, so use it only when required
#if defined(USE_THUMB_INTERWORK)
#define USE_BX 1
#endif


void MacroAssembler::Jump(Register target, Condition cond) {
#if USE_BX
  bx(target, cond);
#else
  mov(pc, Operand(target), LeaveCC, cond);
#endif
}


void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
                          Condition cond) {
#if USE_BX
  mov(ip, Operand(target, rmode), LeaveCC, cond);
  bx(ip, cond);
#else
  mov(pc, Operand(target, rmode), LeaveCC, cond);
#endif
}


void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode,
                          Condition cond) {
  ASSERT(!RelocInfo::IsCodeTarget(rmode));
  Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
}


void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
                          Condition cond) {
  ASSERT(RelocInfo::IsCodeTarget(rmode));
  // 'code' is always generated ARM code, never THUMB code
  Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}


void MacroAssembler::Call(Register target, Condition cond) {
#if USE_BLX
  blx(target, cond);
#else
  // set lr for return at current pc + 8
  mov(lr, Operand(pc), LeaveCC, cond);
  mov(pc, Operand(target), LeaveCC, cond);
#endif
}


void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode,
                          Condition cond) {
  // Set lr for return at current pc + 8.
  mov(lr, Operand(pc), LeaveCC, cond);
  // Emit a ldr<cond> pc, [pc + offset of target in constant pool].
  mov(pc, Operand(target, rmode), LeaveCC, cond);
  // If USE_BLX is defined, we could emit a 'mov ip, target', followed by a
  // 'blx ip'; however, the code would not be shorter than the above sequence
  // and the target address of the call would be referenced by the first
  // instruction rather than the second one, which would make it harder to patch
  // (two instructions before the return address, instead of one).
  ASSERT(kCallTargetAddressOffset == kInstrSize);
}


void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode,
                          Condition cond) {
  ASSERT(!RelocInfo::IsCodeTarget(rmode));
  Call(reinterpret_cast<intptr_t>(target), rmode, cond);
}


void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
                          Condition cond) {
  ASSERT(RelocInfo::IsCodeTarget(rmode));
  // 'code' is always generated ARM code, never THUMB code
  Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}


void MacroAssembler::Ret(Condition cond) {
#if USE_BX
  bx(lr, cond);
#else
  mov(pc, Operand(lr), LeaveCC, cond);
#endif
}


void MacroAssembler::SmiJumpTable(Register index, Vector<Label*> targets) {
  // Empty the const pool.
  CheckConstPool(true, true);
  add(pc, pc, Operand(index,
                      LSL,
                      assembler::arm::Instr::kInstrSizeLog2 - kSmiTagSize));
  BlockConstPoolBefore(pc_offset() + (targets.length() + 1) * kInstrSize);
  nop();  // Jump table alignment.
  for (int i = 0; i < targets.length(); i++) {
    b(targets[i]);
  }
}


void MacroAssembler::LoadRoot(Register destination,
                              Heap::RootListIndex index,
                              Condition cond) {
  ldr(destination, MemOperand(r10, index << kPointerSizeLog2), cond);
}


// Will clobber 4 registers: object, offset, scratch, ip.  The
// register 'object' contains a heap object pointer.  The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object, Register offset,
                                 Register scratch) {
  // This is how much we shift the remembered set bit offset to get the
  // offset of the word in the remembered set.  We divide by kBitsPerInt (32,
  // shift right 5) and then multiply by kIntSize (4, shift left 2).
  const int kRSetWordShift = 3;

  Label fast, done;

  // First, test that the object is not in the new space.  We cannot set
  // remembered set bits in the new space.
  // object: heap object pointer (with tag)
  // offset: offset to store location from the object
  and_(scratch, object, Operand(Heap::NewSpaceMask()));
  cmp(scratch, Operand(ExternalReference::new_space_start()));
  b(eq, &done);

  // Compute the bit offset in the remembered set.
  // object: heap object pointer (with tag)
  // offset: offset to store location from the object
  mov(ip, Operand(Page::kPageAlignmentMask));  // load mask only once
  and_(scratch, object, Operand(ip));  // offset into page of the object
  add(offset, scratch, Operand(offset));  // add offset into the object
  mov(offset, Operand(offset, LSR, kObjectAlignmentBits));

  // Compute the page address from the heap object pointer.
  // object: heap object pointer (with tag)
  // offset: bit offset of store position in the remembered set
  bic(object, object, Operand(ip));

