summaryrefslogtreecommitdiff
path: root/deps/v8/test/cctest/compiler/test-run-load-store.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/test/cctest/compiler/test-run-load-store.cc')
-rw-r--r--deps/v8/test/cctest/compiler/test-run-load-store.cc1190
1 files changed, 1190 insertions, 0 deletions
diff --git a/deps/v8/test/cctest/compiler/test-run-load-store.cc b/deps/v8/test/cctest/compiler/test-run-load-store.cc
new file mode 100644
index 0000000000..2461129384
--- /dev/null
+++ b/deps/v8/test/cctest/compiler/test-run-load-store.cc
@@ -0,0 +1,1190 @@
+// Copyright 2016 the V8 project authors. All rights reserved. Use of this
+// source code is governed by a BSD-style license that can be found in the
+// LICENSE file.
+
+#include <cmath>
+#include <functional>
+#include <limits>
+
+#include "src/base/bits.h"
+#include "src/base/utils/random-number-generator.h"
+#include "src/codegen.h"
+#include "test/cctest/cctest.h"
+#include "test/cctest/compiler/codegen-tester.h"
+#include "test/cctest/compiler/graph-builder-tester.h"
+#include "test/cctest/compiler/value-helper.h"
+
+using namespace v8::base;
+
+namespace {
+template <typename Type>
+void CheckOobValue(Type val) {
+ UNREACHABLE();
+}
+
+template <>
+void CheckOobValue(int32_t val) {
+ CHECK_EQ(0, val);
+}
+
+template <>
+void CheckOobValue(int64_t val) {
+ CHECK_EQ(0, val);
+}
+
+template <>
+void CheckOobValue(float val) {
+ CHECK(std::isnan(val));
+}
+
+template <>
+void CheckOobValue(double val) {
+ CHECK(std::isnan(val));
+}
+} // namespace
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+enum TestAlignment {
+ kAligned,
+ kUnaligned,
+};
+
+// This is a America!
+#define A_BILLION 1000000000ULL
+#define A_GIG (1024ULL * 1024ULL * 1024ULL)
+
+namespace {
+void RunLoadInt32(const TestAlignment t) {
+ RawMachineAssemblerTester<int32_t> m;
+
+ int32_t p1 = 0; // loads directly from this location.
+
+ if (t == TestAlignment::kAligned) {
+ m.Return(m.LoadFromPointer(&p1, MachineType::Int32()));
+ } else if (t == TestAlignment::kUnaligned) {
+ m.Return(m.UnalignedLoadFromPointer(&p1, MachineType::Int32()));
+ } else {
+ UNREACHABLE();
+ }
+
+ FOR_INT32_INPUTS(i) {
+ p1 = *i;
+ CHECK_EQ(p1, m.Call());
+ }
+}
+
+void RunLoadInt32Offset(TestAlignment t) {
+ int32_t p1 = 0; // loads directly from this location.
+
+ int32_t offsets[] = {-2000000, -100, -101, 1, 3,
+ 7, 120, 2000, 2000000000, 0xff};
+
+ for (size_t i = 0; i < arraysize(offsets); i++) {
+ RawMachineAssemblerTester<int32_t> m;
+ int32_t offset = offsets[i];
+ byte* pointer = reinterpret_cast<byte*>(&p1) - offset;
+
+ // generate load [#base + #index]
+ if (t == TestAlignment::kAligned) {
+ m.Return(m.LoadFromPointer(pointer, MachineType::Int32(), offset));
+ } else if (t == TestAlignment::kUnaligned) {
+ m.Return(
+ m.UnalignedLoadFromPointer(pointer, MachineType::Int32(), offset));
+ } else {
+ UNREACHABLE();
+ }
+
+ FOR_INT32_INPUTS(j) {
+ p1 = *j;
+ CHECK_EQ(p1, m.Call());
+ }
+ }
+}
+
+void RunLoadStoreFloat32Offset(TestAlignment t) {
+ float p1 = 0.0f; // loads directly from this location.
+ float p2 = 0.0f; // and stores directly into this location.
+
+ FOR_INT32_INPUTS(i) {
+ int32_t magic = 0x2342aabb + *i * 3;
+ RawMachineAssemblerTester<int32_t> m;
+ int32_t offset = *i;
+ byte* from = reinterpret_cast<byte*>(&p1) - offset;
+ byte* to = reinterpret_cast<byte*>(&p2) - offset;
+ // generate load [#base + #index]
+ if (t == TestAlignment::kAligned) {
+ Node* load = m.Load(MachineType::Float32(), m.PointerConstant(from),
+ m.IntPtrConstant(offset));
+ m.Store(MachineRepresentation::kFloat32, m.PointerConstant(to),
+ m.IntPtrConstant(offset), load, kNoWriteBarrier);
+ } else if (t == TestAlignment::kUnaligned) {
+ Node* load =
+ m.UnalignedLoad(MachineType::Float32(), m.PointerConstant(from),
+ m.IntPtrConstant(offset));
+ m.UnalignedStore(MachineRepresentation::kFloat32, m.PointerConstant(to),
+ m.IntPtrConstant(offset), load);
+
+ } else {
+ UNREACHABLE();
+ }
+ m.Return(m.Int32Constant(magic));
+
+ FOR_FLOAT32_INPUTS(j) {
+ p1 = *j;
+ p2 = *j - 5;
+ CHECK_EQ(magic, m.Call());
+ CheckDoubleEq(p1, p2);
+ }
+ }
+}
+
+void RunLoadStoreFloat64Offset(TestAlignment t) {
+ double p1 = 0; // loads directly from this location.
+ double p2 = 0; // and stores directly into this location.
