summaryrefslogtreecommitdiff
path: root/deps/v8/src/arm/assembler-arm.h
blob: fb367028825fa569d74374ee7524ef5824cbcd45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.

// A light-weight ARM Assembler
// Generates user mode instructions for the ARM architecture up to version 5

#ifndef V8_ARM_ASSEMBLER_ARM_H_
#define V8_ARM_ASSEMBLER_ARM_H_

#include <stdio.h>
#include <vector>

#include "src/arm/constants-arm.h"
#include "src/assembler.h"
#include "src/boxed-float.h"
#include "src/double.h"

namespace v8 {
namespace internal {

// clang-format off
#define GENERAL_REGISTERS(V)                              \
  V(r0)  V(r1)  V(r2)  V(r3)  V(r4)  V(r5)  V(r6)  V(r7)  \
  V(r8)  V(r9)  V(r10) V(fp)  V(ip)  V(sp)  V(lr)  V(pc)

#define ALLOCATABLE_GENERAL_REGISTERS(V)                  \
  V(r0)  V(r1)  V(r2)  V(r3)  V(r4)  V(r5)  V(r6)  V(r7)  \
  V(r8)  V(r9)

#define FLOAT_REGISTERS(V)                                \
  V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  \
  V(s8)  V(s9)  V(s10) V(s11) V(s12) V(s13) V(s14) V(s15) \
  V(s16) V(s17) V(s18) V(s19) V(s20) V(s21) V(s22) V(s23) \
  V(s24) V(s25) V(s26) V(s27) V(s28) V(s29) V(s30) V(s31)

#define LOW_DOUBLE_REGISTERS(V)                           \
  V(d0)  V(d1)  V(d2)  V(d3)  V(d4)  V(d5)  V(d6)  V(d7)  \
  V(d8)  V(d9)  V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)

#define NON_LOW_DOUBLE_REGISTERS(V)                       \
  V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
  V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)

#define DOUBLE_REGISTERS(V) \
  LOW_DOUBLE_REGISTERS(V) NON_LOW_DOUBLE_REGISTERS(V)

#define SIMD128_REGISTERS(V)                              \
  V(q0)  V(q1)  V(q2)  V(q3)  V(q4)  V(q5)  V(q6)  V(q7)  \
  V(q8)  V(q9)  V(q10) V(q11) V(q12) V(q13) V(q14) V(q15)

#define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
  V(d0)  V(d1)  V(d2)  V(d3)  V(d4)  V(d5)  V(d6)  V(d7)  \
  V(d8)  V(d9)  V(d10) V(d11) V(d12)                      \
  V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
  V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)

#define ALLOCATABLE_NO_VFP32_DOUBLE_REGISTERS(V)          \
  V(d0)  V(d1)  V(d2)  V(d3)  V(d4)  V(d5)  V(d6)  V(d7)  \
  V(d8)  V(d9)  V(d10) V(d11) V(d12) V(d15)

#define C_REGISTERS(V)                                            \
  V(cr0)  V(cr1)  V(cr2)  V(cr3)  V(cr4)  V(cr5)  V(cr6)  V(cr7)  \
  V(cr8)  V(cr9)  V(cr10) V(cr11) V(cr12) V(cr15)
// clang-format on

// The ARM ABI does not specify the usage of register r9, which may be reserved
// as the static base or thread register on some platforms, in which case we
// leave it alone. Adjust the value of kR9Available accordingly:
const int kR9Available = 1;  // 1 if available to us, 0 if reserved

// Register list in load/store instructions
// Note that the bit values must match those used in actual instruction encoding
const int kNumRegs = 16;

// Caller-saved/arguments registers
const RegList kJSCallerSaved =
  1 << 0 |  // r0 a1
  1 << 1 |  // r1 a2
  1 << 2 |  // r2 a3
  1 << 3;   // r3 a4

const int kNumJSCallerSaved = 4;

// Callee-saved registers preserved when switching from C to JavaScript
const RegList kCalleeSaved =
  1 <<  4 |  //  r4 v1
  1 <<  5 |  //  r5 v2
  1 <<  6 |  //  r6 v3
  1 <<  7 |  //  r7 v4 (cp in JavaScript code)
  1 <<  8 |  //  r8 v5 (pp in JavaScript code)
  kR9Available <<  9 |  //  r9 v6
  1 << 10 |  // r10 v7
  1 << 11;   // r11 v8 (fp in JavaScript code)

// When calling into C++ (only for C++ calls that can't cause a GC).
// The call code will take care of lr, fp, etc.
const RegList kCallerSaved =
  1 <<  0 |  // r0
  1 <<  1 |  // r1
  1 <<  2 |  // r2
  1 <<  3 |  // r3
  1 <<  9;   // r9

const int kNumCalleeSaved = 7 + kR9Available;

// Double registers d8 to d15 are callee-saved.
const int kNumDoubleCalleeSaved = 8;

// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
// TODO(regis): Only 8 registers may actually be sufficient. Revisit.
const int kNumSafepointRegisters = 16;

// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;

enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
  GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
      kRegAfterLast
};

class Register : public RegisterBase<Register, kRegAfterLast> {
  friend class RegisterBase;
  explicit constexpr Register(int code) : RegisterBase(code) {}
};

ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
              "Register can efficiently be passed by value");

// r7: context register
#define DECLARE_REGISTER(R) \
  constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();

constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = false;
constexpr bool kSimdMaskRegisters = false;

enum SwVfpRegisterCode {
#define REGISTER_CODE(R) kSwVfpCode_##R,
  FLOAT_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
      kSwVfpAfterLast
};

// Representation of a list of non-overlapping VFP registers. This list
// represents the data layout of VFP registers as a bitfield:
//   S registers cover 1 bit
//   D registers cover 2 bits
//   Q registers cover 4 bits
//
// This way, we make sure no registers in the list ever overlap. However, a list
// may represent multiple different sets of registers,
// e.g. [d0 s2 s3] <=> [s0 s1 d1].
typedef uint64_t VfpRegList;

// Single word VFP register.
class SwVfpRegister : public RegisterBase<SwVfpRegister, kSwVfpAfterLast> {
 public:
  static constexpr int kSizeInBytes = 4;

  static void split_code(int reg_code, int* vm, int* m) {
    DCHECK(from_code(reg_code).is_valid());
    *m = reg_code & 0x1;
    *vm = reg_code >> 1;
  }
  void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
  VfpRegList ToVfpRegList() const {
    DCHECK(is_valid());
    // Each bit in the list corresponds to a S register.
    return uint64_t{0x1} << code();
  }

 private:
  friend class RegisterBase;
  explicit constexpr SwVfpRegister(int code) : RegisterBase(code) {}
};

ASSERT_TRIVIALLY_COPYABLE(SwVfpRegister);
static_assert(sizeof(SwVfpRegister) == sizeof(int),
              "SwVfpRegister can efficiently be passed by value");

typedef SwVfpRegister FloatRegister;

enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
  DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
      kDoubleAfterLast
};

// Double word VFP register.
class DwVfpRegister : public RegisterBase<DwVfpRegister, kDoubleAfterLast> {
 public:
  static constexpr int kSizeInBytes = 8;

  inline static int NumRegisters();

  static void split_code(int reg_code, int* vm, int* m) {
    DCHECK(from_code(reg_code).is_valid());
    *m = (reg_code & 0x10) >> 4;
    *vm = reg_code & 0x0F;
  }
  void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
  VfpRegList ToVfpRegList() const {
    DCHECK(is_valid());
    // A D register overlaps two S registers.
    return uint64_t{0x3} << (code() * 2);
  }

 private:
  friend class RegisterBase;
  friend class LowDwVfpRegister;
  explicit constexpr DwVfpRegister(int code) : RegisterBase(code) {}
};

