summaryrefslogtreecommitdiff
path: root/deps/v8/test/cctest/heap/test-spaces.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/test/cctest/heap/test-spaces.cc')
-rw-r--r--deps/v8/test/cctest/heap/test-spaces.cc929
1 files changed, 929 insertions, 0 deletions
diff --git a/deps/v8/test/cctest/heap/test-spaces.cc b/deps/v8/test/cctest/heap/test-spaces.cc
new file mode 100644
index 0000000000..2fe099d2e3
--- /dev/null
+++ b/deps/v8/test/cctest/heap/test-spaces.cc
@@ -0,0 +1,929 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <stdlib.h>
+
+#include "src/base/platform/platform.h"
+#include "src/snapshot/snapshot.h"
+#include "src/v8.h"
+#include "test/cctest/cctest.h"
+#include "test/cctest/heap/heap-tester.h"
+#include "test/cctest/heap/utils-inl.h"
+
+namespace v8 {
+namespace internal {
+
+#if 0
+static void VerifyRegionMarking(Address page_start) {
+#ifdef ENABLE_CARDMARKING_WRITE_BARRIER
+ Page* p = Page::FromAddress(page_start);
+
+ p->SetRegionMarks(Page::kAllRegionsCleanMarks);
+
+ for (Address addr = p->ObjectAreaStart();
+ addr < p->ObjectAreaEnd();
+ addr += kPointerSize) {
+ CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr));
+ }
+
+ for (Address addr = p->ObjectAreaStart();
+ addr < p->ObjectAreaEnd();
+ addr += kPointerSize) {
+ Page::FromAddress(addr)->MarkRegionDirty(addr);
+ }
+
+ for (Address addr = p->ObjectAreaStart();
+ addr < p->ObjectAreaEnd();
+ addr += kPointerSize) {
+ CHECK(Page::FromAddress(addr)->IsRegionDirty(addr));
+ }
+#endif
+}
+#endif
+
+
+// TODO(gc) you can no longer allocate pages like this. Details are hidden.
+#if 0
+TEST(Page) {
+ byte* mem = NewArray<byte>(2*Page::kPageSize);
+ CHECK(mem != NULL);
+
+ Address start = reinterpret_cast<Address>(mem);
+ Address page_start = RoundUp(start, Page::kPageSize);
+
+ Page* p = Page::FromAddress(page_start);
+ // Initialized Page has heap pointer, normally set by memory_allocator.
+ p->heap_ = CcTest::heap();
+ CHECK(p->address() == page_start);
+ CHECK(p->is_valid());
+
+ p->opaque_header = 0;
+ p->SetIsLargeObjectPage(false);
+ CHECK(!p->next_page()->is_valid());
+
+ CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset);
+ CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize);
+
+ CHECK(p->Offset(page_start + Page::kObjectStartOffset) ==
+ Page::kObjectStartOffset);
+ CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize);
+
+ CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart());
+ CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd());
+
+ // test region marking
+ VerifyRegionMarking(page_start);
+
+ DeleteArray(mem);
+}
+#endif
+
+
+// Temporarily sets a given allocator in an isolate.
+class TestMemoryAllocatorScope {
+ public:
+ TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator)
+ : isolate_(isolate),
+ old_allocator_(isolate->memory_allocator_) {
+ isolate->memory_allocator_ = allocator;
+ }
+
+ ~TestMemoryAllocatorScope() {
+ isolate_->memory_allocator_ = old_allocator_;
+ }
+
+ private:
+ Isolate* isolate_;
+ MemoryAllocator* old_allocator_;
+
+ DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope);
+};
+
+
+// Temporarily sets a given code range in an isolate.
