summaryrefslogtreecommitdiff
path: root/deps/uv/src/unix/linux-core.c
blob: 3341b94e1f26fd4c96450f8df50ce6cbc8f99e19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/* We lean on the fact that POLL{IN,OUT,ERR,HUP} correspond with their
 * EPOLL* counterparts.  We use the POLL* variants in this file because that
 * is what libuv uses elsewhere.
 */

#include "uv.h"
#include "internal.h"

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>

#include <net/if.h>
#include <sys/epoll.h>
#include <sys/param.h>
#include <sys/prctl.h>
#include <sys/sysinfo.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>

#define HAVE_IFADDRS_H 1

#ifdef __UCLIBC__
# if __UCLIBC_MAJOR__ < 0 && __UCLIBC_MINOR__ < 9 && __UCLIBC_SUBLEVEL__ < 32
#  undef HAVE_IFADDRS_H
# endif
#endif

#ifdef HAVE_IFADDRS_H
# if defined(__ANDROID__)
#  include "uv/android-ifaddrs.h"
# else
#  include <ifaddrs.h>
# endif
# include <sys/socket.h>
# include <net/ethernet.h>
# include <netpacket/packet.h>
#endif /* HAVE_IFADDRS_H */

/* Available from 2.6.32 onwards. */
#ifndef CLOCK_MONOTONIC_COARSE
# define CLOCK_MONOTONIC_COARSE 6
#endif

/* This is rather annoying: CLOCK_BOOTTIME lives in <linux/time.h> but we can't
 * include that file because it conflicts with <time.h>. We'll just have to
 * define it ourselves.
 */
#ifndef CLOCK_BOOTTIME
# define CLOCK_BOOTTIME 7
#endif

static int read_models(unsigned int numcpus, uv_cpu_info_t* ci);
static int read_times(FILE* statfile_fp,
                      unsigned int numcpus,
                      uv_cpu_info_t* ci);
static void read_speeds(unsigned int numcpus, uv_cpu_info_t* ci);
static unsigned long read_cpufreq(unsigned int cpunum);


int uv__platform_loop_init(uv_loop_t* loop) {
  int fd;

  fd = epoll_create1(EPOLL_CLOEXEC);

  /* epoll_create1() can fail either because it's not implemented (old kernel)
   * or because it doesn't understand the EPOLL_CLOEXEC flag.
   */
  if (fd == -1 && (errno == ENOSYS || errno == EINVAL)) {
    fd = epoll_create(256);

    if (fd != -1)
      uv__cloexec(fd, 1);
  }

  loop->backend_fd = fd;
  loop->inotify_fd = -1;
  loop->inotify_watchers = NULL;

  if (fd == -1)
    return UV__ERR(errno);

  return 0;
}


int uv__io_fork(uv_loop_t* loop) {
  int err;
  void* old_watchers;

  old_watchers = loop->inotify_watchers;

  uv__close(loop->backend_fd);
  loop->backend_fd = -1;
  uv__platform_loop_delete(loop);

  err = uv__platform_loop_init(loop);
  if (err)
    return err;

  return uv__inotify_fork(loop, old_watchers);
}


void uv__platform_loop_delete(uv_loop_t* loop) {
  if (loop->inotify_fd == -1) return;
  uv__io_stop(loop, &loop->inotify_read_watcher, POLLIN);
  uv__close(loop->inotify_fd);
  loop->inotify_fd = -1;
}


void uv__platform_invalidate_fd(uv_loop_t* loop, int fd) {
  struct epoll_event* events;
  struct epoll_event dummy;
  uintptr_t i;
  uintptr_t nfds;

  assert(loop->watchers != NULL);

  events = (struct epoll_event*) loop->watchers[loop->nwatchers];
  nfds = (uintptr_t) loop->watchers[loop->nwatchers + 1];
  if (events != NULL)
    /* Invalidate events with same file descriptor */
    for (i = 0; i < nfds; i++)
      if (events[i].data.fd == fd)
        events[i].data.fd = -1;

