aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/arm/codegen-arm.h
blob: b28e96594f734e1ff82a931ebe8c5ff87a4861cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_ARM_CODEGEN_ARM_H_
#define V8_ARM_CODEGEN_ARM_H_

namespace v8 {
namespace internal {

// Forward declarations
class DeferredCode;
class RegisterAllocator;
class RegisterFile;

enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };


// -------------------------------------------------------------------------
// Reference support

// A reference is a C++ stack-allocated object that keeps an ECMA
// reference on the execution stack while in scope. For variables
// the reference is empty, indicating that it isn't necessary to
// store state on the stack for keeping track of references to those.
// For properties, we keep either one (named) or two (indexed) values
// on the execution stack to represent the reference.

class Reference BASE_EMBEDDED {
 public:
  // The values of the types is important, see size().
  enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
  Reference(CodeGenerator* cgen, Expression* expression);
  ~Reference();

  Expression* expression() const { return expression_; }
  Type type() const { return type_; }
  void set_type(Type value) {
    ASSERT(type_ == ILLEGAL);
    type_ = value;
  }

  // The size the reference takes up on the stack.
  int size() const { return (type_ == ILLEGAL) ? 0 : type_; }

  bool is_illegal() const { return type_ == ILLEGAL; }
  bool is_slot() const { return type_ == SLOT; }
  bool is_property() const { return type_ == NAMED || type_ == KEYED; }

  // Return the name.  Only valid for named property references.
  Handle<String> GetName();

  // Generate code to push the value of the reference on top of the
  // expression stack.  The reference is expected to be already on top of
  // the expression stack, and it is left in place with its value above it.
  void GetValue(TypeofState typeof_state);

  // Generate code to push the value of a reference on top of the expression
  // stack and then spill the stack frame.  This function is used temporarily
  // while the code generator is being transformed.
  inline void GetValueAndSpill(TypeofState typeof_state);

  // Generate code to store the value on top of the expression stack in the
  // reference.  The reference is expected to be immediately below the value
  // on the expression stack.  The stored value is left in place (with the
  // reference intact below it) to support chained assignments.
  void SetValue(InitState init_state);

 private:
  CodeGenerator* cgen_;
  Expression* expression_;
  Type type_;
};


// -------------------------------------------------------------------------
// Code generation state

// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the label pair).  It is threaded through the
// call stack.  Constructing a state implicitly pushes it on the owning code
// generator's stack of states, and destroying one implicitly pops it.

class CodeGenState BASE_EMBEDDED {
 public:
  // Create an initial code generator state.  Destroying the initial state
  // leaves the code generator with a NULL state.
  explicit CodeGenState(CodeGenerator* owner);

  // Create a code generator state based on a code generator's current
  // state.  The new state has its own typeof state and pair of branch
  // labels.
  CodeGenState(CodeGenerator* owner,
               TypeofState typeof_state,
               JumpTarget* true_target,
               JumpTarget* false_target);

  // Destroy a code generator state and restore the owning code generator's
  // previous state.
  ~CodeGenState();

  TypeofState typeof_state() const { return typeof_state_; }
  JumpTarget* true_target() const { return true_target_; }
  JumpTarget* false_target() const { return false_target_; }

 private:
  CodeGenerator* owner_;
  TypeofState typeof_state_;
  JumpTarget* true_target_;
  JumpTarget* false_target_;
  CodeGenState* previous_;
};


// -------------------------------------------------------------------------
// CodeGenerator

class CodeGenerator: public AstVisitor {
 public:
  // Takes a function literal, generates code for it. This function should only
  // be called by compiler.cc.
  static Handle<Code> MakeCode(FunctionLiteral* fun,
                               Handle<Script> script,
                               bool is_eval);

#ifdef ENABLE_LOGGING_AND_PROFILING
  static bool ShouldGenerateLog(Expression* type);
#endif

  static void SetFunctionInfo(Handle<JSFunction> fun,
                              FunctionLiteral* lit,
                              bool is_toplevel,
                              Handle<Script> script);

  // Accessors
  MacroAssembler* masm() { return masm_; }

  VirtualFrame* frame() const { return frame_; }

  bool has_valid_frame() const { return frame_ != NULL; }

  // Set the virtual frame to be new_frame, with non-frame register
  // reference counts given by non_frame_registers.  The non-frame
  // register reference counts of the old frame are returned in
  // non_frame_registers.
  void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);

  void DeleteFrame();

  RegisterAllocator* allocator() const { return allocator_; }

  CodeGenState* state() { return state_; }
  void set_state(CodeGenState* state) { state_ = state; }

  void AddDeferred(DeferredCode* code) { deferred_.Add(code); }

  static const int kUnknownIntValue = -1;

  // Number of instructions used for the JS return sequence. The constant is
  // used by the debugger to patch the JS return sequence.
  static const int kJSReturnSequenceLength = 4;

 private:
  // Construction/Destruction
  CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval);
  virtual ~CodeGenerator() { delete masm_; }