ASSERT_TRIVIALLY_COPYABLE(DwVfpRegister);
static_assert(sizeof(DwVfpRegister) == sizeof(int),
              "DwVfpRegister can efficiently be passed by value");

typedef DwVfpRegister DoubleRegister;


// Double word VFP register d0-15.
class LowDwVfpRegister
    : public RegisterBase<LowDwVfpRegister, kDoubleCode_d16> {
 public:
  constexpr operator DwVfpRegister() const { return DwVfpRegister(reg_code_); }

  SwVfpRegister low() const { return SwVfpRegister::from_code(code() * 2); }
  SwVfpRegister high() const {
    return SwVfpRegister::from_code(code() * 2 + 1);
  }
  VfpRegList ToVfpRegList() const {
    DCHECK(is_valid());
    // A D register overlaps two S registers.
    return uint64_t{0x3} << (code() * 2);
  }

 private:
  friend class RegisterBase;
  explicit constexpr LowDwVfpRegister(int code) : RegisterBase(code) {}
};

enum Simd128RegisterCode {
#define REGISTER_CODE(R) kSimd128Code_##R,
  SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
      kSimd128AfterLast
};

// Quad word NEON register.
class QwNeonRegister : public RegisterBase<QwNeonRegister, kSimd128AfterLast> {
 public:
  static void split_code(int reg_code, int* vm, int* m) {
    DCHECK(from_code(reg_code).is_valid());
    int encoded_code = reg_code << 1;
    *m = (encoded_code & 0x10) >> 4;
    *vm = encoded_code & 0x0F;
  }
  void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
  DwVfpRegister low() const { return DwVfpRegister::from_code(code() * 2); }
  DwVfpRegister high() const {
    return DwVfpRegister::from_code(code() * 2 + 1);
  }
  VfpRegList ToVfpRegList() const {
    DCHECK(is_valid());
    // A Q register overlaps four S registers.
    return uint64_t{0xf} << (code() * 4);
  }

 private:
  friend class RegisterBase;
  explicit constexpr QwNeonRegister(int code) : RegisterBase(code) {}
};


typedef QwNeonRegister QuadRegister;

typedef QwNeonRegister Simd128Register;

enum CRegisterCode {
#define REGISTER_CODE(R) kCCode_##R,
  C_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
      kCAfterLast
};

// Coprocessor register
class CRegister : public RegisterBase<CRegister, kCAfterLast> {
  friend class RegisterBase;
  explicit constexpr CRegister(int code) : RegisterBase(code) {}
};

// Support for the VFP registers s0 to s31 (d0 to d15).
// Note that "s(N):s(N+1)" is the same as "d(N/2)".
#define DECLARE_FLOAT_REGISTER(R) \
  constexpr SwVfpRegister R = SwVfpRegister::from_code<kSwVfpCode_##R>();
FLOAT_REGISTERS(DECLARE_FLOAT_REGISTER)
#undef DECLARE_FLOAT_REGISTER

#define DECLARE_LOW_DOUBLE_REGISTER(R) \
  constexpr LowDwVfpRegister R = LowDwVfpRegister::from_code<kDoubleCode_##R>();
LOW_DOUBLE_REGISTERS(DECLARE_LOW_DOUBLE_REGISTER)
#undef DECLARE_LOW_DOUBLE_REGISTER

#define DECLARE_DOUBLE_REGISTER(R) \
  constexpr DwVfpRegister R = DwVfpRegister::from_code<kDoubleCode_##R>();
NON_LOW_DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER

constexpr DwVfpRegister no_dreg = DwVfpRegister::no_reg();

#define DECLARE_SIMD128_REGISTER(R) \
  constexpr Simd128Register R = Simd128Register::from_code<kSimd128Code_##R>();
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER

// Aliases for double registers.
constexpr LowDwVfpRegister kFirstCalleeSavedDoubleReg = d8;
constexpr LowDwVfpRegister kLastCalleeSavedDoubleReg = d15;
constexpr LowDwVfpRegister kDoubleRegZero  = d13;

constexpr CRegister no_creg = CRegister::no_reg();

#define DECLARE_C_REGISTER(R) \
  constexpr CRegister R = CRegister::from_code<kCCode_##R>();
C_REGISTERS(DECLARE_C_REGISTER)
#undef DECLARE_C_REGISTER

// Coprocessor number
enum Coprocessor {
  p0  = 0,
  p1  = 1,
  p2  = 2,
  p3  = 3,
  p4  = 4,
  p5  = 5,
  p6  = 6,
  p7  = 7,
  p8  = 8,
  p9  = 9,
  p10 = 10,
  p11 = 11,
  p12 = 12,
  p13 = 13,
  p14 = 14,
  p15 = 15
};

// -----------------------------------------------------------------------------
// Machine instruction Operands

// Class Operand represents a shifter operand in data processing instructions
class Operand BASE_EMBEDDED {
 public:
  // immediate
  V8_INLINE explicit Operand(int32_t immediate,
                             RelocInfo::Mode rmode = RelocInfo::NONE);
  V8_INLINE static Operand Zero();
  V8_INLINE explicit Operand(const ExternalReference& f);
  explicit Operand(Handle<HeapObject> handle);
  V8_INLINE explicit Operand(Smi* value);

  // rm
  V8_INLINE explicit Operand(Register rm);

  // rm <shift_op> shift_imm
  explicit Operand(Register rm, ShiftOp shift_op, int shift_imm);
  V8_INLINE static Operand SmiUntag(Register rm) {
    return Operand(rm, ASR, kSmiTagSize);
  }
  V8_INLINE static Operand PointerOffsetFromSmiKey(Register key) {
    STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
    return Operand(key, LSL, kPointerSizeLog2 - kSmiTagSize);
  }
  V8_INLINE static Operand DoubleOffsetFromSmiKey(Register key) {
    STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kDoubleSizeLog2);
    return Operand(key, LSL, kDoubleSizeLog2 - kSmiTagSize);
  }

  // rm <shift_op> rs
  explicit Operand(Register rm, ShiftOp shift_op, Register rs);

  static Operand EmbeddedNumber(double number);  // Smi or HeapNumber.
  static Operand EmbeddedCode(CodeStub* stub);

  // Return true if this is a register operand.
  bool IsRegister() const {
    return rm_.is_valid() && rs_ == no_reg && shift_op_ == LSL &&
           shift_imm_ == 0;
  }
  // Return true if this is a register operand shifted with an immediate.
  bool IsImmediateShiftedRegister() const {
    return rm_.is_valid() && !rs_.is_valid();
  }
  // Return true if this is a register operand shifted with a register.
  bool IsRegisterShiftedRegister() const {
    return rm_.is_valid() && rs_.is_valid();
  }

  // Return the number of actual instructions required to implement the given
  // instruction for this particular operand. This can be a single instruction,
  // if no load into a scratch register is necessary, or anything between 2 and
  // 4 instructions when we need to load from the constant pool (depending upon
  // whether the constant pool entry is in the small or extended section). If
  // the instruction this operand is used for is a MOV or MVN instruction the
  // actual instruction to use is required for this calculation. For other
  // instructions instr is ignored.
  //
  // The value returned is only valid as long as no entries are added to the
  // constant pool between this call and the actual instruction being emitted.
  int InstructionsRequired(const Assembler* assembler, Instr instr = 0) const;
  bool MustOutputRelocInfo(const Assembler* assembler) const;

  inline int32_t immediate() const {
    DCHECK(IsImmediate());
    DCHECK(!IsHeapObjectRequest());
    return value_.immediate;
  }
  bool IsImmediate() const {
    return !rm_.is_valid();
  }

