summaryrefslogtreecommitdiff
path: root/deps/v8/src/arm/lithium-gap-resolver-arm.cc
blob: f8e4a7f680c706f83cb451c869232a6d59bfac66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#include "src/arm/lithium-codegen-arm.h"
#include "src/arm/lithium-gap-resolver-arm.h"

namespace v8 {
namespace internal {

// We use the root register to spill a value while breaking a cycle in parallel
// moves. We don't need access to roots while resolving the move list and using
// the root register has two advantages:
//  - It is not in crankshaft allocatable registers list, so it can't interfere
//    with any of the moves we are resolving.
//  - We don't need to push it on the stack, as we can reload it with its value
//    once we have resolved a cycle.
#define kSavedValueRegister kRootRegister


LGapResolver::LGapResolver(LCodeGen* owner)
    : cgen_(owner), moves_(32, owner->zone()), root_index_(0), in_cycle_(false),
      saved_destination_(NULL), need_to_restore_root_(false) { }


#define __ ACCESS_MASM(cgen_->masm())


void LGapResolver::Resolve(LParallelMove* parallel_move) {
  DCHECK(moves_.is_empty());
  // Build up a worklist of moves.
  BuildInitialMoveList(parallel_move);

  for (int i = 0; i < moves_.length(); ++i) {
    LMoveOperands move = moves_[i];
    // Skip constants to perform them last.  They don't block other moves
    // and skipping such moves with register destinations keeps those
    // registers free for the whole algorithm.
    if (!move.IsEliminated() && !move.source()->IsConstantOperand()) {
      root_index_ = i;  // Any cycle is found when by reaching this move again.
      PerformMove(i);
      if (in_cycle_) {
        RestoreValue();
      }
    }
  }

  // Perform the moves with constant sources.
  for (int i = 0; i < moves_.length(); ++i) {
    if (!moves_[i].IsEliminated()) {
      DCHECK(moves_[i].source()->IsConstantOperand());
      EmitMove(i);
    }
  }

  if (need_to_restore_root_) {
    DCHECK(kSavedValueRegister.is(kRootRegister));
    __ InitializeRootRegister();
    need_to_restore_root_ = false;
  }

  moves_.Rewind(0);
}


void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) {
  // Perform a linear sweep of the moves to add them to the initial list of
  // moves to perform, ignoring any move that is redundant (the source is
  // the same as the destination, the destination is ignored and
  // unallocated, or the move was already eliminated).
  const ZoneList<LMoveOperands>* moves = parallel_move->move_operands();
  for (int i = 0; i < moves->length(); ++i) {
    LMoveOperands move = moves->at(i);
    if (!move.IsRedundant()) moves_.Add(move, cgen_->zone());
  }
  Verify();
}


void LGapResolver::PerformMove(int index) {
  // Each call to this function performs a move and deletes it from the move
  // graph.  We first recursively perform any move blocking this one.  We
  // mark a move as "pending" on entry to PerformMove in order to detect
  // cycles in the move graph.

  // We can only find a cycle, when doing a depth-first traversal of moves,
  // be encountering the starting move again. So by spilling the source of
  // the starting move, we break the cycle.  All moves are then unblocked,
  // and the starting move is completed by writing the spilled value to
  // its destination.  All other moves from the spilled source have been
  // completed prior to breaking the cycle.
  // An additional complication is that moves to MemOperands with large
  // offsets (more than 1K or 4K) require us to spill this spilled value to
  // the stack, to free up the register.
  DCHECK(!moves_[index].IsPending());
  DCHECK(!moves_[index].IsRedundant());

  // Clear this move's destination to indicate a pending move.  The actual
  // destination is saved in a stack allocated local.  Multiple moves can
  // be pending because this function is recursive.
  DCHECK(moves_[index].source() != NULL);  // Or else it will look eliminated.
  LOperand* destination = moves_[index].destination();
  moves_[index].set_destination(NULL);

