summaryrefslogtreecommitdiff
path: root/deps/v8/src/runtime/runtime.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/runtime/runtime.cc')
-rw-r--r--deps/v8/src/runtime/runtime.cc9316
1 files changed, 9316 insertions, 0 deletions
diff --git a/deps/v8/src/runtime/runtime.cc b/deps/v8/src/runtime/runtime.cc
new file mode 100644
index 0000000000..427b821745
--- /dev/null
+++ b/deps/v8/src/runtime/runtime.cc
@@ -0,0 +1,9316 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <stdlib.h>
+#include <limits>
+
+#include "src/v8.h"
+
+#include "src/accessors.h"
+#include "src/allocation-site-scopes.h"
+#include "src/api.h"
+#include "src/arguments.h"
+#include "src/bailout-reason.h"
+#include "src/base/cpu.h"
+#include "src/base/platform/platform.h"
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/compilation-cache.h"
+#include "src/compiler.h"
+#include "src/conversions.h"
+#include "src/cpu-profiler.h"
+#include "src/date.h"
+#include "src/dateparser-inl.h"
+#include "src/debug.h"
+#include "src/deoptimizer.h"
+#include "src/execution.h"
+#include "src/full-codegen.h"
+#include "src/global-handles.h"
+#include "src/isolate-inl.h"
+#include "src/liveedit.h"
+#include "src/misc-intrinsics.h"
+#include "src/parser.h"
+#include "src/prototype.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/runtime-profiler.h"
+#include "src/scopeinfo.h"
+#include "src/smart-pointers.h"
+#include "src/utils.h"
+#include "src/v8threads.h"
+#include "src/vm-state-inl.h"
+
+
+namespace v8 {
+namespace internal {
+
+// Header of runtime functions.
+#define F(name, number_of_args, result_size) \
+ Object* Runtime_##name(int args_length, Object** args_object, \
+ Isolate* isolate);
+
+#define P(name, number_of_args, result_size) \
+ ObjectPair Runtime_##name(int args_length, Object** args_object, \
+ Isolate* isolate);
+
+#define I(name, number_of_args, result_size) \
+ Object* RuntimeReference_##name(int args_length, Object** args_object, \
+ Isolate* isolate);
+
+RUNTIME_FUNCTION_LIST_RETURN_OBJECT(F)
+RUNTIME_FUNCTION_LIST_RETURN_PAIR(P)
+INLINE_OPTIMIZED_FUNCTION_LIST(F)
+INLINE_FUNCTION_LIST(I)
+
+#undef I
+#undef F
+#undef P
+
+
+static Handle<Map> ComputeObjectLiteralMap(
+ Handle<Context> context, Handle<FixedArray> constant_properties,
+ bool* is_result_from_cache) {
+ Isolate* isolate = context->GetIsolate();
+ int properties_length = constant_properties->length();
+ int number_of_properties = properties_length / 2;
+ // Check that there are only internal strings and array indices among keys.
+ int number_of_string_keys = 0;
+ for (int p = 0; p != properties_length; p += 2) {
+ Object* key = constant_properties->get(p);
+ uint32_t element_index = 0;
+ if (key->IsInternalizedString()) {
+ number_of_string_keys++;
+ } else if (key->ToArrayIndex(&element_index)) {
+ // An index key does not require space in the property backing store.
+ number_of_properties--;
+ } else {
+ // Bail out as a non-internalized-string non-index key makes caching
+ // impossible.
+ // DCHECK to make sure that the if condition after the loop is false.
+ DCHECK(number_of_string_keys != number_of_properties);
+ break;
+ }
+ }
+ // If we only have internalized strings and array indices among keys then we
+ // can use the map cache in the native context.
+ const int kMaxKeys = 10;
+ if ((number_of_string_keys == number_of_properties) &&
+ (number_of_string_keys < kMaxKeys)) {
+ // Create the fixed array with the key.
+ Handle<FixedArray> keys =
+ isolate->factory()->NewFixedArray(number_of_string_keys);
+ if (number_of_string_keys > 0) {
+ int index = 0;
+ for (int p = 0; p < properties_length; p += 2) {
+ Object* key = constant_properties->get(p);
+ if (key->IsInternalizedString()) {
+ keys->set(index++, key);
+ }
+ }
+ DCHECK(index == number_of_string_keys);
+ }
+ *is_result_from_cache = true;
+ return isolate->factory()->ObjectLiteralMapFromCache(context, keys);
+ }
+ *is_result_from_cache = false;
+ return Map::Create(isolate, number_of_properties);
+}
+
+
+MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
+ Isolate* isolate, Handle<FixedArray> literals,
+ Handle<FixedArray> constant_properties);
+
+
+MUST_USE_RESULT static MaybeHandle<Object> CreateObjectLiteralBoilerplate(
+ Isolate* isolate, Handle<FixedArray> literals,
+ Handle<FixedArray> constant_properties, bool should_have_fast_elements,
+ bool has_function_literal) {
+ // Get the native context from the literals array. This is the
+ // context in which the function was created and we use the object
+ // function from this context to create the object literal. We do
+ // not use the object function from the current native context
+ // because this might be the object function from another context
+ // which we should not have access to.
+ Handle<Context> context =
+ Handle<Context>(JSFunction::NativeContextFromLiterals(*literals));
+
+ // In case we have function literals, we want the object to be in
+ // slow properties mode for now. We don't go in the map cache because
+ // maps with constant functions can't be shared if the functions are
+ // not the same (which is the common case).
+ bool is_result_from_cache = false;
+ Handle<Map> map = has_function_literal
+ ? Handle<Map>(context->object_function()->initial_map())
+ : ComputeObjectLiteralMap(context, constant_properties,
+ &is_result_from_cache);
+
+ PretenureFlag pretenure_flag =
+ isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
+
+ Handle<JSObject> boilerplate =
+ isolate->factory()->NewJSObjectFromMap(map, pretenure_flag);
+
+ // Normalize the elements of the boilerplate to save space if needed.
+ if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate);
+
+ // Add the constant properties to the boilerplate.
+ int length = constant_properties->length();
+ bool should_transform =
+ !is_result_from_cache && boilerplate->HasFastProperties();
+ bool should_normalize = should_transform || has_function_literal;
+ if (should_normalize) {
+ // TODO(verwaest): We might not want to ever normalize here.
+ JSObject::NormalizeProperties(boilerplate, KEEP_INOBJECT_PROPERTIES,
+ length / 2);
+ }
+ // TODO(verwaest): Support tracking representations in the boilerplate.
+ for (int index = 0; index < length; index += 2) {
+ Handle<Object> key(constant_properties->get(index + 0), isolate);
+ Handle<Object> value(constant_properties->get(index + 1), isolate);
+ if (value->IsFixedArray()) {
+ // The value contains the constant_properties of a
+ // simple object or array literal.
+ Handle<FixedArray> array = Handle<FixedArray>::cast(value);
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, value, CreateLiteralBoilerplate(isolate, literals, array),
+ Object);
+ }
+ MaybeHandle<Object> maybe_result;
+ uint32_t element_index = 0;
+ if (key->IsInternalizedString()) {
+ if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) {
+ // Array index as string (uint32).
+ if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
+ maybe_result =
+ JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
+ } else {
+ Handle<String> name(String::cast(*key));
+ DCHECK(!name->AsArrayIndex(&element_index));
+ maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(
+ boilerplate, name, value, NONE);
+ }
+ } else if (key->ToArrayIndex(&element_index)) {
+ // Array index (uint32).
+ if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
+ maybe_result =
+ JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
+ } else {
+ // Non-uint32 number.
+ DCHECK(key->IsNumber());
+ double num = key->Number();
+ char arr[100];
+ Vector<char> buffer(arr, arraysize(arr));
+ const char* str = DoubleToCString(num, buffer);
+ Handle<String> name = isolate->factory()->NewStringFromAsciiChecked(str);
+ maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(boilerplate, name,
+ value, NONE);
+ }
+ // If setting the property on the boilerplate throws an
+ // exception, the exception is converted to an empty handle in
+ // the handle based operations. In that case, we need to
+ // convert back to an exception.
+ RETURN_ON_EXCEPTION(isolate, maybe_result, Object);
+ }
+
+ // Transform to fast properties if necessary. For object literals with
+ // containing function literals we defer this operation until after all
+ // computed properties have been assigned so that we can generate
+ // constant function properties.
+ if (should_transform && !has_function_literal) {
+ JSObject::MigrateSlowToFast(boilerplate,
+ boilerplate->map()->unused_property_fields());
+ }
+
+ return boilerplate;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<Object> TransitionElements(
+ Handle<Object> object, ElementsKind to_kind, Isolate* isolate) {
+ HandleScope scope(isolate);
+ if (!object->IsJSObject()) {
+ isolate->ThrowIllegalOperation();
+ return MaybeHandle<Object>();
+ }
+ ElementsKind from_kind =
+ Handle<JSObject>::cast(object)->map()->elements_kind();
+ if (Map::IsValidElementsTransition(from_kind, to_kind)) {
+ JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), to_kind);
+ return object;
+ }
+ isolate->ThrowIllegalOperation();
+ return MaybeHandle<Object>();
+}
+
+
+MaybeHandle<Object> Runtime::CreateArrayLiteralBoilerplate(
+ Isolate* isolate, Handle<FixedArray> literals,
+ Handle<FixedArray> elements) {
+ // Create the JSArray.
+ Handle<JSFunction> constructor(
+ JSFunction::NativeContextFromLiterals(*literals)->array_function());
+
+ PretenureFlag pretenure_flag =
+ isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
+
+ Handle<JSArray> object = Handle<JSArray>::cast(
+ isolate->factory()->NewJSObject(constructor, pretenure_flag));
+
+ ElementsKind constant_elements_kind =
+ static_cast<ElementsKind>(Smi::cast(elements->get(0))->value());
+ Handle<FixedArrayBase> constant_elements_values(
+ FixedArrayBase::cast(elements->get(1)));
+
+ {
+ DisallowHeapAllocation no_gc;
+ DCHECK(IsFastElementsKind(constant_elements_kind));
+ Context* native_context = isolate->context()->native_context();
+ Object* maps_array = native_context->js_array_maps();
+ DCHECK(!maps_array->IsUndefined());
+ Object* map = FixedArray::cast(maps_array)->get(constant_elements_kind);
+ object->set_map(Map::cast(map));
+ }
+
+ Handle<FixedArrayBase> copied_elements_values;
+ if (IsFastDoubleElementsKind(constant_elements_kind)) {
+ copied_elements_values = isolate->factory()->CopyFixedDoubleArray(
+ Handle<FixedDoubleArray>::cast(constant_elements_values));
+ } else {
+ DCHECK(IsFastSmiOrObjectElementsKind(constant_elements_kind));
+ const bool is_cow = (constant_elements_values->map() ==
+ isolate->heap()->fixed_cow_array_map());
+ if (is_cow) {
+ copied_elements_values = constant_elements_values;
+#if DEBUG
+ Handle<FixedArray> fixed_array_values =
+ Handle<FixedArray>::cast(copied_elements_values);
+ for (int i = 0; i < fixed_array_values->length(); i++) {
+ DCHECK(!fixed_array_values->get(i)->IsFixedArray());
+ }
+#endif
+ } else {
+ Handle<FixedArray> fixed_array_values =
+ Handle<FixedArray>::cast(constant_elements_values);
+ Handle<FixedArray> fixed_array_values_copy =
+ isolate->factory()->CopyFixedArray(fixed_array_values);
+ copied_elements_values = fixed_array_values_copy;
+ for (int i = 0; i < fixed_array_values->length(); i++) {
+ if (fixed_array_values->get(i)->IsFixedArray()) {
+ // The value contains the constant_properties of a
+ // simple object or array literal.
+ Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i)));
+ Handle<Object> result;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, result, CreateLiteralBoilerplate(isolate, literals, fa),
+ Object);
+ fixed_array_values_copy->set(i, *result);
+ }
+ }
+ }
+ }
+ object->set_elements(*copied_elements_values);
+ object->set_length(Smi::FromInt(copied_elements_values->length()));
+
+ JSObject::ValidateElements(object);
+ return object;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
+ Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> array) {
+ Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
+ const bool kHasNoFunctionLiteral = false;
+ switch (CompileTimeValue::GetLiteralType(array)) {
+ case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS:
+ return CreateObjectLiteralBoilerplate(isolate, literals, elements, true,
+ kHasNoFunctionLiteral);
+ case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS:
+ return CreateObjectLiteralBoilerplate(isolate, literals, elements, false,
+ kHasNoFunctionLiteral);
+ case CompileTimeValue::ARRAY_LITERAL:
+ return Runtime::CreateArrayLiteralBoilerplate(isolate, literals,
+ elements);
+ default:
+ UNREACHABLE();
+ return MaybeHandle<Object>();
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateObjectLiteral) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
+ CONVERT_SMI_ARG_CHECKED(literals_index, 1);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2);
+ CONVERT_SMI_ARG_CHECKED(flags, 3);
+ bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
+ bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
+
+ RUNTIME_ASSERT(literals_index >= 0 && literals_index < literals->length());
+
+ // Check if boilerplate exists. If not, create it first.
+ Handle<Object> literal_site(literals->get(literals_index), isolate);
+ Handle<AllocationSite> site;
+ Handle<JSObject> boilerplate;
+ if (*literal_site == isolate->heap()->undefined_value()) {
+ Handle<Object> raw_boilerplate;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, raw_boilerplate,
+ CreateObjectLiteralBoilerplate(isolate, literals, constant_properties,
+ should_have_fast_elements,
+ has_function_literal));
+ boilerplate = Handle<JSObject>::cast(raw_boilerplate);
+
+ AllocationSiteCreationContext creation_context(isolate);
+ site = creation_context.EnterNewScope();
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, JSObject::DeepWalk(boilerplate, &creation_context));
+ creation_context.ExitScope(site, boilerplate);
+
+ // Update the functions literal and return the boilerplate.
+ literals->set(literals_index, *site);
+ } else {
+ site = Handle<AllocationSite>::cast(literal_site);
+ boilerplate =
+ Handle<JSObject>(JSObject::cast(site->transition_info()), isolate);
+ }
+
+ AllocationSiteUsageContext usage_context(isolate, site, true);
+ usage_context.EnterNewScope();
+ MaybeHandle<Object> maybe_copy =
+ JSObject::DeepCopy(boilerplate, &usage_context);
+ usage_context.ExitScope(site, boilerplate);
+ Handle<Object> copy;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, copy, maybe_copy);
+ return *copy;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<AllocationSite> GetLiteralAllocationSite(
+ Isolate* isolate, Handle<FixedArray> literals, int literals_index,
+ Handle<FixedArray> elements) {
+ // Check if boilerplate exists. If not, create it first.
+ Handle<Object> literal_site(literals->get(literals_index), isolate);
+ Handle<AllocationSite> site;
+ if (*literal_site == isolate->heap()->undefined_value()) {
+ DCHECK(*elements != isolate->heap()->empty_fixed_array());
+ Handle<Object> boilerplate;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, boilerplate,
+ Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements),
+ AllocationSite);
+
+ AllocationSiteCreationContext creation_context(isolate);
+ site = creation_context.EnterNewScope();
+ if (JSObject::DeepWalk(Handle<JSObject>::cast(boilerplate),
+ &creation_context).is_null()) {
+ return Handle<AllocationSite>::null();
+ }
+ creation_context.ExitScope(site, Handle<JSObject>::cast(boilerplate));
+
+ literals->set(literals_index, *site);
+ } else {
+ site = Handle<AllocationSite>::cast(literal_site);
+ }
+
+ return site;
+}
+
+
+static MaybeHandle<JSObject> CreateArrayLiteralImpl(Isolate* isolate,
+ Handle<FixedArray> literals,
+ int literals_index,
+ Handle<FixedArray> elements,
+ int flags) {
+ RUNTIME_ASSERT_HANDLIFIED(
+ literals_index >= 0 && literals_index < literals->length(), JSObject);
+ Handle<AllocationSite> site;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, site,
+ GetLiteralAllocationSite(isolate, literals, literals_index, elements),
+ JSObject);
+
+ bool enable_mementos = (flags & ArrayLiteral::kDisableMementos) == 0;
+ Handle<JSObject> boilerplate(JSObject::cast(site->transition_info()));
+ AllocationSiteUsageContext usage_context(isolate, site, enable_mementos);
+ usage_context.EnterNewScope();
+ JSObject::DeepCopyHints hints = (flags & ArrayLiteral::kShallowElements) == 0
+ ? JSObject::kNoHints
+ : JSObject::kObjectIsShallow;
+ MaybeHandle<JSObject> copy =
+ JSObject::DeepCopy(boilerplate, &usage_context, hints);
+ usage_context.ExitScope(site, boilerplate);
+ return copy;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateArrayLiteral) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
+ CONVERT_SMI_ARG_CHECKED(literals_index, 1);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
+ CONVERT_SMI_ARG_CHECKED(flags, 3);
+
+ Handle<JSObject> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, CreateArrayLiteralImpl(isolate, literals, literals_index,
+ elements, flags));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateArrayLiteralStubBailout) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
+ CONVERT_SMI_ARG_CHECKED(literals_index, 1);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
+
+ Handle<JSObject> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ CreateArrayLiteralImpl(isolate, literals, literals_index, elements,
+ ArrayLiteral::kShallowElements));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateSymbol) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+ RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
+ Handle<Symbol> symbol = isolate->factory()->NewSymbol();
+ if (name->IsString()) symbol->set_name(*name);
+ return *symbol;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreatePrivateSymbol) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+ RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
+ Handle<Symbol> symbol = isolate->factory()->NewPrivateSymbol();
+ if (name->IsString()) symbol->set_name(*name);
+ return *symbol;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreatePrivateOwnSymbol) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+ RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
+ Handle<Symbol> symbol = isolate->factory()->NewPrivateOwnSymbol();
+ if (name->IsString()) symbol->set_name(*name);
+ return *symbol;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateGlobalPrivateOwnSymbol) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
+ Handle<JSObject> registry = isolate->GetSymbolRegistry();
+ Handle<String> part = isolate->factory()->private_intern_string();
+ Handle<Object> privates;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, privates, Object::GetPropertyOrElement(registry, part));
+ Handle<Object> symbol;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, symbol, Object::GetPropertyOrElement(privates, name));
+ if (!symbol->IsSymbol()) {
+ DCHECK(symbol->IsUndefined());
+ symbol = isolate->factory()->NewPrivateSymbol();
+ Handle<Symbol>::cast(symbol)->set_name(*name);
+ Handle<Symbol>::cast(symbol)->set_is_own(true);
+ JSObject::SetProperty(Handle<JSObject>::cast(privates), name, symbol,
+ STRICT).Assert();
+ }
+ return *symbol;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewSymbolWrapper) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Symbol, symbol, 0);
+ return *Object::ToObject(isolate, symbol).ToHandleChecked();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SymbolDescription) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Symbol, symbol, 0);
+ return symbol->name();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SymbolRegistry) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ return *isolate->GetSymbolRegistry();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SymbolIsPrivate) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Symbol, symbol, 0);
+ return isolate->heap()->ToBoolean(symbol->is_private());
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateJSProxy) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
+ if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
+ return *isolate->factory()->NewJSProxy(handler, prototype);
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateJSFunctionProxy) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, call_trap, 1);
+ RUNTIME_ASSERT(call_trap->IsJSFunction() || call_trap->IsJSFunctionProxy());
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, construct_trap, 2);
+ CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 3);
+ if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
+ return *isolate->factory()->NewJSFunctionProxy(handler, call_trap,
+ construct_trap, prototype);
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsJSProxy) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsJSProxy());
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsJSFunctionProxy) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy());
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetHandler) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSProxy, proxy, 0);
+ return proxy->handler();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetCallTrap) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
+ return proxy->call_trap();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetConstructTrap) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
+ return proxy->construct_trap();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Fix) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSProxy, proxy, 0);
+ JSProxy::Fix(proxy);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetPrototype) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
+ // We don't expect access checks to be needed on JSProxy objects.
+ DCHECK(!obj->IsAccessCheckNeeded() || obj->IsJSObject());
+ PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
+ do {
+ if (PrototypeIterator::GetCurrent(iter)->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(
+ Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
+ isolate->factory()->proto_string(), v8::ACCESS_GET)) {
+ isolate->ReportFailedAccessCheck(
+ Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
+ v8::ACCESS_GET);
+ RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+ return isolate->heap()->undefined_value();
+ }
+ iter.AdvanceIgnoringProxies();
+ if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
+ return *PrototypeIterator::GetCurrent(iter);
+ }
+ } while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN));
+ return *PrototypeIterator::GetCurrent(iter);
+}
+
+
+static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
+ Isolate* isolate, Handle<Object> receiver) {
+ PrototypeIterator iter(isolate, receiver);
+ while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) {
+ if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
+ return PrototypeIterator::GetCurrent(iter);
+ }
+ iter.Advance();
+ }
+ return PrototypeIterator::GetCurrent(iter);
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalSetPrototype) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
+ DCHECK(!obj->IsAccessCheckNeeded());
+ DCHECK(!obj->map()->is_observed());
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, JSObject::SetPrototype(obj, prototype, false));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetPrototype) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
+ if (obj->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(obj, isolate->factory()->proto_string(),
+ v8::ACCESS_SET)) {
+ isolate->ReportFailedAccessCheck(obj, v8::ACCESS_SET);
+ RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+ return isolate->heap()->undefined_value();
+ }
+ if (obj->map()->is_observed()) {
+ Handle<Object> old_value = GetPrototypeSkipHiddenPrototypes(isolate, obj);
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, JSObject::SetPrototype(obj, prototype, true));
+
+ Handle<Object> new_value = GetPrototypeSkipHiddenPrototypes(isolate, obj);
+ if (!new_value->SameValue(*old_value)) {
+ JSObject::EnqueueChangeRecord(
+ obj, "setPrototype", isolate->factory()->proto_string(), old_value);
+ }
+ return *result;
+ }
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, JSObject::SetPrototype(obj, prototype, true));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsInPrototypeChain) {
+ HandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
+ CONVERT_ARG_HANDLE_CHECKED(Object, O, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, V, 1);
+ PrototypeIterator iter(isolate, V, PrototypeIterator::START_AT_RECEIVER);
+ while (true) {
+ iter.AdvanceIgnoringProxies();
+ if (iter.IsAtEnd()) return isolate->heap()->false_value();
+ if (iter.IsAtEnd(O)) return isolate->heap()->true_value();
+ }
+}
+
+
+// Enumerator used as indices into the array returned from GetOwnProperty
+enum PropertyDescriptorIndices {
+ IS_ACCESSOR_INDEX,
+ VALUE_INDEX,
+ GETTER_INDEX,
+ SETTER_INDEX,
+ WRITABLE_INDEX,
+ ENUMERABLE_INDEX,
+ CONFIGURABLE_INDEX,
+ DESCRIPTOR_SIZE
+};
+
+
+MUST_USE_RESULT static MaybeHandle<Object> GetOwnProperty(Isolate* isolate,
+ Handle<JSObject> obj,
+ Handle<Name> name) {
+ Heap* heap = isolate->heap();
+ Factory* factory = isolate->factory();
+
+ PropertyAttributes attrs;
+ uint32_t index = 0;
+ Handle<Object> value;
+ MaybeHandle<AccessorPair> maybe_accessors;
+ // TODO(verwaest): Unify once indexed properties can be handled by the
+ // LookupIterator.
+ if (name->AsArrayIndex(&index)) {
+ // Get attributes.
+ Maybe<PropertyAttributes> maybe =
+ JSReceiver::GetOwnElementAttribute(obj, index);
+ if (!maybe.has_value) return MaybeHandle<Object>();
+ attrs = maybe.value;
+ if (attrs == ABSENT) return factory->undefined_value();
+
+ // Get AccessorPair if present.
+ maybe_accessors = JSObject::GetOwnElementAccessorPair(obj, index);
+
+ // Get value if not an AccessorPair.
+ if (maybe_accessors.is_null()) {
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, value, Runtime::GetElementOrCharAt(isolate, obj, index),
+ Object);
+ }
+ } else {
+ // Get attributes.
+ LookupIterator it(obj, name, LookupIterator::HIDDEN);
+ Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(&it);
+ if (!maybe.has_value) return MaybeHandle<Object>();
+ attrs = maybe.value;
+ if (attrs == ABSENT) return factory->undefined_value();
+
+ // Get AccessorPair if present.
+ if (it.state() == LookupIterator::ACCESSOR &&
+ it.GetAccessors()->IsAccessorPair()) {
+ maybe_accessors = Handle<AccessorPair>::cast(it.GetAccessors());
+ }
+
+ // Get value if not an AccessorPair.
+ if (maybe_accessors.is_null()) {
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, value, Object::GetProperty(&it),
+ Object);
+ }
+ }
+ DCHECK(!isolate->has_pending_exception());
+ Handle<FixedArray> elms = factory->NewFixedArray(DESCRIPTOR_SIZE);
+ elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0));
+ elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0));
+ elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(!maybe_accessors.is_null()));
+
+ Handle<AccessorPair> accessors;
+ if (maybe_accessors.ToHandle(&accessors)) {
+ Handle<Object> getter(accessors->GetComponent(ACCESSOR_GETTER), isolate);
+ Handle<Object> setter(accessors->GetComponent(ACCESSOR_SETTER), isolate);
+ elms->set(GETTER_INDEX, *getter);
+ elms->set(SETTER_INDEX, *setter);
+ } else {
+ elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0));
+ elms->set(VALUE_INDEX, *value);
+ }
+
+ return factory->NewJSArrayWithElements(elms);
+}
+
+
+// Returns an array with the property description:
+// if args[1] is not a property on args[0]
+// returns undefined
+// if args[1] is a data property on args[0]
+// [false, value, Writeable, Enumerable, Configurable]
+// if args[1] is an accessor on args[0]
+// [true, GetFunction, SetFunction, Enumerable, Configurable]
+RUNTIME_FUNCTION(Runtime_GetOwnProperty) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+ GetOwnProperty(isolate, obj, name));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_PreventExtensions) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+ JSObject::PreventExtensions(obj));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ToMethod) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+ Handle<JSFunction> clone = JSFunction::CloneClosure(fun);
+ Handle<Symbol> home_object_symbol(isolate->heap()->home_object_symbol());
+ JSObject::SetOwnPropertyIgnoreAttributes(clone, home_object_symbol,
+ home_object, DONT_ENUM).Assert();
+ return *clone;
+}
+
+
+RUNTIME_FUNCTION(Runtime_HomeObjectSymbol) {
+ DCHECK(args.length() == 0);
+ return isolate->heap()->home_object_symbol();
+}
+
+
+RUNTIME_FUNCTION(Runtime_LoadFromSuper) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 2);
+
+ if (home_object->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(home_object, name, v8::ACCESS_GET)) {
+ isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_GET);
+ RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+ }
+
+ PrototypeIterator iter(isolate, home_object);
+ Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
+ if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
+
+ LookupIterator it(receiver, name, Handle<JSReceiver>::cast(proto));
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it));
+ return *result;
+}
+
+
+static Object* StoreToSuper(Isolate* isolate, Handle<JSObject> home_object,
+ Handle<Object> receiver, Handle<Name> name,
+ Handle<Object> value, StrictMode strict_mode) {
+ if (home_object->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(home_object, name, v8::ACCESS_SET)) {
+ isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_SET);
+ RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+ }
+
+ PrototypeIterator iter(isolate, home_object);
+ Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
+ if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
+
+ LookupIterator it(receiver, name, Handle<JSReceiver>::cast(proto));
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Object::SetProperty(&it, value, strict_mode,
+ Object::CERTAINLY_NOT_STORE_FROM_KEYED,
+ Object::SUPER_PROPERTY));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreToSuper_Strict) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 3);
+
+ return StoreToSuper(isolate, home_object, receiver, name, value, STRICT);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreToSuper_Sloppy) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 3);
+
+ return StoreToSuper(isolate, home_object, receiver, name, value, SLOPPY);
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsExtensible) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+ if (obj->IsJSGlobalProxy()) {
+ PrototypeIterator iter(isolate, obj);
+ if (iter.IsAtEnd()) return isolate->heap()->false_value();
+ DCHECK(iter.GetCurrent()->IsJSGlobalObject());
+ obj = JSObject::cast(iter.GetCurrent());
+ }
+ return isolate->heap()->ToBoolean(obj->map()->is_extensible());
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateApiFunction) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
+ return *isolate->factory()->CreateApiFunction(data, prototype);
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsTemplate) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, arg, 0);
+ bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
+ return isolate->heap()->ToBoolean(result);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetTemplateField) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_CHECKED(HeapObject, templ, 0);
+ CONVERT_SMI_ARG_CHECKED(index, 1);
+ int offset = index * kPointerSize + HeapObject::kHeaderSize;
+ InstanceType type = templ->map()->instance_type();
+ RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
+ type == OBJECT_TEMPLATE_INFO_TYPE);
+ RUNTIME_ASSERT(offset > 0);
+ if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
+ RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
+ } else {
+ RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
+ }
+ return *HeapObject::RawField(templ, offset);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DisableAccessChecks) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(HeapObject, object, 0);
+ Handle<Map> old_map(object->map());
+ bool needs_access_checks = old_map->is_access_check_needed();
+ if (needs_access_checks) {
+ // Copy map so it won't interfere constructor's initial map.
+ Handle<Map> new_map = Map::Copy(old_map);
+ new_map->set_is_access_check_needed(false);
+ JSObject::MigrateToMap(Handle<JSObject>::cast(object), new_map);
+ }
+ return isolate->heap()->ToBoolean(needs_access_checks);
+}
+
+
+RUNTIME_FUNCTION(Runtime_EnableAccessChecks) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ Handle<Map> old_map(object->map());
+ RUNTIME_ASSERT(!old_map->is_access_check_needed());
+ // Copy map so it won't interfere constructor's initial map.
+ Handle<Map> new_map = Map::Copy(old_map);
+ new_map->set_is_access_check_needed(true);
+ JSObject::MigrateToMap(object, new_map);
+ return isolate->heap()->undefined_value();
+}
+
+
+static Object* ThrowRedeclarationError(Isolate* isolate, Handle<String> name) {
+ HandleScope scope(isolate);
+ Handle<Object> args[1] = {name};
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewTypeError("var_redeclaration", HandleVector(args, 1)));
+}
+
+
+// May throw a RedeclarationError.
+static Object* DeclareGlobals(Isolate* isolate, Handle<GlobalObject> global,
+ Handle<String> name, Handle<Object> value,
+ PropertyAttributes attr, bool is_var,
+ bool is_const, bool is_function) {
+ // Do the lookup own properties only, see ES5 erratum.
+ LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
+ Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+ if (!maybe.has_value) return isolate->heap()->exception();
+
+ if (it.IsFound()) {
+ PropertyAttributes old_attributes = maybe.value;
+ // The name was declared before; check for conflicting re-declarations.
+ if (is_const) return ThrowRedeclarationError(isolate, name);
+
+ // Skip var re-declarations.
+ if (is_var) return isolate->heap()->undefined_value();
+
+ DCHECK(is_function);
+ if ((old_attributes & DONT_DELETE) != 0) {
+ // Only allow reconfiguring globals to functions in user code (no
+ // natives, which are marked as read-only).
+ DCHECK((attr & READ_ONLY) == 0);
+
+ // Check whether we can reconfigure the existing property into a
+ // function.
+ PropertyDetails old_details = it.property_details();
+ // TODO(verwaest): CALLBACKS invalidly includes ExecutableAccessInfo,
+ // which are actually data properties, not accessor properties.
+ if (old_details.IsReadOnly() || old_details.IsDontEnum() ||
+ old_details.type() == CALLBACKS) {
+ return ThrowRedeclarationError(isolate, name);
+ }
+ // If the existing property is not configurable, keep its attributes. Do
+ attr = old_attributes;
+ }
+ }
+
+ // Define or redefine own property.
+ RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+ global, name, value, attr));
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeclareGlobals) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ Handle<GlobalObject> global(isolate->global_object());
+
+ CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1);
+ CONVERT_SMI_ARG_CHECKED(flags, 2);
+
+ // Traverse the name/value pairs and set the properties.
+ int length = pairs->length();
+ for (int i = 0; i < length; i += 2) {
+ HandleScope scope(isolate);
+ Handle<String> name(String::cast(pairs->get(i)));
+ Handle<Object> initial_value(pairs->get(i + 1), isolate);
+
+ // We have to declare a global const property. To capture we only
+ // assign to it when evaluating the assignment for "const x =
+ // <expr>" the initial value is the hole.
+ bool is_var = initial_value->IsUndefined();
+ bool is_const = initial_value->IsTheHole();
+ bool is_function = initial_value->IsSharedFunctionInfo();
+ DCHECK(is_var + is_const + is_function == 1);
+
+ Handle<Object> value;
+ if (is_function) {
+ // Copy the function and update its context. Use it as value.
+ Handle<SharedFunctionInfo> shared =
+ Handle<SharedFunctionInfo>::cast(initial_value);
+ Handle<JSFunction> function =
+ isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
+ TENURED);
+ value = function;
+ } else {
+ value = isolate->factory()->undefined_value();
+ }
+
+ // Compute the property attributes. According to ECMA-262,
+ // the property must be non-configurable except in eval.
+ bool is_native = DeclareGlobalsNativeFlag::decode(flags);
+ bool is_eval = DeclareGlobalsEvalFlag::decode(flags);
+ int attr = NONE;
+ if (is_const) attr |= READ_ONLY;
+ if (is_function && is_native) attr |= READ_ONLY;
+ if (!is_const && !is_eval) attr |= DONT_DELETE;
+
+ Object* result = DeclareGlobals(isolate, global, name, value,
+ static_cast<PropertyAttributes>(attr),
+ is_var, is_const, is_function);
+ if (isolate->has_pending_exception()) return result;
+ }
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_InitializeVarGlobal) {
+ HandleScope scope(isolate);
+ // args[0] == name
+ // args[1] == language_mode
+ // args[2] == value (optional)
+
+ // Determine if we need to assign to the variable if it already
+ // exists (based on the number of arguments).
+ RUNTIME_ASSERT(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
+ CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+
+ Handle<GlobalObject> global(isolate->context()->global_object());
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, Object::SetProperty(global, name, value, strict_mode));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InitializeConstGlobal) {
+ HandleScope handle_scope(isolate);
+ // All constants are declared with an initial value. The name
+ // of the constant is the first argument and the initial value
+ // is the second.