  HeapObjectRequest heap_object_request() const {
    DCHECK(IsHeapObjectRequest());
    return value_.heap_object_request;
  }
  bool IsHeapObjectRequest() const {
    DCHECK_IMPLIES(is_heap_object_request_, IsImmediate());
    DCHECK_IMPLIES(is_heap_object_request_,
        rmode_ == RelocInfo::EMBEDDED_OBJECT ||
        rmode_ == RelocInfo::CODE_TARGET);
    return is_heap_object_request_;
  }

  Register rm() const { return rm_; }
  Register rs() const { return rs_; }
  ShiftOp shift_op() const { return shift_op_; }


 private:
  Register rm_ = no_reg;
  Register rs_ = no_reg;
  ShiftOp shift_op_;
  int shift_imm_;                // valid if rm_ != no_reg && rs_ == no_reg
  union Value {
    Value() {}
    HeapObjectRequest heap_object_request;  // if is_heap_object_request_
    int32_t immediate;                      // otherwise
  } value_;                                 // valid if rm_ == no_reg
  bool is_heap_object_request_ = false;
  RelocInfo::Mode rmode_;

  friend class Assembler;
};


// Class MemOperand represents a memory operand in load and store instructions
class MemOperand BASE_EMBEDDED {
 public:
  // [rn +/- offset]      Offset/NegOffset
  // [rn +/- offset]!     PreIndex/NegPreIndex
  // [rn], +/- offset     PostIndex/NegPostIndex
  // offset is any signed 32-bit value; offset is first loaded to a scratch
  // register if it does not fit the addressing mode (12-bit unsigned and sign
  // bit)
  explicit MemOperand(Register rn, int32_t offset = 0, AddrMode am = Offset);

  // [rn +/- rm]          Offset/NegOffset
  // [rn +/- rm]!         PreIndex/NegPreIndex
  // [rn], +/- rm         PostIndex/NegPostIndex
  explicit MemOperand(Register rn, Register rm, AddrMode am = Offset);

  // [rn +/- rm <shift_op> shift_imm]      Offset/NegOffset
  // [rn +/- rm <shift_op> shift_imm]!     PreIndex/NegPreIndex
  // [rn], +/- rm <shift_op> shift_imm     PostIndex/NegPostIndex
  explicit MemOperand(Register rn, Register rm,
                      ShiftOp shift_op, int shift_imm, AddrMode am = Offset);
  V8_INLINE static MemOperand PointerAddressFromSmiKey(Register array,
                                                       Register key,
                                                       AddrMode am = Offset) {
    STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
    return MemOperand(array, key, LSL, kPointerSizeLog2 - kSmiTagSize, am);
  }

  void set_offset(int32_t offset) {
    DCHECK(rm_ == no_reg);
    offset_ = offset;
  }

  uint32_t offset() const {
    DCHECK(rm_ == no_reg);
    return offset_;
  }

  Register rn() const { return rn_; }
  Register rm() const { return rm_; }
  AddrMode am() const { return am_; }

  bool OffsetIsUint12Encodable() const {
    return offset_ >= 0 ? is_uint12(offset_) : is_uint12(-offset_);
  }

 private:
  Register rn_;  // base
  Register rm_;  // register offset
  int32_t offset_;  // valid if rm_ == no_reg
  ShiftOp shift_op_;
  int shift_imm_;  // valid if rm_ != no_reg && rs_ == no_reg
  AddrMode am_;  // bits P, U, and W

  friend class Assembler;
};


// Class NeonMemOperand represents a memory operand in load and
// store NEON instructions
class NeonMemOperand BASE_EMBEDDED {
 public:
  // [rn {:align}]       Offset
  // [rn {:align}]!      PostIndex
  explicit NeonMemOperand(Register rn, AddrMode am = Offset, int align = 0);

  // [rn {:align}], rm   PostIndex
  explicit NeonMemOperand(Register rn, Register rm, int align = 0);

  Register rn() const { return rn_; }
  Register rm() const { return rm_; }
  int align() const { return align_; }

 private:
  void SetAlignment(int align);

  Register rn_;  // base
  Register rm_;  // register increment
  int align_;
};


// Class NeonListOperand represents a list of NEON registers
class NeonListOperand BASE_EMBEDDED {
 public:
  explicit NeonListOperand(DoubleRegister base, int register_count = 1)
    : base_(base), register_count_(register_count) {}
  explicit NeonListOperand(QwNeonRegister q_reg)
    : base_(q_reg.low()), register_count_(2) {}
  DoubleRegister base() const { return base_; }
  int register_count() { return register_count_; }
  int length() const { return register_count_ - 1; }
  NeonListType type() const {
    switch (register_count_) {
      default: UNREACHABLE();
      // Fall through.
      case 1: return nlt_1;
      case 2: return nlt_2;
      case 3: return nlt_3;
      case 4: return nlt_4;
    }
  }
 private:
  DoubleRegister base_;
  int register_count_;
};

class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is nullptr, the assembler allocates and grows its
  // own buffer, and buffer_size determines the initial buffer size. The buffer
  // is owned by the assembler and deallocated upon destruction of the
  // assembler.
  //
  // If the provided buffer is not nullptr, the assembler uses the provided
  // buffer for code generation and assumes its size to be buffer_size. If the
  // buffer is too small, a fatal error occurs. No deallocation of the buffer is
  // done upon destruction of the assembler.
  Assembler(const AssemblerOptions& options, void* buffer, int buffer_size);
  virtual ~Assembler();

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  void GetCode(Isolate* isolate, CodeDesc* desc);

  // Label operations & relative jumps (PPUM Appendix D)
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void bind(Label* L);  // binds an unbound label L to the current code position

  // Returns the branch offset to the given label from the current code position
  // Links the label to the current position if it is still unbound
  // Manages the jump elimination optimization if the second parameter is true.
  int branch_offset(Label* L);

  // Returns true if the given pc address is the start of a constant pool load
  // instruction sequence.
  V8_INLINE static bool is_constant_pool_load(Address pc);

  // Return the address in the constant pool of the code target address used by
  // the branch/call instruction at pc, or the object in a mov.
  V8_INLINE static Address constant_pool_entry_address(Address pc,
                                                       Address constant_pool);

  // Read/Modify the code target address in the branch/call instruction at pc.
  // The isolate argument is unused (and may be nullptr) when skipping flushing.
  V8_INLINE static Address target_address_at(Address pc, Address constant_pool);
  V8_INLINE static void set_target_address_at(
      Address pc, Address constant_pool, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  // Return the code target address at a call site from the return address
  // of that call in the instruction stream.
  V8_INLINE static Address target_address_from_return_address(Address pc);

  // Given the address of the beginning of a call, return the address
  // in the instruction stream that the call will return from.
  V8_INLINE static Address return_address_from_call_start(Address pc);

  // This sets the branch destination (which is in the constant pool on ARM).
  // This is for calls and branches within generated code.
  inline static void deserialization_set_special_target_at(
      Address constant_pool_entry, Code* code, Address target);