  /* Remove the file descriptor from the epoll.
   * This avoids a problem where the same file description remains open
   * in another process, causing repeated junk epoll events.
   *
   * We pass in a dummy epoll_event, to work around a bug in old kernels.
   */
  if (loop->backend_fd >= 0) {
    /* Work around a bug in kernels 3.10 to 3.19 where passing a struct that
     * has the EPOLLWAKEUP flag set generates spurious audit syslog warnings.
     */
    memset(&dummy, 0, sizeof(dummy));
    epoll_ctl(loop->backend_fd, EPOLL_CTL_DEL, fd, &dummy);
  }
}


int uv__io_check_fd(uv_loop_t* loop, int fd) {
  struct epoll_event e;
  int rc;

  memset(&e, 0, sizeof(e));
  e.events = POLLIN;
  e.data.fd = -1;

  rc = 0;
  if (epoll_ctl(loop->backend_fd, EPOLL_CTL_ADD, fd, &e))
    if (errno != EEXIST)
      rc = UV__ERR(errno);

  if (rc == 0)
    if (epoll_ctl(loop->backend_fd, EPOLL_CTL_DEL, fd, &e))
      abort();

  return rc;
}


void uv__io_poll(uv_loop_t* loop, int timeout) {
  /* A bug in kernels < 2.6.37 makes timeouts larger than ~30 minutes
   * effectively infinite on 32 bits architectures.  To avoid blocking
   * indefinitely, we cap the timeout and poll again if necessary.
   *
   * Note that "30 minutes" is a simplification because it depends on
   * the value of CONFIG_HZ.  The magic constant assumes CONFIG_HZ=1200,
   * that being the largest value I have seen in the wild (and only once.)
   */
  static const int max_safe_timeout = 1789569;
  struct epoll_event events[1024];
  struct epoll_event* pe;
  struct epoll_event e;
  int real_timeout;
  QUEUE* q;
  uv__io_t* w;
  sigset_t sigset;
  sigset_t* psigset;
  uint64_t base;
  int have_signals;
  int nevents;
  int count;
  int nfds;
  int fd;
  int op;
  int i;

  if (loop->nfds == 0) {
    assert(QUEUE_EMPTY(&loop->watcher_queue));
    return;
  }

  memset(&e, 0, sizeof(e));

  while (!QUEUE_EMPTY(&loop->watcher_queue)) {
    q = QUEUE_HEAD(&loop->watcher_queue);
    QUEUE_REMOVE(q);
    QUEUE_INIT(q);

    w = QUEUE_DATA(q, uv__io_t, watcher_queue);
    assert(w->pevents != 0);
    assert(w->fd >= 0);
    assert(w->fd < (int) loop->nwatchers);

    e.events = w->pevents;
    e.data.fd = w->fd;

    if (w->events == 0)
      op = EPOLL_CTL_ADD;
    else
      op = EPOLL_CTL_MOD;

    /* XXX Future optimization: do EPOLL_CTL_MOD lazily if we stop watching
     * events, skip the syscall and squelch the events after epoll_wait().
     */
    if (epoll_ctl(loop->backend_fd, op, w->fd, &e)) {
      if (errno != EEXIST)
        abort();

      assert(op == EPOLL_CTL_ADD);

      /* We've reactivated a file descriptor that's been watched before. */
      if (epoll_ctl(loop->backend_fd, EPOLL_CTL_MOD, w->fd, &e))
        abort();
    }

    w->events = w->pevents;
  }

  psigset = NULL;
  if (loop->flags & UV_LOOP_BLOCK_SIGPROF) {
    sigemptyset(&sigset);
    sigaddset(&sigset, SIGPROF);
    psigset = &sigset;
  }

  assert(timeout >= -1);
  base = loop->time;
  count = 48; /* Benchmarks suggest this gives the best throughput. */
  real_timeout = timeout;

  for (;;) {
    /* See the comment for max_safe_timeout for an explanation of why
     * this is necessary.  Executive summary: kernel bug workaround.
     */
    if (sizeof(int32_t) == sizeof(long) && timeout >= max_safe_timeout)
      timeout = max_safe_timeout;

    nfds = epoll_pwait(loop->backend_fd,
                       events,
                       ARRAY_SIZE(events),
                       timeout,
                       psigset);

    /* Update loop->time unconditionally. It's tempting to skip the update when
     * timeout == 0 (i.e. non-blocking poll) but there is no guarantee that the
     * operating system didn't reschedule our process while in the syscall.
     */
    SAVE_ERRNO(uv__update_time(loop));

    if (nfds == 0) {
      assert(timeout != -1);

      if (timeout == 0)
        return;

      /* We may have been inside the system call for longer than |timeout|
       * milliseconds so we need to update the timestamp to avoid drift.
       */
      goto update_timeout;
    }

    if (nfds == -1) {
      if (errno != EINTR)
        abort();

      if (timeout == -1)
        continue;

      if (timeout == 0)
        return;

