summaryrefslogtreecommitdiff
path: root/deps/v8/test/unittests/compiler/typer-unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/test/unittests/compiler/typer-unittest.cc')
-rw-r--r--deps/v8/test/unittests/compiler/typer-unittest.cc366
1 files changed, 366 insertions, 0 deletions
diff --git a/deps/v8/test/unittests/compiler/typer-unittest.cc b/deps/v8/test/unittests/compiler/typer-unittest.cc
new file mode 100644
index 0000000000..86a6de3f38
--- /dev/null
+++ b/deps/v8/test/unittests/compiler/typer-unittest.cc
@@ -0,0 +1,366 @@
+// Copyright 2015 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <functional>
+
+#include "src/codegen.h"
+#include "src/compiler/js-operator.h"
+#include "src/compiler/node-properties.h"
+#include "test/cctest/types-fuzz.h"
+#include "test/unittests/compiler/graph-unittest.h"
+
+using namespace v8::internal;
+using namespace v8::internal::compiler;
+
+
+// TODO(titzer): generate a large set of deterministic inputs for these tests.
+class TyperTest : public TypedGraphTest {
+ public:
+ TyperTest()
+ : TypedGraphTest(3),
+ types_(zone(), isolate(), random_number_generator()),
+ javascript_(zone()) {
+ context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start());
+ rng_ = random_number_generator();
+
+ integers.push_back(0);
+ integers.push_back(0);
+ integers.push_back(-1);
+ integers.push_back(+1);
+ integers.push_back(-V8_INFINITY);
+ integers.push_back(+V8_INFINITY);
+ for (int i = 0; i < 5; ++i) {
+ double x = rng_->NextInt();
+ integers.push_back(x);
+ x *= rng_->NextInt();
+ if (!IsMinusZero(x)) integers.push_back(x);
+ }
+
+ int32s.push_back(0);
+ int32s.push_back(0);
+ int32s.push_back(-1);
+ int32s.push_back(+1);
+ int32s.push_back(kMinInt);
+ int32s.push_back(kMaxInt);
+ for (int i = 0; i < 10; ++i) {
+ int32s.push_back(rng_->NextInt());
+ }
+ }
+
+ Types<Type, Type*, Zone> types_;
+ JSOperatorBuilder javascript_;
+ Node* context_node_;
+ v8::base::RandomNumberGenerator* rng_;
+ std::vector<double> integers;
+ std::vector<double> int32s;
+
+ Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) {
+ Node* p0 = Parameter(0);
+ Node* p1 = Parameter(1);
+ NodeProperties::SetBounds(p0, Bounds(lhs));
+ NodeProperties::SetBounds(p1, Bounds(rhs));
+ Node* n = graph()->NewNode(op, p0, p1, context_node_, graph()->start(),
+ graph()->start());
+ return NodeProperties::GetBounds(n).upper;
+ }
+
+ Type* RandomRange(bool int32 = false) {
+ std::vector<double>& numbers = int32 ? int32s : integers;
+ double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
+ double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
+ return NewRange(i, j);
+ }
+
+ Type* NewRange(double i, double j) {
+ if (i > j) std::swap(i, j);
+ return Type::Range(i, j, zone());
+ }
+
+ double RandomInt(double min, double max) {
+ switch (rng_->NextInt(4)) {
+ case 0:
+ return min;
+ case 1:
+ return max;
+ default:
+ break;
+ }
+ if (min == +V8_INFINITY) return +V8_INFINITY;
+ if (max == -V8_INFINITY) return -V8_INFINITY;
+ if (min == -V8_INFINITY && max == +V8_INFINITY) {
+ return rng_->NextInt() * static_cast<double>(rng_->NextInt());
+ }
+ double result = nearbyint(min + (max - min) * rng_->NextDouble());
+ if (IsMinusZero(result)) return 0;
+ if (std::isnan(result)) return rng_->NextInt(2) ? min : max;
+ DCHECK(min <= result && result <= max);
+ return result;
+ }
+
+ double RandomInt(Type::RangeType* range) {
+ return RandomInt(range->Min(), range->Max());
+ }
+
+ // Careful, this function runs O(max_width^5) trials.