  // Accessors
  Scope* scope() const { return scope_; }

  // Generating deferred code.
  void ProcessDeferred();

  bool is_eval() { return is_eval_; }

  // State
  bool has_cc() const  { return cc_reg_ != al; }
  TypeofState typeof_state() const { return state_->typeof_state(); }
  JumpTarget* true_target() const  { return state_->true_target(); }
  JumpTarget* false_target() const  { return state_->false_target(); }

  // We don't track loop nesting level on ARM yet.
  int loop_nesting() const { return 0; }

  // Node visitors.
  void VisitStatements(ZoneList<Statement*>* statements);

#define DEF_VISIT(type) \
  void Visit##type(type* node);
  AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT

  // Visit a statement and then spill the virtual frame if control flow can
  // reach the end of the statement (ie, it does not exit via break,
  // continue, return, or throw).  This function is used temporarily while
  // the code generator is being transformed.
  inline void VisitAndSpill(Statement* statement);

  // Visit a list of statements and then spill the virtual frame if control
  // flow can reach the end of the list.
  inline void VisitStatementsAndSpill(ZoneList<Statement*>* statements);

  // Main code generation function
  void GenCode(FunctionLiteral* fun);

  // The following are used by class Reference.
  void LoadReference(Reference* ref);
  void UnloadReference(Reference* ref);

  MemOperand ContextOperand(Register context, int index) const {
    return MemOperand(context, Context::SlotOffset(index));
  }

  MemOperand SlotOperand(Slot* slot, Register tmp);

  MemOperand ContextSlotOperandCheckExtensions(Slot* slot,
                                               Register tmp,
                                               Register tmp2,
                                               JumpTarget* slow);

  // Expressions
  MemOperand GlobalObject() const  {
    return ContextOperand(cp, Context::GLOBAL_INDEX);
  }

  void LoadCondition(Expression* x,
                     TypeofState typeof_state,
                     JumpTarget* true_target,
                     JumpTarget* false_target,
                     bool force_cc);
  void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF);
  void LoadGlobal();
  void LoadGlobalReceiver(Register scratch);

  // Generate code to push the value of an expression on top of the frame
  // and then spill the frame fully to memory.  This function is used
  // temporarily while the code generator is being transformed.
  inline void LoadAndSpill(Expression* expression,
                           TypeofState typeof_state = NOT_INSIDE_TYPEOF);

  // Call LoadCondition and then spill the virtual frame unless control flow
  // cannot reach the end of the expression (ie, by emitting only
  // unconditional jumps to the control targets).
  inline void LoadConditionAndSpill(Expression* expression,
                                    TypeofState typeof_state,
                                    JumpTarget* true_target,
                                    JumpTarget* false_target,
                                    bool force_control);

  // Read a value from a slot and leave it on top of the expression stack.
  void LoadFromSlot(Slot* slot, TypeofState typeof_state);
  void LoadFromGlobalSlotCheckExtensions(Slot* slot,
                                         TypeofState typeof_state,
                                         Register tmp,
                                         Register tmp2,
                                         JumpTarget* slow);

  // Special code for typeof expressions: Unfortunately, we must
  // be careful when loading the expression in 'typeof'
  // expressions. We are not allowed to throw reference errors for
  // non-existing properties of the global object, so we must make it
  // look like an explicit property access, instead of an access
  // through the context chain.
  void LoadTypeofExpression(Expression* x);

  void ToBoolean(JumpTarget* true_target, JumpTarget* false_target);

  void GenericBinaryOperation(Token::Value op,
                              OverwriteMode overwrite_mode,
                              int known_rhs = kUnknownIntValue);
  void Comparison(Condition cc,
                  Expression* left,
                  Expression* right,
                  bool strict = false);

  void SmiOperation(Token::Value op,
                    Handle<Object> value,
                    bool reversed,
                    OverwriteMode mode);

  void CallWithArguments(ZoneList<Expression*>* arguments, int position);

  // Control flow
  void Branch(bool if_true, JumpTarget* target);
  void CheckStack();

  struct InlineRuntimeLUT {
    void (CodeGenerator::*method)(ZoneList<Expression*>*);
    const char* name;
  };

  static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
  bool CheckForInlineRuntimeCall(CallRuntime* node);
  static bool PatchInlineRuntimeEntry(Handle<String> name,
                                      const InlineRuntimeLUT& new_entry,
                                      InlineRuntimeLUT* old_entry);

  Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node);
  void ProcessDeclarations(ZoneList<Declaration*>* declarations);

  Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);

  // Declare global variables and functions in the given array of
  // name/value pairs.
  void DeclareGlobals(Handle<FixedArray> pairs);

  // Instantiate the function boilerplate.
  void InstantiateBoilerplate(Handle<JSFunction> boilerplate);

  // Support for type checks.
  void GenerateIsSmi(ZoneList<Expression*>* args);
  void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
  void GenerateIsArray(ZoneList<Expression*>* args);

  // Support for construct call checks.
  void GenerateIsConstructCall(ZoneList<Expression*>* args);

  // Support for arguments.length and arguments[?].
  void GenerateArgumentsLength(ZoneList<Expression*>* args);
  void GenerateArgumentsAccess(ZoneList<Expression*>* args);