+ RUNTIME_ASSERT(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
+
+ Handle<GlobalObject> global = isolate->global_object();
+
+ // Lookup the property as own on the global object.
+ LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
+ Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+ DCHECK(maybe.has_value);
+ PropertyAttributes old_attributes = maybe.value;
+
+ PropertyAttributes attr =
+ static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
+ // Set the value if the property is either missing, or the property attributes
+ // allow setting the value without invoking an accessor.
+ if (it.IsFound()) {
+ // Ignore if we can't reconfigure the value.
+ if ((old_attributes & DONT_DELETE) != 0) {
+ if ((old_attributes & READ_ONLY) != 0 ||
+ it.state() == LookupIterator::ACCESSOR) {
+ return *value;
+ }
+ attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
+ }
+ }
+
+ RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+ global, name, value, attr));
+
+ return *value;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeclareLookupSlot) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+
+ // Declarations are always made in a function, native, or global context. In
+ // the case of eval code, the context passed is the context of the caller,
+ // which may be some nested context and not the declaration context.
+ CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 0);
+ Handle<Context> context(context_arg->declaration_context());
+ CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
+ CONVERT_SMI_ARG_CHECKED(attr_arg, 2);
+ PropertyAttributes attr = static_cast<PropertyAttributes>(attr_arg);
+ RUNTIME_ASSERT(attr == READ_ONLY || attr == NONE);
+ CONVERT_ARG_HANDLE_CHECKED(Object, initial_value, 3);
+
+ // TODO(verwaest): Unify the encoding indicating "var" with DeclareGlobals.
+ bool is_var = *initial_value == NULL;
+ bool is_const = initial_value->IsTheHole();
+ bool is_function = initial_value->IsJSFunction();
+ DCHECK(is_var + is_const + is_function == 1);
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
+ BindingFlags binding_flags;
+ Handle<Object> holder =
+ context->Lookup(name, flags, &index, &attributes, &binding_flags);
+
+ Handle<JSObject> object;
+ Handle<Object> value =
+ is_function ? initial_value
+ : Handle<Object>::cast(isolate->factory()->undefined_value());
+
+ // TODO(verwaest): This case should probably not be covered by this function,
+ // but by DeclareGlobals instead.
+ if ((attributes != ABSENT && holder->IsJSGlobalObject()) ||
+ (context_arg->has_extension() &&
+ context_arg->extension()->IsJSGlobalObject())) {
+ return DeclareGlobals(isolate, Handle<JSGlobalObject>::cast(holder), name,
+ value, attr, is_var, is_const, is_function);
+ }
+
+ if (attributes != ABSENT) {
+ // The name was declared before; check for conflicting re-declarations.
+ if (is_const || (attributes & READ_ONLY) != 0) {
+ return ThrowRedeclarationError(isolate, name);
+ }
+
+ // Skip var re-declarations.
+ if (is_var) return isolate->heap()->undefined_value();
+
+ DCHECK(is_function);
+ if (index >= 0) {
+ DCHECK(holder.is_identical_to(context));
+ context->set(index, *initial_value);
+ return isolate->heap()->undefined_value();
+ }
+
+ object = Handle<JSObject>::cast(holder);
+
+ } else if (context->has_extension()) {
+ object = handle(JSObject::cast(context->extension()));
+ DCHECK(object->IsJSContextExtensionObject() || object->IsJSGlobalObject());
+ } else {
+ DCHECK(context->IsFunctionContext());
+ object =
+ isolate->factory()->NewJSObject(isolate->context_extension_function());
+ context->set_extension(*object);
+ }
+
+ RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+ object, name, value, attr));
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_InitializeLegacyConstLookupSlot) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
+ DCHECK(!value->IsTheHole());
+ // Initializations are always done in a function or native context.
+ CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 1);
+ Handle<Context> context(context_arg->declaration_context());
+ CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
+ BindingFlags binding_flags;
+ Handle<Object> holder =
+ context->Lookup(name, flags, &index, &attributes, &binding_flags);
+
+ if (index >= 0) {
+ DCHECK(holder->IsContext());
+ // Property was found in a context. Perform the assignment if the constant
+ // was uninitialized.
+ Handle<Context> context = Handle<Context>::cast(holder);
+ DCHECK((attributes & READ_ONLY) != 0);
+ if (context->get(index)->IsTheHole()) context->set(index, *value);
+ return *value;
+ }
+
+ PropertyAttributes attr =
+ static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
+
+ // Strict mode handling not needed (legacy const is disallowed in strict
+ // mode).
+
+ // The declared const was configurable, and may have been deleted in the
+ // meanwhile. If so, re-introduce the variable in the context extension.
+ DCHECK(context_arg->has_extension());
+ if (attributes == ABSENT) {
+ holder = handle(context_arg->extension(), isolate);
+ } else {
+ // For JSContextExtensionObjects, the initializer can be run multiple times
+ // if in a for loop: for (var i = 0; i < 2; i++) { const x = i; }. Only the
+ // first assignment should go through. For JSGlobalObjects, additionally any
+ // code can run in between that modifies the declared property.
+ DCHECK(holder->IsJSGlobalObject() || holder->IsJSContextExtensionObject());
+
+ LookupIterator it(holder, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
+ Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+ if (!maybe.has_value) return isolate->heap()->exception();
+ PropertyAttributes old_attributes = maybe.value;
+
+ // Ignore if we can't reconfigure the value.
+ if ((old_attributes & DONT_DELETE) != 0) {
+ if ((old_attributes & READ_ONLY) != 0 ||
+ it.state() == LookupIterator::ACCESSOR) {
+ return *value;
+ }
+ attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
+ }
+ }
+
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+ Handle<JSObject>::cast(holder), name, value, attr));
+
+ return *value;
+}
+
+
+RUNTIME_FUNCTION(Runtime_OptimizeObjectForAddingMultipleProperties) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_SMI_ARG_CHECKED(properties, 1);
+ // Conservative upper limit to prevent fuzz tests from going OOM.
+ RUNTIME_ASSERT(properties <= 100000);
+ if (object->HasFastProperties() && !object->IsJSGlobalProxy()) {
+ JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
+ }
+ return *object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0);
+ Object* length = prototype->length();
+ RUNTIME_ASSERT(length->IsSmi() && Smi::cast(length)->value() == 0);
+ RUNTIME_ASSERT(prototype->HasFastSmiOrObjectElements());
+ // This is necessary to enable fast checks for absence of elements
+ // on Array.prototype and below.
+ prototype->set_elements(isolate->heap()->empty_fixed_array());
+ return Smi::FromInt(0);
+}
+
+
+static void InstallBuiltin(Isolate* isolate, Handle<JSObject> holder,
+ const char* name, Builtins::Name builtin_name) {
+ Handle<String> key = isolate->factory()->InternalizeUtf8String(name);
+ Handle<Code> code(isolate->builtins()->builtin(builtin_name));
+ Handle<JSFunction> optimized =
+ isolate->factory()->NewFunctionWithoutPrototype(key, code);
+ optimized->shared()->DontAdaptArguments();
+ JSObject::AddProperty(holder, key, optimized, NONE);
+}
+
+
+RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ Handle<JSObject> holder =
+ isolate->factory()->NewJSObject(isolate->object_function());
+
+ InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop);
+ InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush);
+ InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift);
+ InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift);
+ InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice);
+ InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice);
+ InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat);
+
+ return *holder;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsSloppyModeFunction) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
+ if (!callable->IsJSFunction()) {
+ HandleScope scope(isolate);
+ Handle<Object> delegate;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, delegate, Execution::TryGetFunctionDelegate(
+ isolate, Handle<JSReceiver>(callable)));
+ callable = JSFunction::cast(*delegate);
+ }
+ JSFunction* function = JSFunction::cast(callable);
+ SharedFunctionInfo* shared = function->shared();
+ return isolate->heap()->ToBoolean(shared->strict_mode() == SLOPPY);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetDefaultReceiver) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
+
+ if (!callable->IsJSFunction()) {
+ HandleScope scope(isolate);
+ Handle<Object> delegate;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, delegate, Execution::TryGetFunctionDelegate(
+ isolate, Handle<JSReceiver>(callable)));
+ callable = JSFunction::cast(*delegate);
+ }
+ JSFunction* function = JSFunction::cast(callable);
+
+ SharedFunctionInfo* shared = function->shared();
+ if (shared->native() || shared->strict_mode() == STRICT) {
+ return isolate->heap()->undefined_value();
+ }
+ // Returns undefined for strict or native functions, or
+ // the associated global receiver for "normal" functions.
+
+ return function->global_proxy();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetName) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ return f->shared()->name();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionSetName) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ CONVERT_ARG_CHECKED(String, name, 1);
+ f->shared()->set_name(name);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionNameShouldPrintAsAnonymous) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ return isolate->heap()->ToBoolean(
+ f->shared()->name_should_print_as_anonymous());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionMarkNameShouldPrintAsAnonymous) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ f->shared()->set_name_should_print_as_anonymous(true);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsGenerator) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ return isolate->heap()->ToBoolean(f->shared()->is_generator());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsArrow) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ return isolate->heap()->ToBoolean(f->shared()->is_arrow());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsConciseMethod) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ return isolate->heap()->ToBoolean(f->shared()->is_concise_method());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionRemovePrototype) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ RUNTIME_ASSERT(f->RemovePrototype());
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetScript) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+ Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate);
+ if (!script->IsScript()) return isolate->heap()->undefined_value();
+
+ return *Script::GetWrapper(Handle<Script>::cast(script));
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetSourceCode) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0);
+ Handle<SharedFunctionInfo> shared(f->shared());
+ return *shared->GetSourceCode();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetScriptSourcePosition) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+ int pos = fun->shared()->start_position();
+ return Smi::FromInt(pos);
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetPositionForOffset) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(Code, code, 0);
+ CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
+
+ RUNTIME_ASSERT(0 <= offset && offset < code->Size());
+
+ Address pc = code->address() + offset;
+ return Smi::FromInt(code->SourcePosition(pc));
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionSetInstanceClassName) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+ CONVERT_ARG_CHECKED(String, name, 1);
+ fun->SetInstanceClassName(name);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionSetLength) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+ CONVERT_SMI_ARG_CHECKED(length, 1);
+ RUNTIME_ASSERT((length & 0xC0000000) == 0xC0000000 ||
+ (length & 0xC0000000) == 0x0);
+ fun->shared()->set_length(length);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionSetPrototype) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
+ RUNTIME_ASSERT(fun->should_have_prototype());
+ Accessors::FunctionSetPrototype(fun, value);
+ return args[0]; // return TOS
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsAPIFunction) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ return isolate->heap()->ToBoolean(f->shared()->IsApiFunction());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsBuiltin) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ return isolate->heap()->ToBoolean(f->IsBuiltin());
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetCode) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, source, 1);
+
+ Handle<SharedFunctionInfo> target_shared(target->shared());
+ Handle<SharedFunctionInfo> source_shared(source->shared());
+ RUNTIME_ASSERT(!source_shared->bound());
+
+ if (!Compiler::EnsureCompiled(source, KEEP_EXCEPTION)) {
+ return isolate->heap()->exception();
+ }
+
+ // Mark both, the source and the target, as un-flushable because the
+ // shared unoptimized code makes them impossible to enqueue in a list.
+ DCHECK(target_shared->code()->gc_metadata() == NULL);
+ DCHECK(source_shared->code()->gc_metadata() == NULL);
+ target_shared->set_dont_flush(true);
+ source_shared->set_dont_flush(true);
+
+ // Set the code, scope info, formal parameter count, and the length
+ // of the target shared function info.
+ target_shared->ReplaceCode(source_shared->code());
+ target_shared->set_scope_info(source_shared->scope_info());
+ target_shared->set_length(source_shared->length());
+ target_shared->set_feedback_vector(source_shared->feedback_vector());
+ target_shared->set_formal_parameter_count(
+ source_shared->formal_parameter_count());
+ target_shared->set_script(source_shared->script());
+ target_shared->set_start_position_and_type(
+ source_shared->start_position_and_type());
+ target_shared->set_end_position(source_shared->end_position());
+ bool was_native = target_shared->native();
+ target_shared->set_compiler_hints(source_shared->compiler_hints());
+ target_shared->set_native(was_native);
+ target_shared->set_profiler_ticks(source_shared->profiler_ticks());
+
+ // Set the code of the target function.
+ target->ReplaceCode(source_shared->code());
+ DCHECK(target->next_function_link()->IsUndefined());
+
+ // Make sure we get a fresh copy of the literal vector to avoid cross
+ // context contamination.
+ Handle<Context> context(source->context());
+ int number_of_literals = source->NumberOfLiterals();
+ Handle<FixedArray> literals =
+ isolate->factory()->NewFixedArray(number_of_literals, TENURED);
+ if (number_of_literals > 0) {
+ literals->set(JSFunction::kLiteralNativeContextIndex,
+ context->native_context());
+ }
+ target->set_context(*context);
+ target->set_literals(*literals);
+
+ if (isolate->logger()->is_logging_code_events() ||
+ isolate->cpu_profiler()->is_profiling()) {
+ isolate->logger()->LogExistingFunction(source_shared,
+ Handle<Code>(source_shared->code()));
+ }
+
+ return *target;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateJSGeneratorObject) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+
+ JavaScriptFrameIterator it(isolate);
+ JavaScriptFrame* frame = it.frame();
+ Handle<JSFunction> function(frame->function());
+ RUNTIME_ASSERT(function->shared()->is_generator());
+
+ Handle<JSGeneratorObject> generator;
+ if (frame->IsConstructor()) {
+ generator = handle(JSGeneratorObject::cast(frame->receiver()));
+ } else {
+ generator = isolate->factory()->NewJSGeneratorObject(function);
+ }
+ generator->set_function(*function);
+ generator->set_context(Context::cast(frame->context()));
+ generator->set_receiver(frame->receiver());
+ generator->set_continuation(0);
+ generator->set_operand_stack(isolate->heap()->empty_fixed_array());
+ generator->set_stack_handler_index(-1);
+
+ return *generator;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SuspendJSGeneratorObject) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator_object, 0);
+
+ JavaScriptFrameIterator stack_iterator(isolate);
+ JavaScriptFrame* frame = stack_iterator.frame();
+ RUNTIME_ASSERT(frame->function()->shared()->is_generator());
+ DCHECK_EQ(frame->function(), generator_object->function());
+
+ // The caller should have saved the context and continuation already.
+ DCHECK_EQ(generator_object->context(), Context::cast(frame->context()));
+ DCHECK_LT(0, generator_object->continuation());
+
+ // We expect there to be at least two values on the operand stack: the return
+ // value of the yield expression, and the argument to this runtime call.
+ // Neither of those should be saved.
+ int operands_count = frame->ComputeOperandsCount();
+ DCHECK_GE(operands_count, 2);
+ operands_count -= 2;
+
+ if (operands_count == 0) {
+ // Although it's semantically harmless to call this function with an
+ // operands_count of zero, it is also unnecessary.
+ DCHECK_EQ(generator_object->operand_stack(),
+ isolate->heap()->empty_fixed_array());
+ DCHECK_EQ(generator_object->stack_handler_index(), -1);
+ // If there are no operands on the stack, there shouldn't be a handler
+ // active either.
+ DCHECK(!frame->HasHandler());
+ } else {
+ int stack_handler_index = -1;
+ Handle<FixedArray> operand_stack =
+ isolate->factory()->NewFixedArray(operands_count);
+ frame->SaveOperandStack(*operand_stack, &stack_handler_index);
+ generator_object->set_operand_stack(*operand_stack);
+ generator_object->set_stack_handler_index(stack_handler_index);
+ }
+
+ return isolate->heap()->undefined_value();
+}
+
+
+// Note that this function is the slow path for resuming generators. It is only
+// called if the suspended activation had operands on the stack, stack handlers
+// needing rewinding, or if the resume should throw an exception. The fast path
+// is handled directly in FullCodeGenerator::EmitGeneratorResume(), which is
+// inlined into GeneratorNext and GeneratorThrow. EmitGeneratorResumeResume is
+// called in any case, as it needs to reconstruct the stack frame and make space
+// for arguments and operands.
+RUNTIME_FUNCTION(Runtime_ResumeJSGeneratorObject) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0);
+ CONVERT_ARG_CHECKED(Object, value, 1);
+ CONVERT_SMI_ARG_CHECKED(resume_mode_int, 2);
+ JavaScriptFrameIterator stack_iterator(isolate);
+ JavaScriptFrame* frame = stack_iterator.frame();
+
+ DCHECK_EQ(frame->function(), generator_object->function());
+ DCHECK(frame->function()->is_compiled());
+
+ STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
+ STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
+
+ Address pc = generator_object->function()->code()->instruction_start();
+ int offset = generator_object->continuation();
+ DCHECK(offset > 0);
+ frame->set_pc(pc + offset);
+ if (FLAG_enable_ool_constant_pool) {
+ frame->set_constant_pool(
+ generator_object->function()->code()->constant_pool());
+ }
+ generator_object->set_continuation(JSGeneratorObject::kGeneratorExecuting);
+
+ FixedArray* operand_stack = generator_object->operand_stack();
+ int operands_count = operand_stack->length();
+ if (operands_count != 0) {
+ frame->RestoreOperandStack(operand_stack,
+ generator_object->stack_handler_index());
+ generator_object->set_operand_stack(isolate->heap()->empty_fixed_array());
+ generator_object->set_stack_handler_index(-1);
+ }
+
+ JSGeneratorObject::ResumeMode resume_mode =
+ static_cast<JSGeneratorObject::ResumeMode>(resume_mode_int);
+ switch (resume_mode) {
+ case JSGeneratorObject::NEXT:
+ return value;
+ case JSGeneratorObject::THROW:
+ return isolate->Throw(value);
+ }
+
+ UNREACHABLE();
+ return isolate->ThrowIllegalOperation();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowGeneratorStateError) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+ int continuation = generator->continuation();
+ const char* message = continuation == JSGeneratorObject::kGeneratorClosed
+ ? "generator_finished"
+ : "generator_running";
+ Vector<Handle<Object> > argv = HandleVector<Object>(NULL, 0);
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewError(message, argv));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ObjectFreeze) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+ // %ObjectFreeze is a fast path and these cases are handled elsewhere.
+ RUNTIME_ASSERT(!object->HasSloppyArgumentsElements() &&
+ !object->map()->is_observed() && !object->IsJSProxy());
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::Freeze(object));
+ return *result;
+}
+
+
+// Returns a single character string where first character equals
+// string->Get(index).
+static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
+ if (index < static_cast<uint32_t>(string->length())) {
+ Factory* factory = string->GetIsolate()->factory();
+ return factory->LookupSingleCharacterStringFromCode(
+ String::Flatten(string)->Get(index));
+ }
+ return Execution::CharAt(string, index);
+}
+
+
+MaybeHandle<Object> Runtime::GetElementOrCharAt(Isolate* isolate,
+ Handle<Object> object,
+ uint32_t index) {
+ // Handle [] indexing on Strings
+ if (object->IsString()) {
+ Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
+ if (!result->IsUndefined()) return result;
+ }
+
+ // Handle [] indexing on String objects
+ if (object->IsStringObjectWithCharacterAt(index)) {
+ Handle<JSValue> js_value = Handle<JSValue>::cast(object);
+ Handle<Object> result =
+ GetCharAt(Handle<String>(String::cast(js_value->value())), index);
+ if (!result->IsUndefined()) return result;
+ }
+
+ Handle<Object> result;
+ if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
+ PrototypeIterator iter(isolate, object);
+ return Object::GetElement(isolate, PrototypeIterator::GetCurrent(iter),
+ index);
+ } else {
+ return Object::GetElement(isolate, object, index);
+ }
+}
+
+
+MUST_USE_RESULT
+static MaybeHandle<Name> ToName(Isolate* isolate, Handle<Object> key) {
+ if (key->IsName()) {
+ return Handle<Name>::cast(key);
+ } else {
+ Handle<Object> converted;
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
+ Execution::ToString(isolate, key), Name);
+ return Handle<Name>::cast(converted);
+ }
+}
+
+
+MaybeHandle<Object> Runtime::HasObjectProperty(Isolate* isolate,
+ Handle<JSReceiver> object,
+ Handle<Object> key) {
+ Maybe<bool> maybe;
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ maybe = JSReceiver::HasElement(object, index);
+ } else {
+ // Convert the key to a name - possibly by calling back into JavaScript.
+ Handle<Name> name;
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
+
+ maybe = JSReceiver::HasProperty(object, name);
+ }
+
+ if (!maybe.has_value) return MaybeHandle<Object>();
+ return isolate->factory()->ToBoolean(maybe.value);
+}
+
+
+MaybeHandle<Object> Runtime::GetObjectProperty(Isolate* isolate,
+ Handle<Object> object,
+ Handle<Object> key) {
+ if (object->IsUndefined() || object->IsNull()) {
+ Handle<Object> args[2] = {key, object};
+ THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_load",
+ HandleVector(args, 2)),
+ Object);
+ }
+
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ return GetElementOrCharAt(isolate, object, index);
+ }
+
+ // Convert the key to a name - possibly by calling back into JavaScript.
+ Handle<Name> name;
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
+
+ // Check if the name is trivially convertible to an index and get
+ // the element if so.
+ if (name->AsArrayIndex(&index)) {
+ return GetElementOrCharAt(isolate, object, index);
+ } else {
+ return Object::GetProperty(object, name);
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetProperty) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, Runtime::GetObjectProperty(isolate, object, key));
+ return *result;
+}
+
+
+// KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric.
+RUNTIME_FUNCTION(Runtime_KeyedGetProperty) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(Object, receiver_obj, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, key_obj, 1);
+
+ // Fast cases for getting named properties of the receiver JSObject
+ // itself.
+ //
+ // The global proxy objects has to be excluded since LookupOwn on
+ // the global proxy object can return a valid result even though the
+ // global proxy object never has properties. This is the case
+ // because the global proxy object forwards everything to its hidden
+ // prototype including own lookups.
+ //
+ // Additionally, we need to make sure that we do not cache results
+ // for objects that require access checks.
+ if (receiver_obj->IsJSObject()) {
+ if (!receiver_obj->IsJSGlobalProxy() &&
+ !receiver_obj->IsAccessCheckNeeded() && key_obj->IsName()) {
+ DisallowHeapAllocation no_allocation;
+ Handle<JSObject> receiver = Handle<JSObject>::cast(receiver_obj);
+ Handle<Name> key = Handle<Name>::cast(key_obj);
+ if (receiver->HasFastProperties()) {
+ // Attempt to use lookup cache.
+ Handle<Map> receiver_map(receiver->map(), isolate);
+ KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache();
+ int index = keyed_lookup_cache->Lookup(receiver_map, key);
+ if (index != -1) {
+ // Doubles are not cached, so raw read the value.
+ return receiver->RawFastPropertyAt(
+ FieldIndex::ForKeyedLookupCacheIndex(*receiver_map, index));
+ }
+ // Lookup cache miss. Perform lookup and update the cache if
+ // appropriate.
+ LookupIterator it(receiver, key, LookupIterator::OWN);
+ if (it.state() == LookupIterator::DATA &&
+ it.property_details().type() == FIELD) {
+ FieldIndex field_index = it.GetFieldIndex();
+ // Do not track double fields in the keyed lookup cache. Reading
+ // double values requires boxing.
+ if (!it.representation().IsDouble()) {
+ keyed_lookup_cache->Update(receiver_map, key,
+ field_index.GetKeyedLookupCacheIndex());
+ }
+ AllowHeapAllocation allow_allocation;
+ return *JSObject::FastPropertyAt(receiver, it.representation(),
+ field_index);
+ }
+ } else {
+ // Attempt dictionary lookup.
+ NameDictionary* dictionary = receiver->property_dictionary();
+ int entry = dictionary->FindEntry(key);
+ if ((entry != NameDictionary::kNotFound) &&
+ (dictionary->DetailsAt(entry).type() == NORMAL)) {
+ Object* value = dictionary->ValueAt(entry);
+ if (!receiver->IsGlobalObject()) return value;
+ value = PropertyCell::cast(value)->value();
+ if (!value->IsTheHole()) return value;
+ // If value is the hole (meaning, absent) do the general lookup.
+ }
+ }
+ } else if (key_obj->IsSmi()) {
+ // JSObject without a name key. If the key is a Smi, check for a
+ // definite out-of-bounds access to elements, which is a strong indicator
+ // that subsequent accesses will also call the runtime. Proactively
+ // transition elements to FAST_*_ELEMENTS to avoid excessive boxing of
+ // doubles for those future calls in the case that the elements would
+ // become FAST_DOUBLE_ELEMENTS.
+ Handle<JSObject> js_object = Handle<JSObject>::cast(receiver_obj);
+ ElementsKind elements_kind = js_object->GetElementsKind();
+ if (IsFastDoubleElementsKind(elements_kind)) {
+ Handle<Smi> key = Handle<Smi>::cast(key_obj);
+ if (key->value() >= js_object->elements()->length()) {
+ if (IsFastHoleyElementsKind(elements_kind)) {
+ elements_kind = FAST_HOLEY_ELEMENTS;
+ } else {
+ elements_kind = FAST_ELEMENTS;
+ }
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, TransitionElements(js_object, elements_kind, isolate));
+ }
+ } else {
+ DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) ||
+ !IsFastElementsKind(elements_kind));
+ }
+ }
+ } else if (receiver_obj->IsString() && key_obj->IsSmi()) {
+ // Fast case for string indexing using [] with a smi index.
+ Handle<String> str = Handle<String>::cast(receiver_obj);
+ int index = args.smi_at(1);
+ if (index >= 0 && index < str->length()) {
+ return *GetCharAt(str, index);
+ }
+ }
+
+ // Fall back to GetObjectProperty.
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Runtime::GetObjectProperty(isolate, receiver_obj, key_obj));
+ return *result;
+}
+
+
+static bool IsValidAccessor(Handle<Object> obj) {
+ return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull();
+}
+
+
+// Transform getter or setter into something DefineAccessor can handle.
+static Handle<Object> InstantiateAccessorComponent(Isolate* isolate,
+ Handle<Object> component) {
+ if (component->IsUndefined()) return isolate->factory()->undefined_value();
+ Handle<FunctionTemplateInfo> info =
+ Handle<FunctionTemplateInfo>::cast(component);
+ return Utils::OpenHandle(*Utils::ToLocal(info)->GetFunction());
+}
+
+
+RUNTIME_FUNCTION(Runtime_DefineApiAccessorProperty) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 5);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
+ CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
+ CONVERT_SMI_ARG_CHECKED(attribute, 4);
+ RUNTIME_ASSERT(getter->IsUndefined() || getter->IsFunctionTemplateInfo());
+ RUNTIME_ASSERT(setter->IsUndefined() || setter->IsFunctionTemplateInfo());
+ RUNTIME_ASSERT(PropertyDetails::AttributesField::is_valid(
+ static_cast<PropertyAttributes>(attribute)));
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, JSObject::DefineAccessor(
+ object, name, InstantiateAccessorComponent(isolate, getter),
+ InstantiateAccessorComponent(isolate, setter),
+ static_cast<PropertyAttributes>(attribute)));
+ return isolate->heap()->undefined_value();
+}
+
+
+// Implements part of 8.12.9 DefineOwnProperty.
+// There are 3 cases that lead here:
+// Step 4b - define a new accessor property.
+// Steps 9c & 12 - replace an existing data property with an accessor property.
+// Step 12 - update an existing accessor property with an accessor or generic
+// descriptor.
+RUNTIME_FUNCTION(Runtime_DefineAccessorPropertyUnchecked) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 5);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ RUNTIME_ASSERT(!obj->IsNull());
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
+ RUNTIME_ASSERT(IsValidAccessor(getter));
+ CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
+ RUNTIME_ASSERT(IsValidAccessor(setter));
+ CONVERT_SMI_ARG_CHECKED(unchecked, 4);
+ RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
+
+ bool fast = obj->HasFastProperties();
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, JSObject::DefineAccessor(obj, name, getter, setter, attr));
+ if (fast) JSObject::MigrateSlowToFast(obj, 0);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Implements part of 8.12.9 DefineOwnProperty.
+// There are 3 cases that lead here:
+// Step 4a - define a new data property.
+// Steps 9b & 12 - replace an existing accessor property with a data property.
+// Step 12 - update an existing data property with a data or generic
+// descriptor.
+RUNTIME_FUNCTION(Runtime_DefineDataPropertyUnchecked) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2);
+ CONVERT_SMI_ARG_CHECKED(unchecked, 3);
+ RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
+
+ LookupIterator it(js_object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
+ if (it.IsFound() && it.state() == LookupIterator::ACCESS_CHECK) {
+ if (!isolate->MayNamedAccess(js_object, name, v8::ACCESS_SET)) {
+ return isolate->heap()->undefined_value();
+ }
+ it.Next();
+ }
+
+ // Take special care when attributes are different and there is already
+ // a property.
+ if (it.state() == LookupIterator::ACCESSOR) {
+ // Use IgnoreAttributes version since a readonly property may be
+ // overridden and SetProperty does not allow this.
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ JSObject::SetOwnPropertyIgnoreAttributes(
+ js_object, name, obj_value, attr, JSObject::DONT_FORCE_FIELD));
+ return *result;
+ }
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Runtime::DefineObjectProperty(js_object, name, obj_value, attr));
+ return *result;
+}
+
+
+// Return property without being observable by accessors or interceptors.
+RUNTIME_FUNCTION(Runtime_GetDataProperty) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+ return *JSObject::GetDataProperty(object, key);
+}
+
+
+MaybeHandle<Object> Runtime::SetObjectProperty(Isolate* isolate,
+ Handle<Object> object,
+ Handle<Object> key,
+ Handle<Object> value,
+ StrictMode strict_mode) {
+ if (object->IsUndefined() || object->IsNull()) {
+ Handle<Object> args[2] = {key, object};
+ THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_store",
+ HandleVector(args, 2)),
+ Object);
+ }
+
+ if (object->IsJSProxy()) {
+ Handle<Object> name_object;
+ if (key->IsSymbol()) {
+ name_object = key;
+ } else {
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, name_object,
+ Execution::ToString(isolate, key), Object);
+ }
+ Handle<Name> name = Handle<Name>::cast(name_object);
+ return Object::SetProperty(Handle<JSProxy>::cast(object), name, value,
+ strict_mode);
+ }
+
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ // TODO(verwaest): Support non-JSObject receivers.
+ if (!object->IsJSObject()) return value;
+ Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+
+ // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
+ // of a string using [] notation. We need to support this too in
+ // JavaScript.
+ // In the case of a String object we just need to redirect the assignment to
+ // the underlying string if the index is in range. Since the underlying
+ // string does nothing with the assignment then we can ignore such
+ // assignments.
+ if (js_object->IsStringObjectWithCharacterAt(index)) {
+ return value;
+ }
+
+ JSObject::ValidateElements(js_object);
+ if (js_object->HasExternalArrayElements() ||
+ js_object->HasFixedTypedArrayElements()) {
+ if (!value->IsNumber() && !value->IsUndefined()) {
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, value,
+ Execution::ToNumber(isolate, value), Object);
+ }
+ }
+
+ MaybeHandle<Object> result = JSObject::SetElement(
+ js_object, index, value, NONE, strict_mode, true, SET_PROPERTY);
+ JSObject::ValidateElements(js_object);
+
+ return result.is_null() ? result : value;
+ }
+
+ if (key->IsName()) {
+ Handle<Name> name = Handle<Name>::cast(key);
+ if (name->AsArrayIndex(&index)) {
+ // TODO(verwaest): Support non-JSObject receivers.
+ if (!object->IsJSObject()) return value;
+ Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+ if (js_object->HasExternalArrayElements()) {
+ if (!value->IsNumber() && !value->IsUndefined()) {
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, value, Execution::ToNumber(isolate, value), Object);
+ }
+ }
+ return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
+ true, SET_PROPERTY);
+ } else {
+ if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
+ return Object::SetProperty(object, name, value, strict_mode);
+ }
+ }
+
+ // Call-back into JavaScript to convert the key to a string.
+ Handle<Object> converted;
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
+ Execution::ToString(isolate, key), Object);
+ Handle<String> name = Handle<String>::cast(converted);
+
+ if (name->AsArrayIndex(&index)) {
+ // TODO(verwaest): Support non-JSObject receivers.
+ if (!object->IsJSObject()) return value;
+ Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+ return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
+ true, SET_PROPERTY);
+ }
+ return Object::SetProperty(object, name, value, strict_mode);
+}
+
+
+MaybeHandle<Object> Runtime::DefineObjectProperty(Handle<JSObject> js_object,
+ Handle<Object> key,
+ Handle<Object> value,
+ PropertyAttributes attr) {
+ Isolate* isolate = js_object->GetIsolate();
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
+ // of a string using [] notation. We need to support this too in
+ // JavaScript.
+ // In the case of a String object we just need to redirect the assignment to
+ // the underlying string if the index is in range. Since the underlying
+ // string does nothing with the assignment then we can ignore such
+ // assignments.
+ if (js_object->IsStringObjectWithCharacterAt(index)) {
+ return value;
+ }
+
+ return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
+ DEFINE_PROPERTY);
+ }
+
+ if (key->IsName()) {
+ Handle<Name> name = Handle<Name>::cast(key);
+ if (name->AsArrayIndex(&index)) {
+ return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
+ DEFINE_PROPERTY);
+ } else {
+ if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
+ return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
+ attr);
+ }
+ }
+
+ // Call-back into JavaScript to convert the key to a string.
+ Handle<Object> converted;
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
+ Execution::ToString(isolate, key), Object);
+ Handle<String> name = Handle<String>::cast(converted);
+
+ if (name->AsArrayIndex(&index)) {
+ return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
+ DEFINE_PROPERTY);
+ } else {
+ return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
+ attr);
+ }
+}
+
+
+MaybeHandle<Object> Runtime::DeleteObjectProperty(Isolate* isolate,
+ Handle<JSReceiver> receiver,
+ Handle<Object> key,
+ JSReceiver::DeleteMode mode) {
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ // In Firefox/SpiderMonkey, Safari and Opera you can access the
+ // characters of a string using [] notation. In the case of a
+ // String object we just need to redirect the deletion to the
+ // underlying string if the index is in range. Since the
+ // underlying string does nothing with the deletion, we can ignore
+ // such deletions.