      /* Interrupted by a signal. Update timeout and poll again. */
      goto update_timeout;
    }

    have_signals = 0;
    nevents = 0;

    assert(loop->watchers != NULL);
    loop->watchers[loop->nwatchers] = (void*) events;
    loop->watchers[loop->nwatchers + 1] = (void*) (uintptr_t) nfds;
    for (i = 0; i < nfds; i++) {
      pe = events + i;
      fd = pe->data.fd;

      /* Skip invalidated events, see uv__platform_invalidate_fd */
      if (fd == -1)
        continue;

      assert(fd >= 0);
      assert((unsigned) fd < loop->nwatchers);

      w = loop->watchers[fd];

      if (w == NULL) {
        /* File descriptor that we've stopped watching, disarm it.
         *
         * Ignore all errors because we may be racing with another thread
         * when the file descriptor is closed.
         */
        epoll_ctl(loop->backend_fd, EPOLL_CTL_DEL, fd, pe);
        continue;
      }

      /* Give users only events they're interested in. Prevents spurious
       * callbacks when previous callback invocation in this loop has stopped
       * the current watcher. Also, filters out events that users has not
       * requested us to watch.
       */
      pe->events &= w->pevents | POLLERR | POLLHUP;

      /* Work around an epoll quirk where it sometimes reports just the
       * EPOLLERR or EPOLLHUP event.  In order to force the event loop to
       * move forward, we merge in the read/write events that the watcher
       * is interested in; uv__read() and uv__write() will then deal with
       * the error or hangup in the usual fashion.
       *
       * Note to self: happens when epoll reports EPOLLIN|EPOLLHUP, the user
       * reads the available data, calls uv_read_stop(), then sometime later
       * calls uv_read_start() again.  By then, libuv has forgotten about the
       * hangup and the kernel won't report EPOLLIN again because there's
       * nothing left to read.  If anything, libuv is to blame here.  The
       * current hack is just a quick bandaid; to properly fix it, libuv
       * needs to remember the error/hangup event.  We should get that for
       * free when we switch over to edge-triggered I/O.
       */
      if (pe->events == POLLERR || pe->events == POLLHUP)
        pe->events |=
          w->pevents & (POLLIN | POLLOUT | UV__POLLRDHUP | UV__POLLPRI);

      if (pe->events != 0) {
        /* Run signal watchers last.  This also affects child process watchers
         * because those are implemented in terms of signal watchers.
         */
        if (w == &loop->signal_io_watcher)
          have_signals = 1;
        else
          w->cb(loop, w, pe->events);

        nevents++;
      }
    }

    if (have_signals != 0)
      loop->signal_io_watcher.cb(loop, &loop->signal_io_watcher, POLLIN);

    loop->watchers[loop->nwatchers] = NULL;
    loop->watchers[loop->nwatchers + 1] = NULL;

    if (have_signals != 0)
      return;  /* Event loop should cycle now so don't poll again. */

    if (nevents != 0) {
      if (nfds == ARRAY_SIZE(events) && --count != 0) {
        /* Poll for more events but don't block this time. */
        timeout = 0;
        continue;
      }
      return;
    }

    if (timeout == 0)
      return;

    if (timeout == -1)
      continue;

update_timeout:
    assert(timeout > 0);

    real_timeout -= (loop->time - base);
    if (real_timeout <= 0)
      return;

    timeout = real_timeout;
  }
}


uint64_t uv__hrtime(uv_clocktype_t type) {
  static clock_t fast_clock_id = -1;
  struct timespec t;
  clock_t clock_id;

  /* Prefer CLOCK_MONOTONIC_COARSE if available but only when it has
   * millisecond granularity or better.  CLOCK_MONOTONIC_COARSE is
   * serviced entirely from the vDSO, whereas CLOCK_MONOTONIC may
   * decide to make a costly system call.
   */
  /* TODO(bnoordhuis) Use CLOCK_MONOTONIC_COARSE for UV_CLOCK_PRECISE
   * when it has microsecond granularity or better (unlikely).
   */
  if (type == UV_CLOCK_FAST && fast_clock_id == -1) {
    if (clock_getres(CLOCK_MONOTONIC_COARSE, &t) == 0 &&
        t.tv_nsec <= 1 * 1000 * 1000) {
      fast_clock_id = CLOCK_MONOTONIC_COARSE;
    } else {
      fast_clock_id = CLOCK_MONOTONIC;
    }
  }