  // If the bit offset lies beyond the normal remembered set range, it is in
  // the extra remembered set area of a large object.
  // object: page start
  // offset: bit offset of store position in the remembered set
  cmp(offset, Operand(Page::kPageSize / kPointerSize));
  b(lt, &fast);

  // Adjust the bit offset to be relative to the start of the extra
  // remembered set and the start address to be the address of the extra
  // remembered set.
  sub(offset, offset, Operand(Page::kPageSize / kPointerSize));
  // Load the array length into 'scratch' and multiply by four to get the
  // size in bytes of the elements.
  ldr(scratch, MemOperand(object, Page::kObjectStartOffset
                                  + FixedArray::kLengthOffset));
  mov(scratch, Operand(scratch, LSL, kObjectAlignmentBits));
  // Add the page header (including remembered set), array header, and array
  // body size to the page address.
  add(object, object, Operand(Page::kObjectStartOffset
                              + FixedArray::kHeaderSize));
  add(object, object, Operand(scratch));

  bind(&fast);
  // Get address of the rset word.
  // object: start of the remembered set (page start for the fast case)
  // offset: bit offset of store position in the remembered set
  bic(scratch, offset, Operand(kBitsPerInt - 1));  // clear the bit offset
  add(object, object, Operand(scratch, LSR, kRSetWordShift));
  // Get bit offset in the rset word.
  // object: address of remembered set word
  // offset: bit offset of store position
  and_(offset, offset, Operand(kBitsPerInt - 1));

  ldr(scratch, MemOperand(object));
  mov(ip, Operand(1));
  orr(scratch, scratch, Operand(ip, LSL, offset));
  str(scratch, MemOperand(object));

  bind(&done);
}


void MacroAssembler::EnterFrame(StackFrame::Type type) {
  // r0-r3: preserved
  stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
  mov(ip, Operand(Smi::FromInt(type)));
  push(ip);
  mov(ip, Operand(CodeObject()));
  push(ip);
  add(fp, sp, Operand(3 * kPointerSize));  // Adjust FP to point to saved FP.
}


void MacroAssembler::LeaveFrame(StackFrame::Type type) {
  // r0: preserved
  // r1: preserved
  // r2: preserved

  // Drop the execution stack down to the frame pointer and restore
  // the caller frame pointer and return address.
  mov(sp, fp);
  ldm(ia_w, sp, fp.bit() | lr.bit());
}


void MacroAssembler::EnterExitFrame(StackFrame::Type type) {
  ASSERT(type == StackFrame::EXIT || type == StackFrame::EXIT_DEBUG);

  // Compute the argv pointer and keep it in a callee-saved register.
  // r0 is argc.
  add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
  sub(r6, r6, Operand(kPointerSize));

  // Compute callee's stack pointer before making changes and save it as
  // ip register so that it is restored as sp register on exit, thereby
  // popping the args.

  // ip = sp + kPointerSize * #args;
  add(ip, sp, Operand(r0, LSL, kPointerSizeLog2));

  // Align the stack at this point.  After this point we have 5 pushes,
  // so in fact we have to unalign here!  See also the assert on the
  // alignment immediately below.
#if defined(V8_HOST_ARCH_ARM)
  // Running on the real platform. Use the alignment as mandated by the local
  // environment.
  // Note: This will break if we ever start generating snapshots on one ARM
  // platform for another ARM platform with a different alignment.
  int activation_frame_alignment = OS::ActivationFrameAlignment();
#else  // defined(V8_HOST_ARCH_ARM)
  // If we are using the simulator then we should always align to the expected
  // alignment. As the simulator is used to generate snapshots we do not know
  // if the target platform will need alignment, so we will always align at
  // this point here.
  int activation_frame_alignment = 2 * kPointerSize;
#endif  // defined(V8_HOST_ARCH_ARM)
  if (activation_frame_alignment != kPointerSize) {
    // This code needs to be made more general if this assert doesn't hold.
    ASSERT(activation_frame_alignment == 2 * kPointerSize);
    mov(r7, Operand(Smi::FromInt(0)));
    tst(sp, Operand(activation_frame_alignment - 1));
    push(r7, eq);  // Conditional push instruction.
  }

  // Push in reverse order: caller_fp, sp_on_exit, and caller_pc.
  stm(db_w, sp, fp.bit() | ip.bit() | lr.bit());
  mov(fp, Operand(sp));  // setup new frame pointer