+ template <class BinaryFunction>
+ void TestBinaryArithOpCloseToZero(const Operator* op, BinaryFunction opfun,
+ int max_width) {
+ const int min_min = -2 - max_width / 2;
+ const int max_min = 2 + max_width / 2;
+ for (int width = 0; width < max_width; width++) {
+ for (int lmin = min_min; lmin <= max_min; lmin++) {
+ for (int rmin = min_min; rmin <= max_min; rmin++) {
+ Type* r1 = NewRange(lmin, lmin + width);
+ Type* r2 = NewRange(rmin, rmin + width);
+ Type* expected_type = TypeBinaryOp(op, r1, r2);
+
+ for (int x1 = lmin; x1 < lmin + width; x1++) {
+ for (int x2 = rmin; x2 < rmin + width; x2++) {
+ double result_value = opfun(x1, x2);
+ Type* result_type = Type::Constant(
+ isolate()->factory()->NewNumber(result_value), zone());
+ EXPECT_TRUE(result_type->Is(expected_type));
+ }
+ }
+ }
+ }
+ }
+ }
+
+ template <class BinaryFunction>
+ void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) {
+ TestBinaryArithOpCloseToZero(op, opfun, 8);
+ for (int i = 0; i < 100; ++i) {
+ Type::RangeType* r1 = RandomRange()->AsRange();
+ Type::RangeType* r2 = RandomRange()->AsRange();
+ Type* expected_type = TypeBinaryOp(op, r1, r2);
+ for (int i = 0; i < 10; i++) {
+ double x1 = RandomInt(r1);
+ double x2 = RandomInt(r2);
+ double result_value = opfun(x1, x2);
+ Type* result_type = Type::Constant(
+ isolate()->factory()->NewNumber(result_value), zone());
+ EXPECT_TRUE(result_type->Is(expected_type));
+ }
+ }
+ }
+
+ template <class BinaryFunction>
+ void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) {
+ for (int i = 0; i < 100; ++i) {
+ Type::RangeType* r1 = RandomRange()->AsRange();
+ Type::RangeType* r2 = RandomRange()->AsRange();
+ Type* expected_type = TypeBinaryOp(op, r1, r2);
+ for (int i = 0; i < 10; i++) {
+ double x1 = RandomInt(r1);
+ double x2 = RandomInt(r2);
+ bool result_value = opfun(x1, x2);
+ Type* result_type =
+ Type::Constant(result_value ? isolate()->factory()->true_value()
+ : isolate()->factory()->false_value(),
+ zone());
+ EXPECT_TRUE(result_type->Is(expected_type));
+ }
+ }
+ }
+
+ template <class BinaryFunction>
+ void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) {
+ for (int i = 0; i < 100; ++i) {
+ Type::RangeType* r1 = RandomRange(true)->AsRange();
+ Type::RangeType* r2 = RandomRange(true)->AsRange();
+ Type* expected_type = TypeBinaryOp(op, r1, r2);
+ for (int i = 0; i < 10; i++) {
+ int32_t x1 = static_cast<int32_t>(RandomInt(r1));
+ int32_t x2 = static_cast<int32_t>(RandomInt(r2));
+ double result_value = opfun(x1, x2);
+ Type* result_type = Type::Constant(
+ isolate()->factory()->NewNumber(result_value), zone());
+ EXPECT_TRUE(result_type->Is(expected_type));
+ }
+ }
+ }
+
+ Type* RandomSubtype(Type* type) {
+ Type* subtype;
+ do {
+ subtype = types_.Fuzz();
+ } while (!subtype->Is(type));
+ return subtype;
+ }
+
+ void TestBinaryMonotonicity(const Operator* op) {
+ for (int i = 0; i < 50; ++i) {
+ Type* type1 = types_.Fuzz();
+ Type* type2 = types_.Fuzz();
+ Type* type = TypeBinaryOp(op, type1, type2);
+ Type* subtype1 = RandomSubtype(type1);
+ ;
+ Type* subtype2 = RandomSubtype(type2);
+ ;
+ Type* subtype = TypeBinaryOp(op, subtype1, subtype2);
+ EXPECT_TRUE(subtype->Is(type));
+ }
+ }
+};
+
+
+namespace {
+
+int32_t shift_left(int32_t x, int32_t y) { return x << y; }
+int32_t shift_right(int32_t x, int32_t y) { return x >> y; }
+int32_t bit_or(int32_t x, int32_t y) { return x | y; }
+int32_t bit_and(int32_t x, int32_t y) { return x & y; }
+int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; }
+
+} // namespace
+
+
+//------------------------------------------------------------------------------
+// Soundness
+// For simplicity, we currently only test soundness on expression operators
+// that have a direct equivalent in C++. Also, testing is currently limited
+// to ranges as input types.