+ if (receiver->IsStringObjectWithCharacterAt(index)) {
+ return isolate->factory()->true_value();
+ }
+
+ return JSReceiver::DeleteElement(receiver, index, mode);
+ }
+
+ Handle<Name> name;
+ if (key->IsName()) {
+ name = Handle<Name>::cast(key);
+ } else {
+ // Call-back into JavaScript to convert the key to a string.
+ Handle<Object> converted;
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
+ Execution::ToString(isolate, key), Object);
+ name = Handle<String>::cast(converted);
+ }
+
+ if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
+ return JSReceiver::DeleteProperty(receiver, name, mode);
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetHiddenProperty) {
+ HandleScope scope(isolate);
+ RUNTIME_ASSERT(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, key, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+ RUNTIME_ASSERT(key->IsUniqueName());
+ return *JSObject::SetHiddenProperty(object, key, value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_AddNamedProperty) {
+ HandleScope scope(isolate);
+ RUNTIME_ASSERT(args.length() == 4);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+ CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
+ RUNTIME_ASSERT(
+ (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ // Compute attributes.
+ PropertyAttributes attributes =
+ static_cast<PropertyAttributes>(unchecked_attributes);
+
+#ifdef DEBUG
+ uint32_t index = 0;
+ DCHECK(!key->ToArrayIndex(&index));
+ LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
+ Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+ if (!maybe.has_value) return isolate->heap()->exception();
+ RUNTIME_ASSERT(!it.IsFound());
+#endif
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ JSObject::SetOwnPropertyIgnoreAttributes(object, key, value, attributes));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_AddPropertyForTemplate) {
+ HandleScope scope(isolate);
+ RUNTIME_ASSERT(args.length() == 4);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+ CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
+ RUNTIME_ASSERT(
+ (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ // Compute attributes.
+ PropertyAttributes attributes =
+ static_cast<PropertyAttributes>(unchecked_attributes);
+
+#ifdef DEBUG
+ bool duplicate;
+ if (key->IsName()) {
+ LookupIterator it(object, Handle<Name>::cast(key),
+ LookupIterator::OWN_SKIP_INTERCEPTOR);
+ Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+ DCHECK(maybe.has_value);
+ duplicate = it.IsFound();
+ } else {
+ uint32_t index = 0;
+ RUNTIME_ASSERT(key->ToArrayIndex(&index));
+ Maybe<bool> maybe = JSReceiver::HasOwnElement(object, index);
+ if (!maybe.has_value) return isolate->heap()->exception();
+ duplicate = maybe.value;
+ }
+ if (duplicate) {
+ Handle<Object> args[1] = {key};
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate,
+ NewTypeError("duplicate_template_property", HandleVector(args, 1)));
+ }
+#endif
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Runtime::DefineObjectProperty(object, key, value, attributes));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetProperty) {
+ HandleScope scope(isolate);
+ RUNTIME_ASSERT(args.length() == 4);
+
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+ CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_arg, 3);
+ StrictMode strict_mode = strict_mode_arg;
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
+ return *result;
+}
+
+
+// Adds an element to an array.
+// This is used to create an indexed data property into an array.
+RUNTIME_FUNCTION(Runtime_AddElement) {
+ HandleScope scope(isolate);
+ RUNTIME_ASSERT(args.length() == 4);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+ CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
+ RUNTIME_ASSERT(
+ (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ // Compute attributes.
+ PropertyAttributes attributes =
+ static_cast<PropertyAttributes>(unchecked_attributes);
+
+ uint32_t index = 0;
+ key->ToArrayIndex(&index);
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, JSObject::SetElement(object, index, value, attributes,
+ SLOPPY, false, DEFINE_PROPERTY));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_TransitionElementsKind) {
+ HandleScope scope(isolate);
+ RUNTIME_ASSERT(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Map, map, 1);
+ JSObject::TransitionElementsKind(array, map->elements_kind());
+ return *array;
+}
+
+
+// Set the native flag on the function.
+// This is used to decide if we should transform null and undefined
+// into the global object when doing call and apply.
+RUNTIME_FUNCTION(Runtime_SetNativeFlag) {
+ SealHandleScope shs(isolate);
+ RUNTIME_ASSERT(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(Object, object, 0);
+
+ if (object->IsJSFunction()) {
+ JSFunction* func = JSFunction::cast(object);
+ func->shared()->set_native(true);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetInlineBuiltinFlag) {
+ SealHandleScope shs(isolate);
+ RUNTIME_ASSERT(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+
+ if (object->IsJSFunction()) {
+ JSFunction* func = JSFunction::cast(*object);
+ func->shared()->set_inline_builtin(true);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreArrayLiteralElement) {
+ HandleScope scope(isolate);
+ RUNTIME_ASSERT(args.length() == 5);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_SMI_ARG_CHECKED(store_index, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3);
+ CONVERT_SMI_ARG_CHECKED(literal_index, 4);
+
+ Object* raw_literal_cell = literals->get(literal_index);
+ JSArray* boilerplate = NULL;
+ if (raw_literal_cell->IsAllocationSite()) {
+ AllocationSite* site = AllocationSite::cast(raw_literal_cell);
+ boilerplate = JSArray::cast(site->transition_info());
+ } else {
+ boilerplate = JSArray::cast(raw_literal_cell);
+ }
+ Handle<JSArray> boilerplate_object(boilerplate);
+ ElementsKind elements_kind = object->GetElementsKind();
+ DCHECK(IsFastElementsKind(elements_kind));
+ // Smis should never trigger transitions.
+ DCHECK(!value->IsSmi());
+
+ if (value->IsNumber()) {
+ DCHECK(IsFastSmiElementsKind(elements_kind));
+ ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
+ ? FAST_HOLEY_DOUBLE_ELEMENTS
+ : FAST_DOUBLE_ELEMENTS;
+ if (IsMoreGeneralElementsKindTransition(
+ boilerplate_object->GetElementsKind(), transitioned_kind)) {
+ JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
+ }
+ JSObject::TransitionElementsKind(object, transitioned_kind);
+ DCHECK(IsFastDoubleElementsKind(object->GetElementsKind()));
+ FixedDoubleArray* double_array = FixedDoubleArray::cast(object->elements());
+ HeapNumber* number = HeapNumber::cast(*value);
+ double_array->set(store_index, number->Number());
+ } else {
+ if (!IsFastObjectElementsKind(elements_kind)) {
+ ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
+ ? FAST_HOLEY_ELEMENTS
+ : FAST_ELEMENTS;
+ JSObject::TransitionElementsKind(object, transitioned_kind);
+ ElementsKind boilerplate_elements_kind =
+ boilerplate_object->GetElementsKind();
+ if (IsMoreGeneralElementsKindTransition(boilerplate_elements_kind,
+ transitioned_kind)) {
+ JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
+ }
+ }
+ FixedArray* object_array = FixedArray::cast(object->elements());
+ object_array->set(store_index, *value);
+ }
+ return *object;
+}
+
+
+// Check whether debugger and is about to step into the callback that is passed
+// to a built-in function such as Array.forEach.
+RUNTIME_FUNCTION(Runtime_DebugCallbackSupportsStepping) {
+ DCHECK(args.length() == 1);
+ if (!isolate->debug()->is_active() || !isolate->debug()->StepInActive()) {
+ return isolate->heap()->false_value();
+ }
+ CONVERT_ARG_CHECKED(Object, callback, 0);
+ // We do not step into the callback if it's a builtin or not even a function.
+ return isolate->heap()->ToBoolean(callback->IsJSFunction() &&
+ !JSFunction::cast(callback)->IsBuiltin());
+}
+
+
+// Set one shot breakpoints for the callback function that is passed to a
+// built-in function such as Array.forEach to enable stepping into the callback.
+RUNTIME_FUNCTION(Runtime_DebugPrepareStepInIfStepping) {
+ DCHECK(args.length() == 1);
+ Debug* debug = isolate->debug();
+ if (!debug->IsStepping()) return isolate->heap()->undefined_value();
+
+ HandleScope scope(isolate);
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+ RUNTIME_ASSERT(object->IsJSFunction() || object->IsJSGeneratorObject());
+ Handle<JSFunction> fun;
+ if (object->IsJSFunction()) {
+ fun = Handle<JSFunction>::cast(object);
+ } else {
+ fun = Handle<JSFunction>(
+ Handle<JSGeneratorObject>::cast(object)->function(), isolate);
+ }
+ // When leaving the function, step out has been activated, but not performed
+ // if we do not leave the builtin. To be able to step into the function
+ // again, we need to clear the step out at this point.
+ debug->ClearStepOut();
+ debug->FloodWithOneShot(fun);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPushPromise) {
+ DCHECK(args.length() == 1);
+ HandleScope scope(isolate);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
+ isolate->PushPromise(promise);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPopPromise) {
+ DCHECK(args.length() == 0);
+ SealHandleScope shs(isolate);
+ isolate->PopPromise();
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPromiseEvent) {
+ DCHECK(args.length() == 1);
+ HandleScope scope(isolate);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
+ isolate->debug()->OnPromiseEvent(data);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPromiseRejectEvent) {
+ DCHECK(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
+ isolate->debug()->OnPromiseReject(promise, value);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugAsyncTaskEvent) {
+ DCHECK(args.length() == 1);
+ HandleScope scope(isolate);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
+ isolate->debug()->OnAsyncTaskEvent(data);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeleteProperty) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+ CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2);
+ JSReceiver::DeleteMode delete_mode = strict_mode == STRICT
+ ? JSReceiver::STRICT_DELETION
+ : JSReceiver::NORMAL_DELETION;
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, JSReceiver::DeleteProperty(object, key, delete_mode));
+ return *result;
+}
+
+
+static Object* HasOwnPropertyImplementation(Isolate* isolate,
+ Handle<JSObject> object,
+ Handle<Name> key) {
+ Maybe<bool> maybe = JSReceiver::HasOwnProperty(object, key);
+ if (!maybe.has_value) return isolate->heap()->exception();
+ if (maybe.value) return isolate->heap()->true_value();
+ // Handle hidden prototypes. If there's a hidden prototype above this thing
+ // then we have to check it for properties, because they are supposed to
+ // look like they are on this object.
+ PrototypeIterator iter(isolate, object);
+ if (!iter.IsAtEnd() &&
+ Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter))
+ ->map()
+ ->is_hidden_prototype()) {
+ // TODO(verwaest): The recursion is not necessary for keys that are array
+ // indices. Removing this.
+ return HasOwnPropertyImplementation(
+ isolate, Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
+ key);
+ }
+ RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+ return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_HasOwnProperty) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0)
+ CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+
+ uint32_t index;
+ const bool key_is_array_index = key->AsArrayIndex(&index);
+
+ // Only JS objects can have properties.
+ if (object->IsJSObject()) {
+ Handle<JSObject> js_obj = Handle<JSObject>::cast(object);
+ // Fast case: either the key is a real named property or it is not
+ // an array index and there are no interceptors or hidden
+ // prototypes.
+ Maybe<bool> maybe = JSObject::HasRealNamedProperty(js_obj, key);
+ if (!maybe.has_value) return isolate->heap()->exception();
+ DCHECK(!isolate->has_pending_exception());
+ if (maybe.value) {
+ return isolate->heap()->true_value();
+ }
+ Map* map = js_obj->map();
+ if (!key_is_array_index && !map->has_named_interceptor() &&
+ !HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) {
+ return isolate->heap()->false_value();
+ }
+ // Slow case.
+ return HasOwnPropertyImplementation(isolate, Handle<JSObject>(js_obj),
+ Handle<Name>(key));
+ } else if (object->IsString() && key_is_array_index) {
+ // Well, there is one exception: Handle [] on strings.
+ Handle<String> string = Handle<String>::cast(object);
+ if (index < static_cast<uint32_t>(string->length())) {
+ return isolate->heap()->true_value();
+ }
+ }
+ return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_HasProperty) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+
+ Maybe<bool> maybe = JSReceiver::HasProperty(receiver, key);
+ if (!maybe.has_value) return isolate->heap()->exception();
+ return isolate->heap()->ToBoolean(maybe.value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_HasElement) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
+ CONVERT_SMI_ARG_CHECKED(index, 1);
+
+ Maybe<bool> maybe = JSReceiver::HasElement(receiver, index);
+ if (!maybe.has_value) return isolate->heap()->exception();
+ return isolate->heap()->ToBoolean(maybe.value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsPropertyEnumerable) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+
+ Maybe<PropertyAttributes> maybe =
+ JSReceiver::GetOwnPropertyAttributes(object, key);
+ if (!maybe.has_value) return isolate->heap()->exception();
+ if (maybe.value == ABSENT) maybe.value = DONT_ENUM;
+ return isolate->heap()->ToBoolean((maybe.value & DONT_ENUM) == 0);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetPropertyNames) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
+ Handle<JSArray> result;
+
+ isolate->counters()->for_in()->Increment();
+ Handle<FixedArray> elements;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, elements,
+ JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
+ return *isolate->factory()->NewJSArrayWithElements(elements);
+}
+
+
+// Returns either a FixedArray as Runtime_GetPropertyNames,
+// or, if the given object has an enum cache that contains
+// all enumerable properties of the object and its prototypes
+// have none, the map of the object. This is used to speed up
+// the check for deletions during a for-in.
+RUNTIME_FUNCTION(Runtime_GetPropertyNamesFast) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0);
+
+ if (raw_object->IsSimpleEnum()) return raw_object->map();
+
+ HandleScope scope(isolate);
+ Handle<JSReceiver> object(raw_object);
+ Handle<FixedArray> content;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, content,
+ JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
+
+ // Test again, since cache may have been built by preceding call.
+ if (object->IsSimpleEnum()) return object->map();
+
+ return *content;
+}
+
+
+// Find the length of the prototype chain that is to be handled as one. If a
+// prototype object is hidden it is to be viewed as part of the the object it
+// is prototype for.
+static int OwnPrototypeChainLength(JSObject* obj) {
+ int count = 1;
+ for (PrototypeIterator iter(obj->GetIsolate(), obj);
+ !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) {
+ count++;
+ }
+ return count;
+}
+
+
+// Return the names of the own named properties.
+// args[0]: object
+// args[1]: PropertyAttributes as int
+RUNTIME_FUNCTION(Runtime_GetOwnPropertyNames) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ if (!args[0]->IsJSObject()) {
+ return isolate->heap()->undefined_value();
+ }
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ CONVERT_SMI_ARG_CHECKED(filter_value, 1);
+ PropertyAttributes filter = static_cast<PropertyAttributes>(filter_value);
+
+ // Skip the global proxy as it has no properties and always delegates to the
+ // real global object.
+ if (obj->IsJSGlobalProxy()) {
+ // Only collect names if access is permitted.
+ if (obj->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(obj, isolate->factory()->undefined_value(),
+ v8::ACCESS_KEYS)) {
+ isolate->ReportFailedAccessCheck(obj, v8::ACCESS_KEYS);
+ RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+ return *isolate->factory()->NewJSArray(0);
+ }
+ PrototypeIterator iter(isolate, obj);
+ obj = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+ }
+
+ // Find the number of objects making up this.
+ int length = OwnPrototypeChainLength(*obj);
+
+ // Find the number of own properties for each of the objects.
+ ScopedVector<int> own_property_count(length);
+ int total_property_count = 0;
+ {
+ PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
+ for (int i = 0; i < length; i++) {
+ DCHECK(!iter.IsAtEnd());
+ Handle<JSObject> jsproto =
+ Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+ // Only collect names if access is permitted.
+ if (jsproto->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(jsproto,
+ isolate->factory()->undefined_value(),
+ v8::ACCESS_KEYS)) {
+ isolate->ReportFailedAccessCheck(jsproto, v8::ACCESS_KEYS);
+ RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+ return *isolate->factory()->NewJSArray(0);
+ }
+ int n;
+ n = jsproto->NumberOfOwnProperties(filter);
+ own_property_count[i] = n;
+ total_property_count += n;
+ iter.Advance();
+ }
+ }
+
+ // Allocate an array with storage for all the property names.
+ Handle<FixedArray> names =
+ isolate->factory()->NewFixedArray(total_property_count);
+
+ // Get the property names.
+ int next_copy_index = 0;
+ int hidden_strings = 0;
+ {
+ PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
+ for (int i = 0; i < length; i++) {
+ DCHECK(!iter.IsAtEnd());
+ Handle<JSObject> jsproto =
+ Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+ jsproto->GetOwnPropertyNames(*names, next_copy_index, filter);
+ if (i > 0) {
+ // Names from hidden prototypes may already have been added
+ // for inherited function template instances. Count the duplicates
+ // and stub them out; the final copy pass at the end ignores holes.
+ for (int j = next_copy_index;
+ j < next_copy_index + own_property_count[i]; j++) {
+ Object* name_from_hidden_proto = names->get(j);
+ for (int k = 0; k < next_copy_index; k++) {
+ if (names->get(k) != isolate->heap()->hidden_string()) {
+ Object* name = names->get(k);
+ if (name_from_hidden_proto == name) {
+ names->set(j, isolate->heap()->hidden_string());
+ hidden_strings++;
+ break;
+ }
+ }
+ }
+ }
+ }
+ next_copy_index += own_property_count[i];
+
+ // Hidden properties only show up if the filter does not skip strings.
+ if ((filter & STRING) == 0 && JSObject::HasHiddenProperties(jsproto)) {
+ hidden_strings++;
+ }
+ iter.Advance();
+ }
+ }
+
+ // Filter out name of hidden properties object and
+ // hidden prototype duplicates.
+ if (hidden_strings > 0) {
+ Handle<FixedArray> old_names = names;
+ names = isolate->factory()->NewFixedArray(names->length() - hidden_strings);
+ int dest_pos = 0;
+ for (int i = 0; i < total_property_count; i++) {
+ Object* name = old_names->get(i);
+ if (name == isolate->heap()->hidden_string()) {
+ hidden_strings--;
+ continue;
+ }
+ names->set(dest_pos++, name);
+ }
+ DCHECK_EQ(0, hidden_strings);
+ }
+
+ return *isolate->factory()->NewJSArrayWithElements(names);
+}
+
+
+// Return the names of the own indexed properties.
+// args[0]: object
+RUNTIME_FUNCTION(Runtime_GetOwnElementNames) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ if (!args[0]->IsJSObject()) {
+ return isolate->heap()->undefined_value();
+ }
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+
+ int n = obj->NumberOfOwnElements(static_cast<PropertyAttributes>(NONE));
+ Handle<FixedArray> names = isolate->factory()->NewFixedArray(n);
+ obj->GetOwnElementKeys(*names, static_cast<PropertyAttributes>(NONE));
+ return *isolate->factory()->NewJSArrayWithElements(names);
+}
+
+
+// Return information on whether an object has a named or indexed interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(Runtime_GetInterceptorInfo) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ if (!args[0]->IsJSObject()) {
+ return Smi::FromInt(0);
+ }
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+
+ int result = 0;
+ if (obj->HasNamedInterceptor()) result |= 2;
+ if (obj->HasIndexedInterceptor()) result |= 1;
+
+ return Smi::FromInt(result);
+}
+
+
+// Return property names from named interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(Runtime_GetNamedInterceptorPropertyNames) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+
+ if (obj->HasNamedInterceptor()) {
+ Handle<JSObject> result;
+ if (JSObject::GetKeysForNamedInterceptor(obj, obj).ToHandle(&result)) {
+ return *result;
+ }
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+// Return element names from indexed interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(Runtime_GetIndexedInterceptorElementNames) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+
+ if (obj->HasIndexedInterceptor()) {
+ Handle<JSObject> result;
+ if (JSObject::GetKeysForIndexedInterceptor(obj, obj).ToHandle(&result)) {
+ return *result;
+ }
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_OwnKeys) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSObject, raw_object, 0);
+ Handle<JSObject> object(raw_object);
+
+ if (object->IsJSGlobalProxy()) {
+ // Do access checks before going to the global object.
+ if (object->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(object, isolate->factory()->undefined_value(),
+ v8::ACCESS_KEYS)) {
+ isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS);
+ RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+ return *isolate->factory()->NewJSArray(0);
+ }
+
+ PrototypeIterator iter(isolate, object);
+ // If proxy is detached we simply return an empty array.
+ if (iter.IsAtEnd()) return *isolate->factory()->NewJSArray(0);
+ object = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+ }
+
+ Handle<FixedArray> contents;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, contents, JSReceiver::GetKeys(object, JSReceiver::OWN_ONLY));
+
+ // Some fast paths through GetKeysInFixedArrayFor reuse a cached
+ // property array and since the result is mutable we have to create
+ // a fresh clone on each invocation.
+ int length = contents->length();
+ Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length);
+ for (int i = 0; i < length; i++) {
+ Object* entry = contents->get(i);
+ if (entry->IsString()) {
+ copy->set(i, entry);
+ } else {
+ DCHECK(entry->IsNumber());
+ HandleScope scope(isolate);
+ Handle<Object> entry_handle(entry, isolate);
+ Handle<Object> entry_str =
+ isolate->factory()->NumberToString(entry_handle);
+ copy->set(i, *entry_str);
+ }
+ }
+ return *isolate->factory()->NewJSArrayWithElements(copy);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetArgumentsProperty) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, raw_key, 0);
+
+ // Compute the frame holding the arguments.
+ JavaScriptFrameIterator it(isolate);
+ it.AdvanceToArgumentsFrame();
+ JavaScriptFrame* frame = it.frame();
+
+ // Get the actual number of provided arguments.
+ const uint32_t n = frame->ComputeParametersCount();
+
+ // Try to convert the key to an index. If successful and within
+ // index return the the argument from the frame.
+ uint32_t index;
+ if (raw_key->ToArrayIndex(&index) && index < n) {
+ return frame->GetParameter(index);
+ }
+
+ HandleScope scope(isolate);
+ if (raw_key->IsSymbol()) {
+ Handle<Symbol> symbol = Handle<Symbol>::cast(raw_key);
+ if (symbol->Equals(isolate->native_context()->iterator_symbol())) {
+ return isolate->native_context()->array_values_iterator();
+ }
+ // Lookup in the initial Object.prototype object.
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Object::GetProperty(isolate->initial_object_prototype(),
+ Handle<Symbol>::cast(raw_key)));
+ return *result;
+ }
+
+ // Convert the key to a string.
+ Handle<Object> converted;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, converted,
+ Execution::ToString(isolate, raw_key));
+ Handle<String> key = Handle<String>::cast(converted);
+
+ // Try to convert the string key into an array index.
+ if (key->AsArrayIndex(&index)) {
+ if (index < n) {
+ return frame->GetParameter(index);
+ } else {
+ Handle<Object> initial_prototype(isolate->initial_object_prototype());
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Object::GetElement(isolate, initial_prototype, index));
+ return *result;
+ }
+ }
+
+ // Handle special arguments properties.
+ if (String::Equals(isolate->factory()->length_string(), key)) {
+ return Smi::FromInt(n);
+ }
+ if (String::Equals(isolate->factory()->callee_string(), key)) {
+ JSFunction* function = frame->function();
+ if (function->shared()->strict_mode() == STRICT) {
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewTypeError("strict_arguments_callee",
+ HandleVector<Object>(NULL, 0)));
+ }
+ return function;
+ }
+
+ // Lookup in the initial Object.prototype object.
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Object::GetProperty(isolate->initial_object_prototype(), key));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ToFastProperties) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+ if (object->IsJSObject() && !object->IsGlobalObject()) {
+ JSObject::MigrateSlowToFast(Handle<JSObject>::cast(object), 0);
+ }
+ return *object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ToBool) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, object, 0);
+
+ return isolate->heap()->ToBoolean(object->BooleanValue());
+}
+
+
+// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
+// Possible optimizations: put the type string into the oddballs.
+RUNTIME_FUNCTION(Runtime_Typeof) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ if (obj->IsNumber()) return isolate->heap()->number_string();
+ HeapObject* heap_obj = HeapObject::cast(obj);
+
+ // typeof an undetectable object is 'undefined'
+ if (heap_obj->map()->is_undetectable()) {
+ return isolate->heap()->undefined_string();
+ }
+
+ InstanceType instance_type = heap_obj->map()->instance_type();
+ if (instance_type < FIRST_NONSTRING_TYPE) {
+ return isolate->heap()->string_string();
+ }
+
+ switch (instance_type) {
+ case ODDBALL_TYPE:
+ if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
+ return isolate->heap()->boolean_string();
+ }
+ if (heap_obj->IsNull()) {
+ return isolate->heap()->object_string();
+ }
+ DCHECK(heap_obj->IsUndefined());
+ return isolate->heap()->undefined_string();
+ case SYMBOL_TYPE:
+ return isolate->heap()->symbol_string();
+ case JS_FUNCTION_TYPE:
+ case JS_FUNCTION_PROXY_TYPE:
+ return isolate->heap()->function_string();
+ default:
+ // For any kind of object not handled above, the spec rule for
+ // host objects gives that it is okay to return "object"
+ return isolate->heap()->object_string();
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_Booleanize) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_CHECKED(Object, value_raw, 0);
+ CONVERT_SMI_ARG_CHECKED(token_raw, 1);
+ intptr_t value = reinterpret_cast<intptr_t>(value_raw);
+ Token::Value token = static_cast<Token::Value>(token_raw);
+ switch (token) {
+ case Token::EQ:
+ case Token::EQ_STRICT:
+ return isolate->heap()->ToBoolean(value == 0);
+ case Token::NE:
+ case Token::NE_STRICT:
+ return isolate->heap()->ToBoolean(value != 0);
+ case Token::LT:
+ return isolate->heap()->ToBoolean(value < 0);
+ case Token::GT:
+ return isolate->heap()->ToBoolean(value > 0);
+ case Token::LTE:
+ return isolate->heap()->ToBoolean(value <= 0);
+ case Token::GTE:
+ return isolate->heap()->ToBoolean(value >= 0);
+ default:
+ // This should only happen during natives fuzzing.
+ return isolate->heap()->undefined_value();
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewStringWrapper) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, value, 0);
+ return *Object::ToObject(isolate, value).ToHandleChecked();
+}
+
+
+RUNTIME_FUNCTION(Runtime_AllocateHeapNumber) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ return *isolate->factory()->NewHeapNumber(0);
+}
+
+
+
+
+
+RUNTIME_FUNCTION(Runtime_DateMakeDay) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_SMI_ARG_CHECKED(year, 0);
+ CONVERT_SMI_ARG_CHECKED(month, 1);
+
+ int days = isolate->date_cache()->DaysFromYearMonth(year, month);
+ RUNTIME_ASSERT(Smi::IsValid(days));
+ return Smi::FromInt(days);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateSetValue) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(time, 1);
+ CONVERT_SMI_ARG_CHECKED(is_utc, 2);
+
+ DateCache* date_cache = isolate->date_cache();
+
+ Handle<Object> value;
+ ;
+ bool is_value_nan = false;
+ if (std::isnan(time)) {
+ value = isolate->factory()->nan_value();
+ is_value_nan = true;
+ } else if (!is_utc && (time < -DateCache::kMaxTimeBeforeUTCInMs ||
+ time > DateCache::kMaxTimeBeforeUTCInMs)) {
+ value = isolate->factory()->nan_value();
+ is_value_nan = true;
+ } else {
+ time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time));
+ if (time < -DateCache::kMaxTimeInMs || time > DateCache::kMaxTimeInMs) {
+ value = isolate->factory()->nan_value();
+ is_value_nan = true;
+ } else {
+ value = isolate->factory()->NewNumber(DoubleToInteger(time));
+ }
+ }
+ date->SetValue(*value, is_value_nan);
+ return *value;
+}
+
+
+static Handle<JSObject> NewSloppyArguments(Isolate* isolate,
+ Handle<JSFunction> callee,
+ Object** parameters,
+ int argument_count) {
+ Handle<JSObject> result =
+ isolate->factory()->NewArgumentsObject(callee, argument_count);
+
+ // Allocate the elements if needed.
+ int parameter_count = callee->shared()->formal_parameter_count();
+ if (argument_count > 0) {
+ if (parameter_count > 0) {
+ int mapped_count = Min(argument_count, parameter_count);
+ Handle<FixedArray> parameter_map =
+ isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED);
+ parameter_map->set_map(isolate->heap()->sloppy_arguments_elements_map());
+
+ Handle<Map> map = Map::Copy(handle(result->map()));
+ map->set_elements_kind(SLOPPY_ARGUMENTS_ELEMENTS);
+
+ result->set_map(*map);
+ result->set_elements(*parameter_map);
+
+ // Store the context and the arguments array at the beginning of the
+ // parameter map.
+ Handle<Context> context(isolate->context());
+ Handle<FixedArray> arguments =
+ isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
+ parameter_map->set(0, *context);
+ parameter_map->set(1, *arguments);
+
+ // Loop over the actual parameters backwards.
+ int index = argument_count - 1;
+ while (index >= mapped_count) {
+ // These go directly in the arguments array and have no
+ // corresponding slot in the parameter map.
+ arguments->set(index, *(parameters - index - 1));
+ --index;
+ }
+
+ Handle<ScopeInfo> scope_info(callee->shared()->scope_info());
+ while (index >= 0) {
+ // Detect duplicate names to the right in the parameter list.
+ Handle<String> name(scope_info->ParameterName(index));
+ int context_local_count = scope_info->ContextLocalCount();
+ bool duplicate = false;
+ for (int j = index + 1; j < parameter_count; ++j) {
+ if (scope_info->ParameterName(j) == *name) {
+ duplicate = true;
+ break;
+ }
+ }
+
+ if (duplicate) {
+ // This goes directly in the arguments array with a hole in the
+ // parameter map.
+ arguments->set(index, *(parameters - index - 1));
+ parameter_map->set_the_hole(index + 2);
+ } else {
+ // The context index goes in the parameter map with a hole in the
+ // arguments array.
+ int context_index = -1;
+ for (int j = 0; j < context_local_count; ++j) {
+ if (scope_info->ContextLocalName(j) == *name) {
+ context_index = j;
+ break;
+ }
+ }
+ DCHECK(context_index >= 0);
+ arguments->set_the_hole(index);
+ parameter_map->set(
+ index + 2,
+ Smi::FromInt(Context::MIN_CONTEXT_SLOTS + context_index));
+ }
+
+ --index;
+ }
+ } else {
+ // If there is no aliasing, the arguments object elements are not
+ // special in any way.
+ Handle<FixedArray> elements =
+ isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
+ result->set_elements(*elements);
+ for (int i = 0; i < argument_count; ++i) {
+ elements->set(i, *(parameters - i - 1));
+ }
+ }
+ }
+ return result;
+}
+
+
+static Handle<JSObject> NewStrictArguments(Isolate* isolate,
+ Handle<JSFunction> callee,
+ Object** parameters,
+ int argument_count) {
+ Handle<JSObject> result =
+ isolate->factory()->NewArgumentsObject(callee, argument_count);
+
+ if (argument_count > 0) {
+ Handle<FixedArray> array =
+ isolate->factory()->NewUninitializedFixedArray(argument_count);
+ DisallowHeapAllocation no_gc;
+ WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
+ for (int i = 0; i < argument_count; i++) {
+ array->set(i, *--parameters, mode);
+ }
+ result->set_elements(*array);
+ }
+ return result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewArguments) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
+ JavaScriptFrameIterator it(isolate);
+
+ // Find the frame that holds the actual arguments passed to the function.
+ it.AdvanceToArgumentsFrame();
+ JavaScriptFrame* frame = it.frame();
+
+ // Determine parameter location on the stack and dispatch on language mode.
+ int argument_count = frame->GetArgumentsLength();
+ Object** parameters = reinterpret_cast<Object**>(frame->GetParameterSlot(-1));
+ return callee->shared()->strict_mode() == STRICT
+ ? *NewStrictArguments(isolate, callee, parameters, argument_count)
+ : *NewSloppyArguments(isolate, callee, parameters, argument_count);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewSloppyArguments) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
+ Object** parameters = reinterpret_cast<Object**>(args[1]);
+ CONVERT_SMI_ARG_CHECKED(argument_count, 2);
+ return *NewSloppyArguments(isolate, callee, parameters, argument_count);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewStrictArguments) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0)
+ Object** parameters = reinterpret_cast<Object**>(args[1]);
+ CONVERT_SMI_ARG_CHECKED(argument_count, 2);
+ return *NewStrictArguments(isolate, callee, parameters, argument_count);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewClosureFromStubFailure) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0);
+ Handle<Context> context(isolate->context());
+ PretenureFlag pretenure_flag = NOT_TENURED;
+ return *isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
+ pretenure_flag);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewClosure) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
+ CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1);
+ CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2);
+
+ // The caller ensures that we pretenure closures that are assigned
+ // directly to properties.
+ PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED;
+ return *isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
+ pretenure_flag);
+}
+
+
+// Find the arguments of the JavaScript function invocation that called
+// into C++ code. Collect these in a newly allocated array of handles (possibly
+// prefixed by a number of empty handles).
+static SmartArrayPointer<Handle<Object> > GetCallerArguments(Isolate* isolate,
+ int prefix_argc,
+ int* total_argc) {
+ // Find frame containing arguments passed to the caller.
+ JavaScriptFrameIterator it(isolate);
+ JavaScriptFrame* frame = it.frame();
+ List<JSFunction*> functions(2);
+ frame->GetFunctions(&functions);
+ if (functions.length() > 1) {
+ int inlined_jsframe_index = functions.length() - 1;
+ JSFunction* inlined_function = functions[inlined_jsframe_index];
+ SlotRefValueBuilder slot_refs(
+ frame, inlined_jsframe_index,
+ inlined_function->shared()->formal_parameter_count());
+
+ int args_count = slot_refs.args_length();
+
+ *total_argc = prefix_argc + args_count;
+ SmartArrayPointer<Handle<Object> > param_data(
+ NewArray<Handle<Object> >(*total_argc));
+ slot_refs.Prepare(isolate);
+ for (int i = 0; i < args_count; i++) {
+ Handle<Object> val = slot_refs.GetNext(isolate, 0);
+ param_data[prefix_argc + i] = val;
+ }
+ slot_refs.Finish(isolate);
+
+ return param_data;
+ } else {
+ it.AdvanceToArgumentsFrame();
+ frame = it.frame();
+ int args_count = frame->ComputeParametersCount();
+
+ *total_argc = prefix_argc + args_count;
+ SmartArrayPointer<Handle<Object> > param_data(
+ NewArray<Handle<Object> >(*total_argc));
+ for (int i = 0; i < args_count; i++) {
+ Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate);
+ param_data[prefix_argc + i] = val;
+ }
+ return param_data;
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionBindArguments) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, bindee, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, this_object, 2);
+ CONVERT_NUMBER_ARG_HANDLE_CHECKED(new_length, 3);
+
+ // TODO(lrn): Create bound function in C++ code from premade shared info.