+
+ FOR_INT32_INPUTS(i) {
+ int32_t magic = 0x2342aabb + *i * 3;
+ RawMachineAssemblerTester<int32_t> m;
+ int32_t offset = *i;
+ byte* from = reinterpret_cast<byte*>(&p1) - offset;
+ byte* to = reinterpret_cast<byte*>(&p2) - offset;
+ // generate load [#base + #index]
+ if (t == TestAlignment::kAligned) {
+ Node* load = m.Load(MachineType::Float64(), m.PointerConstant(from),
+ m.IntPtrConstant(offset));
+ m.Store(MachineRepresentation::kFloat64, m.PointerConstant(to),
+ m.IntPtrConstant(offset), load, kNoWriteBarrier);
+ } else if (t == TestAlignment::kUnaligned) {
+ Node* load =
+ m.UnalignedLoad(MachineType::Float64(), m.PointerConstant(from),
+ m.IntPtrConstant(offset));
+ m.UnalignedStore(MachineRepresentation::kFloat64, m.PointerConstant(to),
+ m.IntPtrConstant(offset), load);
+ } else {
+ UNREACHABLE();
+ }
+ m.Return(m.Int32Constant(magic));
+
+ FOR_FLOAT64_INPUTS(j) {
+ p1 = *j;
+ p2 = *j - 5;
+ CHECK_EQ(magic, m.Call());
+ CheckDoubleEq(p1, p2);
+ }
+ }
+}
+} // namespace
+
+TEST(RunLoadInt32) { RunLoadInt32(TestAlignment::kAligned); }
+
+TEST(RunUnalignedLoadInt32) { RunLoadInt32(TestAlignment::kUnaligned); }
+
+TEST(RunLoadInt32Offset) { RunLoadInt32Offset(TestAlignment::kAligned); }
+
+TEST(RunUnalignedLoadInt32Offset) {
+ RunLoadInt32Offset(TestAlignment::kUnaligned);
+}
+
+TEST(RunLoadStoreFloat32Offset) {
+ RunLoadStoreFloat32Offset(TestAlignment::kAligned);
+}
+
+TEST(RunUnalignedLoadStoreFloat32Offset) {
+ RunLoadStoreFloat32Offset(TestAlignment::kUnaligned);
+}
+
+TEST(RunLoadStoreFloat64Offset) {
+ RunLoadStoreFloat64Offset(TestAlignment::kAligned);
+}
+
+TEST(RunUnalignedLoadStoreFloat64Offset) {
+ RunLoadStoreFloat64Offset(TestAlignment::kUnaligned);
+}
+
+namespace {
+template <typename Type>
+void RunLoadImmIndex(MachineType rep, TestAlignment t) {
+ const int kNumElems = 3;
+ Type buffer[kNumElems];
+
+ // initialize the buffer with some raw data.
+ byte* raw = reinterpret_cast<byte*>(buffer);
+ for (size_t i = 0; i < sizeof(buffer); i++) {
+ raw[i] = static_cast<byte>((i + sizeof(buffer)) ^ 0xAA);
+ }
+
+ // Test with various large and small offsets.
+ for (int offset = -1; offset <= 200000; offset *= -5) {
+ for (int i = 0; i < kNumElems; i++) {
+ BufferedRawMachineAssemblerTester<Type> m;
+ Node* base = m.PointerConstant(buffer - offset);
+ Node* index = m.Int32Constant((offset + i) * sizeof(buffer[0]));
+ if (t == TestAlignment::kAligned) {
+ m.Return(m.Load(rep, base, index));
+ } else if (t == TestAlignment::kUnaligned) {
+ m.Return(m.UnalignedLoad(rep, base, index));
+ } else {
+ UNREACHABLE();
+ }
+
+ volatile Type expected = buffer[i];
+ volatile Type actual = m.Call();
+ CHECK_EQ(expected, actual);
+ }
+ }
+}
+
+template <typename CType>
+void RunLoadStore(MachineType rep, TestAlignment t) {
+ const int kNumElems = 4;
+ CType buffer[kNumElems];
+
+ for (int32_t x = 0; x < kNumElems; x++) {
+ int32_t y = kNumElems - x - 1;
+ // initialize the buffer with raw data.
+ byte* raw = reinterpret_cast<byte*>(buffer);
+ for (size_t i = 0; i < sizeof(buffer); i++) {
+ raw[i] = static_cast<byte>((i + sizeof(buffer)) ^ 0xAA);
+ }
+
+ RawMachineAssemblerTester<int32_t> m;
+ int32_t OK = 0x29000 + x;
+ Node* base = m.PointerConstant(buffer);
+ Node* index0 = m.IntPtrConstant(x * sizeof(buffer[0]));
+ Node* index1 = m.IntPtrConstant(y * sizeof(buffer[0]));
+ if (t == TestAlignment::kAligned) {
+ Node* load = m.Load(rep, base, index0);
+ m.Store(rep.representation(), base, index1, load, kNoWriteBarrier);
+ } else if (t == TestAlignment::kUnaligned) {
+ Node* load = m.UnalignedLoad(rep, base, index0);
+ m.UnalignedStore(rep.representation(), base, index1, load);
+ }
+
+ m.Return(m.Int32Constant(OK));
+
+ CHECK(buffer[x] != buffer[y]);
+ CHECK_EQ(OK, m.Call());
+ CHECK(buffer[x] == buffer[y]);
+ }
+}
+
+template <typename CType>
+void RunUnalignedLoadStoreUnalignedAccess(MachineType rep) {
+ CType in, out;
+ CType in_buffer[2];
+ CType out_buffer[2];
+ byte* raw;
+
+ for (int x = 0; x < sizeof(CType); x++) {
+ int y = sizeof(CType) - x;
+
+ raw = reinterpret_cast<byte*>(&in);
+ for (size_t i = 0; i < sizeof(CType); i++) {
+ raw[i] = static_cast<byte>((i + sizeof(CType)) ^ 0xAA);
+ }
+
+ raw = reinterpret_cast<byte*>(in_buffer);
+ MemCopy(raw + x, &in, sizeof(CType));
+
+ RawMachineAssemblerTester<int32_t> m;
+ int32_t OK = 0x29000 + x;
+
+ Node* base0 = m.PointerConstant(in_buffer);
+ Node* base1 = m.PointerConstant(out_buffer);
+ Node* index0 = m.IntPtrConstant(x);
+ Node* index1 = m.IntPtrConstant(y);
+ Node* load = m.UnalignedLoad(rep, base0, index0);
+ m.UnalignedStore(rep.representation(), base1, index1, load);
+
+ m.Return(m.Int32Constant(OK));
+
+ CHECK_EQ(OK, m.Call());
+
+ raw = reinterpret_cast<byte*>(&out_buffer);
+ MemCopy(&out, raw + y, sizeof(CType));
+ CHECK(in == out);
+ }
+}
+} // namespace
+
+TEST(RunLoadImmIndex) {
+ RunLoadImmIndex<int8_t>(MachineType::Int8(), TestAlignment::kAligned);
+ RunLoadImmIndex<uint8_t>(MachineType::Uint8(), TestAlignment::kAligned);
+ RunLoadImmIndex<int16_t>(MachineType::Int16(), TestAlignment::kAligned);
+ RunLoadImmIndex<uint16_t>(MachineType::Uint16(), TestAlignment::kAligned);
+ RunLoadImmIndex<int32_t>(MachineType::Int32(), TestAlignment::kAligned);
+ RunLoadImmIndex<uint32_t>(MachineType::Uint32(), TestAlignment::kAligned);
+ RunLoadImmIndex<int32_t*>(MachineType::AnyTagged(), TestAlignment::kAligned);
+ RunLoadImmIndex<float>(MachineType::Float32(), TestAlignment::kAligned);
+ RunLoadImmIndex<double>(MachineType::Float64(), TestAlignment::kAligned);
+#if V8_TARGET_ARCH_64_BIT
+ RunLoadImmIndex<int64_t>(MachineType::Int64(), TestAlignment::kAligned);
+#endif
+ // TODO(titzer): test various indexing modes.