  // Get the size of the special target encoded at 'location'.
  inline static int deserialization_special_target_size(Address location);

  // This sets the internal reference at the pc.
  inline static void deserialization_set_target_internal_reference_at(
      Address pc, Address target,
      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);

  // Here we are patching the address in the constant pool, not the actual call
  // instruction.  The address in the constant pool is the same size as a
  // pointer.
  static constexpr int kSpecialTargetSize = kPointerSize;

  RegList* GetScratchRegisterList() { return &scratch_register_list_; }
  VfpRegList* GetScratchVfpRegisterList() {
    return &scratch_vfp_register_list_;
  }

  // ---------------------------------------------------------------------------
  // Code generation

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);
  // Insert the smallest number of zero bytes possible to align the pc offset
  // to a mulitple of m. m must be a power of 2 (>= 2).
  void DataAlign(int m);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  // Branch instructions
  void b(int branch_offset, Condition cond = al,
         RelocInfo::Mode rmode = RelocInfo::NONE);
  void bl(int branch_offset, Condition cond = al,
          RelocInfo::Mode rmode = RelocInfo::NONE);
  void blx(int branch_offset);  // v5 and above
  void blx(Register target, Condition cond = al);  // v5 and above
  void bx(Register target, Condition cond = al);  // v5 and above, plus v4t

  // Convenience branch instructions using labels
  void b(Label* L, Condition cond = al);
  void b(Condition cond, Label* L) { b(L, cond); }
  void bl(Label* L, Condition cond = al);
  void bl(Condition cond, Label* L) { bl(L, cond); }
  void blx(Label* L);  // v5 and above

  // Data-processing instructions

  void and_(Register dst, Register src1, const Operand& src2,
            SBit s = LeaveCC, Condition cond = al);
  void and_(Register dst, Register src1, Register src2, SBit s = LeaveCC,
            Condition cond = al);

  void eor(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void sub(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
  void sub(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al);

  void rsb(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void add(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
  void add(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al);

  void adc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void sbc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void rsc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void tst(Register src1, const Operand& src2, Condition cond = al);
  void tst(Register src1, Register src2, Condition cond = al);

  void teq(Register src1, const Operand& src2, Condition cond = al);

  void cmp(Register src1, const Operand& src2, Condition cond = al);
  void cmp(Register src1, Register src2, Condition cond = al);

  void cmp_raw_immediate(Register src1, int raw_immediate, Condition cond = al);

  void cmn(Register src1, const Operand& src2, Condition cond = al);

  void orr(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
  void orr(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al);

  void mov(Register dst, const Operand& src,
           SBit s = LeaveCC, Condition cond = al);
  void mov(Register dst, Register src, SBit s = LeaveCC, Condition cond = al);

  // Load the position of the label relative to the generated code object
  // pointer in a register.
  void mov_label_offset(Register dst, Label* label);

  // ARMv7 instructions for loading a 32 bit immediate in two instructions.
  // The constant for movw and movt should be in the range 0-0xffff.
  void movw(Register reg, uint32_t immediate, Condition cond = al);
  void movt(Register reg, uint32_t immediate, Condition cond = al);

  void bic(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void mvn(Register dst, const Operand& src,
           SBit s = LeaveCC, Condition cond = al);

  // Shift instructions

  void asr(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
           Condition cond = al);

  void lsl(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
           Condition cond = al);

  void lsr(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
           Condition cond = al);

  // Multiply instructions

  void mla(Register dst, Register src1, Register src2, Register srcA,
           SBit s = LeaveCC, Condition cond = al);

  void mls(Register dst, Register src1, Register src2, Register srcA,
           Condition cond = al);

  void sdiv(Register dst, Register src1, Register src2,
            Condition cond = al);

  void udiv(Register dst, Register src1, Register src2, Condition cond = al);

  void mul(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al);

  void smmla(Register dst, Register src1, Register src2, Register srcA,
             Condition cond = al);

  void smmul(Register dst, Register src1, Register src2, Condition cond = al);

  void smlal(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void smull(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void umlal(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void umull(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  // Miscellaneous arithmetic instructions

  void clz(Register dst, Register src, Condition cond = al);  // v5 and above

  // Saturating instructions. v6 and above.

  // Unsigned saturate.
  //
  // Saturate an optionally shifted signed value to an unsigned range.
  //
  //   usat dst, #satpos, src
  //   usat dst, #satpos, src, lsl #sh
  //   usat dst, #satpos, src, asr #sh
  //
  // Register dst will contain:
  //
  //   0,                 if s < 0
  //   (1 << satpos) - 1, if s > ((1 << satpos) - 1)
  //   s,                 otherwise
  //
  // where s is the contents of src after shifting (if used.)
  void usat(Register dst, int satpos, const Operand& src, Condition cond = al);

  // Bitfield manipulation instructions. v7 and above.

  void ubfx(Register dst, Register src, int lsb, int width,
            Condition cond = al);

  void sbfx(Register dst, Register src, int lsb, int width,
            Condition cond = al);

  void bfc(Register dst, int lsb, int width, Condition cond = al);

  void bfi(Register dst, Register src, int lsb, int width,
           Condition cond = al);

  void pkhbt(Register dst, Register src1, const Operand& src2,
             Condition cond = al);

  void pkhtb(Register dst, Register src1, const Operand& src2,
             Condition cond = al);

  void sxtb(Register dst, Register src, int rotate = 0, Condition cond = al);
  void sxtab(Register dst, Register src1, Register src2, int rotate = 0,
             Condition cond = al);
  void sxth(Register dst, Register src, int rotate = 0, Condition cond = al);
  void sxtah(Register dst, Register src1, Register src2, int rotate = 0,
             Condition cond = al);

  void uxtb(Register dst, Register src, int rotate = 0, Condition cond = al);
  void uxtab(Register dst, Register src1, Register src2, int rotate = 0,
             Condition cond = al);
  void uxtb16(Register dst, Register src, int rotate = 0, Condition cond = al);
  void uxth(Register dst, Register src, int rotate = 0, Condition cond = al);
  void uxtah(Register dst, Register src1, Register src2, int rotate = 0,
             Condition cond = al);

  // Reverse the bits in a register.
  void rbit(Register dst, Register src, Condition cond = al);
  void rev(Register dst, Register src, Condition cond = al);

  // Status register access instructions

  void mrs(Register dst, SRegister s, Condition cond = al);
  void msr(SRegisterFieldMask fields, const Operand& src, Condition cond = al);

  // Load/Store instructions
  void ldr(Register dst, const MemOperand& src, Condition cond = al);
  void str(Register src, const MemOperand& dst, Condition cond = al);
  void ldrb(Register dst, const MemOperand& src, Condition cond = al);
  void strb(Register src, const MemOperand& dst, Condition cond = al);
  void ldrh(Register dst, const MemOperand& src, Condition cond = al);
  void strh(Register src, const MemOperand& dst, Condition cond = al);
  void ldrsb(Register dst, const MemOperand& src, Condition cond = al);
  void ldrsh(Register dst, const MemOperand& src, Condition cond = al);
  void ldrd(Register dst1,
            Register dst2,
            const MemOperand& src, Condition cond = al);
  void strd(Register src1,
            Register src2,
            const MemOperand& dst, Condition cond = al);

  // Load literal from a pc relative address.
  void ldr_pcrel(Register dst, int imm12, Condition cond = al);

