summaryrefslogtreecommitdiff
path: root/deps/icu-small/source/i18n/collationrootelements.cpp
blob: 9b46d14144bb3da025112ba742720780353a91f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 2013-2014, International Business Machines
* Corporation and others.  All Rights Reserved.
*******************************************************************************
* collationrootelements.cpp
*
* created on: 2013mar05
* created by: Markus W. Scherer
*/

#include "unicode/utypes.h"

#if !UCONFIG_NO_COLLATION

#include "collation.h"
#include "collationrootelements.h"
#include "uassert.h"

U_NAMESPACE_BEGIN

int64_t
CollationRootElements::lastCEWithPrimaryBefore(uint32_t p) const {
    if(p == 0) { return 0; }
    U_ASSERT(p > elements[elements[IX_FIRST_PRIMARY_INDEX]]);
    int32_t index = findP(p);
    uint32_t q = elements[index];
    uint32_t secTer;
    if(p == (q & 0xffffff00)) {
        // p == elements[index] is a root primary. Find the CE before it.
        // We must not be in a primary range.
        U_ASSERT((q & PRIMARY_STEP_MASK) == 0);
        secTer = elements[index - 1];
        if((secTer & SEC_TER_DELTA_FLAG) == 0) {
            // Primary CE just before p.
            p = secTer & 0xffffff00;
            secTer = Collation::COMMON_SEC_AND_TER_CE;
        } else {
            // secTer = last secondary & tertiary for the previous primary
            index -= 2;
            for(;;) {
                p = elements[index];
                if((p & SEC_TER_DELTA_FLAG) == 0) {
                    p &= 0xffffff00;
                    break;
                }
                --index;
            }
        }
    } else {
        // p > elements[index] which is the previous primary.
        // Find the last secondary & tertiary weights for it.
        p = q & 0xffffff00;
        secTer = Collation::COMMON_SEC_AND_TER_CE;
        for(;;) {
            q = elements[++index];
            if((q & SEC_TER_DELTA_FLAG) == 0) {
                // We must not be in a primary range.
                U_ASSERT((q & PRIMARY_STEP_MASK) == 0);
                break;
            }
            secTer = q;
        }
    }
    return ((int64_t)p << 32) | (secTer & ~SEC_TER_DELTA_FLAG);
}

int64_t
CollationRootElements::firstCEWithPrimaryAtLeast(uint32_t p) const {
    if(p == 0) { return 0; }
    int32_t index = findP(p);
    if(p != (elements[index] & 0xffffff00)) {
        for(;;) {
            p = elements[++index];
            if((p & SEC_TER_DELTA_FLAG) == 0) {
                // First primary after p. We must not be in a primary range.
                U_ASSERT((p & PRIMARY_STEP_MASK) == 0);
                break;
            }
        }
    }
    // The code above guarantees that p has at most 3 bytes: (p & 0xff) == 0.
    return ((int64_t)p << 32) | Collation::COMMON_SEC_AND_TER_CE;
}

uint32_t
CollationRootElements::getPrimaryBefore(uint32_t p, UBool isCompressible) const {
    int32_t index = findPrimary(p);
    int32_t step;
    uint32_t q = elements[index];
    if(p == (q & 0xffffff00)) {
        // Found p itself. Return the previous primary.
        // See if p is at the end of a previous range.
        step = (int32_t)q & PRIMARY_STEP_MASK;
        if(step == 0) {
            // p is not at the end of a range. Look for the previous primary.
            do {
                p = elements[--index];
            } while((p & SEC_TER_DELTA_FLAG) != 0);
            return p & 0xffffff00;
        }
    } else {
        // p is in a range, and not at the start.
        uint32_t nextElement = elements[index + 1];
        U_ASSERT(isEndOfPrimaryRange(nextElement));
        step = (int32_t)nextElement & PRIMARY_STEP_MASK;
    }
    // Return the previous range primary.
    if((p & 0xffff) == 0) {
        return Collation::decTwoBytePrimaryByOneStep(p, isCompressible, step);
    } else {
        return Collation::decThreeBytePrimaryByOneStep(p, isCompressible, step);
    }
}