+}
+
+TEST(RunUnalignedLoadImmIndex) {
+ RunLoadImmIndex<int16_t>(MachineType::Int16(), TestAlignment::kUnaligned);
+ RunLoadImmIndex<uint16_t>(MachineType::Uint16(), TestAlignment::kUnaligned);
+ RunLoadImmIndex<int32_t>(MachineType::Int32(), TestAlignment::kUnaligned);
+ RunLoadImmIndex<uint32_t>(MachineType::Uint32(), TestAlignment::kUnaligned);
+ RunLoadImmIndex<int32_t*>(MachineType::AnyTagged(),
+ TestAlignment::kUnaligned);
+ RunLoadImmIndex<float>(MachineType::Float32(), TestAlignment::kUnaligned);
+ RunLoadImmIndex<double>(MachineType::Float64(), TestAlignment::kUnaligned);
+#if V8_TARGET_ARCH_64_BIT
+ RunLoadImmIndex<int64_t>(MachineType::Int64(), TestAlignment::kUnaligned);
+#endif
+ // TODO(titzer): test various indexing modes.
+}
+
+TEST(RunLoadStore) {
+ RunLoadStore<int8_t>(MachineType::Int8(), TestAlignment::kAligned);
+ RunLoadStore<uint8_t>(MachineType::Uint8(), TestAlignment::kAligned);
+ RunLoadStore<int16_t>(MachineType::Int16(), TestAlignment::kAligned);
+ RunLoadStore<uint16_t>(MachineType::Uint16(), TestAlignment::kAligned);
+ RunLoadStore<int32_t>(MachineType::Int32(), TestAlignment::kAligned);
+ RunLoadStore<uint32_t>(MachineType::Uint32(), TestAlignment::kAligned);
+ RunLoadStore<void*>(MachineType::AnyTagged(), TestAlignment::kAligned);
+ RunLoadStore<float>(MachineType::Float32(), TestAlignment::kAligned);
+ RunLoadStore<double>(MachineType::Float64(), TestAlignment::kAligned);
+#if V8_TARGET_ARCH_64_BIT
+ RunLoadStore<int64_t>(MachineType::Int64(), TestAlignment::kAligned);
+#endif
+}
+
+TEST(RunUnalignedLoadStore) {
+ RunLoadStore<int16_t>(MachineType::Int16(), TestAlignment::kUnaligned);
+ RunLoadStore<uint16_t>(MachineType::Uint16(), TestAlignment::kUnaligned);
+ RunLoadStore<int32_t>(MachineType::Int32(), TestAlignment::kUnaligned);
+ RunLoadStore<uint32_t>(MachineType::Uint32(), TestAlignment::kUnaligned);
+ RunLoadStore<void*>(MachineType::AnyTagged(), TestAlignment::kUnaligned);
+ RunLoadStore<float>(MachineType::Float32(), TestAlignment::kUnaligned);
+ RunLoadStore<double>(MachineType::Float64(), TestAlignment::kUnaligned);
+#if V8_TARGET_ARCH_64_BIT
+ RunLoadStore<int64_t>(MachineType::Int64(), TestAlignment::kUnaligned);
+#endif
+}
+
+TEST(RunUnalignedLoadStoreUnalignedAccess) {
+ RunUnalignedLoadStoreUnalignedAccess<int16_t>(MachineType::Int16());
+ RunUnalignedLoadStoreUnalignedAccess<uint16_t>(MachineType::Uint16());
+ RunUnalignedLoadStoreUnalignedAccess<int32_t>(MachineType::Int32());
+ RunUnalignedLoadStoreUnalignedAccess<uint32_t>(MachineType::Uint32());
+ RunUnalignedLoadStoreUnalignedAccess<void*>(MachineType::AnyTagged());
+ RunUnalignedLoadStoreUnalignedAccess<float>(MachineType::Float32());
+ RunUnalignedLoadStoreUnalignedAccess<double>(MachineType::Float64());
+#if V8_TARGET_ARCH_64_BIT
+ RunUnalignedLoadStoreUnalignedAccess<int64_t>(MachineType::Int64());
+#endif
+}
+
+#if V8_TARGET_LITTLE_ENDIAN
+#define LSB(addr, bytes) addr
+#elif V8_TARGET_BIG_ENDIAN
+#define LSB(addr, bytes) reinterpret_cast<byte*>(addr + 1) - bytes
+#else
+#error "Unknown Architecture"
+#endif
+
+namespace {
+void RunLoadStoreSignExtend32(TestAlignment t) {
+ int32_t buffer[4];
+ RawMachineAssemblerTester<int32_t> m;
+ Node* load8 = m.LoadFromPointer(LSB(&buffer[0], 1), MachineType::Int8());
+ if (t == TestAlignment::kAligned) {
+ Node* load16 = m.LoadFromPointer(LSB(&buffer[0], 2), MachineType::Int16());
+ Node* load32 = m.LoadFromPointer(&buffer[0], MachineType::Int32());
+ m.StoreToPointer(&buffer[1], MachineRepresentation::kWord32, load8);
+ m.StoreToPointer(&buffer[2], MachineRepresentation::kWord32, load16);
+ m.StoreToPointer(&buffer[3], MachineRepresentation::kWord32, load32);
+ } else if (t == TestAlignment::kUnaligned) {
+ Node* load16 =
+ m.UnalignedLoadFromPointer(LSB(&buffer[0], 2), MachineType::Int16());
+ Node* load32 = m.UnalignedLoadFromPointer(&buffer[0], MachineType::Int32());
+ m.StoreToPointer(&buffer[1], MachineRepresentation::kWord32, load8);
+ m.UnalignedStoreToPointer(&buffer[2], MachineRepresentation::kWord32,
+ load16);
+ m.UnalignedStoreToPointer(&buffer[3], MachineRepresentation::kWord32,
+ load32);
+ } else {
+ UNREACHABLE();
+ }
+ m.Return(load8);
+
+ FOR_INT32_INPUTS(i) {
+ buffer[0] = *i;
+
+ CHECK_EQ(static_cast<int8_t>(*i & 0xff), m.Call());
+ CHECK_EQ(static_cast<int8_t>(*i & 0xff), buffer[1]);
+ CHECK_EQ(static_cast<int16_t>(*i & 0xffff), buffer[2]);
+ CHECK_EQ(*i, buffer[3]);
+ }
+}
+
+void RunLoadStoreZeroExtend32(TestAlignment t) {
+ uint32_t buffer[4];
+ RawMachineAssemblerTester<uint32_t> m;
+ Node* load8 = m.LoadFromPointer(LSB(&buffer[0], 1), MachineType::Uint8());