+ bound_function->shared()->set_bound(true);
+ // Get all arguments of calling function (Function.prototype.bind).
+ int argc = 0;
+ SmartArrayPointer<Handle<Object> > arguments =
+ GetCallerArguments(isolate, 0, &argc);
+ // Don't count the this-arg.
+ if (argc > 0) {
+ RUNTIME_ASSERT(arguments[0].is_identical_to(this_object));
+ argc--;
+ } else {
+ RUNTIME_ASSERT(this_object->IsUndefined());
+ }
+ // Initialize array of bindings (function, this, and any existing arguments
+ // if the function was already bound).
+ Handle<FixedArray> new_bindings;
+ int i;
+ if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) {
+ Handle<FixedArray> old_bindings(
+ JSFunction::cast(*bindee)->function_bindings());
+ RUNTIME_ASSERT(old_bindings->length() > JSFunction::kBoundFunctionIndex);
+ new_bindings =
+ isolate->factory()->NewFixedArray(old_bindings->length() + argc);
+ bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex),
+ isolate);
+ i = 0;
+ for (int n = old_bindings->length(); i < n; i++) {
+ new_bindings->set(i, old_bindings->get(i));
+ }
+ } else {
+ int array_size = JSFunction::kBoundArgumentsStartIndex + argc;
+ new_bindings = isolate->factory()->NewFixedArray(array_size);
+ new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee);
+ new_bindings->set(JSFunction::kBoundThisIndex, *this_object);
+ i = 2;
+ }
+ // Copy arguments, skipping the first which is "this_arg".
+ for (int j = 0; j < argc; j++, i++) {
+ new_bindings->set(i, *arguments[j + 1]);
+ }
+ new_bindings->set_map_no_write_barrier(
+ isolate->heap()->fixed_cow_array_map());
+ bound_function->set_function_bindings(*new_bindings);
+
+ // Update length. Have to remove the prototype first so that map migration
+ // is happy about the number of fields.
+ RUNTIME_ASSERT(bound_function->RemovePrototype());
+ Handle<Map> bound_function_map(
+ isolate->native_context()->bound_function_map());
+ JSObject::MigrateToMap(bound_function, bound_function_map);
+ Handle<String> length_string = isolate->factory()->length_string();
+ PropertyAttributes attr =
+ static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY);
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+ bound_function, length_string, new_length, attr));
+ return *bound_function;
+}
+
+
+RUNTIME_FUNCTION(Runtime_BoundFunctionGetBindings) {
+ HandleScope handles(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0);
+ if (callable->IsJSFunction()) {
+ Handle<JSFunction> function = Handle<JSFunction>::cast(callable);
+ if (function->shared()->bound()) {
+ Handle<FixedArray> bindings(function->function_bindings());
+ RUNTIME_ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map());
+ return *isolate->factory()->NewJSArrayWithElements(bindings);
+ }
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewObjectFromBound) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ // First argument is a function to use as a constructor.
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+ RUNTIME_ASSERT(function->shared()->bound());
+
+ // The argument is a bound function. Extract its bound arguments
+ // and callable.
+ Handle<FixedArray> bound_args =
+ Handle<FixedArray>(FixedArray::cast(function->function_bindings()));
+ int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex;
+ Handle<Object> bound_function(
+ JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex)),
+ isolate);
+ DCHECK(!bound_function->IsJSFunction() ||
+ !Handle<JSFunction>::cast(bound_function)->shared()->bound());
+
+ int total_argc = 0;
+ SmartArrayPointer<Handle<Object> > param_data =
+ GetCallerArguments(isolate, bound_argc, &total_argc);
+ for (int i = 0; i < bound_argc; i++) {
+ param_data[i] = Handle<Object>(
+ bound_args->get(JSFunction::kBoundArgumentsStartIndex + i), isolate);
+ }
+
+ if (!bound_function->IsJSFunction()) {
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, bound_function,
+ Execution::TryGetConstructorDelegate(isolate, bound_function));
+ }
+ DCHECK(bound_function->IsJSFunction());
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, Execution::New(Handle<JSFunction>::cast(bound_function),
+ total_argc, param_data.get()));
+ return *result;
+}
+
+
+static Object* Runtime_NewObjectHelper(Isolate* isolate,
+ Handle<Object> constructor,
+ Handle<AllocationSite> site) {
+ // If the constructor isn't a proper function we throw a type error.
+ if (!constructor->IsJSFunction()) {
+ Vector<Handle<Object> > arguments = HandleVector(&constructor, 1);
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate,
+ NewTypeError("not_constructor", arguments));
+ }
+
+ Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
+
+ // If function should not have prototype, construction is not allowed. In this
+ // case generated code bailouts here, since function has no initial_map.
+ if (!function->should_have_prototype() && !function->shared()->bound()) {
+ Vector<Handle<Object> > arguments = HandleVector(&constructor, 1);
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate,
+ NewTypeError("not_constructor", arguments));
+ }
+
+ Debug* debug = isolate->debug();
+ // Handle stepping into constructors if step into is active.
+ if (debug->StepInActive()) {
+ debug->HandleStepIn(function, Handle<Object>::null(), 0, true);
+ }
+
+ if (function->has_initial_map()) {
+ if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
+ // The 'Function' function ignores the receiver object when
+ // called using 'new' and creates a new JSFunction object that
+ // is returned. The receiver object is only used for error
+ // reporting if an error occurs when constructing the new
+ // JSFunction. Factory::NewJSObject() should not be used to
+ // allocate JSFunctions since it does not properly initialize
+ // the shared part of the function. Since the receiver is
+ // ignored anyway, we use the global object as the receiver
+ // instead of a new JSFunction object. This way, errors are
+ // reported the same way whether or not 'Function' is called
+ // using 'new'.
+ return isolate->global_proxy();
+ }
+ }
+
+ // The function should be compiled for the optimization hints to be
+ // available.
+ Compiler::EnsureCompiled(function, CLEAR_EXCEPTION);
+
+ Handle<JSObject> result;
+ if (site.is_null()) {
+ result = isolate->factory()->NewJSObject(function);
+ } else {
+ result = isolate->factory()->NewJSObjectWithMemento(function, site);
+ }
+
+ isolate->counters()->constructed_objects()->Increment();
+ isolate->counters()->constructed_objects_runtime()->Increment();
+
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewObject) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 0);
+ return Runtime_NewObjectHelper(isolate, constructor,
+ Handle<AllocationSite>::null());
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewObjectWithAllocationSite) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, feedback, 0);
+ Handle<AllocationSite> site;
+ if (feedback->IsAllocationSite()) {
+ // The feedback can be an AllocationSite or undefined.
+ site = Handle<AllocationSite>::cast(feedback);
+ }
+ return Runtime_NewObjectHelper(isolate, constructor, site);
+}
+
+
+RUNTIME_FUNCTION(Runtime_FinalizeInstanceSize) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+ function->CompleteInobjectSlackTracking();
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_CheckIsBootstrapping) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetRootNaN) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
+ return isolate->heap()->nan_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Call) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() >= 2);
+ int argc = args.length() - 2;
+ CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1);
+ Object* receiver = args[0];
+
+ // If there are too many arguments, allocate argv via malloc.
+ const int argv_small_size = 10;
+ Handle<Object> argv_small_buffer[argv_small_size];
+ SmartArrayPointer<Handle<Object> > argv_large_buffer;
+ Handle<Object>* argv = argv_small_buffer;
+ if (argc > argv_small_size) {
+ argv = new Handle<Object>[argc];
+ if (argv == NULL) return isolate->StackOverflow();
+ argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
+ }
+
+ for (int i = 0; i < argc; ++i) {
+ argv[i] = Handle<Object>(args[1 + i], isolate);
+ }
+
+ Handle<JSReceiver> hfun(fun);
+ Handle<Object> hreceiver(receiver, isolate);
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Execution::Call(isolate, hfun, hreceiver, argc, argv, true));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_Apply) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 5);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2);
+ CONVERT_INT32_ARG_CHECKED(offset, 3);
+ CONVERT_INT32_ARG_CHECKED(argc, 4);
+ RUNTIME_ASSERT(offset >= 0);
+ // Loose upper bound to allow fuzzing. We'll most likely run out of
+ // stack space before hitting this limit.
+ static int kMaxArgc = 1000000;
+ RUNTIME_ASSERT(argc >= 0 && argc <= kMaxArgc);
+
+ // If there are too many arguments, allocate argv via malloc.
+ const int argv_small_size = 10;
+ Handle<Object> argv_small_buffer[argv_small_size];
+ SmartArrayPointer<Handle<Object> > argv_large_buffer;
+ Handle<Object>* argv = argv_small_buffer;
+ if (argc > argv_small_size) {
+ argv = new Handle<Object>[argc];
+ if (argv == NULL) return isolate->StackOverflow();
+ argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
+ }
+
+ for (int i = 0; i < argc; ++i) {
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, argv[i], Object::GetElement(isolate, arguments, offset + i));
+ }
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ Execution::Call(isolate, fun, receiver, argc, argv, true));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFunctionDelegate) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+ RUNTIME_ASSERT(!object->IsJSFunction());
+ return *Execution::GetFunctionDelegate(isolate, object);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetConstructorDelegate) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+ RUNTIME_ASSERT(!object->IsJSFunction());
+ return *Execution::GetConstructorDelegate(isolate, object);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewGlobalContext) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+ CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
+ Handle<Context> result =
+ isolate->factory()->NewGlobalContext(function, scope_info);
+
+ DCHECK(function->context() == isolate->context());
+ DCHECK(function->context()->global_object() == result->global_object());
+ result->global_object()->set_global_context(*result);
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewFunctionContext) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+
+ DCHECK(function->context() == isolate->context());
+ int length = function->shared()->scope_info()->ContextLength();
+ return *isolate->factory()->NewFunctionContext(length, function);
+}
+
+
+RUNTIME_FUNCTION(Runtime_PushWithContext) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ Handle<JSReceiver> extension_object;
+ if (args[0]->IsJSReceiver()) {
+ extension_object = args.at<JSReceiver>(0);
+ } else {
+ // Try to convert the object to a proper JavaScript object.
+ MaybeHandle<JSReceiver> maybe_object =
+ Object::ToObject(isolate, args.at<Object>(0));
+ if (!maybe_object.ToHandle(&extension_object)) {
+ Handle<Object> handle = args.at<Object>(0);
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewTypeError("with_expression", HandleVector(&handle, 1)));
+ }
+ }
+
+ Handle<JSFunction> function;
+ if (args[1]->IsSmi()) {
+ // A smi sentinel indicates a context nested inside global code rather
+ // than some function. There is a canonical empty function that can be
+ // gotten from the native context.
+ function = handle(isolate->native_context()->closure());
+ } else {
+ function = args.at<JSFunction>(1);
+ }
+
+ Handle<Context> current(isolate->context());
+ Handle<Context> context =
+ isolate->factory()->NewWithContext(function, current, extension_object);
+ isolate->set_context(*context);
+ return *context;
+}
+
+
+RUNTIME_FUNCTION(Runtime_PushCatchContext) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, thrown_object, 1);
+ Handle<JSFunction> function;
+ if (args[2]->IsSmi()) {
+ // A smi sentinel indicates a context nested inside global code rather
+ // than some function. There is a canonical empty function that can be
+ // gotten from the native context.
+ function = handle(isolate->native_context()->closure());
+ } else {
+ function = args.at<JSFunction>(2);
+ }
+ Handle<Context> current(isolate->context());
+ Handle<Context> context = isolate->factory()->NewCatchContext(
+ function, current, name, thrown_object);
+ isolate->set_context(*context);
+ return *context;
+}
+
+
+RUNTIME_FUNCTION(Runtime_PushBlockContext) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0);
+ Handle<JSFunction> function;
+ if (args[1]->IsSmi()) {
+ // A smi sentinel indicates a context nested inside global code rather
+ // than some function. There is a canonical empty function that can be
+ // gotten from the native context.
+ function = handle(isolate->native_context()->closure());
+ } else {
+ function = args.at<JSFunction>(1);
+ }
+ Handle<Context> current(isolate->context());
+ Handle<Context> context =
+ isolate->factory()->NewBlockContext(function, current, scope_info);
+ isolate->set_context(*context);
+ return *context;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsJSModule) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsJSModule());
+}
+
+
+RUNTIME_FUNCTION(Runtime_PushModuleContext) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_SMI_ARG_CHECKED(index, 0);
+
+ if (!args[1]->IsScopeInfo()) {
+ // Module already initialized. Find hosting context and retrieve context.
+ Context* host = Context::cast(isolate->context())->global_context();
+ Context* context = Context::cast(host->get(index));
+ DCHECK(context->previous() == isolate->context());
+ isolate->set_context(context);
+ return context;
+ }
+
+ CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
+
+ // Allocate module context.
+ HandleScope scope(isolate);
+ Factory* factory = isolate->factory();
+ Handle<Context> context = factory->NewModuleContext(scope_info);
+ Handle<JSModule> module = factory->NewJSModule(context, scope_info);
+ context->set_module(*module);
+ Context* previous = isolate->context();
+ context->set_previous(previous);
+ context->set_closure(previous->closure());
+ context->set_global_object(previous->global_object());
+ isolate->set_context(*context);
+
+ // Find hosting scope and initialize internal variable holding module there.
+ previous->global_context()->set(index, *context);
+
+ return *context;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeclareModules) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, descriptions, 0);
+ Context* host_context = isolate->context();
+
+ for (int i = 0; i < descriptions->length(); ++i) {
+ Handle<ModuleInfo> description(ModuleInfo::cast(descriptions->get(i)));
+ int host_index = description->host_index();
+ Handle<Context> context(Context::cast(host_context->get(host_index)));
+ Handle<JSModule> module(context->module());
+
+ for (int j = 0; j < description->length(); ++j) {
+ Handle<String> name(description->name(j));
+ VariableMode mode = description->mode(j);
+ int index = description->index(j);
+ switch (mode) {
+ case VAR:
+ case LET:
+ case CONST:
+ case CONST_LEGACY: {
+ PropertyAttributes attr =
+ IsImmutableVariableMode(mode) ? FROZEN : SEALED;
+ Handle<AccessorInfo> info =
+ Accessors::MakeModuleExport(name, index, attr);
+ Handle<Object> result =
+ JSObject::SetAccessor(module, info).ToHandleChecked();
+ DCHECK(!result->IsUndefined());
+ USE(result);
+ break;
+ }
+ case MODULE: {
+ Object* referenced_context = Context::cast(host_context)->get(index);
+ Handle<JSModule> value(Context::cast(referenced_context)->module());
+ JSObject::SetOwnPropertyIgnoreAttributes(module, name, value, FROZEN)
+ .Assert();
+ break;
+ }
+ case INTERNAL:
+ case TEMPORARY:
+ case DYNAMIC:
+ case DYNAMIC_GLOBAL:
+ case DYNAMIC_LOCAL:
+ UNREACHABLE();
+ }
+ }
+
+ JSObject::PreventExtensions(module).Assert();
+ }
+
+ DCHECK(!isolate->has_pending_exception());
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeleteLookupSlot) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = FOLLOW_CHAINS;
+ BindingFlags binding_flags;
+ Handle<Object> holder =
+ context->Lookup(name, flags, &index, &attributes, &binding_flags);
+
+ // If the slot was not found the result is true.
+ if (holder.is_null()) {
+ return isolate->heap()->true_value();
+ }
+
+ // If the slot was found in a context, it should be DONT_DELETE.
+ if (holder->IsContext()) {
+ return isolate->heap()->false_value();
+ }
+
+ // The slot was found in a JSObject, either a context extension object,
+ // the global object, or the subject of a with. Try to delete it
+ // (respecting DONT_DELETE).
+ Handle<JSObject> object = Handle<JSObject>::cast(holder);
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+ JSReceiver::DeleteProperty(object, name));
+ return *result;
+}
+
+
+static Object* ComputeReceiverForNonGlobal(Isolate* isolate, JSObject* holder) {
+ DCHECK(!holder->IsGlobalObject());
+ Context* top = isolate->context();
+ // Get the context extension function.
+ JSFunction* context_extension_function =
+ top->native_context()->context_extension_function();
+ // If the holder isn't a context extension object, we just return it
+ // as the receiver. This allows arguments objects to be used as
+ // receivers, but only if they are put in the context scope chain
+ // explicitly via a with-statement.
+ Object* constructor = holder->map()->constructor();
+ if (constructor != context_extension_function) return holder;
+ // Fall back to using the global object as the implicit receiver if
+ // the property turns out to be a local variable allocated in a
+ // context extension object - introduced via eval.
+ return isolate->heap()->undefined_value();
+}
+
+
+static ObjectPair LoadLookupSlotHelper(Arguments args, Isolate* isolate,
+ bool throw_error) {
+ HandleScope scope(isolate);
+ DCHECK_EQ(2, args.length());
+
+ if (!args[0]->IsContext() || !args[1]->IsString()) {
+ return MakePair(isolate->ThrowIllegalOperation(), NULL);
+ }
+ Handle<Context> context = args.at<Context>(0);
+ Handle<String> name = args.at<String>(1);
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = FOLLOW_CHAINS;
+ BindingFlags binding_flags;
+ Handle<Object> holder =
+ context->Lookup(name, flags, &index, &attributes, &binding_flags);
+ if (isolate->has_pending_exception()) {
+ return MakePair(isolate->heap()->exception(), NULL);
+ }
+
+ // If the index is non-negative, the slot has been found in a context.
+ if (index >= 0) {
+ DCHECK(holder->IsContext());
+ // If the "property" we were looking for is a local variable, the
+ // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3.
+ Handle<Object> receiver = isolate->factory()->undefined_value();
+ Object* value = Context::cast(*holder)->get(index);
+ // Check for uninitialized bindings.
+ switch (binding_flags) {
+ case MUTABLE_CHECK_INITIALIZED:
+ case IMMUTABLE_CHECK_INITIALIZED_HARMONY:
+ if (value->IsTheHole()) {
+ Handle<Object> error;
+ MaybeHandle<Object> maybe_error =
+ isolate->factory()->NewReferenceError("not_defined",
+ HandleVector(&name, 1));
+ if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
+ return MakePair(isolate->heap()->exception(), NULL);
+ }
+ // FALLTHROUGH
+ case MUTABLE_IS_INITIALIZED:
+ case IMMUTABLE_IS_INITIALIZED:
+ case IMMUTABLE_IS_INITIALIZED_HARMONY:
+ DCHECK(!value->IsTheHole());
+ return MakePair(value, *receiver);
+ case IMMUTABLE_CHECK_INITIALIZED:
+ if (value->IsTheHole()) {
+ DCHECK((attributes & READ_ONLY) != 0);
+ value = isolate->heap()->undefined_value();
+ }
+ return MakePair(value, *receiver);
+ case MISSING_BINDING:
+ UNREACHABLE();
+ return MakePair(NULL, NULL);
+ }
+ }
+
+ // Otherwise, if the slot was found the holder is a context extension
+ // object, subject of a with, or a global object. We read the named
+ // property from it.
+ if (!holder.is_null()) {
+ Handle<JSReceiver> object = Handle<JSReceiver>::cast(holder);
+#ifdef DEBUG
+ if (!object->IsJSProxy()) {
+ Maybe<bool> maybe = JSReceiver::HasProperty(object, name);
+ DCHECK(maybe.has_value);
+ DCHECK(maybe.value);
+ }
+#endif
+ // GetProperty below can cause GC.
+ Handle<Object> receiver_handle(
+ object->IsGlobalObject()
+ ? Object::cast(isolate->heap()->undefined_value())
+ : object->IsJSProxy() ? static_cast<Object*>(*object)
+ : ComputeReceiverForNonGlobal(
+ isolate, JSObject::cast(*object)),
+ isolate);
+
+ // No need to unhole the value here. This is taken care of by the
+ // GetProperty function.
+ Handle<Object> value;
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, value, Object::GetProperty(object, name),
+ MakePair(isolate->heap()->exception(), NULL));
+ return MakePair(*value, *receiver_handle);
+ }
+
+ if (throw_error) {
+ // The property doesn't exist - throw exception.
+ Handle<Object> error;
+ MaybeHandle<Object> maybe_error = isolate->factory()->NewReferenceError(
+ "not_defined", HandleVector(&name, 1));
+ if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
+ return MakePair(isolate->heap()->exception(), NULL);
+ } else {
+ // The property doesn't exist - return undefined.
+ return MakePair(isolate->heap()->undefined_value(),
+ isolate->heap()->undefined_value());
+ }
+}
+
+
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlot) {
+ return LoadLookupSlotHelper(args, isolate, true);
+}
+
+
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlotNoReferenceError) {
+ return LoadLookupSlotHelper(args, isolate, false);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreLookupSlot) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+
+ CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Context, context, 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
+ CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 3);
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = FOLLOW_CHAINS;
+ BindingFlags binding_flags;
+ Handle<Object> holder =
+ context->Lookup(name, flags, &index, &attributes, &binding_flags);
+ // In case of JSProxy, an exception might have been thrown.
+ if (isolate->has_pending_exception()) return isolate->heap()->exception();
+
+ // The property was found in a context slot.
+ if (index >= 0) {
+ if ((attributes & READ_ONLY) == 0) {
+ Handle<Context>::cast(holder)->set(index, *value);
+ } else if (strict_mode == STRICT) {
+ // Setting read only property in strict mode.
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate,
+ NewTypeError("strict_cannot_assign", HandleVector(&name, 1)));
+ }
+ return *value;
+ }
+
+ // Slow case: The property is not in a context slot. It is either in a
+ // context extension object, a property of the subject of a with, or a
+ // property of the global object.
+ Handle<JSReceiver> object;
+ if (attributes != ABSENT) {
+ // The property exists on the holder.
+ object = Handle<JSReceiver>::cast(holder);
+ } else if (strict_mode == STRICT) {
+ // If absent in strict mode: throw.
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
+ } else {
+ // If absent in sloppy mode: add the property to the global object.
+ object = Handle<JSReceiver>(context->global_object());
+ }
+
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, Object::SetProperty(object, name, value, strict_mode));
+
+ return *value;
+}
+
+
+RUNTIME_FUNCTION(Runtime_Throw) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ return isolate->Throw(args[0]);
+}
+
+
+RUNTIME_FUNCTION(Runtime_ReThrow) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ return isolate->ReThrow(args[0]);
+}
+
+
+RUNTIME_FUNCTION(Runtime_PromoteScheduledException) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ return isolate->PromoteScheduledException();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowReferenceError) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowNonMethodError) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewReferenceError("non_method", HandleVector<Object>(NULL, 0)));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowUnsupportedSuperError) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate,
+ NewReferenceError("unsupported_super", HandleVector<Object>(NULL, 0)));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowNotDateError) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
+}
+
+
+RUNTIME_FUNCTION(Runtime_StackGuard) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+
+ // First check if this is a real stack overflow.
+ StackLimitCheck check(isolate);
+ if (check.JsHasOverflowed()) {
+ return isolate->StackOverflow();
+ }
+
+ return isolate->stack_guard()->HandleInterrupts();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Interrupt) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ return isolate->stack_guard()->HandleInterrupts();
+}
+
+
+static int StackSize(Isolate* isolate) {
+ int n = 0;
+ for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) n++;
+ return n;
+}
+
+
+static void PrintTransition(Isolate* isolate, Object* result) {
+ // indentation
+ {
+ const int nmax = 80;
+ int n = StackSize(isolate);
+ if (n <= nmax)
+ PrintF("%4d:%*s", n, n, "");
+ else
+ PrintF("%4d:%*s", n, nmax, "...");
+ }
+
+ if (result == NULL) {
+ JavaScriptFrame::PrintTop(isolate, stdout, true, false);
+ PrintF(" {\n");
+ } else {
+ // function result
+ PrintF("} -> ");
+ result->ShortPrint();
+ PrintF("\n");
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_TraceEnter) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ PrintTransition(isolate, NULL);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_TraceExit) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ PrintTransition(isolate, obj);
+ return obj; // return TOS
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateCurrentTime) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ if (FLAG_log_timer_events) LOG(isolate, CurrentTimeEvent());
+
+ // According to ECMA-262, section 15.9.1, page 117, the precision of
+ // the number in a Date object representing a particular instant in
+ // time is milliseconds. Therefore, we floor the result of getting
+ // the OS time.
+ double millis;
+ if (FLAG_verify_predictable) {
+ millis = 1388534400000.0; // Jan 1 2014 00:00:00 GMT+0000
+ millis += Floor(isolate->heap()->synthetic_time());
+ } else {
+ millis = Floor(base::OS::TimeCurrentMillis());
+ }
+ return *isolate->factory()->NewNumber(millis);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateParseString) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1);
+
+ RUNTIME_ASSERT(output->HasFastElements());
+ JSObject::EnsureCanContainHeapObjectElements(output);
+ RUNTIME_ASSERT(output->HasFastObjectElements());
+ Handle<FixedArray> output_array(FixedArray::cast(output->elements()));
+ RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
+
+ str = String::Flatten(str);
+ DisallowHeapAllocation no_gc;
+
+ bool result;
+ String::FlatContent str_content = str->GetFlatContent();
+ if (str_content.IsOneByte()) {
+ result = DateParser::Parse(str_content.ToOneByteVector(), *output_array,
+ isolate->unicode_cache());
+ } else {
+ DCHECK(str_content.IsTwoByte());
+ result = DateParser::Parse(str_content.ToUC16Vector(), *output_array,
+ isolate->unicode_cache());
+ }
+
+ if (result) {
+ return *output;
+ } else {
+ return isolate->heap()->null_value();
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateLocalTimezone) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
+ x <= DateCache::kMaxTimeBeforeUTCInMs);
+ const char* zone =
+ isolate->date_cache()->LocalTimezone(static_cast<int64_t>(x));
+ Handle<String> result =
+ isolate->factory()->NewStringFromUtf8(CStrVector(zone)).ToHandleChecked();
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateToUTC) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
+ x <= DateCache::kMaxTimeBeforeUTCInMs);
+ int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x));
+
+ return *isolate->factory()->NewNumber(static_cast<double>(time));
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateCacheVersion) {
+ HandleScope hs(isolate);
+ DCHECK(args.length() == 0);
+ if (!isolate->eternal_handles()->Exists(EternalHandles::DATE_CACHE_VERSION)) {
+ Handle<FixedArray> date_cache_version =
+ isolate->factory()->NewFixedArray(1, TENURED);
+ date_cache_version->set(0, Smi::FromInt(0));
+ isolate->eternal_handles()->CreateSingleton(
+ isolate, *date_cache_version, EternalHandles::DATE_CACHE_VERSION);
+ }
+ Handle<FixedArray> date_cache_version =
+ Handle<FixedArray>::cast(isolate->eternal_handles()->GetSingleton(
+ EternalHandles::DATE_CACHE_VERSION));
+ // Return result as a JS array.
+ Handle<JSObject> result =
+ isolate->factory()->NewJSObject(isolate->array_function());
+ JSArray::SetContent(Handle<JSArray>::cast(result), date_cache_version);
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GlobalProxy) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, global, 0);
+ if (!global->IsJSGlobalObject()) return isolate->heap()->null_value();
+ return JSGlobalObject::cast(global)->global_proxy();
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsAttachedGlobal) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, global, 0);
+ if (!global->IsJSGlobalObject()) return isolate->heap()->false_value();
+ return isolate->heap()->ToBoolean(
+ !JSGlobalObject::cast(global)->IsDetached());
+}
+
+
+RUNTIME_FUNCTION(Runtime_AllocateInNewSpace) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_SMI_ARG_CHECKED(size, 0);
+ RUNTIME_ASSERT(IsAligned(size, kPointerSize));
+ RUNTIME_ASSERT(size > 0);
+ RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
+ return *isolate->factory()->NewFillerObject(size, false, NEW_SPACE);
+}
+
+
+RUNTIME_FUNCTION(Runtime_AllocateInTargetSpace) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_SMI_ARG_CHECKED(size, 0);
+ CONVERT_SMI_ARG_CHECKED(flags, 1);
+ RUNTIME_ASSERT(IsAligned(size, kPointerSize));
+ RUNTIME_ASSERT(size > 0);
+ RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
+ bool double_align = AllocateDoubleAlignFlag::decode(flags);
+ AllocationSpace space = AllocateTargetSpace::decode(flags);
+ return *isolate->factory()->NewFillerObject(size, double_align, space);
+}
+
+
+// Push an object unto an array of objects if it is not already in the
+// array. Returns true if the element was pushed on the stack and
+// false otherwise.
+RUNTIME_FUNCTION(Runtime_PushIfAbsent) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1);
+ RUNTIME_ASSERT(array->HasFastSmiOrObjectElements());
+ int length = Smi::cast(array->length())->value();
+ FixedArray* elements = FixedArray::cast(array->elements());
+ for (int i = 0; i < length; i++) {
+ if (elements->get(i) == *element) return isolate->heap()->false_value();
+ }
+
+ // Strict not needed. Used for cycle detection in Array join implementation.
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, JSObject::SetFastElement(array, length, element, SLOPPY, true));
+ return isolate->heap()->true_value();
+}
+
+
+/**
+ * A simple visitor visits every element of Array's.
+ * The backend storage can be a fixed array for fast elements case,
+ * or a dictionary for sparse array. Since Dictionary is a subtype
+ * of FixedArray, the class can be used by both fast and slow cases.
+ * The second parameter of the constructor, fast_elements, specifies
+ * whether the storage is a FixedArray or Dictionary.
+ *
+ * An index limit is used to deal with the situation that a result array
+ * length overflows 32-bit non-negative integer.
+ */
+class ArrayConcatVisitor {
+ public:
+ ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage,
+ bool fast_elements)
+ : isolate_(isolate),
+ storage_(Handle<FixedArray>::cast(
+ isolate->global_handles()->Create(*storage))),
+ index_offset_(0u),
+ fast_elements_(fast_elements),
+ exceeds_array_limit_(false) {}
+
+ ~ArrayConcatVisitor() { clear_storage(); }
+
+ void visit(uint32_t i, Handle<Object> elm) {
+ if (i > JSObject::kMaxElementCount - index_offset_) {
+ exceeds_array_limit_ = true;
+ return;
+ }
+ uint32_t index = index_offset_ + i;
+
+ if (fast_elements_) {
+ if (index < static_cast<uint32_t>(storage_->length())) {
+ storage_->set(index, *elm);
+ return;
+ }
+ // Our initial estimate of length was foiled, possibly by
+ // getters on the arrays increasing the length of later arrays
+ // during iteration.
+ // This shouldn't happen in anything but pathological cases.
+ SetDictionaryMode();
+ // Fall-through to dictionary mode.
+ }
+ DCHECK(!fast_elements_);
+ Handle<SeededNumberDictionary> dict(
+ SeededNumberDictionary::cast(*storage_));
+ Handle<SeededNumberDictionary> result =
+ SeededNumberDictionary::AtNumberPut(dict, index, elm);
+ if (!result.is_identical_to(dict)) {
+ // Dictionary needed to grow.
+ clear_storage();
+ set_storage(*result);
+ }
+ }
+
+ void increase_index_offset(uint32_t delta) {
+ if (JSObject::kMaxElementCount - index_offset_ < delta) {
+ index_offset_ = JSObject::kMaxElementCount;
+ } else {
+ index_offset_ += delta;
+ }
+ // If the initial length estimate was off (see special case in visit()),
+ // but the array blowing the limit didn't contain elements beyond the
+ // provided-for index range, go to dictionary mode now.
+ if (fast_elements_ &&
+ index_offset_ >
+ static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
+ SetDictionaryMode();
+ }
+ }
+
+ bool exceeds_array_limit() { return exceeds_array_limit_; }
+
+ Handle<JSArray> ToArray() {
+ Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
+ Handle<Object> length =
+ isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
+ Handle<Map> map = JSObject::GetElementsTransitionMap(
+ array, fast_elements_ ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
+ array->set_map(*map);
+ array->set_length(*length);
+ array->set_elements(*storage_);
+ return array;
+ }
+
+ private:
+ // Convert storage to dictionary mode.
+ void SetDictionaryMode() {
+ DCHECK(fast_elements_);
+ Handle<FixedArray> current_storage(*storage_);
+ Handle<SeededNumberDictionary> slow_storage(
+ SeededNumberDictionary::New(isolate_, current_storage->length()));
+ uint32_t current_length = static_cast<uint32_t>(current_storage->length());
+ for (uint32_t i = 0; i < current_length; i++) {
+ HandleScope loop_scope(isolate_);
+ Handle<Object> element(current_storage->get(i), isolate_);
+ if (!element->IsTheHole()) {
+ Handle<SeededNumberDictionary> new_storage =
+ SeededNumberDictionary::AtNumberPut(slow_storage, i, element);
+ if (!new_storage.is_identical_to(slow_storage)) {
+ slow_storage = loop_scope.CloseAndEscape(new_storage);
+ }
+ }
+ }
+ clear_storage();
+ set_storage(*slow_storage);
+ fast_elements_ = false;
+ }
+
+ inline void clear_storage() {
+ GlobalHandles::Destroy(Handle<Object>::cast(storage_).location());
+ }
+
+ inline void set_storage(FixedArray* storage) {
+ storage_ =
+ Handle<FixedArray>::cast(isolate_->global_handles()->Create(storage));
+ }
+
+ Isolate* isolate_;
+ Handle<FixedArray> storage_; // Always a global handle.
+ // Index after last seen index. Always less than or equal to
+ // JSObject::kMaxElementCount.
+ uint32_t index_offset_;
+ bool fast_elements_ : 1;
+ bool exceeds_array_limit_ : 1;
+};
+
+
+static uint32_t EstimateElementCount(Handle<JSArray> array) {
+ uint32_t length = static_cast<uint32_t>(array->length()->Number());
+ int element_count = 0;
+ switch (array->GetElementsKind()) {
+ case FAST_SMI_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS: {
+ // Fast elements can't have lengths that are not representable by
+ // a 32-bit signed integer.
+ DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
+ int fast_length = static_cast<int>(length);
+ Handle<FixedArray> elements(FixedArray::cast(array->elements()));
+ for (int i = 0; i < fast_length; i++) {
+ if (!elements->get(i)->IsTheHole()) element_count++;
+ }
+ break;
+ }
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_HOLEY_DOUBLE_ELEMENTS: {
+ // Fast elements can't have lengths that are not representable by
+ // a 32-bit signed integer.
+ DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
+ int fast_length = static_cast<int>(length);
+ if (array->elements()->IsFixedArray()) {
+ DCHECK(FixedArray::cast(array->elements())->length() == 0);
+ break;
+ }
+ Handle<FixedDoubleArray> elements(
+ FixedDoubleArray::cast(array->elements()));
+ for (int i = 0; i < fast_length; i++) {
+ if (!elements->is_the_hole(i)) element_count++;
+ }
+ break;
+ }
+ case DICTIONARY_ELEMENTS: {
+ Handle<SeededNumberDictionary> dictionary(
+ SeededNumberDictionary::cast(array->elements()));
+ int capacity = dictionary->Capacity();
+ for (int i = 0; i < capacity; i++) {
+ Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
+ if (dictionary->IsKey(*key)) {
+ element_count++;
+ }
+ }
+ break;
+ }
+ case SLOPPY_ARGUMENTS_ELEMENTS:
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
+ case EXTERNAL_##TYPE##_ELEMENTS: \
+ case TYPE##_ELEMENTS:
+
+ TYPED_ARRAYS(TYPED_ARRAY_CASE)
+#undef TYPED_ARRAY_CASE
+ // External arrays are always dense.
+ return length;
+ }
+ // As an estimate, we assume that the prototype doesn't contain any
+ // inherited elements.
+ return element_count;
+}
+
+
+template <class ExternalArrayClass, class ElementType>
+static void IterateExternalArrayElements(Isolate* isolate,
+ Handle<JSObject> receiver,
+ bool elements_are_ints,
+ bool elements_are_guaranteed_smis,
+ ArrayConcatVisitor* visitor) {
+ Handle<ExternalArrayClass> array(
+ ExternalArrayClass::cast(receiver->elements()));
+ uint32_t len = static_cast<uint32_t>(array->length());
+
+ DCHECK(visitor != NULL);
+ if (elements_are_ints) {
+ if (elements_are_guaranteed_smis) {
+ for (uint32_t j = 0; j < len; j++) {
+ HandleScope loop_scope(isolate);
+ Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
+ isolate);
+ visitor->visit(j, e);
+ }
+ } else {
+ for (uint32_t j = 0; j < len; j++) {
+ HandleScope loop_scope(isolate);
+ int64_t val = static_cast<int64_t>(array->get_scalar(j));
+ if (Smi::IsValid(static_cast<intptr_t>(val))) {
+ Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
+ visitor->visit(j, e);
+ } else {
+ Handle<Object> e =
+ isolate->factory()->NewNumber(static_cast<ElementType>(val));
+ visitor->visit(j, e);
+ }
+ }
+ }
+ } else {
+ for (uint32_t j = 0; j < len; j++) {
+ HandleScope loop_scope(isolate);
+ Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
+ visitor->visit(j, e);
+ }
+ }
+}
+
+
+// Used for sorting indices in a List<uint32_t>.
+static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
+ uint32_t a = *ap;
+ uint32_t b = *bp;
+ return (a == b) ? 0 : (a < b) ? -1 : 1;
+}
+
+
+static void CollectElementIndices(Handle<JSObject> object, uint32_t range,
+ List<uint32_t>* indices) {
+ Isolate* isolate = object->GetIsolate();
+ ElementsKind kind = object->GetElementsKind();
+ switch (kind) {
+ case FAST_SMI_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS: {
+ Handle<FixedArray> elements(FixedArray::cast(object->elements()));
+ uint32_t length = static_cast<uint32_t>(elements->length());
+ if (range < length) length = range;
+ for (uint32_t i = 0; i < length; i++) {
+ if (!elements->get(i)->IsTheHole()) {
+ indices->Add(i);
+ }
+ }
+ break;
+ }
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS: {
+ if (object->elements()->IsFixedArray()) {
+ DCHECK(object->elements()->length() == 0);
+ break;
+ }
+ Handle<FixedDoubleArray> elements(
+ FixedDoubleArray::cast(object->elements()));
+ uint32_t length = static_cast<uint32_t>(elements->length());
+ if (range < length) length = range;
+ for (uint32_t i = 0; i < length; i++) {
+ if (!elements->is_the_hole(i)) {
+ indices->Add(i);
+ }
+ }
+ break;
+ }
+ case DICTIONARY_ELEMENTS: {
+ Handle<SeededNumberDictionary> dict(
+ SeededNumberDictionary::cast(object->elements()));
+ uint32_t capacity = dict->Capacity();
+ for (uint32_t j = 0; j < capacity; j++) {
+ HandleScope loop_scope(isolate);
+ Handle<Object> k(dict->KeyAt(j), isolate);
+ if (dict->IsKey(*k)) {
+ DCHECK(k->IsNumber());
+ uint32_t index = static_cast<uint32_t>(k->Number());
+ if (index < range) {
+ indices->Add(index);
+ }
+ }
+ }
+ break;
+ }
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
+ case TYPE##_ELEMENTS: \
+ case EXTERNAL_##TYPE##_ELEMENTS:
+
+ TYPED_ARRAYS(TYPED_ARRAY_CASE)
+#undef TYPED_ARRAY_CASE
+ {
+ uint32_t length = static_cast<uint32_t>(
+ FixedArrayBase::cast(object->elements())->length());
+ if (range <= length) {
+ length = range;
+ // We will add all indices, so we might as well clear it first
+ // and avoid duplicates.
+ indices->Clear();
+ }
+ for (uint32_t i = 0; i < length; i++) {
+ indices->Add(i);
+ }
+ if (length == range) return; // All indices accounted for already.
+ break;
+ }
+ case SLOPPY_ARGUMENTS_ELEMENTS: {
+ MaybeHandle<Object> length_obj =
+ Object::GetProperty(object, isolate->factory()->length_string());
+ double length_num = length_obj.ToHandleChecked()->Number();
+ uint32_t length = static_cast<uint32_t>(DoubleToInt32(length_num));
+ ElementsAccessor* accessor = object->GetElementsAccessor();
+ for (uint32_t i = 0; i < length; i++) {
+ if (accessor->HasElement(object, object, i)) {
+ indices->Add(i);
+ }
+ }
+ break;
+ }
+ }
+
+ PrototypeIterator iter(isolate, object);
+ if (!iter.IsAtEnd()) {
+ // The prototype will usually have no inherited element indices,
+ // but we have to check.
+ CollectElementIndices(
+ Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range,
+ indices);
+ }
+}
+
+
+/**
+ * A helper function that visits elements of a JSArray in numerical
+ * order.
+ *
+ * The visitor argument called for each existing element in the array
+ * with the element index and the element's value.
+ * Afterwards it increments the base-index of the visitor by the array
+ * length.
+ * Returns false if any access threw an exception, otherwise true.
+ */
+static bool IterateElements(Isolate* isolate, Handle<JSArray> receiver,
+ ArrayConcatVisitor* visitor) {
+ uint32_t length = static_cast<uint32_t>(receiver->length()->Number());
+ switch (receiver->GetElementsKind()) {
+ case FAST_SMI_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS: {
+ // Run through the elements FixedArray and use HasElement and GetElement
+ // to check the prototype for missing elements.
+ Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
+ int fast_length = static_cast<int>(length);
+ DCHECK(fast_length <= elements->length());
+ for (int j = 0; j < fast_length; j++) {
+ HandleScope loop_scope(isolate);
+ Handle<Object> element_value(elements->get(j), isolate);
+ if (!element_value->IsTheHole()) {
+ visitor->visit(j, element_value);
+ } else {
+ Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
+ if (!maybe.has_value) return false;
+ if (maybe.value) {
+ // Call GetElement on receiver, not its prototype, or getters won't
+ // have the correct receiver.
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, element_value,
+ Object::GetElement(isolate, receiver, j), false);
+ visitor->visit(j, element_value);
+ }
+ }
+ }
+ break;
+ }
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS: {
+ // Empty array is FixedArray but not FixedDoubleArray.
+ if (length == 0) break;
+ // Run through the elements FixedArray and use HasElement and GetElement
+ // to check the prototype for missing elements.
+ if (receiver->elements()->IsFixedArray()) {
+ DCHECK(receiver->elements()->length() == 0);
+ break;
+ }
+ Handle<FixedDoubleArray> elements(
+ FixedDoubleArray::cast(receiver->elements()));
+ int fast_length = static_cast<int>(length);
+ DCHECK(fast_length <= elements->length());
+ for (int j = 0; j < fast_length; j++) {
+ HandleScope loop_scope(isolate);
+ if (!elements->is_the_hole(j)) {
+ double double_value = elements->get_scalar(j);
+ Handle<Object> element_value =
+ isolate->factory()->NewNumber(double_value);
+ visitor->visit(j, element_value);
+ } else {
+ Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
+ if (!maybe.has_value) return false;
+ if (maybe.value) {
+ // Call GetElement on receiver, not its prototype, or getters won't
+ // have the correct receiver.
+ Handle<Object> element_value;
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, element_value,
+ Object::GetElement(isolate, receiver, j), false);
+ visitor->visit(j, element_value);
+ }
+ }
+ }
+ break;
+ }
+ case DICTIONARY_ELEMENTS: {
+ Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
+ List<uint32_t> indices(dict->Capacity() / 2);
+ // Collect all indices in the object and the prototypes less
+ // than length. This might introduce duplicates in the indices list.
+ CollectElementIndices(receiver, length, &indices);
+ indices.Sort(&compareUInt32);
+ int j = 0;
+ int n = indices.length();
+ while (j < n) {
+ HandleScope loop_scope(isolate);
+ uint32_t index = indices[j];
+ Handle<Object> element;
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, element, Object::GetElement(isolate, receiver, index),
+ false);
+ visitor->visit(index, element);
+ // Skip to next different index (i.e., omit duplicates).
+ do {
+ j++;
+ } while (j < n && indices[j] == index);
+ }
+ break;
+ }
+ case EXTERNAL_UINT8_CLAMPED_ELEMENTS: {
+ Handle<ExternalUint8ClampedArray> pixels(
+ ExternalUint8ClampedArray::cast(receiver->elements()));
+ for (uint32_t j = 0; j < length; j++) {
+ Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
+ visitor->visit(j, e);
+ }
+ break;
+ }
+ case EXTERNAL_INT8_ELEMENTS: {
+ IterateExternalArrayElements<ExternalInt8Array, int8_t>(
+ isolate, receiver, true, true, visitor);
+ break;
+ }
+ case EXTERNAL_UINT8_ELEMENTS: {
+ IterateExternalArrayElements<ExternalUint8Array, uint8_t>(
+ isolate, receiver, true, true, visitor);
+ break;
+ }
+ case EXTERNAL_INT16_ELEMENTS: {
+ IterateExternalArrayElements<ExternalInt16Array, int16_t>(
+ isolate, receiver, true, true, visitor);
+ break;
+ }
+ case EXTERNAL_UINT16_ELEMENTS: {
+ IterateExternalArrayElements<ExternalUint16Array, uint16_t>(
+ isolate, receiver, true, true, visitor);
+ break;
+ }
+ case EXTERNAL_INT32_ELEMENTS: {
+ IterateExternalArrayElements<ExternalInt32Array, int32_t>(
+ isolate, receiver, true, false, visitor);
+ break;
+ }
+ case EXTERNAL_UINT32_ELEMENTS: {
+ IterateExternalArrayElements<ExternalUint32Array, uint32_t>(
+ isolate, receiver, true, false, visitor);
+ break;
+ }
+ case EXTERNAL_FLOAT32_ELEMENTS: {
+ IterateExternalArrayElements<ExternalFloat32Array, float>(
+ isolate, receiver, false, false, visitor);
+ break;
+ }
+ case EXTERNAL_FLOAT64_ELEMENTS: {
+ IterateExternalArrayElements<ExternalFloat64Array, double>(
+ isolate, receiver, false, false, visitor);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ visitor->increase_index_offset(length);
+ return true;
+}
+
+
+/**
+ * Array::concat implementation.
+ * See ECMAScript 262, 15.4.4.4.
+ * TODO(581): Fix non-compliance for very large concatenations and update to
+ * following the ECMAScript 5 specification.
+ */
+RUNTIME_FUNCTION(Runtime_ArrayConcat) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0);
+ int argument_count = static_cast<int>(arguments->length()->Number());
+ RUNTIME_ASSERT(arguments->HasFastObjectElements());
+ Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
+
+ // Pass 1: estimate the length and number of elements of the result.
+ // The actual length can be larger if any of the arguments have getters
+ // that mutate other arguments (but will otherwise be precise).
+ // The number of elements is precise if there are no inherited elements.
+
+ ElementsKind kind = FAST_SMI_ELEMENTS;
+
+ uint32_t estimate_result_length = 0;
+ uint32_t estimate_nof_elements = 0;
+ for (int i = 0; i < argument_count; i++) {
+ HandleScope loop_scope(isolate);
+ Handle<Object> obj(elements->get(i), isolate);
+ uint32_t length_estimate;
+ uint32_t element_estimate;
+ if (obj->IsJSArray()) {
+ Handle<JSArray> array(Handle<JSArray>::cast(obj));
+ length_estimate = static_cast<uint32_t>(array->length()->Number());
+ if (length_estimate != 0) {
+ ElementsKind array_kind =
+ GetPackedElementsKind(array->map()->elements_kind());
+ if (IsMoreGeneralElementsKindTransition(kind, array_kind)) {
+ kind = array_kind;
+ }
+ }
+ element_estimate = EstimateElementCount(array);
+ } else {
+ if (obj->IsHeapObject()) {
+ if (obj->IsNumber()) {
+ if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) {
+ kind = FAST_DOUBLE_ELEMENTS;
+ }
+ } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) {
+ kind = FAST_ELEMENTS;
+ }
+ }
+ length_estimate = 1;
+ element_estimate = 1;
+ }
+ // Avoid overflows by capping at kMaxElementCount.
+ if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
+ estimate_result_length = JSObject::kMaxElementCount;
+ } else {
+ estimate_result_length += length_estimate;
+ }
+ if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
+ estimate_nof_elements = JSObject::kMaxElementCount;
+ } else {
+ estimate_nof_elements += element_estimate;
+ }
+ }
+
+ // If estimated number of elements is more than half of length, a
+ // fixed array (fast case) is more time and space-efficient than a
+ // dictionary.
+ bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
+
+ if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
+ Handle<FixedArrayBase> storage =
+ isolate->factory()->NewFixedDoubleArray(estimate_result_length);
+ int j = 0;
+ bool failure = false;
+ if (estimate_result_length > 0) {
+ Handle<FixedDoubleArray> double_storage =
+ Handle<FixedDoubleArray>::cast(storage);
+ for (int i = 0; i < argument_count; i++) {
+ Handle<Object> obj(elements->get(i), isolate);
+ if (obj->IsSmi()) {
+ double_storage->set(j, Smi::cast(*obj)->value());
+ j++;
+ } else if (obj->IsNumber()) {
+ double_storage->set(j, obj->Number());
+ j++;
+ } else {
+ JSArray* array = JSArray::cast(*obj);
+ uint32_t length = static_cast<uint32_t>(array->length()->Number());
+ switch (array->map()->elements_kind()) {
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS: {
+ // Empty array is FixedArray but not FixedDoubleArray.
+ if (length == 0) break;
+ FixedDoubleArray* elements =
+ FixedDoubleArray::cast(array->elements());
+ for (uint32_t i = 0; i < length; i++) {
+ if (elements->is_the_hole(i)) {
+ // TODO(jkummerow/verwaest): We could be a bit more clever
+ // here: Check if there are no elements/getters on the
+ // prototype chain, and if so, allow creation of a holey
+ // result array.
+ // Same thing below (holey smi case).
+ failure = true;
+ break;
+ }
+ double double_value = elements->get_scalar(i);
+ double_storage->set(j, double_value);
+ j++;
+ }
+ break;
+ }
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_SMI_ELEMENTS: {
+ FixedArray* elements(FixedArray::cast(array->elements()));
+ for (uint32_t i = 0; i < length; i++) {
+ Object* element = elements->get(i);
+ if (element->IsTheHole()) {
+ failure = true;
+ break;
+ }
+ int32_t int_value = Smi::cast(element)->value();
+ double_storage->set(j, int_value);
+ j++;
+ }
+ break;
+ }
+ case FAST_HOLEY_ELEMENTS:
+ case FAST_ELEMENTS:
+ DCHECK_EQ(0, length);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ if (failure) break;
+ }
+ }
+ if (!failure) {
+ Handle<JSArray> array = isolate->factory()->NewJSArray(0);
+ Smi* length = Smi::FromInt(j);
+ Handle<Map> map;
+ map = JSObject::GetElementsTransitionMap(array, kind);
+ array->set_map(*map);
+ array->set_length(length);
+ array->set_elements(*storage);
+ return *array;
+ }
+ // In case of failure, fall through.
+ }
+
+ Handle<FixedArray> storage;
+ if (fast_case) {
+ // The backing storage array must have non-existing elements to preserve
+ // holes across concat operations.
+ storage =
+ isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
+ } else {
+ // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
+ uint32_t at_least_space_for =
+ estimate_nof_elements + (estimate_nof_elements >> 2);
+ storage = Handle<FixedArray>::cast(
+ SeededNumberDictionary::New(isolate, at_least_space_for));
+ }
+
+ ArrayConcatVisitor visitor(isolate, storage, fast_case);
+
+ for (int i = 0; i < argument_count; i++) {
+ Handle<Object> obj(elements->get(i), isolate);
+ if (obj->IsJSArray()) {
+ Handle<JSArray> array = Handle<JSArray>::cast(obj);
+ if (!IterateElements(isolate, array, &visitor)) {
+ return isolate->heap()->exception();
+ }
+ } else {
+ visitor.visit(0, obj);
+ visitor.increase_index_offset(1);
+ }
+ }
+
+ if (visitor.exceeds_array_limit()) {
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate,
+ NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0)));
+ }
+ return *visitor.ToArray();
+}
+
+
+// Moves all own elements of an object, that are below a limit, to positions
+// starting at zero. All undefined values are placed after non-undefined values,
+// and are followed by non-existing element. Does not change the length
+// property.
+// Returns the number of non-undefined elements collected.
+// Returns -1 if hole removal is not supported by this method.
+RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
+ return *JSObject::PrepareElementsForSort(object, limit);
+}
+
+
+// Move contents of argument 0 (an array) to argument 1 (an array)
+RUNTIME_FUNCTION(Runtime_MoveArrayContents) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1);
+ JSObject::ValidateElements(from);
+ JSObject::ValidateElements(to);
+
+ Handle<FixedArrayBase> new_elements(from->elements());
+ ElementsKind from_kind = from->GetElementsKind();
+ Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind);
+ JSObject::SetMapAndElements(to, new_map, new_elements);
+ to->set_length(from->length());
+
+ JSObject::ResetElements(from);
+ from->set_length(Smi::FromInt(0));
+
+ JSObject::ValidateElements(to);
+ return *to;
+}
+
+
+// How many elements does this object/array have?
+RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+ Handle<FixedArrayBase> elements(array->elements(), isolate);
+ SealHandleScope shs(isolate);
+ if (elements->IsDictionary()) {
+ int result =
+ Handle<SeededNumberDictionary>::cast(elements)->NumberOfElements();
+ return Smi::FromInt(result);
+ } else {
+ DCHECK(array->length()->IsSmi());
+ // For packed elements, we know the exact number of elements
+ int length = elements->length();
+ ElementsKind kind = array->GetElementsKind();
+ if (IsFastPackedElementsKind(kind)) {
+ return Smi::FromInt(length);
+ }
+ // For holey elements, take samples from the buffer checking for holes
+ // to generate the estimate.
+ const int kNumberOfHoleCheckSamples = 97;
+ int increment = (length < kNumberOfHoleCheckSamples)
+ ? 1
+ : static_cast<int>(length / kNumberOfHoleCheckSamples);
+ ElementsAccessor* accessor = array->GetElementsAccessor();
+ int holes = 0;
+ for (int i = 0; i < length; i += increment) {
+ if (!accessor->HasElement(array, array, i, elements)) {
+ ++holes;
+ }
+ }
+ int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) /
+ kNumberOfHoleCheckSamples * length);
+ return Smi::FromInt(estimate);
+ }
+}
+
+
+// Returns an array that tells you where in the [0, length) interval an array
+// might have elements. Can either return an array of keys (positive integers
+// or undefined) or a number representing the positive length of an interval
+// starting at index 0.
+// Intervals can span over some keys that are not in the object.
+RUNTIME_FUNCTION(Runtime_GetArrayKeys) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
+ CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
+ if (array->elements()->IsDictionary()) {
+ Handle<FixedArray> keys = isolate->factory()->empty_fixed_array();
+ for (PrototypeIterator iter(isolate, array,
+ PrototypeIterator::START_AT_RECEIVER);
+ !iter.IsAtEnd(); iter.Advance()) {
+ if (PrototypeIterator::GetCurrent(iter)->IsJSProxy() ||
+ JSObject::cast(*PrototypeIterator::GetCurrent(iter))
+ ->HasIndexedInterceptor()) {
+ // Bail out if we find a proxy or interceptor, likely not worth
+ // collecting keys in that case.
+ return *isolate->factory()->NewNumberFromUint(length);
+ }
+ Handle<JSObject> current =
+ Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+ Handle<FixedArray> current_keys =
+ isolate->factory()->NewFixedArray(current->NumberOfOwnElements(NONE));
+ current->GetOwnElementKeys(*current_keys, NONE);
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, keys, FixedArray::UnionOfKeys(keys, current_keys));
+ }
+ // Erase any keys >= length.
+ // TODO(adamk): Remove this step when the contract of %GetArrayKeys
+ // is changed to let this happen on the JS side.
+ for (int i = 0; i < keys->length(); i++) {
+ if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i);
+ }
+ return *isolate->factory()->NewJSArrayWithElements(keys);
+ } else {
+ RUNTIME_ASSERT(array->HasFastSmiOrObjectElements() ||
+ array->HasFastDoubleElements());
+ uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
+ return *isolate->factory()->NewNumberFromUint(Min(actual_length, length));
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_LookupAccessor) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+ CONVERT_SMI_ARG_CHECKED(flag, 2);
+ AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER;
+ if (!receiver->IsJSObject()) return isolate->heap()->undefined_value();
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ JSObject::GetAccessor(Handle<JSObject>::cast(receiver), name, component));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugBreak) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ isolate->debug()->HandleDebugBreak();
+ return isolate->heap()->undefined_value();
+}
+
+
+// Helper functions for wrapping and unwrapping stack frame ids.
+static Smi* WrapFrameId(StackFrame::Id id) {
+ DCHECK(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
+ return Smi::FromInt(id >> 2);
+}
+
+
+static StackFrame::Id UnwrapFrameId(int wrapped) {
+ return static_cast<StackFrame::Id>(wrapped << 2);
+}
+
+
+// Adds a JavaScript function as a debug event listener.
+// args[0]: debug event listener function to set or null or undefined for
+// clearing the event listener function
+// args[1]: object supplied during callback
+RUNTIME_FUNCTION(Runtime_SetDebugEventListener) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ RUNTIME_ASSERT(args[0]->IsJSFunction() || args[0]->IsUndefined() ||
+ args[0]->IsNull());
+ CONVERT_ARG_HANDLE_CHECKED(Object, callback, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, data, 1);
+ isolate->debug()->SetEventListener(callback, data);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Break) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ isolate->stack_guard()->RequestDebugBreak();
+ return isolate->heap()->undefined_value();
+}
+
+
+static Handle<Object> DebugGetProperty(LookupIterator* it,
+ bool* has_caught = NULL) {
+ for (; it->IsFound(); it->Next()) {
+ switch (it->state()) {
+ case LookupIterator::NOT_FOUND:
+ case LookupIterator::TRANSITION:
+ UNREACHABLE();
+ case LookupIterator::ACCESS_CHECK:
+ // Ignore access checks.
+ break;
+ case LookupIterator::INTERCEPTOR:
+ case LookupIterator::JSPROXY:
+ return it->isolate()->factory()->undefined_value();
+ case LookupIterator::ACCESSOR: {
+ Handle<Object> accessors = it->GetAccessors();
+ if (!accessors->IsAccessorInfo()) {
+ return it->isolate()->factory()->undefined_value();
+ }
+ MaybeHandle<Object> maybe_result = JSObject::GetPropertyWithAccessor(
+ it->GetReceiver(), it->name(), it->GetHolder<JSObject>(),
+ accessors);
+ Handle<Object> result;
+ if (!maybe_result.ToHandle(&result)) {
+ result = handle(it->isolate()->pending_exception(), it->isolate());
+ it->isolate()->clear_pending_exception();
+ if (has_caught != NULL) *has_caught = true;
+ }
+ return result;
+ }
+
+ case LookupIterator::DATA:
+ return it->GetDataValue();
+ }
+ }
+
+ return it->isolate()->factory()->undefined_value();
+}
+
+
+// Get debugger related details for an object property, in the following format:
+// 0: Property value
+// 1: Property details
+// 2: Property value is exception
+// 3: Getter function if defined
+// 4: Setter function if defined
+// Items 2-4 are only filled if the property has either a getter or a setter.
+RUNTIME_FUNCTION(Runtime_DebugGetPropertyDetails) {
+ HandleScope scope(isolate);
+
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+
+ // Make sure to set the current context to the context before the debugger was
+ // entered (if the debugger is entered). The reason for switching context here
+ // is that for some property lookups (accessors and interceptors) callbacks
+ // into the embedding application can occour, and the embedding application
+ // could have the assumption that its own native context is the current
+ // context and not some internal debugger context.
+ SaveContext save(isolate);
+ if (isolate->debug()->in_debug_scope()) {
+ isolate->set_context(*isolate->debug()->debugger_entry()->GetContext());
+ }
+
+ // Check if the name is trivially convertible to an index and get the element
+ // if so.
+ uint32_t index;
+ if (name->AsArrayIndex(&index)) {
+ Handle<FixedArray> details = isolate->factory()->NewFixedArray(2);
+ Handle<Object> element_or_char;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, element_or_char,
+ Runtime::GetElementOrCharAt(isolate, obj, index));
+ details->set(0, *element_or_char);
+ details->set(1,
+ PropertyDetails(NONE, NORMAL, Representation::None()).AsSmi());
+ return *isolate->factory()->NewJSArrayWithElements(details);
+ }
+
+ LookupIterator it(obj, name, LookupIterator::HIDDEN);
+ bool has_caught = false;
+ Handle<Object> value = DebugGetProperty(&it, &has_caught);
+ if (!it.IsFound()) return isolate->heap()->undefined_value();
+
+ Handle<Object> maybe_pair;
+ if (it.state() == LookupIterator::ACCESSOR) {
+ maybe_pair = it.GetAccessors();
+ }
+
+ // If the callback object is a fixed array then it contains JavaScript
+ // getter and/or setter.
+ bool has_js_accessors = !maybe_pair.is_null() && maybe_pair->IsAccessorPair();
+ Handle<FixedArray> details =
+ isolate->factory()->NewFixedArray(has_js_accessors ? 6 : 3);
+ details->set(0, *value);
+ // TODO(verwaest): Get rid of this random way of handling interceptors.
+ PropertyDetails d = it.state() == LookupIterator::INTERCEPTOR
+ ? PropertyDetails(NONE, NORMAL, 0)
+ : it.property_details();
+ details->set(1, d.AsSmi());
+ details->set(
+ 2, isolate->heap()->ToBoolean(it.state() == LookupIterator::INTERCEPTOR));
+ if (has_js_accessors) {
+ AccessorPair* accessors = AccessorPair::cast(*maybe_pair);
+ details->set(3, isolate->heap()->ToBoolean(has_caught));
+ details->set(4, accessors->GetComponent(ACCESSOR_GETTER));
+ details->set(5, accessors->GetComponent(ACCESSOR_SETTER));
+ }
+
+ return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugGetProperty) {
+ HandleScope scope(isolate);
+
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+
+ LookupIterator it(obj, name);
+ return *DebugGetProperty(&it);
+}
+
+
+// Return the property type calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(Runtime_DebugPropertyTypeFromDetails) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
+ return Smi::FromInt(static_cast<int>(details.type()));
+}
+
+
+// Return the property attribute calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(Runtime_DebugPropertyAttributesFromDetails) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
+ return Smi::FromInt(static_cast<int>(details.attributes()));
+}
+
+
+// Return the property insertion index calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(Runtime_DebugPropertyIndexFromDetails) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
+ // TODO(verwaest): Depends on the type of details.
+ return Smi::FromInt(details.dictionary_index());
+}
+
+
+// Return property value from named interceptor.
+// args[0]: object
+// args[1]: property name
+RUNTIME_FUNCTION(Runtime_DebugNamedInterceptorPropertyValue) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ RUNTIME_ASSERT(obj->HasNamedInterceptor());
+ CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+ JSObject::GetProperty(obj, name));
+ return *result;
+}
+
+
+// Return element value from indexed interceptor.
+// args[0]: object
+// args[1]: index
+RUNTIME_FUNCTION(Runtime_DebugIndexedInterceptorElementValue) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ RUNTIME_ASSERT(obj->HasIndexedInterceptor());
+ CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, JSObject::GetElementWithInterceptor(obj, obj, index));
+ return *result;
+}
+
+
+static bool CheckExecutionState(Isolate* isolate, int break_id) {
+ return !isolate->debug()->debug_context().is_null() &&
+ isolate->debug()->break_id() != 0 &&
+ isolate->debug()->break_id() == break_id;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CheckExecutionState) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+ return isolate->heap()->true_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFrameCount) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ // Count all frames which are relevant to debugging stack trace.
+ int n = 0;
+ StackFrame::Id id = isolate->debug()->break_frame_id();
+ if (id == StackFrame::NO_ID) {
+ // If there is no JavaScript stack frame count is 0.
+ return Smi::FromInt(0);
+ }
+
+ for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) {
+ List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
+ it.frame()->Summarize(&frames);
+ for (int i = frames.length() - 1; i >= 0; i--) {
+ // Omit functions from native scripts.
+ if (!frames[i].function()->IsFromNativeScript()) n++;
+ }
+ }
+ return Smi::FromInt(n);
+}
+
+
+class FrameInspector {
+ public:
+ FrameInspector(JavaScriptFrame* frame, int inlined_jsframe_index,
+ Isolate* isolate)
+ : frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) {
+ // Calculate the deoptimized frame.
+ if (frame->is_optimized()) {
+ deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame(
+ frame, inlined_jsframe_index, isolate);
+ }
+ has_adapted_arguments_ = frame_->has_adapted_arguments();
+ is_bottommost_ = inlined_jsframe_index == 0;
+ is_optimized_ = frame_->is_optimized();
+ }
+
+ ~FrameInspector() {
+ // Get rid of the calculated deoptimized frame if any.
+ if (deoptimized_frame_ != NULL) {
+ Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_, isolate_);
+ }
+ }
+
+ int GetParametersCount() {
+ return is_optimized_ ? deoptimized_frame_->parameters_count()
+ : frame_->ComputeParametersCount();
+ }
+ int expression_count() { return deoptimized_frame_->expression_count(); }
+ Object* GetFunction() {
+ return is_optimized_ ? deoptimized_frame_->GetFunction()
+ : frame_->function();
+ }
+ Object* GetParameter(int index) {
+ return is_optimized_ ? deoptimized_frame_->GetParameter(index)
+ : frame_->GetParameter(index);
+ }
+ Object* GetExpression(int index) {
+ return is_optimized_ ? deoptimized_frame_->GetExpression(index)
+ : frame_->GetExpression(index);
+ }
+ int GetSourcePosition() {
+ return is_optimized_ ? deoptimized_frame_->GetSourcePosition()
+ : frame_->LookupCode()->SourcePosition(frame_->pc());
+ }
+ bool IsConstructor() {
+ return is_optimized_ && !is_bottommost_
+ ? deoptimized_frame_->HasConstructStub()
+ : frame_->IsConstructor();
+ }
+ Object* GetContext() {
+ return is_optimized_ ? deoptimized_frame_->GetContext() : frame_->context();
+ }
+
+ // To inspect all the provided arguments the frame might need to be
+ // replaced with the arguments frame.
+ void SetArgumentsFrame(JavaScriptFrame* frame) {
+ DCHECK(has_adapted_arguments_);
+ frame_ = frame;
+ is_optimized_ = frame_->is_optimized();
+ DCHECK(!is_optimized_);
+ }
+
+ private:
+ JavaScriptFrame* frame_;
+ DeoptimizedFrameInfo* deoptimized_frame_;
+ Isolate* isolate_;
+ bool is_optimized_;
+ bool is_bottommost_;
+ bool has_adapted_arguments_;
+
+ DISALLOW_COPY_AND_ASSIGN(FrameInspector);
+};
+
+
+static const int kFrameDetailsFrameIdIndex = 0;
+static const int kFrameDetailsReceiverIndex = 1;
+static const int kFrameDetailsFunctionIndex = 2;
+static const int kFrameDetailsArgumentCountIndex = 3;
+static const int kFrameDetailsLocalCountIndex = 4;
+static const int kFrameDetailsSourcePositionIndex = 5;
+static const int kFrameDetailsConstructCallIndex = 6;
+static const int kFrameDetailsAtReturnIndex = 7;
+static const int kFrameDetailsFlagsIndex = 8;
+static const int kFrameDetailsFirstDynamicIndex = 9;
+
+
+static SaveContext* FindSavedContextForFrame(Isolate* isolate,
+ JavaScriptFrame* frame) {
+ SaveContext* save = isolate->save_context();
+ while (save != NULL && !save->IsBelowFrame(frame)) {
+ save = save->prev();
+ }
+ DCHECK(save != NULL);
+ return save;
+}
+
+
+// Advances the iterator to the frame that matches the index and returns the
+// inlined frame index, or -1 if not found. Skips native JS functions.
+static int FindIndexedNonNativeFrame(JavaScriptFrameIterator* it, int index) {
+ int count = -1;
+ for (; !it->done(); it->Advance()) {
+ List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
+ it->frame()->Summarize(&frames);
+ for (int i = frames.length() - 1; i >= 0; i--) {
+ // Omit functions from native scripts.
+ if (frames[i].function()->IsFromNativeScript()) continue;
+ if (++count == index) return i;
+ }
+ }
+ return -1;
+}
+
+
+// Return an array with frame details
+// args[0]: number: break id
+// args[1]: number: frame index
+//
+// The array returned contains the following information:
+// 0: Frame id
+// 1: Receiver
+// 2: Function
+// 3: Argument count
+// 4: Local count
+// 5: Source position
+// 6: Constructor call
+// 7: Is at return
+// 8: Flags
+// Arguments name, value
+// Locals name, value
+// Return value if any
+RUNTIME_FUNCTION(Runtime_GetFrameDetails) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+ Heap* heap = isolate->heap();
+
+ // Find the relevant frame with the requested index.
