summaryrefslogtreecommitdiff
path: root/deps/v8/src/runtime/runtime-strings.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/runtime/runtime-strings.cc')
-rw-r--r--deps/v8/src/runtime/runtime-strings.cc1260
1 files changed, 1260 insertions, 0 deletions
diff --git a/deps/v8/src/runtime/runtime-strings.cc b/deps/v8/src/runtime/runtime-strings.cc
new file mode 100644
index 0000000000..82174e96bc
--- /dev/null
+++ b/deps/v8/src/runtime/runtime-strings.cc
@@ -0,0 +1,1260 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/jsregexp-inl.h"
+#include "src/jsregexp.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/runtime/string-builder.h"
+#include "src/string-search.h"
+
+namespace v8 {
+namespace internal {
+
+
+// This may return an empty MaybeHandle if an exception is thrown or
+// we abort due to reaching the recursion limit.
+MaybeHandle<String> StringReplaceOneCharWithString(
+ Isolate* isolate, Handle<String> subject, Handle<String> search,
+ Handle<String> replace, bool* found, int recursion_limit) {
+ StackLimitCheck stackLimitCheck(isolate);
+ if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
+ return MaybeHandle<String>();
+ }
+ recursion_limit--;
+ if (subject->IsConsString()) {
+ ConsString* cons = ConsString::cast(*subject);
+ Handle<String> first = Handle<String>(cons->first());
+ Handle<String> second = Handle<String>(cons->second());
+ Handle<String> new_first;
+ if (!StringReplaceOneCharWithString(isolate, first, search, replace, found,
+ recursion_limit).ToHandle(&new_first)) {
+ return MaybeHandle<String>();
+ }
+ if (*found) return isolate->factory()->NewConsString(new_first, second);
+
+ Handle<String> new_second;
+ if (!StringReplaceOneCharWithString(isolate, second, search, replace, found,
+ recursion_limit)
+ .ToHandle(&new_second)) {
+ return MaybeHandle<String>();
+ }
+ if (*found) return isolate->factory()->NewConsString(first, new_second);
+
+ return subject;
+ } else {
+ int index = Runtime::StringMatch(isolate, subject, search, 0);
+ if (index == -1) return subject;
+ *found = true;
+ Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
+ Handle<String> cons1;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, cons1, isolate->factory()->NewConsString(first, replace),
+ String);
+ Handle<String> second =
+ isolate->factory()->NewSubString(subject, index + 1, subject->length());
+ return isolate->factory()->NewConsString(cons1, second);
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
+
+ // If the cons string tree is too deep, we simply abort the recursion and
+ // retry with a flattened subject string.
+ const int kRecursionLimit = 0x1000;
+ bool found = false;
+ Handle<String> result;
+ if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
+ kRecursionLimit).ToHandle(&result)) {
+ return *result;
+ }
+ if (isolate->has_pending_exception()) return isolate->heap()->exception();
+
+ subject = String::Flatten(subject);
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result,
+ StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
+ kRecursionLimit));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringIndexOf) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
+
+ uint32_t start_index;
+ if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
+
+ RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
+ int position = Runtime::StringMatch(isolate, sub, pat, start_index);
+ return Smi::FromInt(position);
+}
+
+
+template <typename schar, typename pchar>
+static int StringMatchBackwards(Vector<const schar> subject,
+ Vector<const pchar> pattern, int idx) {
+ int pattern_length = pattern.length();
+ DCHECK(pattern_length >= 1);
+ DCHECK(idx + pattern_length <= subject.length());
+
+ if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
+ for (int i = 0; i < pattern_length; i++) {
+ uc16 c = pattern[i];
+ if (c > String::kMaxOneByteCharCode) {
+ return -1;
+ }
+ }
+ }
+
+ pchar pattern_first_char = pattern[0];
+ for (int i = idx; i >= 0; i--) {
+ if (subject[i] != pattern_first_char) continue;
+ int j = 1;
+ while (j < pattern_length) {
+ if (pattern[j] != subject[i + j]) {
+ break;
+ }
+ j++;
+ }
+ if (j == pattern_length) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
+
+ uint32_t start_index;
+ if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
+
+ uint32_t pat_length = pat->length();
+ uint32_t sub_length = sub->length();
+
+ if (start_index + pat_length > sub_length) {
+ start_index = sub_length - pat_length;
+ }
+
+ if (pat_length == 0) {
+ return Smi::FromInt(start_index);
+ }
+
+ sub = String::Flatten(sub);
+ pat = String::Flatten(pat);
+
+ int position = -1;
+ DisallowHeapAllocation no_gc; // ensure vectors stay valid
+
+ String::FlatContent sub_content = sub->GetFlatContent();
+ String::FlatContent pat_content = pat->GetFlatContent();
+
+ if (pat_content.IsOneByte()) {
+ Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
+ if (sub_content.IsOneByte()) {
+ position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
+ start_index);
+ } else {
+ position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
+ start_index);
+ }
+ } else {
+ Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
+ if (sub_content.IsOneByte()) {
+ position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
+ start_index);
+ } else {
+ position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
+ start_index);
+ }
+ }
+
+ return Smi::FromInt(position);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
+
+ if (str1.is_identical_to(str2)) return Smi::FromInt(0); // Equal.