  // Perform a depth-first traversal of the move graph to resolve
  // dependencies.  Any unperformed, unpending move with a source the same
  // as this one's destination blocks this one so recursively perform all
  // such moves.
  for (int i = 0; i < moves_.length(); ++i) {
    LMoveOperands other_move = moves_[i];
    if (other_move.Blocks(destination) && !other_move.IsPending()) {
      PerformMove(i);
      // If there is a blocking, pending move it must be moves_[root_index_]
      // and all other moves with the same source as moves_[root_index_] are
      // sucessfully executed (because they are cycle-free) by this loop.
    }
  }

  // We are about to resolve this move and don't need it marked as
  // pending, so restore its destination.
  moves_[index].set_destination(destination);

  // The move may be blocked on a pending move, which must be the starting move.
  // In this case, we have a cycle, and we save the source of this move to
  // a scratch register to break it.
  LMoveOperands other_move = moves_[root_index_];
  if (other_move.Blocks(destination)) {
    DCHECK(other_move.IsPending());
    BreakCycle(index);
    return;
  }

  // This move is no longer blocked.
  EmitMove(index);
}


void LGapResolver::Verify() {
#ifdef ENABLE_SLOW_DCHECKS
  // No operand should be the destination for more than one move.
  for (int i = 0; i < moves_.length(); ++i) {
    LOperand* destination = moves_[i].destination();
    for (int j = i + 1; j < moves_.length(); ++j) {
      SLOW_DCHECK(!destination->Equals(moves_[j].destination()));
    }
  }
#endif
}


void LGapResolver::BreakCycle(int index) {
  // We save in a register the source of that move and we remember its
  // destination. Then we mark this move as resolved so the cycle is
  // broken and we can perform the other moves.
  DCHECK(moves_[index].destination()->Equals(moves_[root_index_].source()));
  DCHECK(!in_cycle_);
  in_cycle_ = true;
  LOperand* source = moves_[index].source();
  saved_destination_ = moves_[index].destination();
  if (source->IsRegister()) {
    need_to_restore_root_ = true;
    __ mov(kSavedValueRegister, cgen_->ToRegister(source));
  } else if (source->IsStackSlot()) {
    need_to_restore_root_ = true;
    __ ldr(kSavedValueRegister, cgen_->ToMemOperand(source));
  } else if (source->IsDoubleRegister()) {
    __ vmov(kScratchDoubleReg, cgen_->ToDoubleRegister(source));
  } else if (source->IsDoubleStackSlot()) {
    __ vldr(kScratchDoubleReg, cgen_->ToMemOperand(source));
  } else {
    UNREACHABLE();
  }
  // This move will be done by restoring the saved value to the destination.
  moves_[index].Eliminate();
}


void LGapResolver::RestoreValue() {
  DCHECK(in_cycle_);
  DCHECK(saved_destination_ != NULL);

  if (saved_destination_->IsRegister()) {
    __ mov(cgen_->ToRegister(saved_destination_), kSavedValueRegister);
  } else if (saved_destination_->IsStackSlot()) {
    __ str(kSavedValueRegister, cgen_->ToMemOperand(saved_destination_));
  } else if (saved_destination_->IsDoubleRegister()) {
    __ vmov(cgen_->ToDoubleRegister(saved_destination_), kScratchDoubleReg);
  } else if (saved_destination_->IsDoubleStackSlot()) {
    __ vstr(kScratchDoubleReg, cgen_->ToMemOperand(saved_destination_));
  } else {
    UNREACHABLE();
  }

  in_cycle_ = false;
  saved_destination_ = NULL;
}


void LGapResolver::EmitMove(int index) {
  LOperand* source = moves_[index].source();
  LOperand* destination = moves_[index].destination();

  // Dispatch on the source and destination operand kinds.  Not all
  // combinations are possible.