+class TestCodeRangeScope {
+ public:
+ TestCodeRangeScope(Isolate* isolate, CodeRange* code_range)
+ : isolate_(isolate),
+ old_code_range_(isolate->code_range_) {
+ isolate->code_range_ = code_range;
+ }
+
+ ~TestCodeRangeScope() {
+ isolate_->code_range_ = old_code_range_;
+ }
+
+ private:
+ Isolate* isolate_;
+ CodeRange* old_code_range_;
+
+ DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope);
+};
+
+
+static void VerifyMemoryChunk(Isolate* isolate,
+ Heap* heap,
+ CodeRange* code_range,
+ size_t reserve_area_size,
+ size_t commit_area_size,
+ size_t second_commit_area_size,
+ Executability executable) {
+ MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
+ CHECK(memory_allocator->SetUp(heap->MaxReserved(),
+ heap->MaxExecutableSize()));
+ TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
+ TestCodeRangeScope test_code_range_scope(isolate, code_range);
+
+ size_t header_size = (executable == EXECUTABLE)
+ ? MemoryAllocator::CodePageGuardStartOffset()
+ : MemoryChunk::kObjectStartOffset;
+ size_t guard_size = (executable == EXECUTABLE)
+ ? MemoryAllocator::CodePageGuardSize()
+ : 0;
+
+ MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size,
+ commit_area_size,
+ executable,
+ NULL);
+ size_t alignment = code_range != NULL && code_range->valid()
+ ? MemoryChunk::kAlignment
+ : base::OS::CommitPageSize();
+ size_t reserved_size =
+ ((executable == EXECUTABLE))
+ ? RoundUp(header_size + guard_size + reserve_area_size + guard_size,
+ alignment)
+ : RoundUp(header_size + reserve_area_size,
+ base::OS::CommitPageSize());
+ CHECK(memory_chunk->size() == reserved_size);
+ CHECK(memory_chunk->area_start() < memory_chunk->address() +
+ memory_chunk->size());
+ CHECK(memory_chunk->area_end() <= memory_chunk->address() +
+ memory_chunk->size());
+ CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);
+
+ Address area_start = memory_chunk->area_start();
+
+ memory_chunk->CommitArea(second_commit_area_size);
+ CHECK(area_start == memory_chunk->area_start());
+ CHECK(memory_chunk->area_start() < memory_chunk->address() +
+ memory_chunk->size());
+ CHECK(memory_chunk->area_end() <= memory_chunk->address() +
+ memory_chunk->size());
+ CHECK(static_cast<size_t>(memory_chunk->area_size()) ==
+ second_commit_area_size);
+
+ memory_allocator->Free(memory_chunk);
+ memory_allocator->TearDown();
+ delete memory_allocator;
+}
+
+
+TEST(Regress3540) {
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ const int pageSize = Page::kPageSize;
+ MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
+ CHECK(
+ memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize()));
+ TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
+ CodeRange* code_range = new CodeRange(isolate);
+ const size_t code_range_size = 4 * pageSize;
+ if (!code_range->SetUp(
+ code_range_size +
+ RoundUp(v8::base::OS::CommitPageSize() * kReservedCodeRangePages,
+ MemoryChunk::kAlignment) +
+ v8::internal::MemoryAllocator::CodePageAreaSize())) {
+ return;
+ }
+
+ Address address;
+ size_t size;
+ size_t request_size = code_range_size - 2 * pageSize;
+ address = code_range->AllocateRawMemory(
+ request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()),
+ &size);
+ CHECK(address != NULL);
+
+ Address null_address;
+ size_t null_size;
+ request_size = code_range_size - pageSize;
+ null_address = code_range->AllocateRawMemory(
+ request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()),
+ &null_size);
+ CHECK(null_address == NULL);
+
+ code_range->FreeRawMemory(address, size);
+ delete code_range;
+ memory_allocator->TearDown();
+ delete memory_allocator;
+}
+
+
+static unsigned int Pseudorandom() {
+ static uint32_t lo = 2345;
+ lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
+ return lo & 0xFFFFF;
+}
+
+
+TEST(MemoryChunk) {
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+
+ size_t reserve_area_size = 1 * MB;
+ size_t initial_commit_area_size, second_commit_area_size;
+
+ for (int i = 0; i < 100; i++) {
+ initial_commit_area_size = Pseudorandom();
+ second_commit_area_size = Pseudorandom();
+
+ // With CodeRange.