  // Support for accessing the class and value fields of an object.
  void GenerateClassOf(ZoneList<Expression*>* args);
  void GenerateValueOf(ZoneList<Expression*>* args);
  void GenerateSetValueOf(ZoneList<Expression*>* args);

  // Fast support for charCodeAt(n).
  void GenerateFastCharCodeAt(ZoneList<Expression*>* args);

  // Fast support for object equality testing.
  void GenerateObjectEquals(ZoneList<Expression*>* args);

  void GenerateLog(ZoneList<Expression*>* args);

  // Fast support for Math.random().
  void GenerateRandomPositiveSmi(ZoneList<Expression*>* args);

  // Fast support for Math.sin and Math.cos.
  enum MathOp { SIN, COS };
  void GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args);
  inline void GenerateMathSin(ZoneList<Expression*>* args);
  inline void GenerateMathCos(ZoneList<Expression*>* args);

  // Methods used to indicate which source code is generated for. Source
  // positions are collected by the assembler and emitted with the relocation
  // information.
  void CodeForFunctionPosition(FunctionLiteral* fun);
  void CodeForReturnPosition(FunctionLiteral* fun);
  void CodeForStatementPosition(AstNode* node);
  void CodeForSourcePosition(int pos);

#ifdef DEBUG
  // True if the registers are valid for entry to a block.
  bool HasValidEntryRegisters();
#endif

  bool is_eval_;  // Tells whether code is generated for eval.

  Handle<Script> script_;
  List<DeferredCode*> deferred_;

  // Assembler
  MacroAssembler* masm_;  // to generate code

  // Code generation state
  Scope* scope_;
  VirtualFrame* frame_;
  RegisterAllocator* allocator_;
  Condition cc_reg_;
  CodeGenState* state_;

  // Jump targets
  BreakTarget function_return_;

  // True if the function return is shadowed (ie, jumping to the target
  // function_return_ does not jump to the true function return, but rather
  // to some unlinking code).
  bool function_return_is_shadowed_;

  static InlineRuntimeLUT kInlineRuntimeLUT[];

  friend class VirtualFrame;
  friend class JumpTarget;
  friend class Reference;

  DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};


class GenericBinaryOpStub : public CodeStub {
 public:
  GenericBinaryOpStub(Token::Value op,
                      OverwriteMode mode,
                      int constant_rhs = CodeGenerator::kUnknownIntValue)
      : op_(op),
        mode_(mode),
        constant_rhs_(constant_rhs),
        specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)) { }

 private:
  Token::Value op_;
  OverwriteMode mode_;
  int constant_rhs_;
  bool specialized_on_rhs_;

  static const int kMaxKnownRhs = 0x40000000;

  // Minor key encoding in 16 bits.
  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
  class OpBits: public BitField<Token::Value, 2, 6> {};
  class KnownIntBits: public BitField<int, 8, 8> {};

  Major MajorKey() { return GenericBinaryOp; }
  int MinorKey() {
    // Encode the parameters in a unique 16 bit value.
    return OpBits::encode(op_)
           | ModeBits::encode(mode_)
           | KnownIntBits::encode(MinorKeyForKnownInt());
  }

  void Generate(MacroAssembler* masm);
  void HandleNonSmiBitwiseOp(MacroAssembler* masm);

  static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) {
    if (constant_rhs == CodeGenerator::kUnknownIntValue) return false;
    if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3;
    if (op == Token::MOD) {
      if (constant_rhs <= 1) return false;
      if (constant_rhs <= 10) return true;
      if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true;
      return false;
    }
    return false;
  }

  int MinorKeyForKnownInt() {
    if (!specialized_on_rhs_) return 0;
    if (constant_rhs_ <= 10) return constant_rhs_ + 1;
    ASSERT(IsPowerOf2(constant_rhs_));
    int key = 12;
    int d = constant_rhs_;
    while ((d & 1) == 0) {
      key++;
      d >>= 1;
    }
    return key;
  }

  const char* GetName() {
    switch (op_) {
      case Token::ADD: return "GenericBinaryOpStub_ADD";
      case Token::SUB: return "GenericBinaryOpStub_SUB";
      case Token::MUL: return "GenericBinaryOpStub_MUL";
      case Token::DIV: return "GenericBinaryOpStub_DIV";
      case Token::MOD: return "GenericBinaryOpStub_MOD";
      case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
      case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
      case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
      case Token::SAR: return "GenericBinaryOpStub_SAR";
      case Token::SHL: return "GenericBinaryOpStub_SHL";
      case Token::SHR: return "GenericBinaryOpStub_SHR";
      default:         return "GenericBinaryOpStub";
    }
  }

#ifdef DEBUG
  void Print() {
    if (!specialized_on_rhs_) {
      PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_));
    } else {
      PrintF("GenericBinaryOpStub (%s by %d)\n",
             Token::String(op_),
             constant_rhs_);
    }
  }
#endif
};


} }  // namespace v8::internal

#endif  // V8_ARM_CODEGEN_ARM_H_