  // Load/Store exclusive instructions
  void ldrex(Register dst, Register src, Condition cond = al);
  void strex(Register src1, Register src2, Register dst, Condition cond = al);
  void ldrexb(Register dst, Register src, Condition cond = al);
  void strexb(Register src1, Register src2, Register dst, Condition cond = al);
  void ldrexh(Register dst, Register src, Condition cond = al);
  void strexh(Register src1, Register src2, Register dst, Condition cond = al);
  void ldrexd(Register dst1, Register dst2, Register src, Condition cond = al);
  void strexd(Register res, Register src1, Register src2, Register dst,
              Condition cond = al);

  // Preload instructions
  void pld(const MemOperand& address);

  // Load/Store multiple instructions
  void ldm(BlockAddrMode am, Register base, RegList dst, Condition cond = al);
  void stm(BlockAddrMode am, Register base, RegList src, Condition cond = al);

  // Exception-generating instructions and debugging support
  void stop(const char* msg,
            Condition cond = al,
            int32_t code = kDefaultStopCode);

  void bkpt(uint32_t imm16);  // v5 and above
  void svc(uint32_t imm24, Condition cond = al);

  // Synchronization instructions.
  // On ARMv6, an equivalent CP15 operation will be used.
  void dmb(BarrierOption option);
  void dsb(BarrierOption option);
  void isb(BarrierOption option);

  // Conditional speculation barrier.
  void csdb();

  // Coprocessor instructions

  void cdp(Coprocessor coproc, int opcode_1,
           CRegister crd, CRegister crn, CRegister crm,
           int opcode_2, Condition cond = al);

  void cdp2(Coprocessor coproc, int opcode_1,
            CRegister crd, CRegister crn, CRegister crm,
            int opcode_2);  // v5 and above

  void mcr(Coprocessor coproc, int opcode_1,
           Register rd, CRegister crn, CRegister crm,
           int opcode_2 = 0, Condition cond = al);

  void mcr2(Coprocessor coproc, int opcode_1,
            Register rd, CRegister crn, CRegister crm,
            int opcode_2 = 0);  // v5 and above

  void mrc(Coprocessor coproc, int opcode_1,
           Register rd, CRegister crn, CRegister crm,
           int opcode_2 = 0, Condition cond = al);

  void mrc2(Coprocessor coproc, int opcode_1,
            Register rd, CRegister crn, CRegister crm,
            int opcode_2 = 0);  // v5 and above

  void ldc(Coprocessor coproc, CRegister crd, const MemOperand& src,
           LFlag l = Short, Condition cond = al);
  void ldc(Coprocessor coproc, CRegister crd, Register base, int option,
           LFlag l = Short, Condition cond = al);

  void ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src,
            LFlag l = Short);  // v5 and above
  void ldc2(Coprocessor coproc, CRegister crd, Register base, int option,
            LFlag l = Short);  // v5 and above

  // Support for VFP.
  // All these APIs support S0 to S31 and D0 to D31.

  void vldr(const DwVfpRegister dst,
            const Register base,
            int offset,
            const Condition cond = al);
  void vldr(const DwVfpRegister dst,
            const MemOperand& src,
            const Condition cond = al);

  void vldr(const SwVfpRegister dst,
            const Register base,
            int offset,
            const Condition cond = al);
  void vldr(const SwVfpRegister dst,
            const MemOperand& src,
            const Condition cond = al);

  void vstr(const DwVfpRegister src,
            const Register base,
            int offset,
            const Condition cond = al);
  void vstr(const DwVfpRegister src,
            const MemOperand& dst,
            const Condition cond = al);

  void vstr(const SwVfpRegister src,
            const Register base,
            int offset,
            const Condition cond = al);
  void vstr(const SwVfpRegister src,
            const MemOperand& dst,
            const Condition cond = al);

  void vldm(BlockAddrMode am,
            Register base,
            DwVfpRegister first,
            DwVfpRegister last,
            Condition cond = al);

  void vstm(BlockAddrMode am,
            Register base,
            DwVfpRegister first,
            DwVfpRegister last,
            Condition cond = al);

  void vldm(BlockAddrMode am,
            Register base,
            SwVfpRegister first,
            SwVfpRegister last,
            Condition cond = al);

  void vstm(BlockAddrMode am,
            Register base,
            SwVfpRegister first,
            SwVfpRegister last,
            Condition cond = al);

  void vmov(const SwVfpRegister dst, Float32 imm);
  void vmov(const DwVfpRegister dst,
            Double imm,
            const Register extra_scratch = no_reg);
  void vmov(const SwVfpRegister dst,
            const SwVfpRegister src,
            const Condition cond = al);
  void vmov(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
  void vmov(const DwVfpRegister dst,
            const Register src1,
            const Register src2,
            const Condition cond = al);
  void vmov(const Register dst1,
            const Register dst2,
            const DwVfpRegister src,
            const Condition cond = al);
  void vmov(const SwVfpRegister dst,
            const Register src,
            const Condition cond = al);
  void vmov(const Register dst,
            const SwVfpRegister src,
            const Condition cond = al);
  void vcvt_f64_s32(const DwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f32_s32(const SwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f64_u32(const DwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f32_u32(const SwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_s32_f32(const SwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_u32_f32(const SwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_s32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_u32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f64_f32(const DwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f64_s32(const DwVfpRegister dst,
                    int fraction_bits,
                    const Condition cond = al);

  void vmrs(const Register dst, const Condition cond = al);
  void vmsr(const Register dst, const Condition cond = al);

  void vneg(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
  void vneg(const SwVfpRegister dst, const SwVfpRegister src,
            const Condition cond = al);
  void vabs(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
  void vabs(const SwVfpRegister dst, const SwVfpRegister src,
            const Condition cond = al);
  void vadd(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vadd(const SwVfpRegister dst, const SwVfpRegister src1,
            const SwVfpRegister src2, const Condition cond = al);
  void vsub(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vsub(const SwVfpRegister dst, const SwVfpRegister src1,
            const SwVfpRegister src2, const Condition cond = al);
  void vmul(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vmul(const SwVfpRegister dst, const SwVfpRegister src1,
            const SwVfpRegister src2, const Condition cond = al);
  void vmla(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vmla(const SwVfpRegister dst, const SwVfpRegister src1,
            const SwVfpRegister src2, const Condition cond = al);
  void vmls(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vmls(const SwVfpRegister dst, const SwVfpRegister src1,
            const SwVfpRegister src2, const Condition cond = al);
  void vdiv(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vdiv(const SwVfpRegister dst, const SwVfpRegister src1,
            const SwVfpRegister src2, const Condition cond = al);
  void vcmp(const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vcmp(const SwVfpRegister src1, const SwVfpRegister src2,
            const Condition cond = al);
  void vcmp(const DwVfpRegister src1,
            const double src2,
            const Condition cond = al);
  void vcmp(const SwVfpRegister src1, const float src2,
            const Condition cond = al);

  void vmaxnm(const DwVfpRegister dst,
              const DwVfpRegister src1,
              const DwVfpRegister src2);
  void vmaxnm(const SwVfpRegister dst,
              const SwVfpRegister src1,
              const SwVfpRegister src2);
  void vminnm(const DwVfpRegister dst,
              const DwVfpRegister src1,
              const DwVfpRegister src2);
  void vminnm(const SwVfpRegister dst,
              const SwVfpRegister src1,
              const SwVfpRegister src2);