+ StackFrame::Id id = isolate->debug()->break_frame_id();
+ if (id == StackFrame::NO_ID) {
+ // If there are no JavaScript stack frames return undefined.
+ return heap->undefined_value();
+ }
+
+ JavaScriptFrameIterator it(isolate, id);
+ // Inlined frame index in optimized frame, starting from outer function.
+ int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index);
+ if (inlined_jsframe_index == -1) return heap->undefined_value();
+
+ FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate);
+ bool is_optimized = it.frame()->is_optimized();
+
+ // Traverse the saved contexts chain to find the active context for the
+ // selected frame.
+ SaveContext* save = FindSavedContextForFrame(isolate, it.frame());
+
+ // Get the frame id.
+ Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate);
+
+ // Find source position in unoptimized code.
+ int position = frame_inspector.GetSourcePosition();
+
+ // Check for constructor frame.
+ bool constructor = frame_inspector.IsConstructor();
+
+ // Get scope info and read from it for local variable information.
+ Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
+ Handle<SharedFunctionInfo> shared(function->shared());
+ Handle<ScopeInfo> scope_info(shared->scope_info());
+ DCHECK(*scope_info != ScopeInfo::Empty(isolate));
+
+ // Get the locals names and values into a temporary array.
+ int local_count = scope_info->LocalCount();
+ for (int slot = 0; slot < scope_info->LocalCount(); ++slot) {
+ // Hide compiler-introduced temporary variables, whether on the stack or on
+ // the context.
+ if (scope_info->LocalIsSynthetic(slot)) local_count--;
+ }
+
+ Handle<FixedArray> locals =
+ isolate->factory()->NewFixedArray(local_count * 2);
+
+ // Fill in the values of the locals.
+ int local = 0;
+ int i = 0;
+ for (; i < scope_info->StackLocalCount(); ++i) {
+ // Use the value from the stack.
+ if (scope_info->LocalIsSynthetic(i)) continue;
+ locals->set(local * 2, scope_info->LocalName(i));
+ locals->set(local * 2 + 1, frame_inspector.GetExpression(i));
+ local++;
+ }
+ if (local < local_count) {
+ // Get the context containing declarations.
+ Handle<Context> context(
+ Context::cast(frame_inspector.GetContext())->declaration_context());
+ for (; i < scope_info->LocalCount(); ++i) {
+ if (scope_info->LocalIsSynthetic(i)) continue;
+ Handle<String> name(scope_info->LocalName(i));
+ VariableMode mode;
+ InitializationFlag init_flag;
+ MaybeAssignedFlag maybe_assigned_flag;
+ locals->set(local * 2, *name);
+ int context_slot_index = ScopeInfo::ContextSlotIndex(
+ scope_info, name, &mode, &init_flag, &maybe_assigned_flag);
+ Object* value = context->get(context_slot_index);
+ locals->set(local * 2 + 1, value);
+ local++;
+ }
+ }
+
+ // Check whether this frame is positioned at return. If not top
+ // frame or if the frame is optimized it cannot be at a return.
+ bool at_return = false;
+ if (!is_optimized && index == 0) {
+ at_return = isolate->debug()->IsBreakAtReturn(it.frame());
+ }
+
+ // If positioned just before return find the value to be returned and add it
+ // to the frame information.
+ Handle<Object> return_value = isolate->factory()->undefined_value();
+ if (at_return) {
+ StackFrameIterator it2(isolate);
+ Address internal_frame_sp = NULL;
+ while (!it2.done()) {
+ if (it2.frame()->is_internal()) {
+ internal_frame_sp = it2.frame()->sp();
+ } else {
+ if (it2.frame()->is_java_script()) {
+ if (it2.frame()->id() == it.frame()->id()) {
+ // The internal frame just before the JavaScript frame contains the
+ // value to return on top. A debug break at return will create an
+ // internal frame to store the return value (eax/rax/r0) before
+ // entering the debug break exit frame.
+ if (internal_frame_sp != NULL) {
+ return_value =
+ Handle<Object>(Memory::Object_at(internal_frame_sp), isolate);
+ break;
+ }
+ }
+ }
+
+ // Indicate that the previous frame was not an internal frame.
+ internal_frame_sp = NULL;
+ }
+ it2.Advance();
+ }
+ }
+
+ // Now advance to the arguments adapter frame (if any). It contains all
+ // the provided parameters whereas the function frame always have the number
+ // of arguments matching the functions parameters. The rest of the
+ // information (except for what is collected above) is the same.
+ if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) {
+ it.AdvanceToArgumentsFrame();
+ frame_inspector.SetArgumentsFrame(it.frame());
+ }
+
+ // Find the number of arguments to fill. At least fill the number of
+ // parameters for the function and fill more if more parameters are provided.
+ int argument_count = scope_info->ParameterCount();
+ if (argument_count < frame_inspector.GetParametersCount()) {
+ argument_count = frame_inspector.GetParametersCount();
+ }
+
+ // Calculate the size of the result.
+ int details_size = kFrameDetailsFirstDynamicIndex +
+ 2 * (argument_count + local_count) + (at_return ? 1 : 0);
+ Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
+
+ // Add the frame id.
+ details->set(kFrameDetailsFrameIdIndex, *frame_id);
+
+ // Add the function (same as in function frame).
+ details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction());
+
+ // Add the arguments count.
+ details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
+
+ // Add the locals count
+ details->set(kFrameDetailsLocalCountIndex, Smi::FromInt(local_count));
+
+ // Add the source position.
+ if (position != RelocInfo::kNoPosition) {
+ details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
+ } else {
+ details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value());
+ }
+
+ // Add the constructor information.
+ details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor));
+
+ // Add the at return information.
+ details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return));
+
+ // Add flags to indicate information on whether this frame is
+ // bit 0: invoked in the debugger context.
+ // bit 1: optimized frame.
+ // bit 2: inlined in optimized frame
+ int flags = 0;
+ if (*save->context() == *isolate->debug()->debug_context()) {
+ flags |= 1 << 0;
+ }
+ if (is_optimized) {
+ flags |= 1 << 1;
+ flags |= inlined_jsframe_index << 2;
+ }
+ details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags));
+
+ // Fill the dynamic part.
+ int details_index = kFrameDetailsFirstDynamicIndex;
+
+ // Add arguments name and value.
+ for (int i = 0; i < argument_count; i++) {
+ // Name of the argument.
+ if (i < scope_info->ParameterCount()) {
+ details->set(details_index++, scope_info->ParameterName(i));
+ } else {
+ details->set(details_index++, heap->undefined_value());
+ }
+
+ // Parameter value.
+ if (i < frame_inspector.GetParametersCount()) {
+ // Get the value from the stack.
+ details->set(details_index++, frame_inspector.GetParameter(i));
+ } else {
+ details->set(details_index++, heap->undefined_value());
+ }
+ }
+
+ // Add locals name and value from the temporary copy from the function frame.
+ for (int i = 0; i < local_count * 2; i++) {
+ details->set(details_index++, locals->get(i));
+ }
+
+ // Add the value being returned.
+ if (at_return) {
+ details->set(details_index++, *return_value);
+ }
+
+ // Add the receiver (same as in function frame).
+ // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
+ // THE FRAME ITERATOR TO WRAP THE RECEIVER.
+ Handle<Object> receiver(it.frame()->receiver(), isolate);
+ if (!receiver->IsJSObject() && shared->strict_mode() == SLOPPY &&
+ !function->IsBuiltin()) {
+ // If the receiver is not a JSObject and the function is not a
+ // builtin or strict-mode we have hit an optimization where a
+ // value object is not converted into a wrapped JS objects. To
+ // hide this optimization from the debugger, we wrap the receiver
+ // by creating correct wrapper object based on the calling frame's
+ // native context.
+ it.Advance();
+ if (receiver->IsUndefined()) {
+ receiver = handle(function->global_proxy());
+ } else {
+ Context* context = Context::cast(it.frame()->context());
+ Handle<Context> native_context(Context::cast(context->native_context()));
+ if (!Object::ToObject(isolate, receiver, native_context)
+ .ToHandle(&receiver)) {
+ // This only happens if the receiver is forcibly set in %_CallFunction.
+ return heap->undefined_value();
+ }
+ }
+ }
+ details->set(kFrameDetailsReceiverIndex, *receiver);
+
+ DCHECK_EQ(details_size, details_index);
+ return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+static bool ParameterIsShadowedByContextLocal(Handle<ScopeInfo> info,
+ Handle<String> parameter_name) {
+ VariableMode mode;
+ InitializationFlag init_flag;
+ MaybeAssignedFlag maybe_assigned_flag;
+ return ScopeInfo::ContextSlotIndex(info, parameter_name, &mode, &init_flag,
+ &maybe_assigned_flag) != -1;
+}
+
+
+// Create a plain JSObject which materializes the local scope for the specified
+// frame.
+MUST_USE_RESULT
+static MaybeHandle<JSObject> MaterializeStackLocalsWithFrameInspector(
+ Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function,
+ FrameInspector* frame_inspector) {
+ Handle<SharedFunctionInfo> shared(function->shared());
+ Handle<ScopeInfo> scope_info(shared->scope_info());
+
+ // First fill all parameters.
+ for (int i = 0; i < scope_info->ParameterCount(); ++i) {
+ // Do not materialize the parameter if it is shadowed by a context local.
+ Handle<String> name(scope_info->ParameterName(i));
+ if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
+
+ HandleScope scope(isolate);
+ Handle<Object> value(i < frame_inspector->GetParametersCount()
+ ? frame_inspector->GetParameter(i)
+ : isolate->heap()->undefined_value(),
+ isolate);
+ DCHECK(!value->IsTheHole());
+
+ RETURN_ON_EXCEPTION(isolate, Runtime::SetObjectProperty(
+ isolate, target, name, value, SLOPPY),
+ JSObject);
+ }
+
+ // Second fill all stack locals.
+ for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
+ if (scope_info->LocalIsSynthetic(i)) continue;
+ Handle<String> name(scope_info->StackLocalName(i));
+ Handle<Object> value(frame_inspector->GetExpression(i), isolate);
+ if (value->IsTheHole()) continue;
+
+ RETURN_ON_EXCEPTION(isolate, Runtime::SetObjectProperty(
+ isolate, target, name, value, SLOPPY),
+ JSObject);
+ }
+
+ return target;
+}
+
+
+static void UpdateStackLocalsFromMaterializedObject(Isolate* isolate,
+ Handle<JSObject> target,
+ Handle<JSFunction> function,
+ JavaScriptFrame* frame,
+ int inlined_jsframe_index) {
+ if (inlined_jsframe_index != 0 || frame->is_optimized()) {
+ // Optimized frames are not supported.
+ // TODO(yangguo): make sure all code deoptimized when debugger is active
+ // and assert that this cannot happen.
+ return;
+ }
+
+ Handle<SharedFunctionInfo> shared(function->shared());
+ Handle<ScopeInfo> scope_info(shared->scope_info());
+
+ // Parameters.
+ for (int i = 0; i < scope_info->ParameterCount(); ++i) {
+ // Shadowed parameters were not materialized.
+ Handle<String> name(scope_info->ParameterName(i));
+ if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
+
+ DCHECK(!frame->GetParameter(i)->IsTheHole());
+ HandleScope scope(isolate);
+ Handle<Object> value =
+ Object::GetPropertyOrElement(target, name).ToHandleChecked();
+ frame->SetParameterValue(i, *value);
+ }
+
+ // Stack locals.
+ for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
+ if (scope_info->LocalIsSynthetic(i)) continue;
+ if (frame->GetExpression(i)->IsTheHole()) continue;
+ HandleScope scope(isolate);
+ Handle<Object> value = Object::GetPropertyOrElement(
+ target, handle(scope_info->StackLocalName(i),
+ isolate)).ToHandleChecked();
+ frame->SetExpression(i, *value);
+ }
+}
+
+
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalContext(
+ Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function,
+ JavaScriptFrame* frame) {
+ HandleScope scope(isolate);
+ Handle<SharedFunctionInfo> shared(function->shared());
+ Handle<ScopeInfo> scope_info(shared->scope_info());
+
+ if (!scope_info->HasContext()) return target;
+
+ // Third fill all context locals.
+ Handle<Context> frame_context(Context::cast(frame->context()));
+ Handle<Context> function_context(frame_context->declaration_context());
+ if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, function_context,
+ target)) {
+ return MaybeHandle<JSObject>();
+ }
+
+ // Finally copy any properties from the function context extension.
+ // These will be variables introduced by eval.
+ if (function_context->closure() == *function) {
+ if (function_context->has_extension() &&
+ !function_context->IsNativeContext()) {
+ Handle<JSObject> ext(JSObject::cast(function_context->extension()));
+ Handle<FixedArray> keys;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, keys, JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS),
+ JSObject);
+
+ for (int i = 0; i < keys->length(); i++) {
+ // Names of variables introduced by eval are strings.
+ DCHECK(keys->get(i)->IsString());
+ Handle<String> key(String::cast(keys->get(i)));
+ Handle<Object> value;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
+ RETURN_ON_EXCEPTION(isolate, Runtime::SetObjectProperty(
+ isolate, target, key, value, SLOPPY),
+ JSObject);
+ }
+ }
+ }
+
+ return target;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalScope(
+ Isolate* isolate, JavaScriptFrame* frame, int inlined_jsframe_index) {
+ FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
+ Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
+
+ Handle<JSObject> local_scope =
+ isolate->factory()->NewJSObject(isolate->object_function());
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, local_scope,
+ MaterializeStackLocalsWithFrameInspector(isolate, local_scope, function,
+ &frame_inspector),
+ JSObject);
+
+ return MaterializeLocalContext(isolate, local_scope, function, frame);
+}
+
+
+// Set the context local variable value.
+static bool SetContextLocalValue(Isolate* isolate, Handle<ScopeInfo> scope_info,
+ Handle<Context> context,
+ Handle<String> variable_name,
+ Handle<Object> new_value) {
+ for (int i = 0; i < scope_info->ContextLocalCount(); i++) {
+ Handle<String> next_name(scope_info->ContextLocalName(i));
+ if (String::Equals(variable_name, next_name)) {
+ VariableMode mode;
+ InitializationFlag init_flag;
+ MaybeAssignedFlag maybe_assigned_flag;
+ int context_index = ScopeInfo::ContextSlotIndex(
+ scope_info, next_name, &mode, &init_flag, &maybe_assigned_flag);
+ context->set(context_index, *new_value);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+static bool SetLocalVariableValue(Isolate* isolate, JavaScriptFrame* frame,
+ int inlined_jsframe_index,
+ Handle<String> variable_name,
+ Handle<Object> new_value) {
+ if (inlined_jsframe_index != 0 || frame->is_optimized()) {
+ // Optimized frames are not supported.
+ return false;
+ }
+
+ Handle<JSFunction> function(frame->function());
+ Handle<SharedFunctionInfo> shared(function->shared());
+ Handle<ScopeInfo> scope_info(shared->scope_info());
+
+ bool default_result = false;
+
+ // Parameters.
+ for (int i = 0; i < scope_info->ParameterCount(); ++i) {
+ HandleScope scope(isolate);
+ if (String::Equals(handle(scope_info->ParameterName(i)), variable_name)) {
+ frame->SetParameterValue(i, *new_value);
+ // Argument might be shadowed in heap context, don't stop here.
+ default_result = true;
+ }
+ }
+
+ // Stack locals.
+ for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
+ HandleScope scope(isolate);
+ if (String::Equals(handle(scope_info->StackLocalName(i)), variable_name)) {
+ frame->SetExpression(i, *new_value);
+ return true;
+ }
+ }
+
+ if (scope_info->HasContext()) {
+ // Context locals.
+ Handle<Context> frame_context(Context::cast(frame->context()));
+ Handle<Context> function_context(frame_context->declaration_context());
+ if (SetContextLocalValue(isolate, scope_info, function_context,
+ variable_name, new_value)) {
+ return true;
+ }
+
+ // Function context extension. These are variables introduced by eval.
+ if (function_context->closure() == *function) {
+ if (function_context->has_extension() &&
+ !function_context->IsNativeContext()) {
+ Handle<JSObject> ext(JSObject::cast(function_context->extension()));
+
+ Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
+ DCHECK(maybe.has_value);
+ if (maybe.value) {
+ // We don't expect this to do anything except replacing
+ // property value.
+ Runtime::SetObjectProperty(isolate, ext, variable_name, new_value,
+ SLOPPY).Assert();
+ return true;
+ }
+ }
+ }
+ }
+
+ return default_result;
+}
+
+
+// Create a plain JSObject which materializes the closure content for the
+// context.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeClosure(
+ Isolate* isolate, Handle<Context> context) {
+ DCHECK(context->IsFunctionContext());
+
+ Handle<SharedFunctionInfo> shared(context->closure()->shared());
+ Handle<ScopeInfo> scope_info(shared->scope_info());
+
+ // Allocate and initialize a JSObject with all the content of this function
+ // closure.
+ Handle<JSObject> closure_scope =
+ isolate->factory()->NewJSObject(isolate->object_function());
+
+ // Fill all context locals to the context extension.
+ if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, context,
+ closure_scope)) {
+ return MaybeHandle<JSObject>();
+ }
+
+ // Finally copy any properties from the function context extension. This will
+ // be variables introduced by eval.
+ if (context->has_extension()) {
+ Handle<JSObject> ext(JSObject::cast(context->extension()));
+ Handle<FixedArray> keys;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, keys, JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS),
+ JSObject);
+
+ for (int i = 0; i < keys->length(); i++) {
+ HandleScope scope(isolate);
+ // Names of variables introduced by eval are strings.
+ DCHECK(keys->get(i)->IsString());
+ Handle<String> key(String::cast(keys->get(i)));
+ Handle<Object> value;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
+ RETURN_ON_EXCEPTION(isolate, Runtime::DefineObjectProperty(
+ closure_scope, key, value, NONE),
+ JSObject);
+ }
+ }
+
+ return closure_scope;
+}
+
+
+// This method copies structure of MaterializeClosure method above.
+static bool SetClosureVariableValue(Isolate* isolate, Handle<Context> context,
+ Handle<String> variable_name,
+ Handle<Object> new_value) {
+ DCHECK(context->IsFunctionContext());
+
+ Handle<SharedFunctionInfo> shared(context->closure()->shared());
+ Handle<ScopeInfo> scope_info(shared->scope_info());
+
+ // Context locals to the context extension.
+ if (SetContextLocalValue(isolate, scope_info, context, variable_name,
+ new_value)) {
+ return true;
+ }
+
+ // Properties from the function context extension. This will
+ // be variables introduced by eval.
+ if (context->has_extension()) {
+ Handle<JSObject> ext(JSObject::cast(context->extension()));
+ Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
+ DCHECK(maybe.has_value);
+ if (maybe.value) {
+ // We don't expect this to do anything except replacing property value.
+ Runtime::DefineObjectProperty(ext, variable_name, new_value, NONE)
+ .Assert();
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+// Create a plain JSObject which materializes the scope for the specified
+// catch context.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeCatchScope(
+ Isolate* isolate, Handle<Context> context) {
+ DCHECK(context->IsCatchContext());
+ Handle<String> name(String::cast(context->extension()));
+ Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX),
+ isolate);
+ Handle<JSObject> catch_scope =
+ isolate->factory()->NewJSObject(isolate->object_function());
+ RETURN_ON_EXCEPTION(isolate, Runtime::DefineObjectProperty(
+ catch_scope, name, thrown_object, NONE),
+ JSObject);
+ return catch_scope;
+}
+
+
+static bool SetCatchVariableValue(Isolate* isolate, Handle<Context> context,
+ Handle<String> variable_name,
+ Handle<Object> new_value) {
+ DCHECK(context->IsCatchContext());
+ Handle<String> name(String::cast(context->extension()));
+ if (!String::Equals(name, variable_name)) {
+ return false;
+ }
+ context->set(Context::THROWN_OBJECT_INDEX, *new_value);
+ return true;
+}
+
+
+// Create a plain JSObject which materializes the block scope for the specified
+// block context.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeBlockScope(
+ Isolate* isolate, Handle<Context> context) {
+ DCHECK(context->IsBlockContext());
+ Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
+
+ // Allocate and initialize a JSObject with all the arguments, stack locals
+ // heap locals and extension properties of the debugged function.
+ Handle<JSObject> block_scope =
+ isolate->factory()->NewJSObject(isolate->object_function());
+
+ // Fill all context locals.
+ if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, context,
+ block_scope)) {
+ return MaybeHandle<JSObject>();
+ }
+
+ return block_scope;
+}
+
+
+// Create a plain JSObject which materializes the module scope for the specified
+// module context.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeModuleScope(
+ Isolate* isolate, Handle<Context> context) {
+ DCHECK(context->IsModuleContext());
+ Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
+
+ // Allocate and initialize a JSObject with all the members of the debugged
+ // module.
+ Handle<JSObject> module_scope =
+ isolate->factory()->NewJSObject(isolate->object_function());
+
+ // Fill all context locals.
+ if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, context,
+ module_scope)) {
+ return MaybeHandle<JSObject>();
+ }
+
+ return module_scope;
+}
+
+
+// Iterate over the actual scopes visible from a stack frame or from a closure.
+// The iteration proceeds from the innermost visible nested scope outwards.
+// All scopes are backed by an actual context except the local scope,
+// which is inserted "artificially" in the context chain.
+class ScopeIterator {
+ public:
+ enum ScopeType {
+ ScopeTypeGlobal = 0,
+ ScopeTypeLocal,
+ ScopeTypeWith,
+ ScopeTypeClosure,
+ ScopeTypeCatch,
+ ScopeTypeBlock,
+ ScopeTypeModule
+ };
+
+ ScopeIterator(Isolate* isolate, JavaScriptFrame* frame,
+ int inlined_jsframe_index, bool ignore_nested_scopes = false)
+ : isolate_(isolate),
+ frame_(frame),
+ inlined_jsframe_index_(inlined_jsframe_index),
+ function_(frame->function()),
+ context_(Context::cast(frame->context())),
+ nested_scope_chain_(4),
+ failed_(false) {
+ // Catch the case when the debugger stops in an internal function.
+ Handle<SharedFunctionInfo> shared_info(function_->shared());
+ Handle<ScopeInfo> scope_info(shared_info->scope_info());
+ if (shared_info->script() == isolate->heap()->undefined_value()) {
+ while (context_->closure() == *function_) {
+ context_ = Handle<Context>(context_->previous(), isolate_);
+ }
+ return;
+ }
+
+ // Get the debug info (create it if it does not exist).
+ if (!isolate->debug()->EnsureDebugInfo(shared_info, function_)) {
+ // Return if ensuring debug info failed.
+ return;
+ }
+
+ // Currently it takes too much time to find nested scopes due to script
+ // parsing. Sometimes we want to run the ScopeIterator as fast as possible
+ // (for example, while collecting async call stacks on every
+ // addEventListener call), even if we drop some nested scopes.
+ // Later we may optimize getting the nested scopes (cache the result?)
+ // and include nested scopes into the "fast" iteration case as well.
+ if (!ignore_nested_scopes) {
+ Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info);
+
+ // Find the break point where execution has stopped.
+ BreakLocationIterator break_location_iterator(debug_info,
+ ALL_BREAK_LOCATIONS);
+ // pc points to the instruction after the current one, possibly a break
+ // location as well. So the "- 1" to exclude it from the search.
+ break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
+
+ // Within the return sequence at the moment it is not possible to
+ // get a source position which is consistent with the current scope chain.
+ // Thus all nested with, catch and block contexts are skipped and we only
+ // provide the function scope.
+ ignore_nested_scopes = break_location_iterator.IsExit();
+ }
+
+ if (ignore_nested_scopes) {
+ if (scope_info->HasContext()) {
+ context_ = Handle<Context>(context_->declaration_context(), isolate_);
+ } else {
+ while (context_->closure() == *function_) {
+ context_ = Handle<Context>(context_->previous(), isolate_);
+ }
+ }
+ if (scope_info->scope_type() == FUNCTION_SCOPE) {
+ nested_scope_chain_.Add(scope_info);
+ }
+ } else {
+ // Reparse the code and analyze the scopes.
+ Handle<Script> script(Script::cast(shared_info->script()));
+ Scope* scope = NULL;
+
+ // Check whether we are in global, eval or function code.
+ Handle<ScopeInfo> scope_info(shared_info->scope_info());
+ if (scope_info->scope_type() != FUNCTION_SCOPE) {
+ // Global or eval code.
+ CompilationInfoWithZone info(script);
+ if (scope_info->scope_type() == GLOBAL_SCOPE) {
+ info.MarkAsGlobal();
+ } else {
+ DCHECK(scope_info->scope_type() == EVAL_SCOPE);
+ info.MarkAsEval();
+ info.SetContext(Handle<Context>(function_->context()));
+ }
+ if (Parser::Parse(&info) && Scope::Analyze(&info)) {
+ scope = info.function()->scope();
+ }
+ RetrieveScopeChain(scope, shared_info);
+ } else {
+ // Function code
+ CompilationInfoWithZone info(shared_info);
+ if (Parser::Parse(&info) && Scope::Analyze(&info)) {
+ scope = info.function()->scope();
+ }
+ RetrieveScopeChain(scope, shared_info);
+ }
+ }
+ }
+
+ ScopeIterator(Isolate* isolate, Handle<JSFunction> function)
+ : isolate_(isolate),
+ frame_(NULL),
+ inlined_jsframe_index_(0),
+ function_(function),
+ context_(function->context()),
+ failed_(false) {
+ if (function->IsBuiltin()) {
+ context_ = Handle<Context>();
+ }
+ }
+
+ // More scopes?
+ bool Done() {
+ DCHECK(!failed_);
+ return context_.is_null();
+ }
+
+ bool Failed() { return failed_; }
+
+ // Move to the next scope.
+ void Next() {
+ DCHECK(!failed_);
+ ScopeType scope_type = Type();
+ if (scope_type == ScopeTypeGlobal) {
+ // The global scope is always the last in the chain.
+ DCHECK(context_->IsNativeContext());
+ context_ = Handle<Context>();
+ return;
+ }
+ if (nested_scope_chain_.is_empty()) {
+ context_ = Handle<Context>(context_->previous(), isolate_);
+ } else {
+ if (nested_scope_chain_.last()->HasContext()) {
+ DCHECK(context_->previous() != NULL);
+ context_ = Handle<Context>(context_->previous(), isolate_);
+ }
+ nested_scope_chain_.RemoveLast();
+ }
+ }
+
+ // Return the type of the current scope.
+ ScopeType Type() {
+ DCHECK(!failed_);
+ if (!nested_scope_chain_.is_empty()) {
+ Handle<ScopeInfo> scope_info = nested_scope_chain_.last();
+ switch (scope_info->scope_type()) {
+ case FUNCTION_SCOPE:
+ DCHECK(context_->IsFunctionContext() || !scope_info->HasContext());
+ return ScopeTypeLocal;
+ case MODULE_SCOPE:
+ DCHECK(context_->IsModuleContext());
+ return ScopeTypeModule;
+ case GLOBAL_SCOPE:
+ DCHECK(context_->IsNativeContext());
+ return ScopeTypeGlobal;
+ case WITH_SCOPE:
+ DCHECK(context_->IsWithContext());
+ return ScopeTypeWith;
+ case CATCH_SCOPE:
+ DCHECK(context_->IsCatchContext());
+ return ScopeTypeCatch;
+ case BLOCK_SCOPE:
+ DCHECK(!scope_info->HasContext() || context_->IsBlockContext());
+ return ScopeTypeBlock;
+ case EVAL_SCOPE:
+ UNREACHABLE();
+ }
+ }
+ if (context_->IsNativeContext()) {
+ DCHECK(context_->global_object()->IsGlobalObject());
+ return ScopeTypeGlobal;
+ }
+ if (context_->IsFunctionContext()) {
+ return ScopeTypeClosure;
+ }
+ if (context_->IsCatchContext()) {
+ return ScopeTypeCatch;
+ }
+ if (context_->IsBlockContext()) {
+ return ScopeTypeBlock;
+ }
+ if (context_->IsModuleContext()) {
+ return ScopeTypeModule;
+ }
+ DCHECK(context_->IsWithContext());
+ return ScopeTypeWith;
+ }
+
+ // Return the JavaScript object with the content of the current scope.
+ MaybeHandle<JSObject> ScopeObject() {
+ DCHECK(!failed_);
+ switch (Type()) {
+ case ScopeIterator::ScopeTypeGlobal:
+ return Handle<JSObject>(CurrentContext()->global_object());
+ case ScopeIterator::ScopeTypeLocal:
+ // Materialize the content of the local scope into a JSObject.
+ DCHECK(nested_scope_chain_.length() == 1);
+ return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_);
+ case ScopeIterator::ScopeTypeWith:
+ // Return the with object.
+ return Handle<JSObject>(JSObject::cast(CurrentContext()->extension()));
+ case ScopeIterator::ScopeTypeCatch:
+ return MaterializeCatchScope(isolate_, CurrentContext());
+ case ScopeIterator::ScopeTypeClosure:
+ // Materialize the content of the closure scope into a JSObject.
+ return MaterializeClosure(isolate_, CurrentContext());
+ case ScopeIterator::ScopeTypeBlock:
+ return MaterializeBlockScope(isolate_, CurrentContext());
+ case ScopeIterator::ScopeTypeModule:
+ return MaterializeModuleScope(isolate_, CurrentContext());
+ }
+ UNREACHABLE();
+ return Handle<JSObject>();
+ }
+
+ bool SetVariableValue(Handle<String> variable_name,
+ Handle<Object> new_value) {
+ DCHECK(!failed_);
+ switch (Type()) {
+ case ScopeIterator::ScopeTypeGlobal:
+ break;
+ case ScopeIterator::ScopeTypeLocal:
+ return SetLocalVariableValue(isolate_, frame_, inlined_jsframe_index_,
+ variable_name, new_value);
+ case ScopeIterator::ScopeTypeWith:
+ break;
+ case ScopeIterator::ScopeTypeCatch:
+ return SetCatchVariableValue(isolate_, CurrentContext(), variable_name,
+ new_value);
+ case ScopeIterator::ScopeTypeClosure:
+ return SetClosureVariableValue(isolate_, CurrentContext(),
+ variable_name, new_value);
+ case ScopeIterator::ScopeTypeBlock:
+ // TODO(2399): should we implement it?
+ break;
+ case ScopeIterator::ScopeTypeModule:
+ // TODO(2399): should we implement it?
+ break;
+ }
+ return false;
+ }
+
+ Handle<ScopeInfo> CurrentScopeInfo() {
+ DCHECK(!failed_);
+ if (!nested_scope_chain_.is_empty()) {
+ return nested_scope_chain_.last();
+ } else if (context_->IsBlockContext()) {
+ return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension()));
+ } else if (context_->IsFunctionContext()) {
+ return Handle<ScopeInfo>(context_->closure()->shared()->scope_info());
+ }
+ return Handle<ScopeInfo>::null();
+ }
+
+ // Return the context for this scope. For the local context there might not
+ // be an actual context.
+ Handle<Context> CurrentContext() {
+ DCHECK(!failed_);
+ if (Type() == ScopeTypeGlobal || nested_scope_chain_.is_empty()) {
+ return context_;
+ } else if (nested_scope_chain_.last()->HasContext()) {
+ return context_;
+ } else {
+ return Handle<Context>();
+ }
+ }
+
+#ifdef DEBUG
+ // Debug print of the content of the current scope.
+ void DebugPrint() {
+ OFStream os(stdout);
+ DCHECK(!failed_);
+ switch (Type()) {
+ case ScopeIterator::ScopeTypeGlobal:
+ os << "Global:\n";
+ CurrentContext()->Print(os);
+ break;
+
+ case ScopeIterator::ScopeTypeLocal: {
+ os << "Local:\n";
+ function_->shared()->scope_info()->Print();
+ if (!CurrentContext().is_null()) {
+ CurrentContext()->Print(os);
+ if (CurrentContext()->has_extension()) {
+ Handle<Object> extension(CurrentContext()->extension(), isolate_);
+ if (extension->IsJSContextExtensionObject()) {
+ extension->Print(os);
+ }
+ }
+ }
+ break;
+ }
+
+ case ScopeIterator::ScopeTypeWith:
+ os << "With:\n";
+ CurrentContext()->extension()->Print(os);
+ break;
+
+ case ScopeIterator::ScopeTypeCatch:
+ os << "Catch:\n";
+ CurrentContext()->extension()->Print(os);
+ CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print(os);
+ break;
+
+ case ScopeIterator::ScopeTypeClosure:
+ os << "Closure:\n";
+ CurrentContext()->Print(os);
+ if (CurrentContext()->has_extension()) {
+ Handle<Object> extension(CurrentContext()->extension(), isolate_);
+ if (extension->IsJSContextExtensionObject()) {
+ extension->Print(os);
+ }
+ }
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+ PrintF("\n");
+ }
+#endif
+
+ private:
+ Isolate* isolate_;
+ JavaScriptFrame* frame_;
+ int inlined_jsframe_index_;
+ Handle<JSFunction> function_;
+ Handle<Context> context_;
+ List<Handle<ScopeInfo> > nested_scope_chain_;
+ bool failed_;
+
+ void RetrieveScopeChain(Scope* scope,
+ Handle<SharedFunctionInfo> shared_info) {
+ if (scope != NULL) {
+ int source_position = shared_info->code()->SourcePosition(frame_->pc());
+ scope->GetNestedScopeChain(&nested_scope_chain_, source_position);
+ } else {
+ // A failed reparse indicates that the preparser has diverged from the
+ // parser or that the preparse data given to the initial parse has been
+ // faulty. We fail in debug mode but in release mode we only provide the
+ // information we get from the context chain but nothing about
+ // completely stack allocated scopes or stack allocated locals.
+ // Or it could be due to stack overflow.
+ DCHECK(isolate_->has_pending_exception());
+ failed_ = true;
+ }
+ }
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
+};
+
+
+RUNTIME_FUNCTION(Runtime_GetScopeCount) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator it(isolate, id);
+ JavaScriptFrame* frame = it.frame();
+
+ // Count the visible scopes.
