summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/wasm-external-refs.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/wasm/wasm-external-refs.cc')
-rw-r--r--deps/v8/src/wasm/wasm-external-refs.cc216
1 files changed, 216 insertions, 0 deletions
diff --git a/deps/v8/src/wasm/wasm-external-refs.cc b/deps/v8/src/wasm/wasm-external-refs.cc
new file mode 100644
index 0000000000..09294c2c28
--- /dev/null
+++ b/deps/v8/src/wasm/wasm-external-refs.cc
@@ -0,0 +1,216 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <math.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <limits>
+
+#include "include/v8config.h"
+
+#include "src/base/bits.h"
+#include "src/utils.h"
+#include "src/wasm/wasm-external-refs.h"
+
+namespace v8 {
+namespace internal {
+namespace wasm {
+
+void f32_trunc_wrapper(float* param) { *param = truncf(*param); }
+
+void f32_floor_wrapper(float* param) { *param = floorf(*param); }
+
+void f32_ceil_wrapper(float* param) { *param = ceilf(*param); }
+
+void f32_nearest_int_wrapper(float* param) { *param = nearbyintf(*param); }
+
+void f64_trunc_wrapper(double* param) {
+ WriteDoubleValue(param, trunc(ReadDoubleValue(param)));
+}
+
+void f64_floor_wrapper(double* param) {
+ WriteDoubleValue(param, floor(ReadDoubleValue(param)));
+}
+
+void f64_ceil_wrapper(double* param) {
+ WriteDoubleValue(param, ceil(ReadDoubleValue(param)));
+}
+
+void f64_nearest_int_wrapper(double* param) {
+ WriteDoubleValue(param, nearbyint(ReadDoubleValue(param)));
+}
+
+void int64_to_float32_wrapper(int64_t* input, float* output) {
+ *output = static_cast<float>(*input);
+}
+
+void uint64_to_float32_wrapper(uint64_t* input, float* output) {
+#if V8_CC_MSVC
+ // With MSVC we use static_cast<float>(uint32_t) instead of
+ // static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even
+ // semantics. The idea is to calculate
+ // static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To
+ // achieve proper rounding in all cases we have to adjust the high_word
+ // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of
+ // the high_word if the low_word may affect the rounding of the high_word.
+ uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
+ uint32_t high_word = static_cast<uint32_t>(*input >> 32);
+
+ float shift = static_cast<float>(1ull << 32);
+ // If the MSB of the high_word is set, then we make space for a rounding bit.
+ if (high_word < 0x80000000) {
+ high_word <<= 1;
+ shift = static_cast<float>(1ull << 31);
+ }
+
+ if ((high_word & 0xfe000000) && low_word) {
+ // Set the rounding bit.
+ high_word |= 1;
+ }
+
+ float result = static_cast<float>(high_word);
+ result *= shift;
+ result += static_cast<float>(low_word);
+ *output = result;
+
+#else
+ *output = static_cast<float>(*input);
+#endif
+}
+
+void int64_to_float64_wrapper(int64_t* input, double* output) {
+ *output = static_cast<double>(*input);
+}
+
+void uint64_to_float64_wrapper(uint64_t* input, double* output) {
+#if V8_CC_MSVC
+ // With MSVC we use static_cast<double>(uint32_t) instead of
+ // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even
+ // semantics. The idea is to calculate
+ // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word).
+ uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
+ uint32_t high_word = static_cast<uint32_t>(*input >> 32);
+
+ double shift = static_cast<double>(1ull << 32);
+
+ double result = static_cast<double>(high_word);
+ result *= shift;
+ result += static_cast<double>(low_word);
+ *output = result;
+
+#else
+ *output = static_cast<double>(*input);
+#endif
+}
+
+int32_t float32_to_int64_wrapper(float* input, int64_t* output) {
+ // We use "<" here to check the upper bound because of rounding problems: With
+ // "<=" some inputs would be considered within int64 range which are actually
+ // not within int64 range.
+ if (*input >= static_cast<float>(std::numeric_limits<int64_t>::min()) &&
+ *input < static_cast<float>(std::numeric_limits<int64_t>::max())) {
+ *output = static_cast<int64_t>(*input);
+ return 1;
+ }
+ return 0;
+}
+
+int32_t float32_to_uint64_wrapper(float* input, uint64_t* output) {
+ // We use "<" here to check the upper bound because of rounding problems: With
+ // "<=" some inputs would be considered within uint64 range which are actually
+ // not within uint64 range.
+ if (*input > -1.0 &&
+ *input < static_cast<float>(std::numeric_limits<uint64_t>::max())) {
+ *output = static_cast<uint64_t>(*input);
+ return 1;
+ }
+ return 0;
+}
+
+int32_t float64_to_int64_wrapper(double* input, int64_t* output) {
+ // We use "<" here to check the upper bound because of rounding problems: With
+ // "<=" some inputs would be considered within int64 range which are actually
+ // not within int64 range.
+ if (*input >= static_cast<double>(std::numeric_limits<int64_t>::min()) &&
+ *input < static_cast<double>(std::numeric_limits<int64_t>::max())) {
+ *output = static_cast<int64_t>(*input);
+ return 1;
+ }
+ return 0;
+}
+
+int32_t float64_to_uint64_wrapper(double* input, uint64_t* output) {
+ // We use "<" here to check the upper bound because of rounding problems: With
+ // "<=" some inputs would be considered within uint64 range which are actually
+ // not within uint64 range.
+ if (*input > -1.0 &&
+ *input < static_cast<double>(std::numeric_limits<uint64_t>::max())) {
+ *output = static_cast<uint64_t>(*input);
+ return 1;
+ }
+ return 0;
+}
+
+int32_t int64_div_wrapper(int64_t* dst, int64_t* src) {
+ if (*src == 0) {
+ return 0;
+ }
+ if (*src == -1 && *dst == std::numeric_limits<int64_t>::min()) {
+ return -1;
+ }
+ *dst /= *src;
+ return 1;
+}
+
+int32_t int64_mod_wrapper(int64_t* dst, int64_t* src) {
+ if (*src == 0) {
+ return 0;
+ }
+ *dst %= *src;
+ return 1;
+}
+
+int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src) {
+ if (*src == 0) {
+ return 0;
+ }
+ *dst /= *src;
+ return 1;
+}
+
+int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src) {
+ if (*src == 0) {
+ return 0;
+ }
+ *dst %= *src;
+ return 1;
+}
+
+uint32_t word32_ctz_wrapper(uint32_t* input) {
+ return static_cast<uint32_t>(base::bits::CountTrailingZeros32(*input));
+}
+
+uint32_t word64_ctz_wrapper(uint64_t* input) {
+ return static_cast<uint32_t>(base::bits::CountTrailingZeros64(*input));
+}
+
+uint32_t word32_popcnt_wrapper(uint32_t* input) {
+ return static_cast<uint32_t>(base::bits::CountPopulation(*input));
+}
+
+uint32_t word64_popcnt_wrapper(uint64_t* input) {
+ return static_cast<uint32_t>(base::bits::CountPopulation(*input));
+}
+
+void float64_pow_wrapper(double* param0, double* param1) {
+ double x = ReadDoubleValue(param0);
+ double y = ReadDoubleValue(param1);
+ if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
+ WriteDoubleValue(param0, std::numeric_limits<double>::quiet_NaN());
+ }
+ WriteDoubleValue(param0, Pow(x, y));
+}
+} // namespace wasm
+} // namespace internal
+} // namespace v8