  clock_id = CLOCK_MONOTONIC;
  if (type == UV_CLOCK_FAST)
    clock_id = fast_clock_id;

  if (clock_gettime(clock_id, &t))
    return 0;  /* Not really possible. */

  return t.tv_sec * (uint64_t) 1e9 + t.tv_nsec;
}


int uv_resident_set_memory(size_t* rss) {
  char buf[1024];
  const char* s;
  ssize_t n;
  long val;
  int fd;
  int i;

  do
    fd = open("/proc/self/stat", O_RDONLY);
  while (fd == -1 && errno == EINTR);

  if (fd == -1)
    return UV__ERR(errno);

  do
    n = read(fd, buf, sizeof(buf) - 1);
  while (n == -1 && errno == EINTR);

  uv__close(fd);
  if (n == -1)
    return UV__ERR(errno);
  buf[n] = '\0';

  s = strchr(buf, ' ');
  if (s == NULL)
    goto err;

  s += 1;
  if (*s != '(')
    goto err;

  s = strchr(s, ')');
  if (s == NULL)
    goto err;

  for (i = 1; i <= 22; i++) {
    s = strchr(s + 1, ' ');
    if (s == NULL)
      goto err;
  }

  errno = 0;
  val = strtol(s, NULL, 10);
  if (errno != 0)
    goto err;
  if (val < 0)
    goto err;

  *rss = val * getpagesize();
  return 0;

err:
  return UV_EINVAL;
}


int uv_uptime(double* uptime) {
  static volatile int no_clock_boottime;
  struct timespec now;
  int r;

  /* Try CLOCK_BOOTTIME first, fall back to CLOCK_MONOTONIC if not available
   * (pre-2.6.39 kernels). CLOCK_MONOTONIC doesn't increase when the system
   * is suspended.
   */
  if (no_clock_boottime) {
    retry: r = clock_gettime(CLOCK_MONOTONIC, &now);
  }
  else if ((r = clock_gettime(CLOCK_BOOTTIME, &now)) && errno == EINVAL) {
    no_clock_boottime = 1;
    goto retry;
  }

  if (r)
    return UV__ERR(errno);

  *uptime = now.tv_sec;
  return 0;
}


static int uv__cpu_num(FILE* statfile_fp, unsigned int* numcpus) {
  unsigned int num;
  char buf[1024];

  if (!fgets(buf, sizeof(buf), statfile_fp))
    return UV_EIO;

  num = 0;
  while (fgets(buf, sizeof(buf), statfile_fp)) {
    if (strncmp(buf, "cpu", 3))
      break;
    num++;
  }

  if (num == 0)
    return UV_EIO;

  *numcpus = num;
  return 0;
}


int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) {
  unsigned int numcpus;
  uv_cpu_info_t* ci;
  int err;
  FILE* statfile_fp;

  *cpu_infos = NULL;
  *count = 0;

  statfile_fp = uv__open_file("/proc/stat");
  if (statfile_fp == NULL)
    return UV__ERR(errno);

  err = uv__cpu_num(statfile_fp, &numcpus);
  if (err < 0)
    goto out;

  err = UV_ENOMEM;
  ci = uv__calloc(numcpus, sizeof(*ci));
  if (ci == NULL)
    goto out;

  err = read_models(numcpus, ci);
  if (err == 0)
    err = read_times(statfile_fp, numcpus, ci);

  if (err) {
    uv_free_cpu_info(ci, numcpus);
    goto out;
  }

  /* read_models() on x86 also reads the CPU speed from /proc/cpuinfo.
   * We don't check for errors here. Worst case, the field is left zero.
   */
  if (ci[0].speed == 0)
    read_speeds(numcpus, ci);

  *cpu_infos = ci;
  *count = numcpus;
  err = 0;

out:

  if (fclose(statfile_fp))
    if (errno != EINTR && errno != EINPROGRESS)
      abort();

  return err;
}


static void read_speeds(unsigned int numcpus, uv_cpu_info_t* ci) {
  unsigned int num;

  for (num = 0; num < numcpus; num++)
    ci[num].speed = read_cpufreq(num) / 1000;
}