  // Push debug marker.
  mov(ip, Operand(type == StackFrame::EXIT_DEBUG ? 1 : 0));
  push(ip);

  // Save the frame pointer and the context in top.
  mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
  str(fp, MemOperand(ip));
  mov(ip, Operand(ExternalReference(Top::k_context_address)));
  str(cp, MemOperand(ip));

  // Setup argc and the builtin function in callee-saved registers.
  mov(r4, Operand(r0));
  mov(r5, Operand(r1));


#ifdef ENABLE_DEBUGGER_SUPPORT
  // Save the state of all registers to the stack from the memory
  // location. This is needed to allow nested break points.
  if (type == StackFrame::EXIT_DEBUG) {
    // Use sp as base to push.
    CopyRegistersFromMemoryToStack(sp, kJSCallerSaved);
  }
#endif
}


void MacroAssembler::LeaveExitFrame(StackFrame::Type type) {
#ifdef ENABLE_DEBUGGER_SUPPORT
  // Restore the memory copy of the registers by digging them out from
  // the stack. This is needed to allow nested break points.
  if (type == StackFrame::EXIT_DEBUG) {
    // This code intentionally clobbers r2 and r3.
    const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize;
    const int kOffset = ExitFrameConstants::kDebugMarkOffset - kCallerSavedSize;
    add(r3, fp, Operand(kOffset));
    CopyRegistersFromStackToMemory(r3, r2, kJSCallerSaved);
  }
#endif

  // Clear top frame.
  mov(r3, Operand(0));
  mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
  str(r3, MemOperand(ip));

  // Restore current context from top and clear it in debug mode.
  mov(ip, Operand(ExternalReference(Top::k_context_address)));
  ldr(cp, MemOperand(ip));
#ifdef DEBUG
  str(r3, MemOperand(ip));
#endif

  // Pop the arguments, restore registers, and return.
  mov(sp, Operand(fp));  // respect ABI stack constraint
  ldm(ia, sp, fp.bit() | sp.bit() | pc.bit());
}


void MacroAssembler::InvokePrologue(const ParameterCount& expected,
                                    const ParameterCount& actual,
                                    Handle<Code> code_constant,
                                    Register code_reg,
                                    Label* done,
                                    InvokeFlag flag) {
  bool definitely_matches = false;
  Label regular_invoke;

  // Check whether the expected and actual arguments count match. If not,
  // setup registers according to contract with ArgumentsAdaptorTrampoline:
  //  r0: actual arguments count
  //  r1: function (passed through to callee)
  //  r2: expected arguments count
  //  r3: callee code entry

  // The code below is made a lot easier because the calling code already sets
  // up actual and expected registers according to the contract if values are
  // passed in registers.
  ASSERT(actual.is_immediate() || actual.reg().is(r0));
  ASSERT(expected.is_immediate() || expected.reg().is(r2));
  ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));

  if (expected.is_immediate()) {
    ASSERT(actual.is_immediate());
    if (expected.immediate() == actual.immediate()) {
      definitely_matches = true;
    } else {
      mov(r0, Operand(actual.immediate()));
      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
      if (expected.immediate() == sentinel) {
        // Don't worry about adapting arguments for builtins that
        // don't want that done. Skip adaption code by making it look
        // like we have a match between expected and actual number of
        // arguments.
        definitely_matches = true;
      } else {
        mov(r2, Operand(expected.immediate()));
      }
    }
  } else {
    if (actual.is_immediate()) {
      cmp(expected.reg(), Operand(actual.immediate()));
      b(eq, &regular_invoke);
      mov(r0, Operand(actual.immediate()));
    } else {
      cmp(expected.reg(), Operand(actual.reg()));
      b(eq, &regular_invoke);
    }
  }

  if (!definitely_matches) {
    if (!code_constant.is_null()) {
      mov(r3, Operand(code_constant));
      add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
    }

    Handle<Code> adaptor =
        Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
    if (flag == CALL_FUNCTION) {
      Call(adaptor, RelocInfo::CODE_TARGET);
      b(done);
    } else {
      Jump(adaptor, RelocInfo::CODE_TARGET);
    }
    bind(&regular_invoke);
  }
}


void MacroAssembler::InvokeCode(Register code,
                                const ParameterCount& expected,
                                const ParameterCount& actual,
                                InvokeFlag flag) {
  Label done;

  InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
  if (flag == CALL_FUNCTION) {
    Call(code);
  } else {
    ASSERT(flag == JUMP_FUNCTION);
    Jump(code);
  }

  // Continue here if InvokePrologue does handle the invocation due to
  // mismatched parameter counts.
  bind(&done);
}


void MacroAssembler::InvokeCode(Handle<Code> code,
                                const ParameterCount& expected,
                                const ParameterCount& actual,
                                RelocInfo::Mode rmode,
                                InvokeFlag flag) {
  Label done;

  InvokePrologue(expected, actual, code, no_reg, &done, flag);
  if (flag == CALL_FUNCTION) {
    Call(code, rmode);
  } else {
    Jump(code, rmode);
  }

  // Continue here if InvokePrologue does handle the invocation due to
  // mismatched parameter counts.
  bind(&done);
}


void MacroAssembler::InvokeFunction(Register fun,
                                    const ParameterCount& actual,
                                    InvokeFlag flag) {
  // Contract with called JS functions requires that function is passed in r1.
  ASSERT(fun.is(r1));

  Register expected_reg = r2;
  Register code_reg = r3;

  ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
  ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
  ldr(expected_reg,
      FieldMemOperand(code_reg,
                      SharedFunctionInfo::kFormalParameterCountOffset));
  ldr(code_reg,
      MemOperand(code_reg, SharedFunctionInfo::kCodeOffset - kHeapObjectTag));
  add(code_reg, code_reg, Operand(Code::kHeaderSize - kHeapObjectTag));

  ParameterCount expected(expected_reg);
  InvokeCode(code_reg, expected, actual, flag);
}


#ifdef ENABLE_DEBUGGER_SUPPORT
void MacroAssembler::SaveRegistersToMemory(RegList regs) {
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Copy the content of registers to memory location.
  for (int i = 0; i < kNumJSCallerSaved; i++) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      Register reg = { r };
      mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
      str(reg, MemOperand(ip));
    }
  }
}


void MacroAssembler::RestoreRegistersFromMemory(RegList regs) {
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Copy the content of memory location to registers.
  for (int i = kNumJSCallerSaved; --i >= 0;) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      Register reg = { r };
      mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
      ldr(reg, MemOperand(ip));
    }
  }
}


void MacroAssembler::CopyRegistersFromMemoryToStack(Register base,
                                                    RegList regs) {
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Copy the content of the memory location to the stack and adjust base.
  for (int i = kNumJSCallerSaved; --i >= 0;) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
      ldr(ip, MemOperand(ip));
      str(ip, MemOperand(base, 4, NegPreIndex));
    }
  }
}


void MacroAssembler::CopyRegistersFromStackToMemory(Register base,
                                                    Register scratch,
                                                    RegList regs) {
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Copy the content of the stack to the memory location and adjust base.
  for (int i = 0; i < kNumJSCallerSaved; i++) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
      ldr(scratch, MemOperand(base, 4, PostIndex));
      str(scratch, MemOperand(ip));
    }
  }
}
#endif


void MacroAssembler::PushTryHandler(CodeLocation try_location,
                                    HandlerType type) {
  // Adjust this code if not the case.
  ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
  // The pc (return address) is passed in register lr.
  if (try_location == IN_JAVASCRIPT) {
    if (type == TRY_CATCH_HANDLER) {
      mov(r3, Operand(StackHandler::TRY_CATCH));
    } else {
      mov(r3, Operand(StackHandler::TRY_FINALLY));
    }
    ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
           && StackHandlerConstants::kFPOffset == 2 * kPointerSize
           && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
    stm(db_w, sp, r3.bit() | fp.bit() | lr.bit());
    // Save the current handler as the next handler.
    mov(r3, Operand(ExternalReference(Top::k_handler_address)));
    ldr(r1, MemOperand(r3));
    ASSERT(StackHandlerConstants::kNextOffset == 0);
    push(r1);
    // Link this handler as the new current one.
    str(sp, MemOperand(r3));
  } else {
    // Must preserve r0-r4, r5-r7 are available.
    ASSERT(try_location == IN_JS_ENTRY);
    // The frame pointer does not point to a JS frame so we save NULL
    // for fp. We expect the code throwing an exception to check fp
    // before dereferencing it to restore the context.
    mov(ip, Operand(0));  // To save a NULL frame pointer.
    mov(r6, Operand(StackHandler::ENTRY));
    ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
           && StackHandlerConstants::kFPOffset == 2 * kPointerSize
           && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
    stm(db_w, sp, r6.bit() | ip.bit() | lr.bit());
    // Save the current handler as the next handler.
    mov(r7, Operand(ExternalReference(Top::k_handler_address)));
    ldr(r6, MemOperand(r7));
    ASSERT(StackHandlerConstants::kNextOffset == 0);
    push(r6);
    // Link this handler as the new current one.
    str(sp, MemOperand(r7));
  }
}


Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg,
                                   JSObject* holder, Register holder_reg,
                                   Register scratch,
                                   Label* miss) {
  // Make sure there's no overlap between scratch and the other
  // registers.
  ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg));

  // Keep track of the current object in register reg.
  Register reg = object_reg;
  int depth = 1;

  // Check the maps in the prototype chain.
  // Traverse the prototype chain from the object and do map checks.
  while (object != holder) {
    depth++;

    // Only global objects and objects that do not require access
    // checks are allowed in stubs.
    ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());

    // Get the map of the current object.
    ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
    cmp(scratch, Operand(Handle<Map>(object->map())));

    // Branch on the result of the map check.
    b(ne, miss);

    // Check access rights to the global object.  This has to happen
    // after the map check so that we know that the object is
    // actually a global object.
    if (object->IsJSGlobalProxy()) {
      CheckAccessGlobalProxy(reg, scratch, miss);
      // Restore scratch register to be the map of the object.  In the
      // new space case below, we load the prototype from the map in
      // the scratch register.
      ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
    }

    reg = holder_reg;  // from now the object is in holder_reg
    JSObject* prototype = JSObject::cast(object->GetPrototype());
    if (Heap::InNewSpace(prototype)) {
      // The prototype is in new space; we cannot store a reference
      // to it in the code. Load it from the map.
      ldr(reg, FieldMemOperand(scratch, Map::kPrototypeOffset));
    } else {
      // The prototype is in old space; load it directly.
      mov(reg, Operand(Handle<JSObject>(prototype)));
    }

    // Go to the next object in the prototype chain.
    object = prototype;
  }

  // Check the holder map.
  ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
  cmp(scratch, Operand(Handle<Map>(object->map())));
  b(ne, miss);

  // Log the check depth.
  LOG(IntEvent("check-maps-depth", depth));

  // Perform security check for access to the global object and return
  // the holder register.
  ASSERT(object == holder);
  ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
  if (object->IsJSGlobalProxy()) {
    CheckAccessGlobalProxy(reg, scratch, miss);
  }
  return reg;
}


void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
                                            Register scratch,
                                            Label* miss) {
  Label same_contexts;

  ASSERT(!holder_reg.is(scratch));
  ASSERT(!holder_reg.is(ip));
  ASSERT(!scratch.is(ip));

  // Load current lexical context from the stack frame.
  ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
  // In debug mode, make sure the lexical context is set.
#ifdef DEBUG
  cmp(scratch, Operand(0));
  Check(ne, "we should not have an empty lexical context");
#endif

  // Load the global context of the current context.
  int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
  ldr(scratch, FieldMemOperand(scratch, offset));
  ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));

  // Check the context is a global context.
  if (FLAG_debug_code) {
    // TODO(119): avoid push(holder_reg)/pop(holder_reg)
    // Cannot use ip as a temporary in this verification code. Due to the fact
    // that ip is clobbered as part of cmp with an object Operand.
    push(holder_reg);  // Temporarily save holder on the stack.
    // Read the first word and compare to the global_context_map.
    ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
    LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
    cmp(holder_reg, ip);
    Check(eq, "JSGlobalObject::global_context should be a global context.");
    pop(holder_reg);  // Restore holder.
  }

  // Check if both contexts are the same.
  ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
  cmp(scratch, Operand(ip));
  b(eq, &same_contexts);

  // Check the context is a global context.
  if (FLAG_debug_code) {
    // TODO(119): avoid push(holder_reg)/pop(holder_reg)
    // Cannot use ip as a temporary in this verification code. Due to the fact
    // that ip is clobbered as part of cmp with an object Operand.
    push(holder_reg);  // Temporarily save holder on the stack.
    mov(holder_reg, ip);  // Move ip to its holding place.
    LoadRoot(ip, Heap::kNullValueRootIndex);
    cmp(holder_reg, ip);
    Check(ne, "JSGlobalProxy::context() should not be null.");

    ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
    LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
    cmp(holder_reg, ip);
    Check(eq, "JSGlobalObject::global_context should be a global context.");
    // Restore ip is not needed. ip is reloaded below.
    pop(holder_reg);  // Restore holder.
    // Restore ip to holder's context.
    ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
  }

  // Check that the security token in the calling global object is
  // compatible with the security token in the receiving global
  // object.
  int token_offset = Context::kHeaderSize +
                     Context::SECURITY_TOKEN_INDEX * kPointerSize;

  ldr(scratch, FieldMemOperand(scratch, token_offset));
  ldr(ip, FieldMemOperand(ip, token_offset));
  cmp(scratch, Operand(ip));
  b(ne, miss);

  bind(&same_contexts);
}


void MacroAssembler::AllocateObjectInNewSpace(int object_size,
                                              Register result,
                                              Register scratch1,
                                              Register scratch2,
                                              Label* gc_required,
                                              AllocationFlags flags) {
  ASSERT(!result.is(scratch1));
  ASSERT(!scratch1.is(scratch2));

  // Load address of new object into result and allocation top address into
  // scratch1.
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();
  mov(scratch1, Operand(new_space_allocation_top));
  if ((flags & RESULT_CONTAINS_TOP) == 0) {
    ldr(result, MemOperand(scratch1));
  } else {
#ifdef DEBUG
    // Assert that result actually contains top on entry. scratch2 is used
    // immediately below so this use of scratch2 does not cause difference with
    // respect to register content between debug and release mode.
    ldr(scratch2, MemOperand(scratch1));
    cmp(result, scratch2);
    Check(eq, "Unexpected allocation top");
#endif
  }

  // Calculate new top and bail out if new space is exhausted. Use result
  // to calculate the new top.
  ExternalReference new_space_allocation_limit =
      ExternalReference::new_space_allocation_limit_address();
  mov(scratch2, Operand(new_space_allocation_limit));
  ldr(scratch2, MemOperand(scratch2));
  add(result, result, Operand(object_size * kPointerSize));
  cmp(result, Operand(scratch2));
  b(hi, gc_required);

  // Update allocation top. result temporarily holds the new top,
  str(result, MemOperand(scratch1));

  // Tag and adjust back to start of new object.
  if ((flags & TAG_OBJECT) != 0) {
    sub(result, result, Operand((object_size * kPointerSize) -
                                kHeapObjectTag));
  } else {
    sub(result, result, Operand(object_size * kPointerSize));
  }
}


void MacroAssembler::AllocateObjectInNewSpace(Register object_size,
                                              Register result,
                                              Register scratch1,
                                              Register scratch2,
                                              Label* gc_required,
                                              AllocationFlags flags) {
  ASSERT(!result.is(scratch1));
  ASSERT(!scratch1.is(scratch2));

  // Load address of new object into result and allocation top address into
  // scratch1.
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();
  mov(scratch1, Operand(new_space_allocation_top));
  if ((flags & RESULT_CONTAINS_TOP) == 0) {
    ldr(result, MemOperand(scratch1));
  } else {
#ifdef DEBUG
    // Assert that result actually contains top on entry. scratch2 is used
    // immediately below so this use of scratch2 does not cause difference with
    // respect to register content between debug and release mode.
    ldr(scratch2, MemOperand(scratch1));
    cmp(result, scratch2);
    Check(eq, "Unexpected allocation top");
#endif
  }

  // Calculate new top and bail out if new space is exhausted. Use result
  // to calculate the new top. Object size is in words so a shift is required to
  // get the number of bytes
  ExternalReference new_space_allocation_limit =
      ExternalReference::new_space_allocation_limit_address();
  mov(scratch2, Operand(new_space_allocation_limit));
  ldr(scratch2, MemOperand(scratch2));
  add(result, result, Operand(object_size, LSL, kPointerSizeLog2));
  cmp(result, Operand(scratch2));
  b(hi, gc_required);

  // Update allocation top. result temporarily holds the new top,
  str(result, MemOperand(scratch1));

  // Adjust back to start of new object.
  sub(result, result, Operand(object_size, LSL, kPointerSizeLog2));

  // Tag object if requested.
  if ((flags & TAG_OBJECT) != 0) {
    add(result, result, Operand(kHeapObjectTag));
  }
}


void MacroAssembler::UndoAllocationInNewSpace(Register object,
                                              Register scratch) {
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();