+ CodeRange* code_range = new CodeRange(isolate);
+ const size_t code_range_size = 32 * MB;
+ if (!code_range->SetUp(code_range_size)) return;
+
+ VerifyMemoryChunk(isolate,
+ heap,
+ code_range,
+ reserve_area_size,
+ initial_commit_area_size,
+ second_commit_area_size,
+ EXECUTABLE);
+
+ VerifyMemoryChunk(isolate,
+ heap,
+ code_range,
+ reserve_area_size,
+ initial_commit_area_size,
+ second_commit_area_size,
+ NOT_EXECUTABLE);
+ delete code_range;
+
+ // Without CodeRange.
+ code_range = NULL;
+ VerifyMemoryChunk(isolate,
+ heap,
+ code_range,
+ reserve_area_size,
+ initial_commit_area_size,
+ second_commit_area_size,
+ EXECUTABLE);
+
+ VerifyMemoryChunk(isolate,
+ heap,
+ code_range,
+ reserve_area_size,
+ initial_commit_area_size,
+ second_commit_area_size,
+ NOT_EXECUTABLE);
+ }
+}
+
+
+TEST(MemoryAllocator) {
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+
+ MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
+ CHECK(memory_allocator != nullptr);
+ CHECK(memory_allocator->SetUp(heap->MaxReserved(),
+ heap->MaxExecutableSize()));
+ TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
+
+ {
+ int total_pages = 0;
+ OldSpace faked_space(heap, OLD_SPACE, NOT_EXECUTABLE);
+ Page* first_page = memory_allocator->AllocatePage(
+ faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
+
+ first_page->InsertAfter(faked_space.anchor()->prev_page());
+ CHECK(first_page->is_valid());
+ CHECK(first_page->next_page() == faked_space.anchor());
+ total_pages++;
+
+ for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
+ CHECK(p->owner() == &faked_space);
+ }
+
+ // Again, we should get n or n - 1 pages.
+ Page* other = memory_allocator->AllocatePage(faked_space.AreaSize(),
+ &faked_space, NOT_EXECUTABLE);
+ CHECK(other->is_valid());
+ total_pages++;
+ other->InsertAfter(first_page);
+ int page_count = 0;
+ for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
+ CHECK(p->owner() == &faked_space);
+ page_count++;
+ }
+ CHECK(total_pages == page_count);
+
+ Page* second_page = first_page->next_page();
+ CHECK(second_page->is_valid());
+
+ // OldSpace's destructor will tear down the space and free up all pages.
+ }
+ memory_allocator->TearDown();
+ delete memory_allocator;
+}
+
+
+TEST(NewSpace) {
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
+ CHECK(memory_allocator->SetUp(heap->MaxReserved(),
+ heap->MaxExecutableSize()));
+ TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
+
+ NewSpace new_space(heap);
+
+ CHECK(new_space.SetUp(CcTest::heap()->ReservedSemiSpaceSize(),
+ CcTest::heap()->ReservedSemiSpaceSize()));
+ CHECK(new_space.HasBeenSetUp());
+
+ while (new_space.Available() >= Page::kMaxRegularHeapObjectSize) {
+ Object* obj =
+ new_space.AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize)
+ .ToObjectChecked();
+ CHECK(new_space.Contains(HeapObject::cast(obj)));
+ }
+
+ new_space.TearDown();
+ memory_allocator->TearDown();
+ delete memory_allocator;
+}
+
+
+TEST(OldSpace) {
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
+ CHECK(memory_allocator->SetUp(heap->MaxReserved(),
+ heap->MaxExecutableSize()));
+ TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
+
+ OldSpace* s = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
+ CHECK(s != NULL);
+
+ CHECK(s->SetUp());
+
+ while (s->Available() > 0) {
+ s->AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize).ToObjectChecked();
+ }
+
+ delete s;
+ memory_allocator->TearDown();
+ delete memory_allocator;
+}
+
+
+TEST(CompactionSpace) {
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
+ CHECK(memory_allocator != nullptr);
+ CHECK(
+ memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize()));
+ TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
+
+ CompactionSpace* compaction_space =
+ new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
+ CHECK(compaction_space != NULL);
+ CHECK(compaction_space->SetUp());
+
+ OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
+ CHECK(old_space != NULL);
+ CHECK(old_space->SetUp());
+
+ // Cannot loop until "Available()" since we initially have 0 bytes available
+ // and would thus neither grow, nor be able to allocate an object.