+ if (t == TestAlignment::kAligned) {
+ Node* load16 = m.LoadFromPointer(LSB(&buffer[0], 2), MachineType::Uint16());
+ Node* load32 = m.LoadFromPointer(&buffer[0], MachineType::Uint32());
+ m.StoreToPointer(&buffer[1], MachineRepresentation::kWord32, load8);
+ m.StoreToPointer(&buffer[2], MachineRepresentation::kWord32, load16);
+ m.StoreToPointer(&buffer[3], MachineRepresentation::kWord32, load32);
+ } else if (t == TestAlignment::kUnaligned) {
+ Node* load16 =
+ m.UnalignedLoadFromPointer(LSB(&buffer[0], 2), MachineType::Uint16());
+ Node* load32 =
+ m.UnalignedLoadFromPointer(&buffer[0], MachineType::Uint32());
+ m.StoreToPointer(&buffer[1], MachineRepresentation::kWord32, load8);
+ m.UnalignedStoreToPointer(&buffer[2], MachineRepresentation::kWord32,
+ load16);
+ m.UnalignedStoreToPointer(&buffer[3], MachineRepresentation::kWord32,
+ load32);
+ }
+ m.Return(load8);
+
+ FOR_UINT32_INPUTS(i) {
+ buffer[0] = *i;
+
+ CHECK_EQ((*i & 0xff), m.Call());
+ CHECK_EQ((*i & 0xff), buffer[1]);
+ CHECK_EQ((*i & 0xffff), buffer[2]);
+ CHECK_EQ(*i, buffer[3]);
+ }
+}
+} // namespace
+
+TEST(RunLoadStoreSignExtend32) {
+ RunLoadStoreSignExtend32(TestAlignment::kAligned);
+}
+
+TEST(RunUnalignedLoadStoreSignExtend32) {
+ RunLoadStoreSignExtend32(TestAlignment::kUnaligned);
+}
+
+TEST(RunLoadStoreZeroExtend32) {
+ RunLoadStoreZeroExtend32(TestAlignment::kAligned);
+}
+
+TEST(RunUnalignedLoadStoreZeroExtend32) {
+ RunLoadStoreZeroExtend32(TestAlignment::kUnaligned);
+}
+
+#if V8_TARGET_ARCH_64_BIT
+
+namespace {
+void RunLoadStoreSignExtend64(TestAlignment t) {
+ if (true) return; // TODO(titzer): sign extension of loads to 64-bit.
+ int64_t buffer[5];
+ RawMachineAssemblerTester<int64_t> m;
+ Node* load8 = m.LoadFromPointer(LSB(&buffer[0], 1), MachineType::Int8());
+ if (t == TestAlignment::kAligned) {
+ Node* load16 = m.LoadFromPointer(LSB(&buffer[0], 2), MachineType::Int16());
+ Node* load32 = m.LoadFromPointer(LSB(&buffer[0], 4), MachineType::Int32());
+ Node* load64 = m.LoadFromPointer(&buffer[0], MachineType::Int64());
+ m.StoreToPointer(&buffer[1], MachineRepresentation::kWord64, load8);
+ m.StoreToPointer(&buffer[2], MachineRepresentation::kWord64, load16);
+ m.StoreToPointer(&buffer[3], MachineRepresentation::kWord64, load32);
+ m.StoreToPointer(&buffer[4], MachineRepresentation::kWord64, load64);
+ } else if (t == TestAlignment::kUnaligned) {
+ Node* load16 =
+ m.UnalignedLoadFromPointer(LSB(&buffer[0], 2), MachineType::Int16());
+ Node* load32 =
+ m.UnalignedLoadFromPointer(LSB(&buffer[0], 4), MachineType::Int32());
+ Node* load64 = m.UnalignedLoadFromPointer(&buffer[0], MachineType::Int64());
+ m.StoreToPointer(&buffer[1], MachineRepresentation::kWord64, load8);
+ m.UnalignedStoreToPointer(&buffer[2], MachineRepresentation::kWord64,
+ load16);
+ m.UnalignedStoreToPointer(&buffer[3], MachineRepresentation::kWord64,
+ load32);
+ m.UnalignedStoreToPointer(&buffer[4], MachineRepresentation::kWord64,
+ load64);
+ } else {
+ UNREACHABLE();
+ }
+ m.Return(load8);
+
+ FOR_INT64_INPUTS(i) {
+ buffer[0] = *i;
+
+ CHECK_EQ(static_cast<int8_t>(*i & 0xff), m.Call());
+ CHECK_EQ(static_cast<int8_t>(*i & 0xff), buffer[1]);
+ CHECK_EQ(static_cast<int16_t>(*i & 0xffff), buffer[2]);
+ CHECK_EQ(static_cast<int32_t>(*i & 0xffffffff), buffer[3]);
+ CHECK_EQ(*i, buffer[4]);
+ }
+}
+
+void RunLoadStoreZeroExtend64(TestAlignment t) {
+ if (kPointerSize < 8) return;
+ uint64_t buffer[5];
+ RawMachineAssemblerTester<int64_t> m;
+ Node* load8 = m.LoadFromPointer(LSB(&buffer[0], 1), MachineType::Uint8());
+ if (t == TestAlignment::kAligned) {
+ Node* load16 = m.LoadFromPointer(LSB(&buffer[0], 2), MachineType::Uint16());
+ Node* load32 = m.LoadFromPointer(LSB(&buffer[0], 4), MachineType::Uint32());
+ Node* load64 = m.LoadFromPointer(&buffer[0], MachineType::Uint64());
+ m.StoreToPointer(&buffer[1], MachineRepresentation::kWord64, load8);
+ m.StoreToPointer(&buffer[2], MachineRepresentation::kWord64, load16);
+ m.StoreToPointer(&buffer[3], MachineRepresentation::kWord64, load32);
+ m.StoreToPointer(&buffer[4], MachineRepresentation::kWord64, load64);
+ } else if (t == TestAlignment::kUnaligned) {
+ Node* load16 =
+ m.UnalignedLoadFromPointer(LSB(&buffer[0], 2), MachineType::Uint16());
+ Node* load32 =
+ m.UnalignedLoadFromPointer(LSB(&buffer[0], 4), MachineType::Uint32());
+ Node* load64 =
+ m.UnalignedLoadFromPointer(&buffer[0], MachineType::Uint64());
+ m.StoreToPointer(&buffer[1], MachineRepresentation::kWord64, load8);
+ m.UnalignedStoreToPointer(&buffer[2], MachineRepresentation::kWord64,
+ load16);