+ int n = 0;
+ for (ScopeIterator it(isolate, frame, 0); !it.Done(); it.Next()) {
+ n++;
+ }
+
+ return Smi::FromInt(n);
+}
+
+
+// Returns the list of step-in positions (text offset) in a function of the
+// stack frame in a range from the current debug break position to the end
+// of the corresponding statement.
+RUNTIME_FUNCTION(Runtime_GetStepInPositions) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator frame_it(isolate, id);
+ RUNTIME_ASSERT(!frame_it.done());
+
+ JavaScriptFrame* frame = frame_it.frame();
+
+ Handle<JSFunction> fun = Handle<JSFunction>(frame->function());
+ Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>(fun->shared());
+
+ if (!isolate->debug()->EnsureDebugInfo(shared, fun)) {
+ return isolate->heap()->undefined_value();
+ }
+
+ Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared);
+
+ int len = 0;
+ Handle<JSArray> array(isolate->factory()->NewJSArray(10));
+ // Find the break point where execution has stopped.
+ BreakLocationIterator break_location_iterator(debug_info,
+ ALL_BREAK_LOCATIONS);
+
+ break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
+ int current_statement_pos = break_location_iterator.statement_position();
+
+ while (!break_location_iterator.Done()) {
+ bool accept;
+ if (break_location_iterator.pc() > frame->pc()) {
+ accept = true;
+ } else {
+ StackFrame::Id break_frame_id = isolate->debug()->break_frame_id();
+ // The break point is near our pc. Could be a step-in possibility,
+ // that is currently taken by active debugger call.
+ if (break_frame_id == StackFrame::NO_ID) {
+ // We are not stepping.
+ accept = false;
+ } else {
+ JavaScriptFrameIterator additional_frame_it(isolate, break_frame_id);
+ // If our frame is a top frame and we are stepping, we can do step-in
+ // at this place.
+ accept = additional_frame_it.frame()->id() == id;
+ }
+ }
+ if (accept) {
+ if (break_location_iterator.IsStepInLocation(isolate)) {
+ Smi* position_value = Smi::FromInt(break_location_iterator.position());
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, JSObject::SetElement(
+ array, len, Handle<Object>(position_value, isolate),
+ NONE, SLOPPY));
+ len++;
+ }
+ }
+ // Advance iterator.
+ break_location_iterator.Next();
+ if (current_statement_pos != break_location_iterator.statement_position()) {
+ break;
+ }
+ }
+ return *array;
+}
+
+
+static const int kScopeDetailsTypeIndex = 0;
+static const int kScopeDetailsObjectIndex = 1;
+static const int kScopeDetailsSize = 2;
+
+
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeScopeDetails(
+ Isolate* isolate, ScopeIterator* it) {
+ // Calculate the size of the result.
+ int details_size = kScopeDetailsSize;
+ Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
+
+ // Fill in scope details.
+ details->set(kScopeDetailsTypeIndex, Smi::FromInt(it->Type()));
+ Handle<JSObject> scope_object;
+ ASSIGN_RETURN_ON_EXCEPTION(isolate, scope_object, it->ScopeObject(),
+ JSObject);
+ details->set(kScopeDetailsObjectIndex, *scope_object);
+
+ return isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+// Return an array with scope details
+// args[0]: number: break id
+// args[1]: number: frame index
+// args[2]: number: inlined frame index
+// args[3]: number: scope index
+//
+// The array returned contains the following information:
+// 0: Scope type
+// 1: Scope object
+RUNTIME_FUNCTION(Runtime_GetScopeDetails) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+ CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator frame_it(isolate, id);
+ JavaScriptFrame* frame = frame_it.frame();
+
+ // Find the requested scope.
+ int n = 0;
+ ScopeIterator it(isolate, frame, inlined_jsframe_index);
+ for (; !it.Done() && n < index; it.Next()) {
+ n++;
+ }
+ if (it.Done()) {
+ return isolate->heap()->undefined_value();
+ }
+ Handle<JSObject> details;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, details,
+ MaterializeScopeDetails(isolate, &it));
+ return *details;
+}
+
+
+// Return an array of scope details
+// args[0]: number: break id
+// args[1]: number: frame index
+// args[2]: number: inlined frame index
+// args[3]: boolean: ignore nested scopes
+//
+// The array returned contains arrays with the following information:
+// 0: Scope type
+// 1: Scope object
+RUNTIME_FUNCTION(Runtime_GetAllScopesDetails) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3 || args.length() == 4);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+ CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
+
+ bool ignore_nested_scopes = false;
+ if (args.length() == 4) {
+ CONVERT_BOOLEAN_ARG_CHECKED(flag, 3);
+ ignore_nested_scopes = flag;
+ }
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator frame_it(isolate, id);
+ JavaScriptFrame* frame = frame_it.frame();
+
+ List<Handle<JSObject> > result(4);
+ ScopeIterator it(isolate, frame, inlined_jsframe_index, ignore_nested_scopes);
+ for (; !it.Done(); it.Next()) {
+ Handle<JSObject> details;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, details,
+ MaterializeScopeDetails(isolate, &it));
+ result.Add(details);
+ }
+
+ Handle<FixedArray> array = isolate->factory()->NewFixedArray(result.length());
+ for (int i = 0; i < result.length(); ++i) {
+ array->set(i, *result[i]);
+ }
+ return *isolate->factory()->NewJSArrayWithElements(array);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFunctionScopeCount) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ // Check arguments.
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+
+ // Count the visible scopes.
+ int n = 0;
+ for (ScopeIterator it(isolate, fun); !it.Done(); it.Next()) {
+ n++;
+ }
+
+ return Smi::FromInt(n);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFunctionScopeDetails) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ // Check arguments.
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+
+ // Find the requested scope.
+ int n = 0;
+ ScopeIterator it(isolate, fun);
+ for (; !it.Done() && n < index; it.Next()) {
+ n++;
+ }
+ if (it.Done()) {
+ return isolate->heap()->undefined_value();
+ }
+
+ Handle<JSObject> details;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, details,
+ MaterializeScopeDetails(isolate, &it));
+ return *details;
+}
+
+
+static bool SetScopeVariableValue(ScopeIterator* it, int index,
+ Handle<String> variable_name,
+ Handle<Object> new_value) {
+ for (int n = 0; !it->Done() && n < index; it->Next()) {
+ n++;
+ }
+ if (it->Done()) {
+ return false;
+ }
+ return it->SetVariableValue(variable_name, new_value);
+}
+
+
+// Change variable value in closure or local scope
+// args[0]: number or JsFunction: break id or function
+// args[1]: number: frame index (when arg[0] is break id)
+// args[2]: number: inlined frame index (when arg[0] is break id)
+// args[3]: number: scope index
+// args[4]: string: variable name
+// args[5]: object: new value
+//
+// Return true if success and false otherwise
+RUNTIME_FUNCTION(Runtime_SetScopeVariableValue) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 6);
+
+ // Check arguments.
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
+ CONVERT_ARG_HANDLE_CHECKED(String, variable_name, 4);
+ CONVERT_ARG_HANDLE_CHECKED(Object, new_value, 5);
+
+ bool res;
+ if (args[0]->IsNumber()) {
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+ CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator frame_it(isolate, id);
+ JavaScriptFrame* frame = frame_it.frame();
+
+ ScopeIterator it(isolate, frame, inlined_jsframe_index);
+ res = SetScopeVariableValue(&it, index, variable_name, new_value);
+ } else {
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+ ScopeIterator it(isolate, fun);
+ res = SetScopeVariableValue(&it, index, variable_name, new_value);
+ }
+
+ return isolate->heap()->ToBoolean(res);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPrintScopes) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+
+#ifdef DEBUG
+ // Print the scopes for the top frame.
+ StackFrameLocator locator(isolate);
+ JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
+ for (ScopeIterator it(isolate, frame, 0); !it.Done(); it.Next()) {
+ it.DebugPrint();
+ }
+#endif
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetThreadCount) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ // Count all archived V8 threads.
+ int n = 0;
+ for (ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse();
+ thread != NULL; thread = thread->Next()) {
+ n++;
+ }
+
+ // Total number of threads is current thread and archived threads.
+ return Smi::FromInt(n + 1);
+}
+
+
+static const int kThreadDetailsCurrentThreadIndex = 0;
+static const int kThreadDetailsThreadIdIndex = 1;
+static const int kThreadDetailsSize = 2;
+
+// Return an array with thread details
+// args[0]: number: break id
+// args[1]: number: thread index
+//
+// The array returned contains the following information:
+// 0: Is current thread?
+// 1: Thread id
+RUNTIME_FUNCTION(Runtime_GetThreadDetails) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+
+ // Allocate array for result.
+ Handle<FixedArray> details =
+ isolate->factory()->NewFixedArray(kThreadDetailsSize);
+
+ // Thread index 0 is current thread.
+ if (index == 0) {
+ // Fill the details.
+ details->set(kThreadDetailsCurrentThreadIndex,
+ isolate->heap()->true_value());
+ details->set(kThreadDetailsThreadIdIndex,
+ Smi::FromInt(ThreadId::Current().ToInteger()));
+ } else {
+ // Find the thread with the requested index.
+ int n = 1;
+ ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse();
+ while (index != n && thread != NULL) {
+ thread = thread->Next();
+ n++;
+ }
+ if (thread == NULL) {
+ return isolate->heap()->undefined_value();
+ }
+
+ // Fill the details.
+ details->set(kThreadDetailsCurrentThreadIndex,
+ isolate->heap()->false_value());
+ details->set(kThreadDetailsThreadIdIndex,
+ Smi::FromInt(thread->id().ToInteger()));
+ }
+
+ // Convert to JS array and return.
+ return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+// Sets the disable break state
+// args[0]: disable break state
+RUNTIME_FUNCTION(Runtime_SetDisableBreak) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0);
+ isolate->debug()->set_disable_break(disable_break);
+ return isolate->heap()->undefined_value();
+}
+
+
+static bool IsPositionAlignmentCodeCorrect(int alignment) {
+ return alignment == STATEMENT_ALIGNED || alignment == BREAK_POSITION_ALIGNED;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetBreakLocations) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+ CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[1]);
+
+ if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
+ return isolate->ThrowIllegalOperation();
+ }
+ BreakPositionAlignment alignment =
+ static_cast<BreakPositionAlignment>(statement_aligned_code);
+
+ Handle<SharedFunctionInfo> shared(fun->shared());
+ // Find the number of break points
+ Handle<Object> break_locations =
+ Debug::GetSourceBreakLocations(shared, alignment);
+ if (break_locations->IsUndefined()) return isolate->heap()->undefined_value();
+ // Return array as JS array
+ return *isolate->factory()->NewJSArrayWithElements(
+ Handle<FixedArray>::cast(break_locations));
+}
+
+
+// Set a break point in a function.
+// args[0]: function
+// args[1]: number: break source position (within the function source)
+// args[2]: number: break point object
+RUNTIME_FUNCTION(Runtime_SetFunctionBreakPoint) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+ CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+ RUNTIME_ASSERT(source_position >= function->shared()->start_position() &&
+ source_position <= function->shared()->end_position());
+ CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 2);
+
+ // Set break point.
+ RUNTIME_ASSERT(isolate->debug()->SetBreakPoint(
+ function, break_point_object_arg, &source_position));
+
+ return Smi::FromInt(source_position);
+}
+
+
+// Changes the state of a break point in a script and returns source position
+// where break point was set. NOTE: Regarding performance see the NOTE for
+// GetScriptFromScriptData.
+// args[0]: script to set break point in
+// args[1]: number: break source position (within the script source)
+// args[2]: number, breakpoint position alignment
+// args[3]: number: break point object
+RUNTIME_FUNCTION(Runtime_SetScriptBreakPoint) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0);
+ CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+ RUNTIME_ASSERT(source_position >= 0);
+ CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[2]);
+ CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 3);
+
+ if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
+ return isolate->ThrowIllegalOperation();
+ }
+ BreakPositionAlignment alignment =
+ static_cast<BreakPositionAlignment>(statement_aligned_code);
+
+ // Get the script from the script wrapper.
+ RUNTIME_ASSERT(wrapper->value()->IsScript());
+ Handle<Script> script(Script::cast(wrapper->value()));
+
+ // Set break point.
+ if (!isolate->debug()->SetBreakPointForScript(script, break_point_object_arg,
+ &source_position, alignment)) {
+ return isolate->heap()->undefined_value();
+ }
+
+ return Smi::FromInt(source_position);
+}
+
+
+// Clear a break point
+// args[0]: number: break point object
+RUNTIME_FUNCTION(Runtime_ClearBreakPoint) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 0);
+
+ // Clear break point.
+ isolate->debug()->ClearBreakPoint(break_point_object_arg);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+// Change the state of break on exceptions.
+// args[0]: Enum value indicating whether to affect caught/uncaught exceptions.
+// args[1]: Boolean indicating on/off.
+RUNTIME_FUNCTION(Runtime_ChangeBreakOnException) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
+ CONVERT_BOOLEAN_ARG_CHECKED(enable, 1);
+
+ // If the number doesn't match an enum value, the ChangeBreakOnException
+ // function will default to affecting caught exceptions.
+ ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
+ // Update break point state.
+ isolate->debug()->ChangeBreakOnException(type, enable);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Returns the state of break on exceptions
+// args[0]: boolean indicating uncaught exceptions
+RUNTIME_FUNCTION(Runtime_IsBreakOnException) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
+
+ ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
+ bool result = isolate->debug()->IsBreakOnException(type);
+ return Smi::FromInt(result);
+}
+
+
+// Prepare for stepping
+// args[0]: break id for checking execution state
+// args[1]: step action from the enumeration StepAction
+// args[2]: number of times to perform the step, for step out it is the number
+// of frames to step down.
+RUNTIME_FUNCTION(Runtime_PrepareStep) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
+ return isolate->Throw(isolate->heap()->illegal_argument_string());
+ }
+
+ CONVERT_NUMBER_CHECKED(int, wrapped_frame_id, Int32, args[3]);
+
+ StackFrame::Id frame_id;
+ if (wrapped_frame_id == 0) {
+ frame_id = StackFrame::NO_ID;
+ } else {
+ frame_id = UnwrapFrameId(wrapped_frame_id);
+ }
+
+ // Get the step action and check validity.
+ StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
+ if (step_action != StepIn && step_action != StepNext &&
+ step_action != StepOut && step_action != StepInMin &&
+ step_action != StepMin) {
+ return isolate->Throw(isolate->heap()->illegal_argument_string());
+ }
+
+ if (frame_id != StackFrame::NO_ID && step_action != StepNext &&
+ step_action != StepMin && step_action != StepOut) {
+ return isolate->ThrowIllegalOperation();
+ }
+
+ // Get the number of steps.
+ int step_count = NumberToInt32(args[2]);
+ if (step_count < 1) {
+ return isolate->Throw(isolate->heap()->illegal_argument_string());
+ }
+
+ // Clear all current stepping setup.
+ isolate->debug()->ClearStepping();
+
+ // Prepare step.
+ isolate->debug()->PrepareStep(static_cast<StepAction>(step_action),
+ step_count, frame_id);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Clear all stepping set by PrepareStep.
+RUNTIME_FUNCTION(Runtime_ClearStepping) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ isolate->debug()->ClearStepping();
+ return isolate->heap()->undefined_value();
+}
+
+
+// Helper function to find or create the arguments object for
+// Runtime_DebugEvaluate.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeArgumentsObject(
+ Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function) {
+ // Do not materialize the arguments object for eval or top-level code.
+ // Skip if "arguments" is already taken.
+ if (!function->shared()->is_function()) return target;
+ Maybe<bool> maybe = JSReceiver::HasOwnProperty(
+ target, isolate->factory()->arguments_string());
+ if (!maybe.has_value) return MaybeHandle<JSObject>();
+ if (maybe.value) return target;
+
+ // FunctionGetArguments can't throw an exception.
+ Handle<JSObject> arguments =
+ Handle<JSObject>::cast(Accessors::FunctionGetArguments(function));
+ Handle<String> arguments_str = isolate->factory()->arguments_string();
+ RETURN_ON_EXCEPTION(isolate, Runtime::DefineObjectProperty(
+ target, arguments_str, arguments, NONE),
+ JSObject);
+ return target;
+}
+
+
+// Compile and evaluate source for the given context.
+static MaybeHandle<Object> DebugEvaluate(Isolate* isolate,
+ Handle<Context> context,
+ Handle<Object> context_extension,
+ Handle<Object> receiver,
+ Handle<String> source) {
+ if (context_extension->IsJSObject()) {
+ Handle<JSObject> extension = Handle<JSObject>::cast(context_extension);
+ Handle<JSFunction> closure(context->closure(), isolate);
+ context = isolate->factory()->NewWithContext(closure, context, extension);
+ }
+
+ Handle<JSFunction> eval_fun;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, eval_fun, Compiler::GetFunctionFromEval(source, context, SLOPPY,
+ NO_PARSE_RESTRICTION,
+ RelocInfo::kNoPosition),
+ Object);
+
+ Handle<Object> result;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, result, Execution::Call(isolate, eval_fun, receiver, 0, NULL),
+ Object);
+
+ // Skip the global proxy as it has no properties and always delegates to the
+ // real global object.
+ if (result->IsJSGlobalProxy()) {
+ PrototypeIterator iter(isolate, result);
+ // TODO(verwaest): This will crash when the global proxy is detached.
+ result = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+ }
+
+ // Clear the oneshot breakpoints so that the debugger does not step further.
+ isolate->debug()->ClearStepping();
+ return result;
+}
+
+
+static Handle<JSObject> NewJSObjectWithNullProto(Isolate* isolate) {
+ Handle<JSObject> result =
+ isolate->factory()->NewJSObject(isolate->object_function());
+ Handle<Map> new_map = Map::Copy(Handle<Map>(result->map()));
+ new_map->set_prototype(*isolate->factory()->null_value());
+ JSObject::MigrateToMap(result, new_map);
+ return result;
+}
+
+
+// Evaluate a piece of JavaScript in the context of a stack frame for
+// debugging. Things that need special attention are:
+// - Parameters and stack-allocated locals need to be materialized. Altered
+// values need to be written back to the stack afterwards.
+// - The arguments object needs to materialized.
+RUNTIME_FUNCTION(Runtime_DebugEvaluate) {
+ HandleScope scope(isolate);
+
+ // Check the execution state and decode arguments frame and source to be
+ // evaluated.
+ DCHECK(args.length() == 6);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+ CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
+ CONVERT_ARG_HANDLE_CHECKED(String, source, 3);
+ CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4);
+ CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 5);
+
+ // Handle the processing of break.
+ DisableBreak disable_break_scope(isolate->debug(), disable_break);
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator it(isolate, id);
+ JavaScriptFrame* frame = it.frame();
+ FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
+ Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
+
+ // Traverse the saved contexts chain to find the active context for the
+ // selected frame.
+ SaveContext* save = FindSavedContextForFrame(isolate, frame);
+
+ SaveContext savex(isolate);
+ isolate->set_context(*(save->context()));
+
+ // Materialize stack locals and the arguments object.
+ Handle<JSObject> materialized = NewJSObjectWithNullProto(isolate);
+
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, materialized,
+ MaterializeStackLocalsWithFrameInspector(isolate, materialized, function,
+ &frame_inspector));
+
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, materialized,
+ MaterializeArgumentsObject(isolate, materialized, function));
+
+ // At this point, the lookup chain may look like this:
+ // [inner context] -> [function stack]+[function context] -> [outer context]
+ // The function stack is not an actual context, it complements the function
+ // context. In order to have the same lookup chain when debug-evaluating,
+ // we materialize the stack and insert it into the context chain as a
+ // with-context before the function context.
+ // [inner context] -> [with context] -> [function context] -> [outer context]
+ // Ordering the with-context before the function context forces a dynamic
+ // lookup instead of a static lookup that could fail as the scope info is
+ // outdated and may expect variables to still be stack-allocated.
+ // Afterwards, we write changes to the with-context back to the stack
+ // and remove it from the context chain.
+ // This could cause lookup failures if debug-evaluate creates a closure that
+ // uses this temporary context chain.
+
+ Handle<Context> eval_context(Context::cast(frame_inspector.GetContext()));
+ DCHECK(!eval_context.is_null());
+ Handle<Context> function_context = eval_context;
+ Handle<Context> outer_context(function->context(), isolate);
+ Handle<Context> inner_context;
+ // We iterate to find the function's context. If the function has no
+ // context-allocated variables, we iterate until we hit the outer context.
+ while (!function_context->IsFunctionContext() &&
+ !function_context.is_identical_to(outer_context)) {
+ inner_context = function_context;
+ function_context = Handle<Context>(function_context->previous(), isolate);
+ }
+
+ Handle<Context> materialized_context = isolate->factory()->NewWithContext(
+ function, function_context, materialized);
+
+ if (inner_context.is_null()) {
+ // No inner context. The with-context is now inner-most.
+ eval_context = materialized_context;
+ } else {
+ inner_context->set_previous(*materialized_context);
+ }
+
+ Handle<Object> receiver(frame->receiver(), isolate);
+ MaybeHandle<Object> maybe_result =
+ DebugEvaluate(isolate, eval_context, context_extension, receiver, source);
+
+ // Remove with-context if it was inserted in between.
+ if (!inner_context.is_null()) inner_context->set_previous(*function_context);
+
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, maybe_result);
+
+ // Write back potential changes to materialized stack locals to the stack.
+ UpdateStackLocalsFromMaterializedObject(isolate, materialized, function,
+ frame, inlined_jsframe_index);
+
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugEvaluateGlobal) {
+ HandleScope scope(isolate);
+
+ // Check the execution state and decode arguments frame and source to be
+ // evaluated.
+ DCHECK(args.length() == 4);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
+ CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2);
+ CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 3);
+
+ // Handle the processing of break.
+ DisableBreak disable_break_scope(isolate->debug(), disable_break);
+
+ // Enter the top context from before the debugger was invoked.
+ SaveContext save(isolate);
+ SaveContext* top = &save;
+ while (top != NULL && *top->context() == *isolate->debug()->debug_context()) {
+ top = top->prev();
+ }
+ if (top != NULL) {
+ isolate->set_context(*top->context());
+ }
+
+ // Get the native context now set to the top context from before the
+ // debugger was invoked.
+ Handle<Context> context = isolate->native_context();
+ Handle<JSObject> receiver(context->global_proxy());
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ DebugEvaluate(isolate, context, context_extension, receiver, source));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugGetLoadedScripts) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+
+ // Fill the script objects.
+ Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts();
+
+ // Convert the script objects to proper JS objects.
+ for (int i = 0; i < instances->length(); i++) {
+ Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
+ // Get the script wrapper in a local handle before calling GetScriptWrapper,
+ // because using
+ // instances->set(i, *GetScriptWrapper(script))
+ // is unsafe as GetScriptWrapper might call GC and the C++ compiler might
+ // already have dereferenced the instances handle.
+ Handle<JSObject> wrapper = Script::GetWrapper(script);
+ instances->set(i, *wrapper);
+ }
+
+ // Return result as a JS array.
+ Handle<JSObject> result =
+ isolate->factory()->NewJSObject(isolate->array_function());
+ JSArray::SetContent(Handle<JSArray>::cast(result), instances);
+ return *result;
+}
+
+
+// Helper function used by Runtime_DebugReferencedBy below.
+static int DebugReferencedBy(HeapIterator* iterator, JSObject* target,
+ Object* instance_filter, int max_references,
+ FixedArray* instances, int instances_size,
+ JSFunction* arguments_function) {
+ Isolate* isolate = target->GetIsolate();
+ SealHandleScope shs(isolate);
+ DisallowHeapAllocation no_allocation;
+
+ // Iterate the heap.
+ int count = 0;
+ JSObject* last = NULL;
+ HeapObject* heap_obj = NULL;
+ while (((heap_obj = iterator->next()) != NULL) &&
+ (max_references == 0 || count < max_references)) {
+ // Only look at all JSObjects.
+ if (heap_obj->IsJSObject()) {
+ // Skip context extension objects and argument arrays as these are
+ // checked in the context of functions using them.
+ JSObject* obj = JSObject::cast(heap_obj);
+ if (obj->IsJSContextExtensionObject() ||
+ obj->map()->constructor() == arguments_function) {
+ continue;
+ }
+
+ // Check if the JS object has a reference to the object looked for.
+ if (obj->ReferencesObject(target)) {
+ // Check instance filter if supplied. This is normally used to avoid
+ // references from mirror objects (see Runtime_IsInPrototypeChain).
+ if (!instance_filter->IsUndefined()) {
+ for (PrototypeIterator iter(isolate, obj); !iter.IsAtEnd();
+ iter.Advance()) {
+ if (iter.GetCurrent() == instance_filter) {
+ obj = NULL; // Don't add this object.
+ break;
+ }
+ }
+ }
+
+ if (obj != NULL) {
+ // Valid reference found add to instance array if supplied an update
+ // count.
+ if (instances != NULL && count < instances_size) {
+ instances->set(count, obj);
+ }
+ last = obj;
+ count++;
+ }
+ }
+ }
+ }
+
+ // Check for circular reference only. This can happen when the object is only
+ // referenced from mirrors and has a circular reference in which case the
+ // object is not really alive and would have been garbage collected if not
+ // referenced from the mirror.
+ if (count == 1 && last == target) {
+ count = 0;
+ }
+
+ // Return the number of referencing objects found.
+ return count;
+}
+
+
+// Scan the heap for objects with direct references to an object
+// args[0]: the object to find references to
+// args[1]: constructor function for instances to exclude (Mirror)
+// args[2]: the the maximum number of objects to return
+RUNTIME_FUNCTION(Runtime_DebugReferencedBy) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+
+ // Check parameters.
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, target, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, instance_filter, 1);
+ RUNTIME_ASSERT(instance_filter->IsUndefined() ||
+ instance_filter->IsJSObject());
+ CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
+ RUNTIME_ASSERT(max_references >= 0);
+
+
+ // Get the constructor function for context extension and arguments array.
+ Handle<JSFunction> arguments_function(
+ JSFunction::cast(isolate->sloppy_arguments_map()->constructor()));
+
+ // Get the number of referencing objects.
+ int count;
+ // First perform a full GC in order to avoid dead objects and to make the heap
+ // iterable.
+ Heap* heap = isolate->heap();
+ heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
+ {
+ HeapIterator heap_iterator(heap);
+ count = DebugReferencedBy(&heap_iterator, *target, *instance_filter,
+ max_references, NULL, 0, *arguments_function);
+ }
+
+ // Allocate an array to hold the result.
+ Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
+
+ // Fill the referencing objects.
+ {
+ HeapIterator heap_iterator(heap);
+ count = DebugReferencedBy(&heap_iterator, *target, *instance_filter,
+ max_references, *instances, count,
+ *arguments_function);
+ }
+
+ // Return result as JS array.
+ Handle<JSFunction> constructor = isolate->array_function();
+
+ Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
+ JSArray::SetContent(Handle<JSArray>::cast(result), instances);
+ return *result;
+}
+
+
+// Helper function used by Runtime_DebugConstructedBy below.
+static int DebugConstructedBy(HeapIterator* iterator, JSFunction* constructor,
+ int max_references, FixedArray* instances,
+ int instances_size) {
+ DisallowHeapAllocation no_allocation;
+
+ // Iterate the heap.
+ int count = 0;
+ HeapObject* heap_obj = NULL;
+ while (((heap_obj = iterator->next()) != NULL) &&
+ (max_references == 0 || count < max_references)) {
+ // Only look at all JSObjects.
+ if (heap_obj->IsJSObject()) {
+ JSObject* obj = JSObject::cast(heap_obj);
+ if (obj->map()->constructor() == constructor) {
+ // Valid reference found add to instance array if supplied an update
+ // count.
+ if (instances != NULL && count < instances_size) {
+ instances->set(count, obj);
+ }
+ count++;
+ }
+ }
+ }
+
+ // Return the number of referencing objects found.
+ return count;
+}
+
+
+// Scan the heap for objects constructed by a specific function.
+// args[0]: the constructor to find instances of
+// args[1]: the the maximum number of objects to return
+RUNTIME_FUNCTION(Runtime_DebugConstructedBy) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+
+ // Check parameters.
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 0);
+ CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
+ RUNTIME_ASSERT(max_references >= 0);
+
+ // Get the number of referencing objects.
+ int count;
+ // First perform a full GC in order to avoid dead objects and to make the heap
+ // iterable.
+ Heap* heap = isolate->heap();
+ heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
+ {
+ HeapIterator heap_iterator(heap);
+ count = DebugConstructedBy(&heap_iterator, *constructor, max_references,
+ NULL, 0);
+ }
+
+ // Allocate an array to hold the result.
+ Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
+
+ // Fill the referencing objects.
+ {
+ HeapIterator heap_iterator2(heap);
+ count = DebugConstructedBy(&heap_iterator2, *constructor, max_references,
+ *instances, count);
+ }
+
+ // Return result as JS array.
+ Handle<JSFunction> array_function = isolate->array_function();
+ Handle<JSObject> result = isolate->factory()->NewJSObject(array_function);
+ JSArray::SetContent(Handle<JSArray>::cast(result), instances);
+ return *result;
+}
+
+
+// Find the effective prototype object as returned by __proto__.
+// args[0]: the object to find the prototype for.
+RUNTIME_FUNCTION(Runtime_DebugGetPrototype) {
+ HandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+ return *GetPrototypeSkipHiddenPrototypes(isolate, obj);
+}
+
+
+// Patches script source (should be called upon BeforeCompile event).
+RUNTIME_FUNCTION(Runtime_DebugSetScriptSource) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
+
+ RUNTIME_ASSERT(script_wrapper->value()->IsScript());
+ Handle<Script> script(Script::cast(script_wrapper->value()));
+
+ int compilation_state = script->compilation_state();
+ RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL);
+ script->set_source(*source);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugDisassembleFunction) {
+ HandleScope scope(isolate);
+#ifdef DEBUG
+ DCHECK(args.length() == 1);
+ // Get the function and make sure it is compiled.
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
+ if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
+ return isolate->heap()->exception();
+ }
+ OFStream os(stdout);
+ func->code()->Print(os);
+ os << endl;
+#endif // DEBUG
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugDisassembleConstructor) {
+ HandleScope scope(isolate);
+#ifdef DEBUG
+ DCHECK(args.length() == 1);
+ // Get the function and make sure it is compiled.
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
+ if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
+ return isolate->heap()->exception();
+ }
+ OFStream os(stdout);
+ func->shared()->construct_stub()->Print(os);
+ os << endl;
+#endif // DEBUG
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetInferredName) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, f, 0);
+ return f->shared()->inferred_name();
+}
+
+
+static int FindSharedFunctionInfosForScript(HeapIterator* iterator,
+ Script* script,
+ FixedArray* buffer) {
+ DisallowHeapAllocation no_allocation;
+ int counter = 0;
+ int buffer_size = buffer->length();
+ for (HeapObject* obj = iterator->next(); obj != NULL;
+ obj = iterator->next()) {
+ DCHECK(obj != NULL);
+ if (!obj->IsSharedFunctionInfo()) {
+ continue;
+ }
+ SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
+ if (shared->script() != script) {
+ continue;
+ }
+ if (counter < buffer_size) {
+ buffer->set(counter, shared);
+ }
+ counter++;
+ }
+ return counter;
+}
+
+
+// For a script finds all SharedFunctionInfo's in the heap that points
+// to this script. Returns JSArray of SharedFunctionInfo wrapped
+// in OpaqueReferences.
+RUNTIME_FUNCTION(Runtime_LiveEditFindSharedFunctionInfosForScript) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSValue, script_value, 0);
+
+ RUNTIME_ASSERT(script_value->value()->IsScript());
+ Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
+
+ const int kBufferSize = 32;
+
+ Handle<FixedArray> array;
+ array = isolate->factory()->NewFixedArray(kBufferSize);
+ int number;
+ Heap* heap = isolate->heap();
+ {
+ HeapIterator heap_iterator(heap);
+ Script* scr = *script;
+ FixedArray* arr = *array;
+ number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
+ }
+ if (number > kBufferSize) {
+ array = isolate->factory()->NewFixedArray(number);
+ HeapIterator heap_iterator(heap);
+ Script* scr = *script;
+ FixedArray* arr = *array;
+ FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
+ }
+
+ Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array);
+ result->set_length(Smi::FromInt(number));
+
+ LiveEdit::WrapSharedFunctionInfos(result);
+
+ return *result;
+}
+
+
+// For a script calculates compilation information about all its functions.
+// The script source is explicitly specified by the second argument.
+// The source of the actual script is not used, however it is important that
+// all generated code keeps references to this particular instance of script.
+// Returns a JSArray of compilation infos. The array is ordered so that
+// each function with all its descendant is always stored in a continues range
+// with the function itself going first. The root function is a script function.
+RUNTIME_FUNCTION(Runtime_LiveEditGatherCompileInfo) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_CHECKED(JSValue, script, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
+
+ RUNTIME_ASSERT(script->value()->IsScript());
+ Handle<Script> script_handle = Handle<Script>(Script::cast(script->value()));
+
+ Handle<JSArray> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, LiveEdit::GatherCompileInfo(script_handle, source));
+ return *result;
+}
+
+
+// Changes the source of the script to a new_source.
+// If old_script_name is provided (i.e. is a String), also creates a copy of
+// the script with its original source and sends notification to debugger.
+RUNTIME_FUNCTION(Runtime_LiveEditReplaceScript) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_CHECKED(JSValue, original_script_value, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, old_script_name, 2);
+
+ RUNTIME_ASSERT(original_script_value->value()->IsScript());
+ Handle<Script> original_script(Script::cast(original_script_value->value()));
+
+ Handle<Object> old_script = LiveEdit::ChangeScriptSource(
+ original_script, new_source, old_script_name);
+
+ if (old_script->IsScript()) {
+ Handle<Script> script_handle = Handle<Script>::cast(old_script);
+ return *Script::GetWrapper(script_handle);
+ } else {
+ return isolate->heap()->null_value();
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_LiveEditFunctionSourceUpdated) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0);
+ RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
+
+ LiveEdit::FunctionSourceUpdated(shared_info);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Replaces code of SharedFunctionInfo with a new one.
+RUNTIME_FUNCTION(Runtime_LiveEditReplaceFunctionCode) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1);
+ RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
+
+ LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Connects SharedFunctionInfo to another script.