+ const int kNumObjects = 100;
+ const int kNumObjectsPerPage =
+ compaction_space->AreaSize() / Page::kMaxRegularHeapObjectSize;
+ const int kExpectedPages =
+ (kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
+ for (int i = 0; i < kNumObjects; i++) {
+ compaction_space->AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize)
+ .ToObjectChecked();
+ }
+ int pages_in_old_space = old_space->CountTotalPages();
+ int pages_in_compaction_space = compaction_space->CountTotalPages();
+ CHECK_EQ(pages_in_compaction_space, kExpectedPages);
+ CHECK_LE(pages_in_old_space, 1);
+
+ old_space->MergeCompactionSpace(compaction_space);
+ CHECK_EQ(old_space->CountTotalPages(),
+ pages_in_old_space + pages_in_compaction_space);
+
+ delete compaction_space;
+ delete old_space;
+
+ memory_allocator->TearDown();
+ delete memory_allocator;
+}
+
+
+TEST(CompactionSpaceUsingExternalMemory) {
+ const int kObjectSize = 512;
+
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ MemoryAllocator* allocator = new MemoryAllocator(isolate);
+ CHECK(allocator != nullptr);
+ CHECK(allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize()));
+ TestMemoryAllocatorScope test_scope(isolate, allocator);
+
+ CompactionSpaceCollection* collection = new CompactionSpaceCollection(heap);
+ CompactionSpace* compaction_space = collection->Get(OLD_SPACE);
+ CHECK(compaction_space != NULL);
+ CHECK(compaction_space->SetUp());
+
+ OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
+ CHECK(old_space != NULL);
+ CHECK(old_space->SetUp());
+
+ // The linear allocation area already counts as used bytes, making
+ // exact testing impossible.
+ heap->DisableInlineAllocation();
+
+ // Test:
+ // * Allocate a backing store in old_space.
+ // * Compute the number num_rest_objects of kObjectSize objects that fit into
+ // of available memory.
+ // kNumRestObjects.
+ // * Add the rest of available memory to the compaction space.
+ // * Allocate kNumRestObjects in the compaction space.
+ // * Allocate one object more.
+ // * Merge the compaction space and compare the expected number of pages.
+
+ // Allocate a single object in old_space to initialize a backing page.
+ old_space->AllocateRawUnaligned(kObjectSize).ToObjectChecked();
+ // Compute the number of objects that fit into the rest in old_space.
+ intptr_t rest = static_cast<int>(old_space->Available());
+ CHECK_GT(rest, 0);
+ intptr_t num_rest_objects = rest / kObjectSize;
+ // After allocating num_rest_objects in compaction_space we allocate a bit
+ // more.
+ const intptr_t kAdditionalCompactionMemory = kObjectSize;
+ // We expect a single old_space page.
+ const intptr_t kExpectedInitialOldSpacePages = 1;
+ // We expect a single additional page in compaction space because we mostly
+ // use external memory.
+ const intptr_t kExpectedCompactionPages = 1;
+ // We expect two pages to be reachable from old_space in the end.
+ const intptr_t kExpectedOldSpacePagesAfterMerge = 2;
+
+ CHECK_EQ(old_space->CountTotalPages(), kExpectedInitialOldSpacePages);
+ CHECK_EQ(compaction_space->CountTotalPages(), 0);
+ CHECK_EQ(compaction_space->Capacity(), 0);
+ // Make the rest of memory available for compaction.
+ old_space->DivideUponCompactionSpaces(&collection, 1, rest);
+ CHECK_EQ(compaction_space->CountTotalPages(), 0);
+ CHECK_EQ(compaction_space->Capacity(), rest);
+ while (num_rest_objects-- > 0) {
+ compaction_space->AllocateRawUnaligned(kObjectSize).ToObjectChecked();
+ }
+ // We only used external memory so far.