+ int str1_length = str1->length();
+ int str2_length = str2->length();
+
+ // Decide trivial cases without flattening.
+ if (str1_length == 0) {
+ if (str2_length == 0) return Smi::FromInt(0); // Equal.
+ return Smi::FromInt(-str2_length);
+ } else {
+ if (str2_length == 0) return Smi::FromInt(str1_length);
+ }
+
+ int end = str1_length < str2_length ? str1_length : str2_length;
+
+ // No need to flatten if we are going to find the answer on the first
+ // character. At this point we know there is at least one character
+ // in each string, due to the trivial case handling above.
+ int d = str1->Get(0) - str2->Get(0);
+ if (d != 0) return Smi::FromInt(d);
+
+ str1 = String::Flatten(str1);
+ str2 = String::Flatten(str2);
+
+ DisallowHeapAllocation no_gc;
+ String::FlatContent flat1 = str1->GetFlatContent();
+ String::FlatContent flat2 = str2->GetFlatContent();
+
+ for (int i = 0; i < end; i++) {
+ if (flat1.Get(i) != flat2.Get(i)) {
+ return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
+ }
+ }
+
+ return Smi::FromInt(str1_length - str2_length);
+}
+
+
+RUNTIME_FUNCTION(Runtime_SubString) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
+ int start, end;
+ // We have a fast integer-only case here to avoid a conversion to double in
+ // the common case where from and to are Smis.
+ if (args[1]->IsSmi() && args[2]->IsSmi()) {
+ CONVERT_SMI_ARG_CHECKED(from_number, 1);
+ CONVERT_SMI_ARG_CHECKED(to_number, 2);
+ start = from_number;
+ end = to_number;
+ } else {
+ CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
+ CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
+ start = FastD2IChecked(from_number);
+ end = FastD2IChecked(to_number);
+ }
+ RUNTIME_ASSERT(end >= start);
+ RUNTIME_ASSERT(start >= 0);
+ RUNTIME_ASSERT(end <= string->length());
+ isolate->counters()->sub_string_runtime()->Increment();
+
+ return *isolate->factory()->NewSubString(string, start, end);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringAdd) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
+ isolate->counters()->string_add_runtime()->Increment();
+ Handle<String> result;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, isolate->factory()->NewConsString(str1, str2));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalizeString) {
+ HandleScope handles(isolate);
+ RUNTIME_ASSERT(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
+ return *isolate->factory()->InternalizeString(string);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringMatch) {
+ HandleScope handles(isolate);
+ DCHECK(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+ CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
+
+ RUNTIME_ASSERT(regexp_info->HasFastObjectElements());
+
+ RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
+ if (global_cache.HasException()) return isolate->heap()->exception();
+
+ int capture_count = regexp->CaptureCount();
+
+ ZoneScope zone_scope(isolate->runtime_zone());
+ ZoneList<int> offsets(8, zone_scope.zone());
+
+ while (true) {
+ int32_t* match = global_cache.FetchNext();
+ if (match == NULL) break;
+ offsets.Add(match[0], zone_scope.zone()); // start
+ offsets.Add(match[1], zone_scope.zone()); // end
+ }
+
+ if (global_cache.HasException()) return isolate->heap()->exception();
+
+ if (offsets.length() == 0) {
+ // Not a single match.