uint32_t
CollationRootElements::getSecondaryBefore(uint32_t p, uint32_t s) const {
    int32_t index;
    uint32_t previousSec, sec;
    if(p == 0) {
        index = (int32_t)elements[IX_FIRST_SECONDARY_INDEX];
        // Gap at the beginning of the secondary CE range.
        previousSec = 0;
        sec = elements[index] >> 16;
    } else {
        index = findPrimary(p) + 1;
        previousSec = Collation::BEFORE_WEIGHT16;
        sec = getFirstSecTerForPrimary(index) >> 16;
    }
    U_ASSERT(s >= sec);
    while(s > sec) {
        previousSec = sec;
        U_ASSERT((elements[index] & SEC_TER_DELTA_FLAG) != 0);
        sec = elements[index++] >> 16;
    }
    U_ASSERT(sec == s);
    return previousSec;
}

uint32_t
CollationRootElements::getTertiaryBefore(uint32_t p, uint32_t s, uint32_t t) const {
    U_ASSERT((t & ~Collation::ONLY_TERTIARY_MASK) == 0);
    int32_t index;
    uint32_t previousTer, secTer;
    if(p == 0) {
        if(s == 0) {
            index = (int32_t)elements[IX_FIRST_TERTIARY_INDEX];
            // Gap at the beginning of the tertiary CE range.
            previousTer = 0;
        } else {
            index = (int32_t)elements[IX_FIRST_SECONDARY_INDEX];
            previousTer = Collation::BEFORE_WEIGHT16;
        }
        secTer = elements[index] & ~SEC_TER_DELTA_FLAG;
    } else {
        index = findPrimary(p) + 1;
        previousTer = Collation::BEFORE_WEIGHT16;
        secTer = getFirstSecTerForPrimary(index);
    }
    uint32_t st = (s << 16) | t;
    while(st > secTer) {
        if((secTer >> 16) == s) { previousTer = secTer; }
        U_ASSERT((elements[index] & SEC_TER_DELTA_FLAG) != 0);
        secTer = elements[index++] & ~SEC_TER_DELTA_FLAG;
    }
    U_ASSERT(secTer == st);
    return previousTer & 0xffff;
}

uint32_t
CollationRootElements::getPrimaryAfter(uint32_t p, int32_t index, UBool isCompressible) const {
    U_ASSERT(p == (elements[index] & 0xffffff00) || isEndOfPrimaryRange(elements[index + 1]));
    uint32_t q = elements[++index];
    int32_t step;
    if((q & SEC_TER_DELTA_FLAG) == 0 && (step = (int32_t)q & PRIMARY_STEP_MASK) != 0) {
        // Return the next primary in this range.
        if((p & 0xffff) == 0) {
            return Collation::incTwoBytePrimaryByOffset(p, isCompressible, step);
        } else {
            return Collation::incThreeBytePrimaryByOffset(p, isCompressible, step);
        }
    } else {
        // Return the next primary in the list.
        while((q & SEC_TER_DELTA_FLAG) != 0) {
            q = elements[++index];
        }
        U_ASSERT((q & PRIMARY_STEP_MASK) == 0);
        return q;
    }
}

uint32_t
CollationRootElements::getSecondaryAfter(int32_t index, uint32_t s) const {
    uint32_t secTer;
    uint32_t secLimit;
    if(index == 0) {
        // primary = 0
        U_ASSERT(s != 0);
        index = (int32_t)elements[IX_FIRST_SECONDARY_INDEX];
        secTer = elements[index];
        // Gap at the end of the secondary CE range.
        secLimit = 0x10000;
    } else {
        U_ASSERT(index >= (int32_t)elements[IX_FIRST_PRIMARY_INDEX]);
        secTer = getFirstSecTerForPrimary(index + 1);
        // If this is an explicit sec/ter unit, then it will be read once more.
        // Gap for secondaries of primary CEs.
        secLimit = getSecondaryBoundary();
    }
    for(;;) {
        uint32_t sec = secTer >> 16;
        if(sec > s) { return sec; }
        secTer = elements[++index];
        if((secTer & SEC_TER_DELTA_FLAG) == 0) { return secLimit; }
    }
}