+ CHECK_EQ(compaction_space->CountTotalPages(), 0);
+ // Additional allocation.
+ compaction_space->AllocateRawUnaligned(kAdditionalCompactionMemory)
+ .ToObjectChecked();
+ // Now the compaction space shouldve also acquired a page.
+ CHECK_EQ(compaction_space->CountTotalPages(), kExpectedCompactionPages);
+
+ old_space->MergeCompactionSpace(compaction_space);
+ CHECK_EQ(old_space->CountTotalPages(), kExpectedOldSpacePagesAfterMerge);
+
+ delete collection;
+ delete old_space;
+
+ allocator->TearDown();
+ delete allocator;
+}
+
+
+CompactionSpaceCollection** HeapTester::InitializeCompactionSpaces(
+ Heap* heap, int num_spaces) {
+ CompactionSpaceCollection** spaces =
+ new CompactionSpaceCollection*[num_spaces];
+ for (int i = 0; i < num_spaces; i++) {
+ spaces[i] = new CompactionSpaceCollection(heap);
+ }
+ return spaces;
+}
+
+
+void HeapTester::DestroyCompactionSpaces(CompactionSpaceCollection** spaces,
+ int num_spaces) {
+ for (int i = 0; i < num_spaces; i++) {
+ delete spaces[i];
+ }
+ delete[] spaces;
+}
+
+
+void HeapTester::MergeCompactionSpaces(PagedSpace* space,
+ CompactionSpaceCollection** spaces,
+ int num_spaces) {
+ AllocationSpace id = space->identity();
+ for (int i = 0; i < num_spaces; i++) {
+ space->MergeCompactionSpace(spaces[i]->Get(id));
+ CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Size(), 0);
+ CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Capacity(), 0);
+ CHECK_EQ(spaces[i]->Get(id)->Waste(), 0);
+ }
+}
+
+
+void HeapTester::AllocateInCompactionSpaces(CompactionSpaceCollection** spaces,
+ AllocationSpace id, int num_spaces,
+ int num_objects, int object_size) {
+ for (int i = 0; i < num_spaces; i++) {
+ for (int j = 0; j < num_objects; j++) {
+ spaces[i]->Get(id)->AllocateRawUnaligned(object_size).ToObjectChecked();
+ }
+ spaces[i]->Get(id)->EmptyAllocationInfo();
+ CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Size(),
+ num_objects * object_size);
+ CHECK_GE(spaces[i]->Get(id)->accounting_stats_.Capacity(),
+ spaces[i]->Get(id)->accounting_stats_.Size());
+ }
+}
+
+
+void HeapTester::CompactionStats(CompactionSpaceCollection** spaces,
+ AllocationSpace id, int num_spaces,
+ intptr_t* capacity, intptr_t* size) {
+ *capacity = 0;
+ *size = 0;
+ for (int i = 0; i < num_spaces; i++) {
+ *capacity += spaces[i]->Get(id)->accounting_stats_.Capacity();
+ *size += spaces[i]->Get(id)->accounting_stats_.Size();
+ }
+}
+
+
+void HeapTester::TestCompactionSpaceDivide(int num_additional_objects,
+ int object_size,
+ int num_compaction_spaces,
+ int additional_capacity_in_bytes) {
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
+ CHECK(old_space != nullptr);
+ CHECK(old_space->SetUp());
+ old_space->AllocateRawUnaligned(object_size).ToObjectChecked();
+ old_space->EmptyAllocationInfo();
+
+ intptr_t rest_capacity = old_space->accounting_stats_.Capacity() -
+ old_space->accounting_stats_.Size();
+ intptr_t capacity_for_compaction_space =
+ rest_capacity / num_compaction_spaces;
+ int num_objects_in_compaction_space =
+ static_cast<int>(capacity_for_compaction_space) / object_size +
+ num_additional_objects;
+ CHECK_GT(num_objects_in_compaction_space, 0);
+ intptr_t initial_old_space_capacity = old_space->accounting_stats_.Capacity();
+
+ CompactionSpaceCollection** spaces =
+ InitializeCompactionSpaces(heap, num_compaction_spaces);
+ old_space->DivideUponCompactionSpaces(spaces, num_compaction_spaces,
+ capacity_for_compaction_space);
+
+ intptr_t compaction_capacity = 0;
+ intptr_t compaction_size = 0;
+ CompactionStats(spaces, OLD_SPACE, num_compaction_spaces,
+ &compaction_capacity, &compaction_size);
+
+ intptr_t old_space_capacity = old_space->accounting_stats_.Capacity();
+ intptr_t old_space_size = old_space->accounting_stats_.Size();
+ // Compaction space memory is subtracted from the original space's capacity.