  // VSEL supports cond in {eq, ne, ge, lt, gt, le, vs, vc}.
  void vsel(const Condition cond,
            const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2);
  void vsel(const Condition cond,
            const SwVfpRegister dst,
            const SwVfpRegister src1,
            const SwVfpRegister src2);

  void vsqrt(const DwVfpRegister dst,
             const DwVfpRegister src,
             const Condition cond = al);
  void vsqrt(const SwVfpRegister dst, const SwVfpRegister src,
             const Condition cond = al);

  // ARMv8 rounding instructions.
  void vrinta(const SwVfpRegister dst, const SwVfpRegister src);
  void vrinta(const DwVfpRegister dst, const DwVfpRegister src);
  void vrintn(const SwVfpRegister dst, const SwVfpRegister src);
  void vrintn(const DwVfpRegister dst, const DwVfpRegister src);
  void vrintm(const SwVfpRegister dst, const SwVfpRegister src);
  void vrintm(const DwVfpRegister dst, const DwVfpRegister src);
  void vrintp(const SwVfpRegister dst, const SwVfpRegister src);
  void vrintp(const DwVfpRegister dst, const DwVfpRegister src);
  void vrintz(const SwVfpRegister dst, const SwVfpRegister src,
              const Condition cond = al);
  void vrintz(const DwVfpRegister dst, const DwVfpRegister src,
              const Condition cond = al);

  // Support for NEON.

  // All these APIs support D0 to D31 and Q0 to Q15.
  void vld1(NeonSize size,
            const NeonListOperand& dst,
            const NeonMemOperand& src);
  void vst1(NeonSize size,
            const NeonListOperand& src,
            const NeonMemOperand& dst);
  // dt represents the narrower type
  void vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src);
  // dt represents the narrower type.
  void vqmovn(NeonDataType dt, DwVfpRegister dst, QwNeonRegister src);

  // Only unconditional core <-> scalar moves are currently supported.
  void vmov(NeonDataType dt, DwVfpRegister dst, int index, Register src);
  void vmov(NeonDataType dt, Register dst, DwVfpRegister src, int index);

  void vmov(QwNeonRegister dst, QwNeonRegister src);
  void vdup(NeonSize size, QwNeonRegister dst, Register src);
  void vdup(NeonSize size, QwNeonRegister dst, DwVfpRegister src, int index);
  void vdup(NeonSize size, DwVfpRegister dst, DwVfpRegister src, int index);

  void vcvt_f32_s32(QwNeonRegister dst, QwNeonRegister src);
  void vcvt_f32_u32(QwNeonRegister dst, QwNeonRegister src);
  void vcvt_s32_f32(QwNeonRegister dst, QwNeonRegister src);
  void vcvt_u32_f32(QwNeonRegister dst, QwNeonRegister src);

  void vmvn(QwNeonRegister dst, QwNeonRegister src);
  void vswp(DwVfpRegister dst, DwVfpRegister src);
  void vswp(QwNeonRegister dst, QwNeonRegister src);
  void vabs(QwNeonRegister dst, QwNeonRegister src);
  void vabs(NeonSize size, QwNeonRegister dst, QwNeonRegister src);
  void vneg(QwNeonRegister dst, QwNeonRegister src);
  void vneg(NeonSize size, QwNeonRegister dst, QwNeonRegister src);

  void vand(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void veor(DwVfpRegister dst, DwVfpRegister src1, DwVfpRegister src2);
  void veor(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vbsl(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vorr(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vadd(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vadd(NeonSize size, QwNeonRegister dst, QwNeonRegister src1,
            QwNeonRegister src2);
  void vqadd(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1,
             QwNeonRegister src2);
  void vsub(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vsub(NeonSize size, QwNeonRegister dst, QwNeonRegister src1,
            QwNeonRegister src2);
  void vqsub(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1,
             QwNeonRegister src2);
  void vmul(QwNeonRegister dst, QwNeonRegister src1,
            QwNeonRegister src2);
  void vmul(NeonSize size, QwNeonRegister dst, QwNeonRegister src1,
            QwNeonRegister src2);
  void vmin(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vmin(NeonDataType dt, QwNeonRegister dst,
            QwNeonRegister src1, QwNeonRegister src2);
  void vmax(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vmax(NeonDataType dt, QwNeonRegister dst,
            QwNeonRegister src1, QwNeonRegister src2);
  void vpadd(DwVfpRegister dst, DwVfpRegister src1, DwVfpRegister src2);
  void vpadd(NeonSize size, DwVfpRegister dst, DwVfpRegister src1,
             DwVfpRegister src2);
  void vpmin(NeonDataType dt, DwVfpRegister dst, DwVfpRegister src1,
             DwVfpRegister src2);
  void vpmax(NeonDataType dt, DwVfpRegister dst, DwVfpRegister src1,
             DwVfpRegister src2);
  void vshl(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src, int shift);
  void vshr(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src, int shift);
  void vsli(NeonSize size, DwVfpRegister dst, DwVfpRegister src, int shift);
  void vsri(NeonSize size, DwVfpRegister dst, DwVfpRegister src, int shift);
  // vrecpe and vrsqrte only support floating point lanes.
  void vrecpe(QwNeonRegister dst, QwNeonRegister src);
  void vrsqrte(QwNeonRegister dst, QwNeonRegister src);
  void vrecps(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vrsqrts(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vtst(NeonSize size, QwNeonRegister dst, QwNeonRegister src1,
            QwNeonRegister src2);
  void vceq(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vceq(NeonSize size, QwNeonRegister dst, QwNeonRegister src1,
            QwNeonRegister src2);
  void vcge(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vcge(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1,
            QwNeonRegister src2);
  void vcgt(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2);
  void vcgt(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1,
            QwNeonRegister src2);
  void vext(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2,
            int bytes);
  void vzip(NeonSize size, DwVfpRegister src1, DwVfpRegister src2);
  void vzip(NeonSize size, QwNeonRegister src1, QwNeonRegister src2);
  void vuzp(NeonSize size, DwVfpRegister src1, DwVfpRegister src2);
  void vuzp(NeonSize size, QwNeonRegister src1, QwNeonRegister src2);
  void vrev16(NeonSize size, QwNeonRegister dst, QwNeonRegister src);
  void vrev32(NeonSize size, QwNeonRegister dst, QwNeonRegister src);
  void vrev64(NeonSize size, QwNeonRegister dst, QwNeonRegister src);
  void vtrn(NeonSize size, DwVfpRegister src1, DwVfpRegister src2);
  void vtrn(NeonSize size, QwNeonRegister src1, QwNeonRegister src2);
  void vtbl(DwVfpRegister dst, const NeonListOperand& list,
            DwVfpRegister index);
  void vtbx(DwVfpRegister dst, const NeonListOperand& list,
            DwVfpRegister index);

  // Pseudo instructions

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    NON_MARKING_NOP = 0,
    DEBUG_BREAK_NOP,
    // IC markers.
    PROPERTY_ACCESS_INLINED,
    PROPERTY_ACCESS_INLINED_CONTEXT,
    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
    // Helper values.
    LAST_CODE_MARKER,
    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
  };

  void nop(int type = 0);   // 0 is the default non-marking type.

  void push(Register src, Condition cond = al) {
    str(src, MemOperand(sp, 4, NegPreIndex), cond);
  }

  void pop(Register dst, Condition cond = al) {
    ldr(dst, MemOperand(sp, 4, PostIndex), cond);
  }

  void pop();

  void vpush(QwNeonRegister src, Condition cond = al) {
    vstm(db_w, sp, src.low(), src.high(), cond);
  }

  void vpush(DwVfpRegister src, Condition cond = al) {
    vstm(db_w, sp, src, src, cond);
  }

  void vpush(SwVfpRegister src, Condition cond = al) {
    vstm(db_w, sp, src, src, cond);
  }

  void vpop(DwVfpRegister dst, Condition cond = al) {
    vldm(ia_w, sp, dst, dst, cond);
  }