+
+
+TEST_F(TyperTest, TypeJSAdd) {
+ TestBinaryArithOp(javascript_.Add(), std::plus<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSSubtract) {
+ TestBinaryArithOp(javascript_.Subtract(), std::minus<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSMultiply) {
+ TestBinaryArithOp(javascript_.Multiply(), std::multiplies<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSDivide) {
+ TestBinaryArithOp(javascript_.Divide(), std::divides<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSModulus) {
+ TestBinaryArithOp(javascript_.Modulus(), modulo);
+}
+
+
+TEST_F(TyperTest, TypeJSBitwiseOr) {
+ TestBinaryBitOp(javascript_.BitwiseOr(), bit_or);
+}
+
+
+TEST_F(TyperTest, TypeJSBitwiseAnd) {
+ TestBinaryBitOp(javascript_.BitwiseAnd(), bit_and);
+}
+
+
+TEST_F(TyperTest, TypeJSBitwiseXor) {
+ TestBinaryBitOp(javascript_.BitwiseXor(), bit_xor);
+}
+
+
+TEST_F(TyperTest, TypeJSShiftLeft) {
+ TestBinaryBitOp(javascript_.ShiftLeft(), shift_left);
+}
+
+
+TEST_F(TyperTest, TypeJSShiftRight) {
+ TestBinaryBitOp(javascript_.ShiftRight(), shift_right);
+}
+
+
+TEST_F(TyperTest, TypeJSLessThan) {
+ TestBinaryCompareOp(javascript_.LessThan(), std::less<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSLessThanOrEqual) {
+ TestBinaryCompareOp(javascript_.LessThanOrEqual(), std::less_equal<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSGreaterThan) {
+ TestBinaryCompareOp(javascript_.GreaterThan(), std::greater<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSGreaterThanOrEqual) {
+ TestBinaryCompareOp(javascript_.GreaterThanOrEqual(),
+ std::greater_equal<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSEqual) {
+ TestBinaryCompareOp(javascript_.Equal(), std::equal_to<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSNotEqual) {
+ TestBinaryCompareOp(javascript_.NotEqual(), std::not_equal_to<double>());
+}
+
+
+// For numbers there's no difference between strict and non-strict equality.
+TEST_F(TyperTest, TypeJSStrictEqual) {
+ TestBinaryCompareOp(javascript_.StrictEqual(), std::equal_to<double>());
+}
+
+
+TEST_F(TyperTest, TypeJSStrictNotEqual) {
+ TestBinaryCompareOp(javascript_.StrictNotEqual(),
+ std::not_equal_to<double>());
+}
+
+
+//------------------------------------------------------------------------------
+// Monotonicity
+
+
+// List should be in sync with JS_SIMPLE_BINOP_LIST.
+#define JSBINOP_LIST(V) \
+ V(Equal) \
+ V(NotEqual) \
+ V(StrictEqual) \
+ V(StrictNotEqual) \
+ V(LessThan) \
+ V(GreaterThan) \
+ V(LessThanOrEqual) \
+ V(GreaterThanOrEqual) \
+ V(BitwiseOr) \
+ V(BitwiseXor) \
+ V(BitwiseAnd) \
+ V(ShiftLeft) \
+ V(ShiftRight) \
+ V(ShiftRightLogical) \
+ V(Add) \
+ V(Subtract) \
+ V(Multiply) \
+ V(Divide) \
+ V(Modulus)
+
+
+#define TEST_FUNC(name) \
+ TEST_F(TyperTest, Monotonicity_##name) { \
+ TestBinaryMonotonicity(javascript_.name()); \
+ }
+JSBINOP_LIST(TEST_FUNC)
+#undef TEST_FUNC
+
+
+//------------------------------------------------------------------------------
+// Regression tests
+
+
+TEST_F(TyperTest, TypeRegressInt32Constant) {
+ int values[] = {-5, 10};
+ for (auto i : values) {
+ Node* c = graph()->NewNode(common()->Int32Constant(i));
+ Type* type = NodeProperties::GetBounds(c).upper;
+ EXPECT_TRUE(type->Is(NewRange(i, i)));
+ }
+}