+ CHECK_EQ(old_space_capacity,
+ initial_old_space_capacity - compaction_capacity);
+ CHECK_EQ(compaction_size, 0);
+
+ AllocateInCompactionSpaces(spaces, OLD_SPACE, num_compaction_spaces,
+ num_objects_in_compaction_space, object_size);
+
+ // Old space size and capacity should be the same as after dividing.
+ CHECK_EQ(old_space->accounting_stats_.Size(), old_space_size);
+ CHECK_EQ(old_space->accounting_stats_.Capacity(), old_space_capacity);
+
+ CompactionStats(spaces, OLD_SPACE, num_compaction_spaces,
+ &compaction_capacity, &compaction_size);
+ MergeCompactionSpaces(old_space, spaces, num_compaction_spaces);
+
+ CHECK_EQ(old_space->accounting_stats_.Capacity(),
+ old_space_capacity + compaction_capacity);
+ CHECK_EQ(old_space->accounting_stats_.Size(),
+ old_space_size + compaction_size);
+ // We check against the expected end capacity.
+ CHECK_EQ(old_space->accounting_stats_.Capacity(),
+ initial_old_space_capacity + additional_capacity_in_bytes);
+
+ DestroyCompactionSpaces(spaces, num_compaction_spaces);
+ delete old_space;
+}
+
+
+HEAP_TEST(CompactionSpaceDivideSinglePage) {
+ const int kObjectSize = KB;
+ const int kCompactionSpaces = 4;
+ // Since the bound for objects is tight and the dividing is best effort, we
+ // subtract some objects to make sure we still fit in the initial page.
+ // A CHECK makes sure that the overall number of allocated objects stays
+ // > 0.
+ const int kAdditionalObjects = -10;
+ const int kAdditionalCapacityRequired = 0;
+ TestCompactionSpaceDivide(kAdditionalObjects, kObjectSize, kCompactionSpaces,
+ kAdditionalCapacityRequired);
+}
+
+
+HEAP_TEST(CompactionSpaceDivideMultiplePages) {
+ const int kObjectSize = KB;
+ const int kCompactionSpaces = 4;
+ // Allocate half a page of objects to ensure that we need one more page per
+ // compaction space.
+ const int kAdditionalObjects = (Page::kPageSize / kObjectSize / 2);
+ const int kAdditionalCapacityRequired =
+ Page::kAllocatableMemory * kCompactionSpaces;
+ TestCompactionSpaceDivide(kAdditionalObjects, kObjectSize, kCompactionSpaces,
+ kAdditionalCapacityRequired);
+}
+
+
+TEST(LargeObjectSpace) {
+ v8::V8::Initialize();
+
+ LargeObjectSpace* lo = CcTest::heap()->lo_space();
+ CHECK(lo != NULL);
+
+ int lo_size = Page::kPageSize;
+
+ Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE).ToObjectChecked();
+ CHECK(obj->IsHeapObject());
+
+ HeapObject* ho = HeapObject::cast(obj);
+
+ CHECK(lo->Contains(HeapObject::cast(obj)));
+
+ CHECK(lo->FindObject(ho->address()) == obj);
+
+ CHECK(lo->Contains(ho));
+
+ while (true) {
+ intptr_t available = lo->Available();
+ { AllocationResult allocation = lo->AllocateRaw(lo_size, NOT_EXECUTABLE);
+ if (allocation.IsRetry()) break;
+ }
+ // The available value is conservative such that it may report
+ // zero prior to heap exhaustion.