/* Also reads the CPU frequency on x86. The other architectures only have
 * a BogoMIPS field, which may not be very accurate.
 *
 * Note: Simply returns on error, uv_cpu_info() takes care of the cleanup.
 */
static int read_models(unsigned int numcpus, uv_cpu_info_t* ci) {
  static const char model_marker[] = "model name\t: ";
  static const char speed_marker[] = "cpu MHz\t\t: ";
  const char* inferred_model;
  unsigned int model_idx;
  unsigned int speed_idx;
  char buf[1024];
  char* model;
  FILE* fp;

  /* Most are unused on non-ARM, non-MIPS and non-x86 architectures. */
  (void) &model_marker;
  (void) &speed_marker;
  (void) &speed_idx;
  (void) &model;
  (void) &buf;
  (void) &fp;

  model_idx = 0;
  speed_idx = 0;

#if defined(__arm__) || \
    defined(__i386__) || \
    defined(__mips__) || \
    defined(__x86_64__)
  fp = uv__open_file("/proc/cpuinfo");
  if (fp == NULL)
    return UV__ERR(errno);

  while (fgets(buf, sizeof(buf), fp)) {
    if (model_idx < numcpus) {
      if (strncmp(buf, model_marker, sizeof(model_marker) - 1) == 0) {
        model = buf + sizeof(model_marker) - 1;
        model = uv__strndup(model, strlen(model) - 1);  /* Strip newline. */
        if (model == NULL) {
          fclose(fp);
          return UV_ENOMEM;
        }
        ci[model_idx++].model = model;
        continue;
      }
    }
#if defined(__arm__) || defined(__mips__)
    if (model_idx < numcpus) {
#if defined(__arm__)
      /* Fallback for pre-3.8 kernels. */
      static const char model_marker[] = "Processor\t: ";
#else	/* defined(__mips__) */
      static const char model_marker[] = "cpu model\t\t: ";
#endif
      if (strncmp(buf, model_marker, sizeof(model_marker) - 1) == 0) {
        model = buf + sizeof(model_marker) - 1;
        model = uv__strndup(model, strlen(model) - 1);  /* Strip newline. */
        if (model == NULL) {
          fclose(fp);
          return UV_ENOMEM;
        }
        ci[model_idx++].model = model;
        continue;
      }
    }
#else  /* !__arm__ && !__mips__ */
    if (speed_idx < numcpus) {
      if (strncmp(buf, speed_marker, sizeof(speed_marker) - 1) == 0) {
        ci[speed_idx++].speed = atoi(buf + sizeof(speed_marker) - 1);
        continue;
      }
    }
#endif  /* __arm__ || __mips__ */
  }

  fclose(fp);
#endif  /* __arm__ || __i386__ || __mips__ || __x86_64__ */

  /* Now we want to make sure that all the models contain *something* because
   * it's not safe to leave them as null. Copy the last entry unless there
   * isn't one, in that case we simply put "unknown" into everything.
   */
  inferred_model = "unknown";
  if (model_idx > 0)
    inferred_model = ci[model_idx - 1].model;

  while (model_idx < numcpus) {
    model = uv__strndup(inferred_model, strlen(inferred_model));
    if (model == NULL)
      return UV_ENOMEM;
    ci[model_idx++].model = model;
  }

  return 0;
}


static int read_times(FILE* statfile_fp,
                      unsigned int numcpus,
                      uv_cpu_info_t* ci) {
  unsigned long clock_ticks;
  struct uv_cpu_times_s ts;
  unsigned long user;
  unsigned long nice;
  unsigned long sys;
  unsigned long idle;
  unsigned long dummy;
  unsigned long irq;
  unsigned int num;
  unsigned int len;
  char buf[1024];

  clock_ticks = sysconf(_SC_CLK_TCK);
  assert(clock_ticks != (unsigned long) -1);
  assert(clock_ticks != 0);

  rewind(statfile_fp);

  if (!fgets(buf, sizeof(buf), statfile_fp))
    abort();

  num = 0;

  while (fgets(buf, sizeof(buf), statfile_fp)) {
    if (num >= numcpus)
      break;

    if (strncmp(buf, "cpu", 3))
      break;

    /* skip "cpu<num> " marker */
    {
      unsigned int n;
      int r = sscanf(buf, "cpu%u ", &n);
      assert(r == 1);
      (void) r;  /* silence build warning */
      for (len = sizeof("cpu0"); n /= 10; len++);
    }