uint32_t
CollationRootElements::getTertiaryAfter(int32_t index, uint32_t s, uint32_t t) const {
    uint32_t secTer;
    uint32_t terLimit;
    if(index == 0) {
        // primary = 0
        if(s == 0) {
            U_ASSERT(t != 0);
            index = (int32_t)elements[IX_FIRST_TERTIARY_INDEX];
            // Gap at the end of the tertiary CE range.
            terLimit = 0x4000;
        } else {
            index = (int32_t)elements[IX_FIRST_SECONDARY_INDEX];
            // Gap for tertiaries of primary/secondary CEs.
            terLimit = getTertiaryBoundary();
        }
        secTer = elements[index] & ~SEC_TER_DELTA_FLAG;
    } else {
        U_ASSERT(index >= (int32_t)elements[IX_FIRST_PRIMARY_INDEX]);
        secTer = getFirstSecTerForPrimary(index + 1);
        // If this is an explicit sec/ter unit, then it will be read once more.
        terLimit = getTertiaryBoundary();
    }
    uint32_t st = (s << 16) | t;
    for(;;) {
        if(secTer > st) {
            U_ASSERT((secTer >> 16) == s);
            return secTer & 0xffff;
        }
        secTer = elements[++index];
        // No tertiary greater than t for this primary+secondary.
        if((secTer & SEC_TER_DELTA_FLAG) == 0 || (secTer >> 16) > s) { return terLimit; }
        secTer &= ~SEC_TER_DELTA_FLAG;
    }
}

uint32_t
CollationRootElements::getFirstSecTerForPrimary(int32_t index) const {
    uint32_t secTer = elements[index];
    if((secTer & SEC_TER_DELTA_FLAG) == 0) {
        // No sec/ter delta.
        return Collation::COMMON_SEC_AND_TER_CE;
    }
    secTer &= ~SEC_TER_DELTA_FLAG;
    if(secTer > Collation::COMMON_SEC_AND_TER_CE) {
        // Implied sec/ter.
        return Collation::COMMON_SEC_AND_TER_CE;
    }
    // Explicit sec/ter below common/common.
    return secTer;
}

int32_t
CollationRootElements::findPrimary(uint32_t p) const {
    // Requirement: p must occur as a root primary.
    U_ASSERT((p & 0xff) == 0);  // at most a 3-byte primary
    int32_t index = findP(p);
    // If p is in a range, then we just assume that p is an actual primary in this range.
    // (Too cumbersome/expensive to check.)
    // Otherwise, it must be an exact match.
    U_ASSERT(isEndOfPrimaryRange(elements[index + 1]) || p == (elements[index] & 0xffffff00));
    return index;
}

int32_t
CollationRootElements::findP(uint32_t p) const {
    // p need not occur as a root primary.
    // For example, it might be a reordering group boundary.
    U_ASSERT((p >> 24) != Collation::UNASSIGNED_IMPLICIT_BYTE);
    // modified binary search
    int32_t start = (int32_t)elements[IX_FIRST_PRIMARY_INDEX];
    U_ASSERT(p >= elements[start]);
    int32_t limit = length - 1;
    U_ASSERT(elements[limit] >= PRIMARY_SENTINEL);
    U_ASSERT(p < elements[limit]);
    while((start + 1) < limit) {
        // Invariant: elements[start] and elements[limit] are primaries,
        // and elements[start]<=p<=elements[limit].
        int32_t i = (start + limit) / 2;
        uint32_t q = elements[i];
        if((q & SEC_TER_DELTA_FLAG) != 0) {
            // Find the next primary.
            int32_t j = i + 1;
            for(;;) {
                if(j == limit) { break; }
                q = elements[j];
                if((q & SEC_TER_DELTA_FLAG) == 0) {
                    i = j;
                    break;
                }
                ++j;
            }
            if((q & SEC_TER_DELTA_FLAG) != 0) {
                // Find the preceding primary.
                j = i - 1;
                for(;;) {
                    if(j == start) { break; }
                    q = elements[j];
                    if((q & SEC_TER_DELTA_FLAG) == 0) {
                        i = j;
                        break;
                    }
                    --j;
                }
                if((q & SEC_TER_DELTA_FLAG) != 0) {
                    // No primary between start and limit.
                    break;
                }
            }
        }
        if(p < (q & 0xffffff00)) {  // Reset the "step" bits of a range end primary.
            limit = i;
        } else {
            start = i;
        }
    }
    return start;
}

U_NAMESPACE_END

#endif  // !UCONFIG_NO_COLLATION