+RUNTIME_FUNCTION(Runtime_LiveEditFunctionSetScript) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(Object, function_object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, script_object, 1);
+
+ if (function_object->IsJSValue()) {
+ Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object);
+ if (script_object->IsJSValue()) {
+ RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript());
+ Script* script = Script::cast(JSValue::cast(*script_object)->value());
+ script_object = Handle<Object>(script, isolate);
+ }
+ RUNTIME_ASSERT(function_wrapper->value()->IsSharedFunctionInfo());
+ LiveEdit::SetFunctionScript(function_wrapper, script_object);
+ } else {
+ // Just ignore this. We may not have a SharedFunctionInfo for some functions
+ // and we check it in this function.
+ }
+
+ return isolate->heap()->undefined_value();
+}
+
+
+// In a code of a parent function replaces original function as embedded object
+// with a substitution one.
+RUNTIME_FUNCTION(Runtime_LiveEditReplaceRefToNestedFunction) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2);
+ RUNTIME_ASSERT(parent_wrapper->value()->IsSharedFunctionInfo());
+ RUNTIME_ASSERT(orig_wrapper->value()->IsSharedFunctionInfo());
+ RUNTIME_ASSERT(subst_wrapper->value()->IsSharedFunctionInfo());
+
+ LiveEdit::ReplaceRefToNestedFunction(parent_wrapper, orig_wrapper,
+ subst_wrapper);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Updates positions of a shared function info (first parameter) according
+// to script source change. Text change is described in second parameter as
+// array of groups of 3 numbers:
+// (change_begin, change_end, change_end_new_position).
+// Each group describes a change in text; groups are sorted by change_begin.
+RUNTIME_FUNCTION(Runtime_LiveEditPatchFunctionPositions) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1);
+ RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_array))
+
+ LiveEdit::PatchFunctionPositions(shared_array, position_change_array);
+ return isolate->heap()->undefined_value();
+}
+
+
+// For array of SharedFunctionInfo's (each wrapped in JSValue)
+// checks that none of them have activations on stacks (of any thread).
+// Returns array of the same length with corresponding results of
+// LiveEdit::FunctionPatchabilityStatus type.
+RUNTIME_FUNCTION(Runtime_LiveEditCheckAndDropActivations) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
+ CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1);
+ RUNTIME_ASSERT(shared_array->length()->IsSmi());
+ RUNTIME_ASSERT(shared_array->HasFastElements())
+ int array_length = Smi::cast(shared_array->length())->value();
+ for (int i = 0; i < array_length; i++) {
+ Handle<Object> element =
+ Object::GetElement(isolate, shared_array, i).ToHandleChecked();
+ RUNTIME_ASSERT(
+ element->IsJSValue() &&
+ Handle<JSValue>::cast(element)->value()->IsSharedFunctionInfo());
+ }
+
+ return *LiveEdit::CheckAndDropActivations(shared_array, do_drop);
+}
+
+
+// Compares 2 strings line-by-line, then token-wise and returns diff in form
+// of JSArray of triplets (pos1, pos1_end, pos2_end) describing list
+// of diff chunks.
+RUNTIME_FUNCTION(Runtime_LiveEditCompareStrings) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(String, s1, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, s2, 1);
+
+ return *LiveEdit::CompareStrings(s1, s2);
+}
+
+
+// Restarts a call frame and completely drops all frames above.
+// Returns true if successful. Otherwise returns undefined or an error message.
+RUNTIME_FUNCTION(Runtime_LiveEditRestartFrame) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 2);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
+
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+ Heap* heap = isolate->heap();
+
+ // Find the relevant frame with the requested index.
+ StackFrame::Id id = isolate->debug()->break_frame_id();
+ if (id == StackFrame::NO_ID) {
+ // If there are no JavaScript stack frames return undefined.
+ return heap->undefined_value();
+ }
+
+ JavaScriptFrameIterator it(isolate, id);
+ int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index);
+ if (inlined_jsframe_index == -1) return heap->undefined_value();
+ // We don't really care what the inlined frame index is, since we are
+ // throwing away the entire frame anyways.
+ const char* error_message = LiveEdit::RestartFrame(it.frame());
+ if (error_message) {
+ return *(isolate->factory()->InternalizeUtf8String(error_message));
+ }
+ return heap->true_value();
+}
+
+
+// A testing entry. Returns statement position which is the closest to
+// source_position.
+RUNTIME_FUNCTION(Runtime_GetFunctionCodePositionFromSource) {
+ HandleScope scope(isolate);
+ CHECK(isolate->debug()->live_edit_enabled());
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+ CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+
+ Handle<Code> code(function->code(), isolate);
+
+ if (code->kind() != Code::FUNCTION &&
+ code->kind() != Code::OPTIMIZED_FUNCTION) {
+ return isolate->heap()->undefined_value();
+ }
+
+ RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION));
+ int closest_pc = 0;
+ int distance = kMaxInt;
+ while (!it.done()) {
+ int statement_position = static_cast<int>(it.rinfo()->data());
+ // Check if this break point is closer that what was previously found.
+ if (source_position <= statement_position &&
+ statement_position - source_position < distance) {
+ closest_pc =
+ static_cast<int>(it.rinfo()->pc() - code->instruction_start());
+ distance = statement_position - source_position;
+ // Check whether we can't get any closer.
+ if (distance == 0) break;
+ }
+ it.next();
+ }
+
+ return Smi::FromInt(closest_pc);
+}
+
+
+// Calls specified function with or without entering the debugger.
+// This is used in unit tests to run code as if debugger is entered or simply
+// to have a stack with C++ frame in the middle.
+RUNTIME_FUNCTION(Runtime_ExecuteInDebugContext) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+ CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1);
+
+ MaybeHandle<Object> maybe_result;
+ if (without_debugger) {
+ maybe_result = Execution::Call(isolate, function,
+ handle(function->global_proxy()), 0, NULL);
+ } else {
+ DebugScope debug_scope(isolate->debug());
+ maybe_result = Execution::Call(isolate, function,
+ handle(function->global_proxy()), 0, NULL);
+ }
+ Handle<Object> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, maybe_result);
+ return *result;
+}
+
+
+// Performs a GC.
+// Presently, it only does a full GC.
+RUNTIME_FUNCTION(Runtime_CollectGarbage) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage");
+ return isolate->heap()->undefined_value();
+}
+
+
+// Gets the current heap usage.
+RUNTIME_FUNCTION(Runtime_GetHeapUsage) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ int usage = static_cast<int>(isolate->heap()->SizeOfObjects());
+ if (!Smi::IsValid(usage)) {
+ return *isolate->factory()->NewNumberFromInt(usage);
+ }
+ return Smi::FromInt(usage);
+}
+
+
+// Finds the script object from the script data. NOTE: This operation uses
+// heap traversal to find the function generated for the source position
+// for the requested break point. For lazily compiled functions several heap
+// traversals might be required rendering this operation as a rather slow
+// operation. However for setting break points which is normally done through
+// some kind of user interaction the performance is not crucial.
+static Handle<Object> Runtime_GetScriptFromScriptName(
+ Handle<String> script_name) {
+ // Scan the heap for Script objects to find the script with the requested
+ // script data.
+ Handle<Script> script;
+ Factory* factory = script_name->GetIsolate()->factory();
+ Heap* heap = script_name->GetHeap();
+ HeapIterator iterator(heap);
+ HeapObject* obj = NULL;
+ while (script.is_null() && ((obj = iterator.next()) != NULL)) {
+ // If a script is found check if it has the script data requested.
+ if (obj->IsScript()) {
+ if (Script::cast(obj)->name()->IsString()) {
+ if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
+ script = Handle<Script>(Script::cast(obj));
+ }
+ }
+ }
+ }
+
+ // If no script with the requested script data is found return undefined.
+ if (script.is_null()) return factory->undefined_value();
+
+ // Return the script found.
+ return Script::GetWrapper(script);
+}
+
+
+// Get the script object from script data. NOTE: Regarding performance
+// see the NOTE for GetScriptFromScriptData.
+// args[0]: script data for the script to find the source for
+RUNTIME_FUNCTION(Runtime_GetScript) {
+ HandleScope scope(isolate);
+
+ DCHECK(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(String, script_name, 0);
+
+ // Find the requested script.
+ Handle<Object> result =
+ Runtime_GetScriptFromScriptName(Handle<String>(script_name));
+ return *result;
+}
+
+
+// Collect the raw data for a stack trace. Returns an array of 4
+// element segments each containing a receiver, function, code and
+// native code offset.
+RUNTIME_FUNCTION(Runtime_CollectStackTrace) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Object, caller, 1);
+
+ if (!isolate->bootstrapper()->IsActive()) {
+ // Optionally capture a more detailed stack trace for the message.
+ isolate->CaptureAndSetDetailedStackTrace(error_object);
+ // Capture a simple stack trace for the stack property.
+ isolate->CaptureAndSetSimpleStackTrace(error_object, caller);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+// Returns V8 version as a string.
+RUNTIME_FUNCTION(Runtime_GetV8Version) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+
+ const char* version_string = v8::V8::GetVersion();
+
+ return *isolate->factory()->NewStringFromAsciiChecked(version_string);
+}
+
+
+// Returns function of generator activation.
+RUNTIME_FUNCTION(Runtime_GeneratorGetFunction) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+ return generator->function();
+}
+
+
+// Returns context of generator activation.
+RUNTIME_FUNCTION(Runtime_GeneratorGetContext) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+ return generator->context();
+}
+
+
+// Returns receiver of generator activation.
+RUNTIME_FUNCTION(Runtime_GeneratorGetReceiver) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+ return generator->receiver();
+}
+
+
+// Returns generator continuation as a PC offset, or the magic -1 or 0 values.
+RUNTIME_FUNCTION(Runtime_GeneratorGetContinuation) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+ return Smi::FromInt(generator->continuation());
+}
+
+
+RUNTIME_FUNCTION(Runtime_GeneratorGetSourcePosition) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+ if (generator->is_suspended()) {
+ Handle<Code> code(generator->function()->code(), isolate);
+ int offset = generator->continuation();
+
+ RUNTIME_ASSERT(0 <= offset && offset < code->Size());
+ Address pc = code->address() + offset;
+
+ return Smi::FromInt(code->SourcePosition(pc));
+ }
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_LoadMutableDouble) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+ CONVERT_ARG_HANDLE_CHECKED(Smi, index, 1);
+ RUNTIME_ASSERT((index->value() & 1) == 1);
+ FieldIndex field_index =
+ FieldIndex::ForLoadByFieldIndex(object->map(), index->value());
+ if (field_index.is_inobject()) {
+ RUNTIME_ASSERT(field_index.property_index() <
+ object->map()->inobject_properties());
+ } else {
+ RUNTIME_ASSERT(field_index.outobject_array_index() <
+ object->properties()->length());
+ }
+ Handle<Object> raw_value(object->RawFastPropertyAt(field_index), isolate);
+ RUNTIME_ASSERT(raw_value->IsMutableHeapNumber());
+ return *Object::WrapForRead(isolate, raw_value, Representation::Double());
+}
+
+
+RUNTIME_FUNCTION(Runtime_TryMigrateInstance) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+ if (!object->IsJSObject()) return Smi::FromInt(0);
+ Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+ if (!js_object->map()->is_deprecated()) return Smi::FromInt(0);
+ // This call must not cause lazy deopts, because it's called from deferred
+ // code where we can't handle lazy deopts for lack of a suitable bailout
+ // ID. So we just try migration and signal failure if necessary,
+ // which will also trigger a deopt.
+ if (!JSObject::TryMigrateInstance(js_object)) return Smi::FromInt(0);
+ return *object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFromCache) {
+ SealHandleScope shs(isolate);
+ // This is only called from codegen, so checks might be more lax.
+ CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0);
+ CONVERT_ARG_CHECKED(Object, key, 1);
+
+ {
+ DisallowHeapAllocation no_alloc;
+
+ int finger_index = cache->finger_index();
+ Object* o = cache->get(finger_index);
+ if (o == key) {
+ // The fastest case: hit the same place again.
+ return cache->get(finger_index + 1);
+ }
+
+ for (int i = finger_index - 2; i >= JSFunctionResultCache::kEntriesIndex;
+ i -= 2) {
+ o = cache->get(i);
+ if (o == key) {
+ cache->set_finger_index(i);
+ return cache->get(i + 1);
+ }
+ }
+
+ int size = cache->size();
+ DCHECK(size <= cache->length());
+
+ for (int i = size - 2; i > finger_index; i -= 2) {
+ o = cache->get(i);
+ if (o == key) {
+ cache->set_finger_index(i);
+ return cache->get(i + 1);
+ }
+ }
+ }
+
+ // There is no value in the cache. Invoke the function and cache result.
+ HandleScope scope(isolate);
+
+ Handle<JSFunctionResultCache> cache_handle(cache);
+ Handle<Object> key_handle(key, isolate);
+ Handle<Object> value;
+ {
+ Handle<JSFunction> factory(JSFunction::cast(
+ cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
+ // TODO(antonm): consider passing a receiver when constructing a cache.
+ Handle<JSObject> receiver(isolate->global_proxy());
+ // This handle is nor shared, nor used later, so it's safe.
+ Handle<Object> argv[] = {key_handle};
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, value,
+ Execution::Call(isolate, factory, receiver, arraysize(argv), argv));
+ }
+
+#ifdef VERIFY_HEAP
+ if (FLAG_verify_heap) {
+ cache_handle->JSFunctionResultCacheVerify();
+ }
+#endif
+
+ // Function invocation may have cleared the cache. Reread all the data.
+ int finger_index = cache_handle->finger_index();
+ int size = cache_handle->size();
+
+ // If we have spare room, put new data into it, otherwise evict post finger
+ // entry which is likely to be the least recently used.
+ int index = -1;
+ if (size < cache_handle->length()) {
+ cache_handle->set_size(size + JSFunctionResultCache::kEntrySize);
+ index = size;
+ } else {
+ index = finger_index + JSFunctionResultCache::kEntrySize;
+ if (index == cache_handle->length()) {
+ index = JSFunctionResultCache::kEntriesIndex;
+ }
+ }
+
+ DCHECK(index % 2 == 0);
+ DCHECK(index >= JSFunctionResultCache::kEntriesIndex);
+ DCHECK(index < cache_handle->length());
+
+ cache_handle->set(index, *key_handle);
+ cache_handle->set(index + 1, *value);
+ cache_handle->set_finger_index(index);
+
+#ifdef VERIFY_HEAP
+ if (FLAG_verify_heap) {
+ cache_handle->JSFunctionResultCacheVerify();
+ }
+#endif
+
+ return *value;
+}
+
+
+RUNTIME_FUNCTION(Runtime_MessageGetStartPosition) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
+ return Smi::FromInt(message->start_position());
+}
+
+
+RUNTIME_FUNCTION(Runtime_MessageGetScript) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
+ return message->script();
+}
+
+
+#ifdef DEBUG
+// ListNatives is ONLY used by the fuzz-natives.js in debug mode
+// Exclude the code in release mode.
+RUNTIME_FUNCTION(Runtime_ListNatives) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+#define COUNT_ENTRY(Name, argc, ressize) +1
+ int entry_count =
+ 0 RUNTIME_FUNCTION_LIST(COUNT_ENTRY) INLINE_FUNCTION_LIST(COUNT_ENTRY)
+ INLINE_OPTIMIZED_FUNCTION_LIST(COUNT_ENTRY);
+#undef COUNT_ENTRY
+ Factory* factory = isolate->factory();
+ Handle<FixedArray> elements = factory->NewFixedArray(entry_count);
+ int index = 0;
+ bool inline_runtime_functions = false;
+#define ADD_ENTRY(Name, argc, ressize) \
+ { \
+ HandleScope inner(isolate); \
+ Handle<String> name; \
+ /* Inline runtime functions have an underscore in front of the name. */ \
+ if (inline_runtime_functions) { \
+ name = factory->NewStringFromStaticChars("_" #Name); \
+ } else { \
+ name = factory->NewStringFromStaticChars(#Name); \
+ } \
+ Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \
+ pair_elements->set(0, *name); \
+ pair_elements->set(1, Smi::FromInt(argc)); \
+ Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \
+ elements->set(index++, *pair); \
+ }
+ inline_runtime_functions = false;
+ RUNTIME_FUNCTION_LIST(ADD_ENTRY)
+ INLINE_OPTIMIZED_FUNCTION_LIST(ADD_ENTRY)
+ inline_runtime_functions = true;
+ INLINE_FUNCTION_LIST(ADD_ENTRY)
+#undef ADD_ENTRY
+ DCHECK_EQ(index, entry_count);
+ Handle<JSArray> result = factory->NewJSArrayWithElements(elements);
+ return *result;
+}
+#endif
+
+
+RUNTIME_FUNCTION(Runtime_IS_VAR) {
+ UNREACHABLE(); // implemented as macro in the parser
+ return NULL;
+}
+
+
+#define TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, size) \
+ RUNTIME_FUNCTION(Runtime_HasExternal##Type##Elements) { \
+ CONVERT_ARG_CHECKED(JSObject, obj, 0); \
+ return isolate->heap()->ToBoolean(obj->HasExternal##Type##Elements()); \
+ }
+
+TYPED_ARRAYS(TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
+
+#undef TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
+
+
+#define FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, s) \
+ RUNTIME_FUNCTION(Runtime_HasFixed##Type##Elements) { \
+ CONVERT_ARG_CHECKED(JSObject, obj, 0); \
+ return isolate->heap()->ToBoolean(obj->HasFixed##Type##Elements()); \
+ }
+
+TYPED_ARRAYS(FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
+
+#undef FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
+
+
+RUNTIME_FUNCTION(Runtime_IsJSGlobalProxy) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsJSGlobalProxy());
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsObserved) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ if (!args[0]->IsJSReceiver()) return isolate->heap()->false_value();
+ CONVERT_ARG_CHECKED(JSReceiver, obj, 0);
+ DCHECK(!obj->IsJSGlobalProxy() || !obj->map()->is_observed());
+ return isolate->heap()->ToBoolean(obj->map()->is_observed());
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetIsObserved) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSReceiver, obj, 0);
+ RUNTIME_ASSERT(!obj->IsJSGlobalProxy());
+ if (obj->IsJSProxy()) return isolate->heap()->undefined_value();
+ RUNTIME_ASSERT(!obj->map()->is_observed());
+
+ DCHECK(obj->IsJSObject());
+ JSObject::SetObserved(Handle<JSObject>::cast(obj));
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_EnqueueMicrotask) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, microtask, 0);
+ isolate->EnqueueMicrotask(microtask);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_RunMicrotasks) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 0);
+ isolate->RunMicrotasks();
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetObservationState) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ return isolate->heap()->observation_state();
+}
+
+
+static bool ContextsHaveSameOrigin(Handle<Context> context1,
+ Handle<Context> context2) {
+ return context1->security_token() == context2->security_token();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ObserverObjectAndRecordHaveSameOrigin) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, observer, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, record, 2);
+
+ Handle<Context> observer_context(observer->context()->native_context());
+ Handle<Context> object_context(object->GetCreationContext());
+ Handle<Context> record_context(record->GetCreationContext());
+
+ return isolate->heap()->ToBoolean(
+ ContextsHaveSameOrigin(object_context, observer_context) &&
+ ContextsHaveSameOrigin(object_context, record_context));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ObjectWasCreatedInCurrentOrigin) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+ Handle<Context> creation_context(object->GetCreationContext(), isolate);
+ return isolate->heap()->ToBoolean(
+ ContextsHaveSameOrigin(creation_context, isolate->native_context()));
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetObjectContextObjectObserve) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+ Handle<Context> context(object->GetCreationContext(), isolate);
+ return context->native_object_observe();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetObjectContextObjectGetNotifier) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+ Handle<Context> context(object->GetCreationContext(), isolate);
+ return context->native_object_get_notifier();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetObjectContextNotifierPerformChange) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, object_info, 0);
+
+ Handle<Context> context(object_info->GetCreationContext(), isolate);
+ return context->native_object_notifier_perform_change();
+}
+
+
+static Object* ArrayConstructorCommon(Isolate* isolate,
+ Handle<JSFunction> constructor,
+ Handle<AllocationSite> site,
+ Arguments* caller_args) {
+ Factory* factory = isolate->factory();
+
+ bool holey = false;
+ bool can_use_type_feedback = true;
+ if (caller_args->length() == 1) {
+ Handle<Object> argument_one = caller_args->at<Object>(0);
+ if (argument_one->IsSmi()) {
+ int value = Handle<Smi>::cast(argument_one)->value();
+ if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) {
+ // the array is a dictionary in this case.
+ can_use_type_feedback = false;
+ } else if (value != 0) {
+ holey = true;
+ }
+ } else {
+ // Non-smi length argument produces a dictionary
+ can_use_type_feedback = false;
+ }
+ }
+
+ Handle<JSArray> array;
+ if (!site.is_null() && can_use_type_feedback) {
+ ElementsKind to_kind = site->GetElementsKind();
+ if (holey && !IsFastHoleyElementsKind(to_kind)) {
+ to_kind = GetHoleyElementsKind(to_kind);
+ // Update the allocation site info to reflect the advice alteration.
+ site->SetElementsKind(to_kind);
+ }
+
+ // We should allocate with an initial map that reflects the allocation site
+ // advice. Therefore we use AllocateJSObjectFromMap instead of passing
+ // the constructor.
+ Handle<Map> initial_map(constructor->initial_map(), isolate);
+ if (to_kind != initial_map->elements_kind()) {
+ initial_map = Map::AsElementsKind(initial_map, to_kind);
+ }
+
+ // If we don't care to track arrays of to_kind ElementsKind, then
+ // don't emit a memento for them.
+ Handle<AllocationSite> allocation_site;
+ if (AllocationSite::GetMode(to_kind) == TRACK_ALLOCATION_SITE) {
+ allocation_site = site;
+ }
+
+ array = Handle<JSArray>::cast(factory->NewJSObjectFromMap(
+ initial_map, NOT_TENURED, true, allocation_site));
+ } else {
+ array = Handle<JSArray>::cast(factory->NewJSObject(constructor));
+
+ // We might need to transition to holey
+ ElementsKind kind = constructor->initial_map()->elements_kind();
+ if (holey && !IsFastHoleyElementsKind(kind)) {
+ kind = GetHoleyElementsKind(kind);
+ JSObject::TransitionElementsKind(array, kind);
+ }
+ }
+
+ factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS);
+
+ ElementsKind old_kind = array->GetElementsKind();
+ RETURN_FAILURE_ON_EXCEPTION(
+ isolate, ArrayConstructInitializeElements(array, caller_args));
+ if (!site.is_null() &&
+ (old_kind != array->GetElementsKind() || !can_use_type_feedback)) {
+ // The arguments passed in caused a transition. This kind of complexity
+ // can't be dealt with in the inlined hydrogen array constructor case.
+ // We must mark the allocationsite as un-inlinable.
+ site->SetDoNotInlineCall();
+ }
+ return *array;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ArrayConstructor) {
+ HandleScope scope(isolate);
+ // If we get 2 arguments then they are the stub parameters (constructor, type
+ // info). If we get 4, then the first one is a pointer to the arguments
+ // passed by the caller, and the last one is the length of the arguments
+ // passed to the caller (redundant, but useful to check on the deoptimizer
+ // with an assert).
+ Arguments empty_args(0, NULL);
+ bool no_caller_args = args.length() == 2;
+ DCHECK(no_caller_args || args.length() == 4);
+ int parameters_start = no_caller_args ? 0 : 1;
+ Arguments* caller_args =
+ no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
+ CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1);
+#ifdef DEBUG
+ if (!no_caller_args) {
+ CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2);
+ DCHECK(arg_count == caller_args->length());
+ }
+#endif
+
+ Handle<AllocationSite> site;
+ if (!type_info.is_null() &&
+ *type_info != isolate->heap()->undefined_value()) {
+ site = Handle<AllocationSite>::cast(type_info);
+ DCHECK(!site->SitePointsToLiteral());
+ }
+
+ return ArrayConstructorCommon(isolate, constructor, site, caller_args);
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalArrayConstructor) {
+ HandleScope scope(isolate);
+ Arguments empty_args(0, NULL);
+ bool no_caller_args = args.length() == 1;
+ DCHECK(no_caller_args || args.length() == 3);
+ int parameters_start = no_caller_args ? 0 : 1;
+ Arguments* caller_args =
+ no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]);
+ CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
+#ifdef DEBUG
+ if (!no_caller_args) {
+ CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1);
+ DCHECK(arg_count == caller_args->length());
+ }
+#endif
+ return ArrayConstructorCommon(isolate, constructor,
+ Handle<AllocationSite>::null(), caller_args);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NormalizeElements) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
+ RUNTIME_ASSERT(!array->HasExternalArrayElements() &&
+ !array->HasFixedTypedArrayElements());
+ JSObject::NormalizeElements(array);
+ return *array;
+}
+
+
+RUNTIME_FUNCTION(Runtime_MaxSmi) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ return Smi::FromInt(Smi::kMaxValue);
+}
+
+
+// TODO(dcarney): remove this function when TurboFan supports it.
+// Takes the object to be iterated over and the result of GetPropertyNamesFast
+// Returns pair (cache_array, cache_type).
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit) {
+ SealHandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
+ // Not worth creating a macro atm as this function should be removed.
+ if (!args[0]->IsJSReceiver() || !args[1]->IsObject()) {
+ Object* error = isolate->ThrowIllegalOperation();
+ return MakePair(error, isolate->heap()->undefined_value());
+ }
+ Handle<JSReceiver> object = args.at<JSReceiver>(0);
+ Handle<Object> cache_type = args.at<Object>(1);
+ if (cache_type->IsMap()) {
+ // Enum cache case.
+ if (Map::EnumLengthBits::decode(Map::cast(*cache_type)->bit_field3()) ==
+ 0) {
+ // 0 length enum.
+ // Can't handle this case in the graph builder,
+ // so transform it into the empty fixed array case.
+ return MakePair(isolate->heap()->empty_fixed_array(), Smi::FromInt(1));
+ }
+ return MakePair(object->map()->instance_descriptors()->GetEnumCache(),
+ *cache_type);
+ } else {
+ // FixedArray case.
+ Smi* new_cache_type = Smi::FromInt(object->IsJSProxy() ? 0 : 1);
+ return MakePair(*Handle<FixedArray>::cast(cache_type), new_cache_type);
+ }
+}
+
+
+// TODO(dcarney): remove this function when TurboFan supports it.
+RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(Object, cache_type, 0);
+ CONVERT_ARG_HANDLE_CHECKED(FixedArray, array, 1);
+ int length = 0;
+ if (cache_type->IsMap()) {
+ length = Map::cast(*cache_type)->EnumLength();
+ } else {
+ DCHECK(cache_type->IsSmi());
+ length = array->length();
+ }
+ return Smi::FromInt(length);
+}
+
+
+// TODO(dcarney): remove this function when TurboFan supports it.
+// Takes (the object to be iterated over,
+// cache_array from ForInInit,
+// cache_type from ForInInit,
+// the current index)
+// Returns pair (array[index], needs_filtering).
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext) {
+ SealHandleScope scope(isolate);
+ DCHECK(args.length() == 4);
+ int32_t index;
+ // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
+ // Not worth creating a macro atm as this function should be removed.
+ if (!args[0]->IsJSReceiver() || !args[1]->IsFixedArray() ||
+ !args[2]->IsObject() || !args[3]->ToInt32(&index)) {
+ Object* error = isolate->ThrowIllegalOperation();
+ return MakePair(error, isolate->heap()->undefined_value());
+ }
+ Handle<JSReceiver> object = args.at<JSReceiver>(0);
+ Handle<FixedArray> array = args.at<FixedArray>(1);
+ Handle<Object> cache_type = args.at<Object>(2);
+ // Figure out first if a slow check is needed for this object.
+ bool slow_check_needed = false;
+ if (cache_type->IsMap()) {
+ if (object->map() != Map::cast(*cache_type)) {
+ // Object transitioned. Need slow check.
+ slow_check_needed = true;
+ }
+ } else {
+ // No slow check needed for proxies.
+ slow_check_needed = Smi::cast(*cache_type)->value() == 1;
+ }
+ return MakePair(array->get(index),
+ isolate->heap()->ToBoolean(slow_check_needed));
+}
+
+
+// ----------------------------------------------------------------------------
+// Reference implementation for inlined runtime functions. Only used when the
+// compiler does not support a certain intrinsic. Don't optimize these, but
+// implement the intrinsic in the respective compiler instead.
+
+// TODO(mstarzinger): These are place-holder stubs for TurboFan and will
+// eventually all have a C++ implementation and this macro will be gone.
+#define U(name) \
+ RUNTIME_FUNCTION(RuntimeReference_##name) { \
+ UNIMPLEMENTED(); \
+ return NULL; \
+ }
+
+U(IsStringWrapperSafeForDefaultValueOf)
+U(DebugBreakInOptimizedCode)
+
+#undef U
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsSmi) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsSmi());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsSmi() &&
+ Smi::cast(obj)->value() >= 0);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsArray) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsJSArray());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsRegExp) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsJSRegExp());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsConstructCall) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ JavaScriptFrameIterator it(isolate);
+ JavaScriptFrame* frame = it.frame();
+ return isolate->heap()->ToBoolean(frame->IsConstructor());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_CallFunction) {
+ SealHandleScope shs(isolate);
+ return __RT_impl_Runtime_Call(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_ArgumentsLength) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 0);
+ JavaScriptFrameIterator it(isolate);
+ JavaScriptFrame* frame = it.frame();
+ return Smi::FromInt(frame->GetArgumentsLength());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_Arguments) {
+ SealHandleScope shs(isolate);
+ return __RT_impl_Runtime_GetArgumentsProperty(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_ValueOf) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ if (!obj->IsJSValue()) return obj;
+ return JSValue::cast(obj)->value();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_SetValueOf) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ CONVERT_ARG_CHECKED(Object, value, 1);
+ if (!obj->IsJSValue()) return value;
+ JSValue::cast(obj)->set_value(value);
+ return value;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_DateField) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ CONVERT_SMI_ARG_CHECKED(index, 1);
+ if (!obj->IsJSDate()) {
+ HandleScope scope(isolate);
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate,
+ NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
+ }
+ JSDate* date = JSDate::cast(obj);
+ if (index == 0) return date->value();
+ return JSDate::GetField(date, Smi::FromInt(index));
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_ObjectEquals) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_CHECKED(Object, obj1, 0);
+ CONVERT_ARG_CHECKED(Object, obj2, 1);
+ return isolate->heap()->ToBoolean(obj1 == obj2);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsObject) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ if (!obj->IsHeapObject()) return isolate->heap()->false_value();
+ if (obj->IsNull()) return isolate->heap()->true_value();
+ if (obj->IsUndetectableObject()) return isolate->heap()->false_value();
+ Map* map = HeapObject::cast(obj)->map();
+ bool is_non_callable_spec_object =
+ map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE &&
+ map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE;
+ return isolate->heap()->ToBoolean(is_non_callable_spec_object);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsFunction) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsJSFunction());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsUndetectableObject) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsUndetectableObject());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsSpecObject) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ return isolate->heap()->ToBoolean(obj->IsSpecObject());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_GeneratorNext) {
+ UNREACHABLE(); // Optimization disabled in SetUpGenerators().
+ return NULL;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_GeneratorThrow) {
+ UNREACHABLE(); // Optimization disabled in SetUpGenerators().
+ return NULL;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_ClassOf) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ if (!obj->IsJSReceiver()) return isolate->heap()->null_value();
+ return JSReceiver::cast(obj)->class_name();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_GetFromCache) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_SMI_ARG_CHECKED(id, 0);
+ args[0] = isolate->native_context()->jsfunction_result_caches()->get(id);
+ return __RT_impl_Runtime_GetFromCache(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_DebugIsActive) {
+ SealHandleScope shs(isolate);
+ return Smi::FromInt(isolate->debug()->is_active());
+}
+
+
+// ----------------------------------------------------------------------------
+// Implementation of Runtime
+
+#define F(name, number_of_args, result_size) \
+ { \
+ Runtime::k##name, Runtime::RUNTIME, #name, FUNCTION_ADDR(Runtime_##name), \
+ number_of_args, result_size \
+ } \
+ ,
+
+
+#define I(name, number_of_args, result_size) \
+ { \
+ Runtime::kInline##name, Runtime::INLINE, "_" #name, \
+ FUNCTION_ADDR(RuntimeReference_##name), number_of_args, result_size \
+ } \
+ ,
+
+
+#define IO(name, number_of_args, result_size) \
+ { \
+ Runtime::kInlineOptimized##name, Runtime::INLINE_OPTIMIZED, "_" #name, \
+ FUNCTION_ADDR(Runtime_##name), number_of_args, result_size \
+ } \
+ ,
+
+
+static const Runtime::Function kIntrinsicFunctions[] = {
+ RUNTIME_FUNCTION_LIST(F) INLINE_OPTIMIZED_FUNCTION_LIST(F)
+ INLINE_FUNCTION_LIST(I) INLINE_OPTIMIZED_FUNCTION_LIST(IO)};
+
+#undef IO
+#undef I
+#undef F
+
+
+void Runtime::InitializeIntrinsicFunctionNames(Isolate* isolate,
+ Handle<NameDictionary> dict) {
+ DCHECK(dict->NumberOfElements() == 0);
+ HandleScope scope(isolate);
+ for (int i = 0; i < kNumFunctions; ++i) {
+ const char* name = kIntrinsicFunctions[i].name;
+ if (name == NULL) continue;
+ Handle<NameDictionary> new_dict = NameDictionary::Add(
+ dict, isolate->factory()->InternalizeUtf8String(name),
+ Handle<Smi>(Smi::FromInt(i), isolate),
+ PropertyDetails(NONE, NORMAL, Representation::None()));
+ // The dictionary does not need to grow.
+ CHECK(new_dict.is_identical_to(dict));
+ }
+}
+
+
+const Runtime::Function* Runtime::FunctionForName(Handle<String> name) {
+ Heap* heap = name->GetHeap();
+ int entry = heap->intrinsic_function_names()->FindEntry(name);
+ if (entry != kNotFound) {
+ Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry);
+ int function_index = Smi::cast(smi_index)->value();
+ return &(kIntrinsicFunctions[function_index]);
+ }
+ return NULL;
+}
+
+
+const Runtime::Function* Runtime::FunctionForEntry(Address entry) {
+ for (size_t i = 0; i < arraysize(kIntrinsicFunctions); ++i) {
+ if (entry == kIntrinsicFunctions[i].entry) {
+ return &(kIntrinsicFunctions[i]);
+ }
+ }
+ return NULL;
+}
+
+
+const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) {
+ return &(kIntrinsicFunctions[static_cast<int>(id)]);
+}
+}
+} // namespace v8::internal