    /* Line contains user, nice, system, idle, iowait, irq, softirq, steal,
     * guest, guest_nice but we're only interested in the first four + irq.
     *
     * Don't use %*s to skip fields or %ll to read straight into the uint64_t
     * fields, they're not allowed in C89 mode.
     */
    if (6 != sscanf(buf + len,
                    "%lu %lu %lu %lu %lu %lu",
                    &user,
                    &nice,
                    &sys,
                    &idle,
                    &dummy,
                    &irq))
      abort();

    ts.user = clock_ticks * user;
    ts.nice = clock_ticks * nice;
    ts.sys  = clock_ticks * sys;
    ts.idle = clock_ticks * idle;
    ts.irq  = clock_ticks * irq;
    ci[num++].cpu_times = ts;
  }
  assert(num == numcpus);

  return 0;
}


static unsigned long read_cpufreq(unsigned int cpunum) {
  unsigned long val;
  char buf[1024];
  FILE* fp;

  snprintf(buf,
           sizeof(buf),
           "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_cur_freq",
           cpunum);

  fp = uv__open_file(buf);
  if (fp == NULL)
    return 0;

  if (fscanf(fp, "%lu", &val) != 1)
    val = 0;

  fclose(fp);

  return val;
}


void uv_free_cpu_info(uv_cpu_info_t* cpu_infos, int count) {
  int i;

  for (i = 0; i < count; i++) {
    uv__free(cpu_infos[i].model);
  }

  uv__free(cpu_infos);
}

static int uv__ifaddr_exclude(struct ifaddrs *ent, int exclude_type) {
  if (!((ent->ifa_flags & IFF_UP) && (ent->ifa_flags & IFF_RUNNING)))
    return 1;
  if (ent->ifa_addr == NULL)
    return 1;
  /*
   * On Linux getifaddrs returns information related to the raw underlying
   * devices. We're not interested in this information yet.
   */
  if (ent->ifa_addr->sa_family == PF_PACKET)
    return exclude_type;
  return !exclude_type;
}

int uv_interface_addresses(uv_interface_address_t** addresses, int* count) {
#ifndef HAVE_IFADDRS_H
  *count = 0;
  *addresses = NULL;
  return UV_ENOSYS;
#else
  struct ifaddrs *addrs, *ent;
  uv_interface_address_t* address;
  int i;
  struct sockaddr_ll *sll;

  *count = 0;
  *addresses = NULL;

  if (getifaddrs(&addrs))
    return UV__ERR(errno);

  /* Count the number of interfaces */
  for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
    if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFADDR))
      continue;

    (*count)++;
  }

  if (*count == 0) {
    freeifaddrs(addrs);
    return 0;
  }

  *addresses = uv__malloc(*count * sizeof(**addresses));
  if (!(*addresses)) {
    freeifaddrs(addrs);
    return UV_ENOMEM;
  }

  address = *addresses;

  for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
    if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFADDR))
      continue;

    address->name = uv__strdup(ent->ifa_name);

    if (ent->ifa_addr->sa_family == AF_INET6) {
      address->address.address6 = *((struct sockaddr_in6*) ent->ifa_addr);
    } else {
      address->address.address4 = *((struct sockaddr_in*) ent->ifa_addr);
    }

    if (ent->ifa_netmask->sa_family == AF_INET6) {
      address->netmask.netmask6 = *((struct sockaddr_in6*) ent->ifa_netmask);
    } else {
      address->netmask.netmask4 = *((struct sockaddr_in*) ent->ifa_netmask);
    }

    address->is_internal = !!(ent->ifa_flags & IFF_LOOPBACK);

    address++;
  }

  /* Fill in physical addresses for each interface */
  for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
    if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFPHYS))
      continue;

    address = *addresses;

    for (i = 0; i < (*count); i++) {
      if (strcmp(address->name, ent->ifa_name) == 0) {
        sll = (struct sockaddr_ll*)ent->ifa_addr;
        memcpy(address->phys_addr, sll->sll_addr, sizeof(address->phys_addr));
      } else {
        memset(address->phys_addr, 0, sizeof(address->phys_addr));
      }
      address++;
    }
  }

  freeifaddrs(addrs);

  return 0;
#endif
}


void uv_free_interface_addresses(uv_interface_address_t* addresses,
  int count) {
  int i;

  for (i = 0; i < count; i++) {
    uv__free(addresses[i].name);
  }

  uv__free(addresses);
}


void uv__set_process_title(const char* title) {
#if defined(PR_SET_NAME)
  prctl(PR_SET_NAME, title);  /* Only copies first 16 characters. */
#endif
}