+ CHECK(lo->Available() < available || available == 0);
+ }
+
+ CHECK(!lo->IsEmpty());
+
+ CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE).IsRetry());
+}
+
+
+TEST(SizeOfFirstPageIsLargeEnough) {
+ if (i::FLAG_always_opt) return;
+ // Bootstrapping without a snapshot causes more allocations.
+ CcTest::InitializeVM();
+ Isolate* isolate = CcTest::i_isolate();
+ if (!isolate->snapshot_available()) return;
+ if (Snapshot::EmbedsScript(isolate)) return;
+
+ // If this test fails due to enabling experimental natives that are not part
+ // of the snapshot, we may need to adjust CalculateFirstPageSizes.
+
+ // Freshly initialized VM gets by with one page per space.
+ for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
+ // Debug code can be very large, so skip CODE_SPACE if we are generating it.
+ if (i == CODE_SPACE && i::FLAG_debug_code) continue;
+ CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
+ }
+
+ // Executing the empty script gets by with one page per space.
+ HandleScope scope(isolate);
+ CompileRun("/*empty*/");
+ for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
+ // Debug code can be very large, so skip CODE_SPACE if we are generating it.
+ if (i == CODE_SPACE && i::FLAG_debug_code) continue;
+ CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
+ }
+
+ // No large objects required to perform the above steps.
+ CHECK(isolate->heap()->lo_space()->IsEmpty());
+}
+
+
+UNINITIALIZED_TEST(NewSpaceGrowsToTargetCapacity) {
+ FLAG_target_semi_space_size = 2 * (Page::kPageSize / MB);
+ if (FLAG_optimize_for_size) return;
+
+ v8::Isolate::CreateParams create_params;
+ create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
+ v8::Isolate* isolate = v8::Isolate::New(create_params);
+ {
+ v8::Isolate::Scope isolate_scope(isolate);
+ v8::HandleScope handle_scope(isolate);
+ v8::Context::New(isolate)->Enter();
+
+ Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
+
+ NewSpace* new_space = i_isolate->heap()->new_space();
+
+ // This test doesn't work if we start with a non-default new space
+ // configuration.
+ if (new_space->InitialTotalCapacity() == Page::kPageSize) {
+ CHECK_EQ(new_space->CommittedMemory(), new_space->InitialTotalCapacity());
+
+ // Fill up the first (and only) page of the semi space.
+ FillCurrentPage(new_space);
+
+ // Try to allocate out of the new space. A new page should be added and
+ // the
+ // allocation should succeed.
+ v8::internal::AllocationResult allocation =
+ new_space->AllocateRawUnaligned(80);
+ CHECK(!allocation.IsRetry());
+ CHECK_EQ(new_space->CommittedMemory(), 2 * Page::kPageSize);
+
+ // Turn the allocation into a proper object so isolate teardown won't
+ // crash.
+ HeapObject* free_space = NULL;
+ CHECK(allocation.To(&free_space));
+ new_space->heap()->CreateFillerObjectAt(free_space->address(), 80);
+ }
+ }
+ isolate->Dispose();
+}
+
+
+static HeapObject* AllocateUnaligned(NewSpace* space, int size) {
+ AllocationResult allocation = space->AllocateRawUnaligned(size);
+ CHECK(!allocation.IsRetry());
+ HeapObject* filler = NULL;
+ CHECK(allocation.To(&filler));
+ space->heap()->CreateFillerObjectAt(filler->address(), size);
+ return filler;
+}
+
+class Observer : public InlineAllocationObserver {
+ public:
+ explicit Observer(intptr_t step_size)
+ : InlineAllocationObserver(step_size), count_(0) {}
+
+ void Step(int bytes_allocated, Address, size_t) override { count_++; }
+
+ int count() const { return count_; }
+
+ private:
+ int count_;
+};
+
+
+UNINITIALIZED_TEST(InlineAllocationObserver) {
+ v8::Isolate::CreateParams create_params;
+ create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
+ v8::Isolate* isolate = v8::Isolate::New(create_params);
+ {
+ v8::Isolate::Scope isolate_scope(isolate);
+ v8::HandleScope handle_scope(isolate);
+ v8::Context::New(isolate)->Enter();
+
+ Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
+
+ NewSpace* new_space = i_isolate->heap()->new_space();
+
+ Observer observer1(128);
+ new_space->AddInlineAllocationObserver(&observer1);
+
+ // The observer should not get notified if we have only allocated less than
+ // 128 bytes.