+ m.UnalignedStoreToPointer(&buffer[3], MachineRepresentation::kWord64,
+ load32);
+ m.UnalignedStoreToPointer(&buffer[4], MachineRepresentation::kWord64,
+ load64);
+ } else {
+ UNREACHABLE();
+ }
+ m.Return(load8);
+
+ FOR_UINT64_INPUTS(i) {
+ buffer[0] = *i;
+
+ CHECK_EQ((*i & 0xff), m.Call());
+ CHECK_EQ((*i & 0xff), buffer[1]);
+ CHECK_EQ((*i & 0xffff), buffer[2]);
+ CHECK_EQ((*i & 0xffffffff), buffer[3]);
+ CHECK_EQ(*i, buffer[4]);
+ }
+}
+
+} // namespace
+
+TEST(RunCheckedLoadInt64) {
+ int64_t buffer[] = {0x66bbccddeeff0011LL, 0x1122334455667788LL};
+ RawMachineAssemblerTester<int64_t> m(MachineType::Int32());
+ Node* base = m.PointerConstant(buffer);
+ Node* index = m.Parameter(0);
+ Node* length = m.Int32Constant(16);
+ Node* load = m.AddNode(m.machine()->CheckedLoad(MachineType::Int64()), base,
+ index, length);
+ m.Return(load);
+
+ CHECK_EQ(buffer[0], m.Call(0));
+ CHECK_EQ(buffer[1], m.Call(8));
+ CheckOobValue(m.Call(16));
+}
+
+TEST(RunLoadStoreSignExtend64) {
+ RunLoadStoreSignExtend64(TestAlignment::kAligned);
+}
+
+TEST(RunUnalignedLoadStoreSignExtend64) {
+ RunLoadStoreSignExtend64(TestAlignment::kUnaligned);
+}
+
+TEST(RunLoadStoreZeroExtend64) {
+ RunLoadStoreZeroExtend64(TestAlignment::kAligned);
+}
+
+TEST(RunUnalignedLoadStoreZeroExtend64) {
+ RunLoadStoreZeroExtend64(TestAlignment::kUnaligned);
+}
+
+TEST(RunCheckedStoreInt64) {
+ const int64_t write = 0x5566778899aabbLL;
+ const int64_t before = 0x33bbccddeeff0011LL;
+ int64_t buffer[] = {before, before};
+ RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
+ Node* base = m.PointerConstant(buffer);
+ Node* index = m.Parameter(0);
+ Node* length = m.Int32Constant(16);
+ Node* value = m.Int64Constant(write);
+ Node* store =
+ m.AddNode(m.machine()->CheckedStore(MachineRepresentation::kWord64), base,
+ index, length, value);
+ USE(store);
+ m.Return(m.Int32Constant(11));
+
+ CHECK_EQ(11, m.Call(16));
+ CHECK_EQ(before, buffer[0]);
+ CHECK_EQ(before, buffer[1]);
+
+ CHECK_EQ(11, m.Call(0));
+ CHECK_EQ(write, buffer[0]);
+ CHECK_EQ(before, buffer[1]);
+
+ CHECK_EQ(11, m.Call(8));
+ CHECK_EQ(write, buffer[0]);
+ CHECK_EQ(write, buffer[1]);
+}
+#endif
+
+namespace {
+template <typename IntType>
+void LoadStoreTruncation(MachineType kRepresentation, TestAlignment t) {
+ IntType input;
+
+ RawMachineAssemblerTester<int32_t> m;
+ Node* ap1;
+ if (t == TestAlignment::kAligned) {
+ Node* a = m.LoadFromPointer(&input, kRepresentation);
+ ap1 = m.Int32Add(a, m.Int32Constant(1));
+ m.StoreToPointer(&input, kRepresentation.representation(), ap1);
+ } else if (t == TestAlignment::kUnaligned) {
+ Node* a = m.UnalignedLoadFromPointer(&input, kRepresentation);
+ ap1 = m.Int32Add(a, m.Int32Constant(1));
+ m.UnalignedStoreToPointer(&input, kRepresentation.representation(), ap1);
+ } else {
+ UNREACHABLE();
+ }
+ m.Return(ap1);
+
+ const IntType max = std::numeric_limits<IntType>::max();
+ const IntType min = std::numeric_limits<IntType>::min();
+
+ // Test upper bound.
+ input = max;
+ CHECK_EQ(max + 1, m.Call());
+ CHECK_EQ(min, input);
+
+ // Test lower bound.
+ input = min;
+ CHECK_EQ(static_cast<IntType>(max + 2), m.Call());
+ CHECK_EQ(min + 1, input);
+
+ // Test all one byte values that are not one byte bounds.
+ for (int i = -127; i < 127; i++) {
+ input = i;
+ int expected = i >= 0 ? i + 1 : max + (i - min) + 2;
+ CHECK_EQ(static_cast<IntType>(expected), m.Call());
+ CHECK_EQ(static_cast<IntType>(i + 1), input);
+ }
+}
+} // namespace
+
+TEST(RunLoadStoreTruncation) {
+ LoadStoreTruncation<int8_t>(MachineType::Int8(), TestAlignment::kAligned);
+ LoadStoreTruncation<int16_t>(MachineType::Int16(), TestAlignment::kAligned);
+}
+
+TEST(RunUnalignedLoadStoreTruncation) {
+ LoadStoreTruncation<int16_t>(MachineType::Int16(), TestAlignment::kUnaligned);
+}
+
+void TestRunOobCheckedLoad(bool length_is_immediate) {
+ USE(CheckOobValue<int32_t>);
+ USE(CheckOobValue<int64_t>);
+ USE(CheckOobValue<float>);
+ USE(CheckOobValue<double>);
+
+ RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
+ MachineType::Int32());
+ MachineOperatorBuilder machine(m.zone());
+ const int32_t kNumElems = 27;
+ const int32_t kLength = kNumElems * 4;
+
+ int32_t buffer[kNumElems];
+ Node* base = m.PointerConstant(buffer);
+ Node* offset = m.Parameter(0);
+ Node* len = length_is_immediate ? m.Int32Constant(kLength) : m.Parameter(1);
+ Node* node =
+ m.AddNode(machine.CheckedLoad(MachineType::Int32()), base, offset, len);
+ m.Return(node);
+
+ {
+ // randomize memory.
+ v8::base::RandomNumberGenerator rng;
+ rng.SetSeed(100);
+ rng.NextBytes(&buffer[0], sizeof(buffer));
+ }
+
+ // in-bounds accesses.