  // Jump unconditionally to given label.
  void jmp(Label* L) { b(L, al); }

  // Check the code size generated from label to here.
  int SizeOfCodeGeneratedSince(Label* label) {
    return pc_offset() - label->pos();
  }

  // Check the number of instructions generated from label to here.
  int InstructionsGeneratedSince(Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstrSize;
  }

  // Check whether an immediate fits an addressing mode 1 instruction.
  static bool ImmediateFitsAddrMode1Instruction(int32_t imm32);

  // Check whether an immediate fits an addressing mode 2 instruction.
  bool ImmediateFitsAddrMode2Instruction(int32_t imm32);

  // Class for scoping postponing the constant pool generation.
  class BlockConstPoolScope {
   public:
    explicit BlockConstPoolScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockConstPool();
    }
    ~BlockConstPoolScope() {
      assem_->EndBlockConstPool();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstPoolScope);
  };

  // Record a comment relocation entry that can be used by a disassembler.
  // Use --code-comments to enable.
  void RecordComment(const char* msg);

  // Record a deoptimization reason that can be used by a log or cpu profiler.
  // Use --trace-deopt to enable.
  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
                         int id);

  // Record the emission of a constant pool.
  //
  // The emission of constant pool depends on the size of the code generated and
  // the number of RelocInfo recorded.
  // The Debug mechanism needs to map code offsets between two versions of a
  // function, compiled with and without debugger support (see for example
  // Debug::PrepareForBreakPoints()).
  // Compiling functions with debugger support generates additional code
  // (DebugCodegen::GenerateSlot()). This may affect the emission of the
  // constant pools and cause the version of the code with debugger support to
  // have constant pools generated in different places.
  // Recording the position and size of emitted constant pools allows to
  // correctly compute the offset mappings between the different versions of a
  // function in all situations.
  //
  // The parameter indicates the size of the constant pool (in bytes), including
  // the marker and branch over the data.
  void RecordConstPool(int size);

  // Writes a single byte or word of data in the code stream.  Used
  // for inline tables, e.g., jump-tables. CheckConstantPool() should be
  // called before any use of db/dd/dq/dp to ensure that constant pools
  // are not emitted as part of the tables generated.
  void db(uint8_t data);
  void dd(uint32_t data);
  void dq(uint64_t data);
  void dp(uintptr_t data) { dd(data); }

  // Read/patch instructions
  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
  void instr_at_put(int pos, Instr instr) {
    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
  }
  static Instr instr_at(Address pc) { return *reinterpret_cast<Instr*>(pc); }
  static void instr_at_put(Address pc, Instr instr) {
    *reinterpret_cast<Instr*>(pc) = instr;
  }
  static Condition GetCondition(Instr instr);
  static bool IsLdrRegisterImmediate(Instr instr);
  static bool IsVldrDRegisterImmediate(Instr instr);
  static int GetLdrRegisterImmediateOffset(Instr instr);
  static int GetVldrDRegisterImmediateOffset(Instr instr);
  static Instr SetLdrRegisterImmediateOffset(Instr instr, int offset);
  static Instr SetVldrDRegisterImmediateOffset(Instr instr, int offset);
  static bool IsStrRegisterImmediate(Instr instr);
  static Instr SetStrRegisterImmediateOffset(Instr instr, int offset);
  static bool IsAddRegisterImmediate(Instr instr);
  static Instr SetAddRegisterImmediateOffset(Instr instr, int offset);
  static Register GetRd(Instr instr);
  static Register GetRn(Instr instr);
  static Register GetRm(Instr instr);
  static bool IsPush(Instr instr);
  static bool IsPop(Instr instr);
  static bool IsStrRegFpOffset(Instr instr);
  static bool IsLdrRegFpOffset(Instr instr);
  static bool IsStrRegFpNegOffset(Instr instr);
  static bool IsLdrRegFpNegOffset(Instr instr);
  static bool IsLdrPcImmediateOffset(Instr instr);
  static bool IsVldrDPcImmediateOffset(Instr instr);
  static bool IsBlxReg(Instr instr);
  static bool IsBlxIp(Instr instr);
  static bool IsTstImmediate(Instr instr);
  static bool IsCmpRegister(Instr instr);
  static bool IsCmpImmediate(Instr instr);
  static Register GetCmpImmediateRegister(Instr instr);
  static int GetCmpImmediateRawImmediate(Instr instr);
  static bool IsNop(Instr instr, int type = NON_MARKING_NOP);
  static bool IsMovImmed(Instr instr);
  static bool IsOrrImmed(Instr instr);
  static bool IsMovT(Instr instr);
  static Instr GetMovTPattern();
  static bool IsMovW(Instr instr);
  static Instr GetMovWPattern();
  static Instr EncodeMovwImmediate(uint32_t immediate);
  static Instr PatchMovwImmediate(Instr instruction, uint32_t immediate);
  static int DecodeShiftImm(Instr instr);
  static Instr PatchShiftImm(Instr instr, int immed);

  // Constants in pools are accessed via pc relative addressing, which can
  // reach +/-4KB for integer PC-relative loads and +/-1KB for floating-point
  // PC-relative loads, thereby defining a maximum distance between the
  // instruction and the accessed constant.
  static constexpr int kMaxDistToIntPool = 4 * KB;
  static constexpr int kMaxDistToFPPool = 1 * KB;
  // All relocations could be integer, it therefore acts as the limit.
  static constexpr int kMinNumPendingConstants = 4;
  static constexpr int kMaxNumPending32Constants =
      kMaxDistToIntPool / kInstrSize;
  static constexpr int kMaxNumPending64Constants =
      kMaxDistToFPPool / kInstrSize;

  // Postpone the generation of the constant pool for the specified number of
  // instructions.
  void BlockConstPoolFor(int instructions);

  // Check if is time to emit a constant pool.
  void CheckConstPool(bool force_emit, bool require_jump);

  void MaybeCheckConstPool() {
    if (pc_offset() >= next_buffer_check_) {
      CheckConstPool(false, true);
    }
  }

  void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
                                          ConstantPoolEntry::Access access,
                                          ConstantPoolEntry::Type type) {
    // No embedded constant pool support.
    UNREACHABLE();
  }

  // Move a 32-bit immediate into a register, potentially via the constant pool.
  void Move32BitImmediate(Register rd, const Operand& x, Condition cond = al);

  // Get the code target object for a pc-relative call or jump.
  V8_INLINE Handle<Code> relative_code_target_object_handle_at(
      Address pc_) const;

 protected:
  int buffer_space() const { return reloc_info_writer.pos() - pc_; }

  // Decode branch instruction at pos and return branch target pos
  int target_at(int pos);

  // Patch branch instruction at pos to branch to given branch target pos
  void target_at_put(int pos, int target_pos);

  // Prevent contant pool emission until EndBlockConstPool is called.
  // Calls to this function can be nested but must be followed by an equal
  // number of call to EndBlockConstpool.
  void StartBlockConstPool() {
    if (const_pool_blocked_nesting_++ == 0) {
      // Prevent constant pool checks happening by setting the next check to
      // the biggest possible offset.
      next_buffer_check_ = kMaxInt;
    }
  }