+ AllocateUnaligned(new_space, 64);
+ CHECK_EQ(observer1.count(), 0);
+
+ // The observer should get called when we have allocated exactly 128 bytes.
+ AllocateUnaligned(new_space, 64);
+ CHECK_EQ(observer1.count(), 1);
+
+ // Another >128 bytes should get another notification.
+ AllocateUnaligned(new_space, 136);
+ CHECK_EQ(observer1.count(), 2);
+
+ // Allocating a large object should get only one notification.
+ AllocateUnaligned(new_space, 1024);
+ CHECK_EQ(observer1.count(), 3);
+
+ // Allocating another 2048 bytes in small objects should get 16
+ // notifications.
+ for (int i = 0; i < 64; ++i) {
+ AllocateUnaligned(new_space, 32);
+ }
+ CHECK_EQ(observer1.count(), 19);
+
+ // Multiple observers should work.
+ Observer observer2(96);
+ new_space->AddInlineAllocationObserver(&observer2);
+
+ AllocateUnaligned(new_space, 2048);
+ CHECK_EQ(observer1.count(), 20);
+ CHECK_EQ(observer2.count(), 1);
+
+ AllocateUnaligned(new_space, 104);
+ CHECK_EQ(observer1.count(), 20);
+ CHECK_EQ(observer2.count(), 2);
+
+ // Callback should stop getting called after an observer is removed.
+ new_space->RemoveInlineAllocationObserver(&observer1);
+
+ AllocateUnaligned(new_space, 384);
+ CHECK_EQ(observer1.count(), 20); // no more notifications.
+ CHECK_EQ(observer2.count(), 3); // this one is still active.
+
+ // Ensure that PauseInlineAllocationObserversScope work correctly.
+ AllocateUnaligned(new_space, 48);
+ CHECK_EQ(observer2.count(), 3);
+ {
+ PauseInlineAllocationObserversScope pause_observers(new_space);
+ CHECK_EQ(observer2.count(), 3);
+ AllocateUnaligned(new_space, 384);
+ CHECK_EQ(observer2.count(), 3);
+ }
+ CHECK_EQ(observer2.count(), 3);
+ // Coupled with the 48 bytes allocated before the pause, another 48 bytes
+ // allocated here should trigger a notification.
+ AllocateUnaligned(new_space, 48);
+ CHECK_EQ(observer2.count(), 4);
+
+ new_space->RemoveInlineAllocationObserver(&observer2);
+ AllocateUnaligned(new_space, 384);
+ CHECK_EQ(observer1.count(), 20);
+ CHECK_EQ(observer2.count(), 4);
+ }
+ isolate->Dispose();
+}
+
+
+UNINITIALIZED_TEST(InlineAllocationObserverCadence) {
+ v8::Isolate::CreateParams create_params;
+ create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
+ v8::Isolate* isolate = v8::Isolate::New(create_params);
+ {
+ v8::Isolate::Scope isolate_scope(isolate);
+ v8::HandleScope handle_scope(isolate);
+ v8::Context::New(isolate)->Enter();
+
+ Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
+
+ NewSpace* new_space = i_isolate->heap()->new_space();
+
+ Observer observer1(512);
+ new_space->AddInlineAllocationObserver(&observer1);
+ Observer observer2(576);
+ new_space->AddInlineAllocationObserver(&observer2);
+
+ for (int i = 0; i < 512; ++i) {
+ AllocateUnaligned(new_space, 32);
+ }
+
+ new_space->RemoveInlineAllocationObserver(&observer1);
+ new_space->RemoveInlineAllocationObserver(&observer2);
+
+ CHECK_EQ(observer1.count(), 32);
+ CHECK_EQ(observer2.count(), 28);
+ }
+ isolate->Dispose();
+}
+
+} // namespace internal
+} // namespace v8