  if (source->IsRegister()) {
    Register source_register = cgen_->ToRegister(source);
    if (destination->IsRegister()) {
      __ mov(cgen_->ToRegister(destination), source_register);
    } else {
      DCHECK(destination->IsStackSlot());
      __ str(source_register, cgen_->ToMemOperand(destination));
    }
  } else if (source->IsStackSlot()) {
    MemOperand source_operand = cgen_->ToMemOperand(source);
    if (destination->IsRegister()) {
      __ ldr(cgen_->ToRegister(destination), source_operand);
    } else {
      DCHECK(destination->IsStackSlot());
      MemOperand destination_operand = cgen_->ToMemOperand(destination);
      if (!destination_operand.OffsetIsUint12Encodable()) {
        // ip is overwritten while saving the value to the destination.
        // Therefore we can't use ip.  It is OK if the read from the source
        // destroys ip, since that happens before the value is read.
        __ vldr(kScratchDoubleReg.low(), source_operand);
        __ vstr(kScratchDoubleReg.low(), destination_operand);
      } else {
        __ ldr(ip, source_operand);
        __ str(ip, destination_operand);
      }
    }

  } else if (source->IsConstantOperand()) {
    LConstantOperand* constant_source = LConstantOperand::cast(source);
    if (destination->IsRegister()) {
      Register dst = cgen_->ToRegister(destination);
      Representation r = cgen_->IsSmi(constant_source)
          ? Representation::Smi() : Representation::Integer32();
      if (cgen_->IsInteger32(constant_source)) {
        __ mov(dst, Operand(cgen_->ToRepresentation(constant_source, r)));
      } else {
        __ Move(dst, cgen_->ToHandle(constant_source));
      }
    } else if (destination->IsDoubleRegister()) {
      DwVfpRegister result = cgen_->ToDoubleRegister(destination);
      double v = cgen_->ToDouble(constant_source);
      __ Vmov(result, v, ip);
    } else {
      DCHECK(destination->IsStackSlot());
      DCHECK(!in_cycle_);  // Constant moves happen after all cycles are gone.
      need_to_restore_root_ = true;
      Representation r = cgen_->IsSmi(constant_source)
          ? Representation::Smi() : Representation::Integer32();
      if (cgen_->IsInteger32(constant_source)) {
        __ mov(kSavedValueRegister,
               Operand(cgen_->ToRepresentation(constant_source, r)));
      } else {
        __ Move(kSavedValueRegister, cgen_->ToHandle(constant_source));
      }
      __ str(kSavedValueRegister, cgen_->ToMemOperand(destination));
    }

  } else if (source->IsDoubleRegister()) {
    DwVfpRegister source_register = cgen_->ToDoubleRegister(source);
    if (destination->IsDoubleRegister()) {
      __ vmov(cgen_->ToDoubleRegister(destination), source_register);
    } else {
      DCHECK(destination->IsDoubleStackSlot());
      __ vstr(source_register, cgen_->ToMemOperand(destination));
    }

  } else if (source->IsDoubleStackSlot()) {
    MemOperand source_operand = cgen_->ToMemOperand(source);
    if (destination->IsDoubleRegister()) {
      __ vldr(cgen_->ToDoubleRegister(destination), source_operand);
    } else {
      DCHECK(destination->IsDoubleStackSlot());
      MemOperand destination_operand = cgen_->ToMemOperand(destination);
      if (in_cycle_) {
        // kScratchDoubleReg was used to break the cycle.
        __ vstm(db_w, sp, kScratchDoubleReg, kScratchDoubleReg);
        __ vldr(kScratchDoubleReg, source_operand);
        __ vstr(kScratchDoubleReg, destination_operand);
        __ vldm(ia_w, sp, kScratchDoubleReg, kScratchDoubleReg);
      } else {
        __ vldr(kScratchDoubleReg, source_operand);
        __ vstr(kScratchDoubleReg, destination_operand);
      }
    }
  } else {
    UNREACHABLE();
  }

  moves_[index].Eliminate();
}


#undef __

}  // namespace internal
}  // namespace v8