  // Resume constant pool emission. Needs to be called as many times as
  // StartBlockConstPool to have an effect.
  void EndBlockConstPool() {
    if (--const_pool_blocked_nesting_ == 0) {
#ifdef DEBUG
      // Max pool start (if we need a jump and an alignment).
      int start = pc_offset() + kInstrSize + 2 * kPointerSize;
      // Check the constant pool hasn't been blocked for too long.
      DCHECK(pending_32_bit_constants_.empty() ||
             (start + pending_64_bit_constants_.size() * kDoubleSize <
              static_cast<size_t>(first_const_pool_32_use_ +
                                  kMaxDistToIntPool)));
      DCHECK(pending_64_bit_constants_.empty() ||
             (start < (first_const_pool_64_use_ + kMaxDistToFPPool)));
#endif
      // Two cases:
      //  * no_const_pool_before_ >= next_buffer_check_ and the emission is
      //    still blocked
      //  * no_const_pool_before_ < next_buffer_check_ and the next emit will
      //    trigger a check.
      next_buffer_check_ = no_const_pool_before_;
    }
  }

  bool is_const_pool_blocked() const {
    return (const_pool_blocked_nesting_ > 0) ||
           (pc_offset() < no_const_pool_before_);
  }

  bool VfpRegisterIsAvailable(DwVfpRegister reg) {
    DCHECK(reg.is_valid());
    return IsEnabled(VFP32DREGS) ||
           (reg.code() < LowDwVfpRegister::kNumRegisters);
  }

  bool VfpRegisterIsAvailable(QwNeonRegister reg) {
    DCHECK(reg.is_valid());
    return IsEnabled(VFP32DREGS) ||
           (reg.code() < LowDwVfpRegister::kNumRegisters / 2);
  }

  inline void emit(Instr x);

  // Code generation
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries.
  static constexpr int kGap = 32;

  // Relocation info generation
  // Each relocation is encoded as a variable size value
  static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  RelocInfoWriter reloc_info_writer;

  // ConstantPoolEntry records are used during code generation as temporary
  // containers for constants and code target addresses until they are emitted
  // to the constant pool. These records are temporarily stored in a separate
  // buffer until a constant pool is emitted.
  // If every instruction in a long sequence is accessing the pool, we need one
  // pending relocation entry per instruction.

  // The buffers of pending constant pool entries.
  std::vector<ConstantPoolEntry> pending_32_bit_constants_;
  std::vector<ConstantPoolEntry> pending_64_bit_constants_;

  // Scratch registers available for use by the Assembler.
  RegList scratch_register_list_;
  VfpRegList scratch_vfp_register_list_;

 private:
  // Avoid overflows for displacements etc.
  static const int kMaximalBufferSize = 512 * MB;

  int next_buffer_check_;  // pc offset of next buffer check

  // Constant pool generation
  // Pools are emitted in the instruction stream, preferably after unconditional
  // jumps or after returns from functions (in dead code locations).
  // If a long code sequence does not contain unconditional jumps, it is
  // necessary to emit the constant pool before the pool gets too far from the
  // location it is accessed from. In this case, we emit a jump over the emitted
  // constant pool.
  // Constants in the pool may be addresses of functions that gets relocated;
  // if so, a relocation info entry is associated to the constant pool entry.

  // Repeated checking whether the constant pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated. That also means that the sizing of the buffers is not
  // an exact science, and that we rely on some slop to not overrun buffers.
  static constexpr int kCheckPoolIntervalInst = 32;
  static constexpr int kCheckPoolInterval = kCheckPoolIntervalInst * kInstrSize;

  // Emission of the constant pool may be blocked in some code sequences.
  int const_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_const_pool_before_;  // Block emission before this pc offset.

  // Keep track of the first instruction requiring a constant pool entry
  // since the previous constant pool was emitted.
  int first_const_pool_32_use_;
  int first_const_pool_64_use_;

  // The bound position, before this we cannot do instruction elimination.
  int last_bound_pos_;

  inline void CheckBuffer();
  void GrowBuffer();

  // Instruction generation
  void AddrMode1(Instr instr, Register rd, Register rn, const Operand& x);
  // Attempt to encode operand |x| for instruction |instr| and return true on
  // success. The result will be encoded in |instr| directly. This method may
  // change the opcode if deemed beneficial, for instance, MOV may be turned
  // into MVN, ADD into SUB, AND into BIC, ...etc.  The only reason this method
  // may fail is that the operand is an immediate that cannot be encoded.
  bool AddrMode1TryEncodeOperand(Instr* instr, const Operand& x);

  void AddrMode2(Instr instr, Register rd, const MemOperand& x);
  void AddrMode3(Instr instr, Register rd, const MemOperand& x);
  void AddrMode4(Instr instr, Register rn, RegList rl);
  void AddrMode5(Instr instr, CRegister crd, const MemOperand& x);

  // Labels
  void print(const Label* L);
  void bind_to(Label* L, int pos);
  void next(Label* L);

  // Record reloc info for current pc_
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
  void ConstantPoolAddEntry(int position, RelocInfo::Mode rmode,
                            intptr_t value);
  void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);

  friend class RelocInfo;
  friend class BlockConstPoolScope;
  friend class EnsureSpace;
  friend class UseScratchRegisterScope;
};

class EnsureSpace BASE_EMBEDDED {
 public:
  V8_INLINE explicit EnsureSpace(Assembler* assembler);
};

class PatchingAssembler : public Assembler {
 public:
  PatchingAssembler(const AssemblerOptions& options, byte* address,
                    int instructions);
  ~PatchingAssembler();

  void Emit(Address addr);
};

// This scope utility allows scratch registers to be managed safely. The
// Assembler's GetScratchRegisterList() is used as a pool of scratch
// registers. These registers can be allocated on demand, and will be returned
// at the end of the scope.
//
// When the scope ends, the Assembler's list will be restored to its original
// state, even if the list is modified by some other means. Note that this scope
// can be nested but the destructors need to run in the opposite order as the
// constructors. We do not have assertions for this.
class UseScratchRegisterScope {
 public:
  explicit UseScratchRegisterScope(Assembler* assembler);
  ~UseScratchRegisterScope();

  // Take a register from the list and return it.
  Register Acquire();
  SwVfpRegister AcquireS() { return AcquireVfp<SwVfpRegister>(); }
  LowDwVfpRegister AcquireLowD() { return AcquireVfp<LowDwVfpRegister>(); }
  DwVfpRegister AcquireD() {
    DwVfpRegister reg = AcquireVfp<DwVfpRegister>();
    DCHECK(assembler_->VfpRegisterIsAvailable(reg));
    return reg;
  }
  QwNeonRegister AcquireQ() {
    QwNeonRegister reg = AcquireVfp<QwNeonRegister>();
    DCHECK(assembler_->VfpRegisterIsAvailable(reg));
    return reg;
  }

  // Check if we have registers available to acquire.
  bool CanAcquire() const { return *assembler_->GetScratchRegisterList() != 0; }
  bool CanAcquireD() const { return CanAcquireVfp<DwVfpRegister>(); }

 private:
  friend class Assembler;
  friend class TurboAssembler;

  template <typename T>
  bool CanAcquireVfp() const;

  template <typename T>
  T AcquireVfp();

  Assembler* assembler_;
  // Available scratch registers at the start of this scope.
  RegList old_available_;
  VfpRegList old_available_vfp_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_ARM_ASSEMBLER_ARM_H_