  // Make sure the object has no tag before resetting top.
  and_(object, object, Operand(~kHeapObjectTagMask));
#ifdef DEBUG
  // Check that the object un-allocated is below the current top.
  mov(scratch, Operand(new_space_allocation_top));
  ldr(scratch, MemOperand(scratch));
  cmp(object, scratch);
  Check(lt, "Undo allocation of non allocated memory");
#endif
  // Write the address of the object to un-allocate as the current top.
  mov(scratch, Operand(new_space_allocation_top));
  str(object, MemOperand(scratch));
}


void MacroAssembler::CompareObjectType(Register function,
                                       Register map,
                                       Register type_reg,
                                       InstanceType type) {
  ldr(map, FieldMemOperand(function, HeapObject::kMapOffset));
  CompareInstanceType(map, type_reg, type);
}


void MacroAssembler::CompareInstanceType(Register map,
                                         Register type_reg,
                                         InstanceType type) {
  ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
  cmp(type_reg, Operand(type));
}


void MacroAssembler::TryGetFunctionPrototype(Register function,
                                             Register result,
                                             Register scratch,
                                             Label* miss) {
  // Check that the receiver isn't a smi.
  BranchOnSmi(function, miss);

  // Check that the function really is a function.  Load map into result reg.
  CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
  b(ne, miss);

  // Make sure that the function has an instance prototype.
  Label non_instance;
  ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
  tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
  b(ne, &non_instance);

  // Get the prototype or initial map from the function.
  ldr(result,
      FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));

  // If the prototype or initial map is the hole, don't return it and
  // simply miss the cache instead. This will allow us to allocate a
  // prototype object on-demand in the runtime system.
  LoadRoot(ip, Heap::kTheHoleValueRootIndex);
  cmp(result, ip);
  b(eq, miss);

  // If the function does not have an initial map, we're done.
  Label done;
  CompareObjectType(result, scratch, scratch, MAP_TYPE);
  b(ne, &done);

  // Get the prototype from the initial map.
  ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
  jmp(&done);

  // Non-instance prototype: Fetch prototype from constructor field
  // in initial map.
  bind(&non_instance);
  ldr(result, FieldMemOperand(result, Map::kConstructorOffset));

  // All done.
  bind(&done);
}


void MacroAssembler::CallStub(CodeStub* stub, Condition cond) {
  ASSERT(allow_stub_calls());  // stub calls are not allowed in some stubs
  Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
}


void MacroAssembler::StubReturn(int argc) {
  ASSERT(argc >= 1 && generating_stub());
  if (argc > 1)
    add(sp, sp, Operand((argc - 1) * kPointerSize));
  Ret();
}


void MacroAssembler::IllegalOperation(int num_arguments) {
  if (num_arguments > 0) {
    add(sp, sp, Operand(num_arguments * kPointerSize));
  }
  LoadRoot(r0, Heap::kUndefinedValueRootIndex);
}


void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
  // All parameters are on the stack.  r0 has the return value after call.

  // If the expected number of arguments of the runtime function is
  // constant, we check that the actual number of arguments match the
  // expectation.
  if (f->nargs >= 0 && f->nargs != num_arguments) {
    IllegalOperation(num_arguments);
    return;
  }

  Runtime::FunctionId function_id =
      static_cast<Runtime::FunctionId>(f->stub_id);
  RuntimeStub stub(function_id, num_arguments);
  CallStub(&stub);
}


void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
  CallRuntime(Runtime::FunctionForId(fid), num_arguments);
}


void MacroAssembler::TailCallRuntime(const ExternalReference& ext,
                                     int num_arguments,
                                     int result_size) {
  // TODO(1236192): Most runtime routines don't need the number of
  // arguments passed in because it is constant. At some point we
  // should remove this need and make the runtime routine entry code
  // smarter.
  mov(r0, Operand(num_arguments));
  JumpToBuiltin(ext);
}


void MacroAssembler::JumpToBuiltin(const ExternalReference& builtin) {
#if defined(__thumb__)
  // Thumb mode builtin.
  ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
#endif
  mov(r1, Operand(builtin));
  CEntryStub stub(1);
  Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}


Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id,
                                            bool* resolved) {
  // Contract with compiled functions is that the function is passed in r1.
  int builtins_offset =
      JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize);
  ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  ldr(r1, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
  ldr(r1, FieldMemOperand(r1, builtins_offset));

  return Builtins::GetCode(id, resolved);
}


void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
                                   InvokeJSFlags flags) {
  bool resolved;
  Handle<Code> code = ResolveBuiltin(id, &resolved);

  if (flags == CALL_JS) {
    Call(code, RelocInfo::CODE_TARGET);
  } else {
    ASSERT(flags == JUMP_JS);
    Jump(code, RelocInfo::CODE_TARGET);
  }

  if (!resolved) {
    const char* name = Builtins::GetName(id);
    int argc = Builtins::GetArgumentsCount(id);
    uint32_t flags =
        Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
        Bootstrapper::FixupFlagsIsPCRelative::encode(true) |
        Bootstrapper::FixupFlagsUseCodeObject::encode(false);
    Unresolved entry = { pc_offset() - kInstrSize, flags, name };
    unresolved_.Add(entry);
  }
}


void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
  bool resolved;
  Handle<Code> code = ResolveBuiltin(id, &resolved);

  mov(target, Operand(code));
  if (!resolved) {
    const char* name = Builtins::GetName(id);
    int argc = Builtins::GetArgumentsCount(id);
    uint32_t flags =
        Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
        Bootstrapper::FixupFlagsIsPCRelative::encode(true) |
        Bootstrapper::FixupFlagsUseCodeObject::encode(true);
    Unresolved entry = { pc_offset() - kInstrSize, flags, name };
    unresolved_.Add(entry);
  }

  add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
}


void MacroAssembler::SetCounter(StatsCounter* counter, int value,
                                Register scratch1, Register scratch2) {
  if (FLAG_native_code_counters && counter->Enabled()) {
    mov(scratch1, Operand(value));
    mov(scratch2, Operand(ExternalReference(counter)));
    str(scratch1, MemOperand(scratch2));
  }
}


void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
                                      Register scratch1, Register scratch2) {
  ASSERT(value > 0);
  if (FLAG_native_code_counters && counter->Enabled()) {
    mov(scratch2, Operand(ExternalReference(counter)));
    ldr(scratch1, MemOperand(scratch2));
    add(scratch1, scratch1, Operand(value));
    str(scratch1, MemOperand(scratch2));
  }
}


void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
                                      Register scratch1, Register scratch2) {
  ASSERT(value > 0);
  if (FLAG_native_code_counters && counter->Enabled()) {
    mov(scratch2, Operand(ExternalReference(counter)));
    ldr(scratch1, MemOperand(scratch2));
    sub(scratch1, scratch1, Operand(value));
    str(scratch1, MemOperand(scratch2));
  }
}


void MacroAssembler::Assert(Condition cc, const char* msg) {
  if (FLAG_debug_code)
    Check(cc, msg);
}


void MacroAssembler::Check(Condition cc, const char* msg) {
  Label L;
  b(cc, &L);
  Abort(msg);
  // will not return here
  bind(&L);
}


void MacroAssembler::Abort(const char* msg) {
  // We want to pass the msg string like a smi to avoid GC
  // problems, however msg is not guaranteed to be aligned
  // properly. Instead, we pass an aligned pointer that is
  // a proper v8 smi, but also pass the alignment difference
  // from the real pointer as a smi.
  intptr_t p1 = reinterpret_cast<intptr_t>(msg);
  intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
  ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
  if (msg != NULL) {
    RecordComment("Abort message: ");
    RecordComment(msg);
  }
#endif
  mov(r0, Operand(p0));
  push(r0);
  mov(r0, Operand(Smi::FromInt(p1 - p0)));
  push(r0);
  CallRuntime(Runtime::kAbort, 2);
  // will not return here
}


#ifdef ENABLE_DEBUGGER_SUPPORT
CodePatcher::CodePatcher(byte* address, int instructions)
    : address_(address),
      instructions_(instructions),
      size_(instructions * Assembler::kInstrSize),
      masm_(address, size_ + Assembler::kGap) {
  // Create a new macro assembler pointing to the address of the code to patch.
  // The size is adjusted with kGap on order for the assembler to generate size
  // bytes of instructions without failing with buffer size constraints.
  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}


CodePatcher::~CodePatcher() {
  // Indicate that code has changed.
  CPU::FlushICache(address_, size_);

  // Check that the code was patched as expected.
  ASSERT(masm_.pc_ == address_ + size_);
  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}


void CodePatcher::Emit(Instr x) {
  masm()->emit(x);
}


void CodePatcher::Emit(Address addr) {
  masm()->emit(reinterpret_cast<Instr>(addr));
}
#endif  // ENABLE_DEBUGGER_SUPPORT


} }  // namespace v8::internal