+ for (int32_t i = 0; i < kNumElems; i++) {
+ int32_t offset = static_cast<int32_t>(i * sizeof(int32_t));
+ int32_t expected = buffer[i];
+ CHECK_EQ(expected, m.Call(offset, kLength));
+ }
+
+ // slightly out-of-bounds accesses.
+ for (int32_t i = kLength; i < kNumElems + 30; i++) {
+ int32_t offset = static_cast<int32_t>(i * sizeof(int32_t));
+ CheckOobValue(m.Call(offset, kLength));
+ }
+
+ // way out-of-bounds accesses.
+ for (int32_t offset = -2000000000; offset <= 2000000000;
+ offset += 100000000) {
+ if (offset == 0) continue;
+ CheckOobValue(m.Call(offset, kLength));
+ }
+}
+
+TEST(RunOobCheckedLoad) { TestRunOobCheckedLoad(false); }
+
+TEST(RunOobCheckedLoadImm) { TestRunOobCheckedLoad(true); }
+
+void TestRunOobCheckedStore(bool length_is_immediate) {
+ RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
+ MachineType::Int32());
+ MachineOperatorBuilder machine(m.zone());
+ const int32_t kNumElems = 29;
+ const int32_t kValue = -78227234;
+ const int32_t kLength = kNumElems * 4;
+
+ int32_t buffer[kNumElems + kNumElems];
+ Node* base = m.PointerConstant(buffer);
+ Node* offset = m.Parameter(0);
+ Node* len = length_is_immediate ? m.Int32Constant(kLength) : m.Parameter(1);
+ Node* val = m.Int32Constant(kValue);
+ m.AddNode(machine.CheckedStore(MachineRepresentation::kWord32), base, offset,
+ len, val);
+ m.Return(val);
+
+ // in-bounds accesses.
+ for (int32_t i = 0; i < kNumElems; i++) {
+ memset(buffer, 0, sizeof(buffer));
+ int32_t offset = static_cast<int32_t>(i * sizeof(int32_t));
+ CHECK_EQ(kValue, m.Call(offset, kLength));
+ for (int32_t j = 0; j < kNumElems + kNumElems; j++) {
+ if (i == j) {
+ CHECK_EQ(kValue, buffer[j]);
+ } else {
+ CHECK_EQ(0, buffer[j]);
+ }
+ }
+ }
+
+ memset(buffer, 0, sizeof(buffer));
+
+ // slightly out-of-bounds accesses.
+ for (int32_t i = kLength; i < kNumElems + 30; i++) {
+ int32_t offset = static_cast<int32_t>(i * sizeof(int32_t));
+ CHECK_EQ(kValue, m.Call(offset, kLength));
+ for (int32_t j = 0; j < kNumElems + kNumElems; j++) {
+ CHECK_EQ(0, buffer[j]);
+ }
+ }
+
+ // way out-of-bounds accesses.
+ for (int32_t offset = -2000000000; offset <= 2000000000;
+ offset += 100000000) {
+ if (offset == 0) continue;
+ CHECK_EQ(kValue, m.Call(offset, kLength));
+ for (int32_t j = 0; j < kNumElems + kNumElems; j++) {
+ CHECK_EQ(0, buffer[j]);
+ }
+ }
+}
+
+TEST(RunOobCheckedStore) { TestRunOobCheckedStore(false); }
+
+TEST(RunOobCheckedStoreImm) { TestRunOobCheckedStore(true); }
+
+// TODO(titzer): CheckedLoad/CheckedStore don't support 64-bit offsets.
+#define ALLOW_64_BIT_OFFSETS 0
+
+#if V8_TARGET_ARCH_64_BIT && ALLOW_64_BIT_OFFSETS
+
+void TestRunOobCheckedLoad64(uint32_t pseudo_base, bool length_is_immediate) {
+ RawMachineAssemblerTester<int32_t> m(MachineType::Uint64(),
+ MachineType::Uint64());
+ MachineOperatorBuilder machine(m.zone());
+ const uint32_t kNumElems = 25;
+ const uint32_t kLength = kNumElems * 4;
+ int32_t real_buffer[kNumElems];
+
+ // Simulate the end of a large buffer.
+ int32_t* buffer = real_buffer - (pseudo_base / 4);
+ uint64_t length = kLength + pseudo_base;
+
+ Node* base = m.PointerConstant(buffer);
+ Node* offset = m.Parameter(0);
+ Node* len = length_is_immediate ? m.Int64Constant(length) : m.Parameter(1);
+ Node* node =
+ m.AddNode(machine.CheckedLoad(MachineType::Int32()), base, offset, len);
+ m.Return(node);
+
+ {
+ // randomize memory.
+ v8::base::RandomNumberGenerator rng;
+ rng.SetSeed(100);
+ rng.NextBytes(&real_buffer[0], sizeof(real_buffer));
+ }
+
+ // in-bounds accesses.
+ for (uint32_t i = 0; i < kNumElems; i++) {
+ uint64_t offset = pseudo_base + i * 4;
+ int32_t expected = real_buffer[i];
+ CHECK_EQ(expected, m.Call(offset, length));
+ }
+
+ // in-bounds accesses w.r.t lower 32-bits, but upper bits set.
+ for (uint64_t i = 0x100000000ULL; i != 0; i <<= 1) {
+ uint64_t offset = pseudo_base + i;
+ CheckOobValue(m.Call(offset, length));
+ }
+
+ // slightly out-of-bounds accesses.
+ for (uint32_t i = kLength; i < kNumElems + 30; i++) {
+ uint64_t offset = pseudo_base + i * 4;
+ CheckOobValue(0, m.Call(offset, length));
+ }
+
+ // way out-of-bounds accesses.
+ for (uint64_t offset = length; offset < 100 * A_BILLION; offset += A_GIG) {
+ if (offset < length) continue;
+ CheckOobValue(0, m.Call(offset, length));
+ }
+}
+
+TEST(RunOobCheckedLoad64_0) {
+ TestRunOobCheckedLoad64(0, false);
+ TestRunOobCheckedLoad64(0, true);
+}
+
+TEST(RunOobCheckedLoad64_1) {
+ TestRunOobCheckedLoad64(1 * A_BILLION, false);
+ TestRunOobCheckedLoad64(1 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoad64_2) {
+ TestRunOobCheckedLoad64(2 * A_BILLION, false);
+ TestRunOobCheckedLoad64(2 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoad64_3) {
+ TestRunOobCheckedLoad64(3 * A_BILLION, false);
+ TestRunOobCheckedLoad64(3 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoad64_4) {
+ TestRunOobCheckedLoad64(4 * A_BILLION, false);
+ TestRunOobCheckedLoad64(4 * A_BILLION, true);
+}
+
+void TestRunOobCheckedStore64(uint32_t pseudo_base, bool length_is_immediate) {
+ RawMachineAssemblerTester<int32_t> m(MachineType::Uint64(),
+ MachineType::Uint64());
+ MachineOperatorBuilder machine(m.zone());
+ const uint32_t kNumElems = 21;
+ const uint32_t kLength = kNumElems * 4;
+ const uint32_t kValue = 897234987;
+ int32_t real_buffer[kNumElems + kNumElems];
+
+ // Simulate the end of a large buffer.
+ int32_t* buffer = real_buffer - (pseudo_base / 4);
+ uint64_t length = kLength + pseudo_base;
+
+ Node* base = m.PointerConstant(buffer);
+ Node* offset = m.Parameter(0);
+ Node* len = length_is_immediate ? m.Int64Constant(length) : m.Parameter(1);
+ Node* val = m.Int32Constant(kValue);
+ m.AddNode(machine.CheckedStore(MachineRepresentation::kWord32), base, offset,
+ len, val);
+ m.Return(val);
+
+ // in-bounds accesses.
+ for (uint32_t i = 0; i < kNumElems; i++) {
+ memset(real_buffer, 0, sizeof(real_buffer));
+ uint64_t offset = pseudo_base + i * 4;
+ CHECK_EQ(kValue, m.Call(offset, length));
+ for (uint32_t j = 0; j < kNumElems + kNumElems; j++) {
+ if (i == j) {
+ CHECK_EQ(kValue, real_buffer[j]);
+ } else {
+ CHECK_EQ(0, real_buffer[j]);
+ }
+ }
+ }
+
+ memset(real_buffer, 0, sizeof(real_buffer));
+
+ // in-bounds accesses w.r.t lower 32-bits, but upper bits set.
+ for (uint64_t i = 0x100000000ULL; i != 0; i <<= 1) {
+ uint64_t offset = pseudo_base + i;
+ CHECK_EQ(kValue, m.Call(offset, length));
+ for (int32_t j = 0; j < kNumElems + kNumElems; j++) {
+ CHECK_EQ(0, real_buffer[j]);
+ }
+ }
+
+ // slightly out-of-bounds accesses.
+ for (uint32_t i = kLength; i < kNumElems + 30; i++) {
+ uint64_t offset = pseudo_base + i * 4;
+ CHECK_EQ(kValue, m.Call(offset, length));
+ for (int32_t j = 0; j < kNumElems + kNumElems; j++) {
+ CHECK_EQ(0, real_buffer[j]);
+ }
+ }
+
+ // way out-of-bounds accesses.
+ for (uint64_t offset = length; offset < 100 * A_BILLION; offset += A_GIG) {
+ if (offset < length) continue;
+ CHECK_EQ(kValue, m.Call(offset, length));
+ for (int32_t j = 0; j < kNumElems + kNumElems; j++) {
+ CHECK_EQ(0, real_buffer[j]);
+ }
+ }
+}
+
+TEST(RunOobCheckedStore64_0) {
+ TestRunOobCheckedStore64(0, false);
+ TestRunOobCheckedStore64(0, true);
+}
+
+TEST(RunOobCheckedStore64_1) {
+ TestRunOobCheckedStore64(1 * A_BILLION, false);
+ TestRunOobCheckedStore64(1 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedStore64_2) {
+ TestRunOobCheckedStore64(2 * A_BILLION, false);
+ TestRunOobCheckedStore64(2 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedStore64_3) {
+ TestRunOobCheckedStore64(3 * A_BILLION, false);
+ TestRunOobCheckedStore64(3 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedStore64_4) {
+ TestRunOobCheckedStore64(4 * A_BILLION, false);
+ TestRunOobCheckedStore64(4 * A_BILLION, true);
+}
+
+#endif
+
+void TestRunOobCheckedLoad_pseudo(uint64_t x, bool length_is_immediate) {
+ RawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
+ MachineType::Uint32());
+
+ uint32_t pseudo_base = static_cast<uint32_t>(x);
+ MachineOperatorBuilder machine(m.zone());
+ const uint32_t kNumElems = 29;
+ const uint32_t kLength = pseudo_base + kNumElems * 4;
+
+ int32_t buffer[kNumElems];
+ Node* base = m.PointerConstant(reinterpret_cast<byte*>(buffer) - pseudo_base);
+ Node* offset = m.Parameter(0);
+ Node* len = length_is_immediate ? m.Int32Constant(kLength) : m.Parameter(1);
+ Node* node =
+ m.AddNode(machine.CheckedLoad(MachineType::Int32()), base, offset, len);
+ m.Return(node);
+
+ {
+ // randomize memory.
+ v8::base::RandomNumberGenerator rng;
+ rng.SetSeed(100);
+ rng.NextBytes(&buffer[0], sizeof(buffer));
+ }
+
+ // in-bounds accesses.
+ for (uint32_t i = 0; i < kNumElems; i++) {
+ uint32_t offset = static_cast<uint32_t>(i * sizeof(int32_t));
+ uint32_t expected = buffer[i];
+ CHECK_EQ(expected, m.Call(offset + pseudo_base, kLength));
+ }
+
+ // slightly out-of-bounds accesses.
+ for (int32_t i = kNumElems; i < kNumElems + 30; i++) {
+ uint32_t offset = static_cast<uint32_t>(i * sizeof(int32_t));
+ CheckOobValue(m.Call(offset + pseudo_base, kLength));
+ }
+
+ // way out-of-bounds accesses.
+ for (uint64_t i = pseudo_base + sizeof(buffer); i < 0xFFFFFFFF;
+ i += A_BILLION) {
+ uint32_t offset = static_cast<uint32_t>(i);
+ CheckOobValue(m.Call(offset, kLength));
+ }
+}
+
+TEST(RunOobCheckedLoad_pseudo0) {
+ TestRunOobCheckedLoad_pseudo(0, false);
+ TestRunOobCheckedLoad_pseudo(0, true);
+}
+
+TEST(RunOobCheckedLoad_pseudo1) {
+ TestRunOobCheckedLoad_pseudo(100000, false);
+ TestRunOobCheckedLoad_pseudo(100000, true);
+}
+
+TEST(RunOobCheckedLoad_pseudo2) {
+ TestRunOobCheckedLoad_pseudo(A_BILLION, false);
+ TestRunOobCheckedLoad_pseudo(A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoad_pseudo3) {
+ TestRunOobCheckedLoad_pseudo(A_GIG, false);
+ TestRunOobCheckedLoad_pseudo(A_GIG, true);
+}
+
+TEST(RunOobCheckedLoad_pseudo4) {
+ TestRunOobCheckedLoad_pseudo(2 * A_BILLION, false);
+ TestRunOobCheckedLoad_pseudo(2 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoad_pseudo5) {
+ TestRunOobCheckedLoad_pseudo(2 * A_GIG, false);
+ TestRunOobCheckedLoad_pseudo(2 * A_GIG, true);
+}
+
+TEST(RunOobCheckedLoad_pseudo6) {
+ TestRunOobCheckedLoad_pseudo(3 * A_BILLION, false);
+ TestRunOobCheckedLoad_pseudo(3 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoad_pseudo7) {
+ TestRunOobCheckedLoad_pseudo(3 * A_GIG, false);
+ TestRunOobCheckedLoad_pseudo(3 * A_GIG, true);
+}
+
+TEST(RunOobCheckedLoad_pseudo8) {
+ TestRunOobCheckedLoad_pseudo(4 * A_BILLION, false);
+ TestRunOobCheckedLoad_pseudo(4 * A_BILLION, true);
+}
+
+template <typename MemType>
+void TestRunOobCheckedLoadT_pseudo(uint64_t x, bool length_is_immediate) {
+ const int32_t kReturn = 11999;
+ const uint32_t kNumElems = 29;
+ MemType buffer[kNumElems];
+ uint32_t pseudo_base = static_cast<uint32_t>(x);
+ const uint32_t kLength = static_cast<uint32_t>(pseudo_base + sizeof(buffer));
+
+ MemType result;
+
+ RawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
+ MachineType::Uint32());
+ MachineOperatorBuilder machine(m.zone());
+ Node* base = m.PointerConstant(reinterpret_cast<byte*>(buffer) - pseudo_base);
+ Node* offset = m.Parameter(0);
+ Node* len = length_is_immediate ? m.Int32Constant(kLength) : m.Parameter(1);
+ Node* node = m.AddNode(machine.CheckedLoad(MachineTypeForC<MemType>()), base,
+ offset, len);
+ Node* store = m.StoreToPointer(
+ &result, MachineTypeForC<MemType>().representation(), node);
+ USE(store);
+ m.Return(m.Int32Constant(kReturn));
+
+ {
+ // randomize memory.
+ v8::base::RandomNumberGenerator rng;
+ rng.SetSeed(103);
+ rng.NextBytes(&buffer[0], sizeof(buffer));
+ }
+
+ // in-bounds accesses.
+ for (uint32_t i = 0; i < kNumElems; i++) {
+ uint32_t offset = static_cast<uint32_t>(i * sizeof(MemType));
+ MemType expected = buffer[i];
+ CHECK_EQ(kReturn, m.Call(offset + pseudo_base, kLength));
+ CHECK_EQ(expected, result);
+ }
+
+ // slightly out-of-bounds accesses.
+ for (int32_t i = kNumElems; i < kNumElems + 30; i++) {
+ uint32_t offset = static_cast<uint32_t>(i * sizeof(MemType));
+ CHECK_EQ(kReturn, m.Call(offset + pseudo_base, kLength));
+ CheckOobValue(result);
+ }
+
+ // way out-of-bounds accesses.
+ for (uint64_t i = pseudo_base + sizeof(buffer); i < 0xFFFFFFFF;
+ i += A_BILLION) {
+ uint32_t offset = static_cast<uint32_t>(i);
+ CHECK_EQ(kReturn, m.Call(offset, kLength));
+ CheckOobValue(result);
+ }
+}
+
+TEST(RunOobCheckedLoadT_pseudo0) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(0, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(0, true);
+ TestRunOobCheckedLoadT_pseudo<float>(0, false);
+ TestRunOobCheckedLoadT_pseudo<float>(0, true);
+ TestRunOobCheckedLoadT_pseudo<double>(0, false);
+ TestRunOobCheckedLoadT_pseudo<double>(0, true);
+}
+
+TEST(RunOobCheckedLoadT_pseudo1) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(100000, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(100000, true);
+ TestRunOobCheckedLoadT_pseudo<float>(100000, false);
+ TestRunOobCheckedLoadT_pseudo<float>(100000, true);
+ TestRunOobCheckedLoadT_pseudo<double>(100000, false);
+ TestRunOobCheckedLoadT_pseudo<double>(100000, true);
+}
+
+TEST(RunOobCheckedLoadT_pseudo2) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(A_BILLION, true);
+ TestRunOobCheckedLoadT_pseudo<float>(A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<float>(A_BILLION, true);
+ TestRunOobCheckedLoadT_pseudo<double>(A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<double>(A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoadT_pseudo3) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(A_GIG, true);
+ TestRunOobCheckedLoadT_pseudo<float>(A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<float>(A_GIG, true);
+ TestRunOobCheckedLoadT_pseudo<double>(A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<double>(A_GIG, true);
+}
+
+TEST(RunOobCheckedLoadT_pseudo4) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(2 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(2 * A_BILLION, true);
+ TestRunOobCheckedLoadT_pseudo<float>(2 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<float>(2 * A_BILLION, true);
+ TestRunOobCheckedLoadT_pseudo<double>(2 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<double>(2 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoadT_pseudo5) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(2 * A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(2 * A_GIG, true);
+ TestRunOobCheckedLoadT_pseudo<float>(2 * A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<float>(2 * A_GIG, true);
+ TestRunOobCheckedLoadT_pseudo<double>(2 * A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<double>(2 * A_GIG, true);
+}
+
+TEST(RunOobCheckedLoadT_pseudo6) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(3 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(3 * A_BILLION, true);
+ TestRunOobCheckedLoadT_pseudo<float>(3 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<float>(3 * A_BILLION, true);
+ TestRunOobCheckedLoadT_pseudo<double>(3 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<double>(3 * A_BILLION, true);
+}
+
+TEST(RunOobCheckedLoadT_pseudo7) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(3 * A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(3 * A_GIG, true);
+ TestRunOobCheckedLoadT_pseudo<float>(3 * A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<float>(3 * A_GIG, true);
+ TestRunOobCheckedLoadT_pseudo<double>(3 * A_GIG, false);
+ TestRunOobCheckedLoadT_pseudo<double>(3 * A_GIG, true);
+}
+
+TEST(RunOobCheckedLoadT_pseudo8) {
+ TestRunOobCheckedLoadT_pseudo<int32_t>(4 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<int32_t>(4 * A_BILLION, true);
+ TestRunOobCheckedLoadT_pseudo<float>(4 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<float>(4 * A_BILLION, true);
+ TestRunOobCheckedLoadT_pseudo<double>(4 * A_BILLION, false);
+ TestRunOobCheckedLoadT_pseudo<double>(4 * A_BILLION, true);
+}
+
+} // namespace compiler
+} // namespace internal
+} // namespace v8