+ return isolate->heap()->null_value();
+ }
+
+ RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count,
+ global_cache.LastSuccessfulMatch());
+
+ int matches = offsets.length() / 2;
+ Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
+ Handle<String> substring =
+ isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
+ elements->set(0, *substring);
+ for (int i = 1; i < matches; i++) {
+ HandleScope temp_scope(isolate);
+ int from = offsets.at(i * 2);
+ int to = offsets.at(i * 2 + 1);
+ Handle<String> substring =
+ isolate->factory()->NewProperSubString(subject, from, to);
+ elements->set(i, *substring);
+ }
+ Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
+ result->set_length(Smi::FromInt(matches));
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+ CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
+
+ // Flatten the string. If someone wants to get a char at an index
+ // in a cons string, it is likely that more indices will be
+ // accessed.
+ subject = String::Flatten(subject);
+
+ if (i >= static_cast<uint32_t>(subject->length())) {
+ return isolate->heap()->nan_value();
+ }
+
+ return Smi::FromInt(subject->Get(i));
+}
+
+
+RUNTIME_FUNCTION(Runtime_CharFromCode) {
+ HandleScope handlescope(isolate);
+ DCHECK(args.length() == 1);
+ if (args[0]->IsNumber()) {
+ CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
+ code &= 0xffff;
+ return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
+ }
+ return isolate->heap()->empty_string();
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringCompare) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
+
+ isolate->counters()->string_compare_runtime()->Increment();
+
+ // A few fast case tests before we flatten.
+ if (x.is_identical_to(y)) return Smi::FromInt(EQUAL);
+ if (y->length() == 0) {
+ if (x->length() == 0) return Smi::FromInt(EQUAL);
+ return Smi::FromInt(GREATER);
+ } else if (x->length() == 0) {
+ return Smi::FromInt(LESS);
+ }
+
+ int d = x->Get(0) - y->Get(0);
+ if (d < 0)
+ return Smi::FromInt(LESS);
+ else if (d > 0)
+ return Smi::FromInt(GREATER);
+
+ // Slow case.
+ x = String::Flatten(x);
+ y = String::Flatten(y);
+
+ DisallowHeapAllocation no_gc;
+ Object* equal_prefix_result = Smi::FromInt(EQUAL);
+ int prefix_length = x->length();
+ if (y->length() < prefix_length) {
+ prefix_length = y->length();
+ equal_prefix_result = Smi::FromInt(GREATER);
+ } else if (y->length() > prefix_length) {
+ equal_prefix_result = Smi::FromInt(LESS);
+ }
+ int r;
+ String::FlatContent x_content = x->GetFlatContent();
+ String::FlatContent y_content = y->GetFlatContent();
+ if (x_content.IsOneByte()) {
+ Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
+ if (y_content.IsOneByte()) {
+ Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+ } else {
+ Vector<const uc16> y_chars = y_content.ToUC16Vector();
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+ }
+ } else {
+ Vector<const uc16> x_chars = x_content.ToUC16Vector();
+ if (y_content.IsOneByte()) {
+ Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+ } else {
+ Vector<const uc16> y_chars = y_content.ToUC16Vector();
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+ }
+ }
+ Object* result;
+ if (r == 0) {
+ result = equal_prefix_result;
+ } else {
+ result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
+ }
+ return result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+ int32_t array_length;
+ if (!args[1]->ToInt32(&array_length)) {
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
+ }
+ CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
+
+ size_t actual_array_length = 0;
+ RUNTIME_ASSERT(
+ TryNumberToSize(isolate, array->length(), &actual_array_length));
+ RUNTIME_ASSERT(array_length >= 0);
+ RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length);
+
+ // This assumption is used by the slice encoding in one or two smis.
+ DCHECK(Smi::kMaxValue >= String::kMaxLength);
+
+ RUNTIME_ASSERT(array->HasFastElements());
+ JSObject::EnsureCanContainHeapObjectElements(array);
+
+ int special_length = special->length();
+ if (!array->HasFastObjectElements()) {
+ return isolate->Throw(isolate->heap()->illegal_argument_string());
+ }
+
+ int length;
+ bool one_byte = special->HasOnlyOneByteChars();
+
+ {
+ DisallowHeapAllocation no_gc;
+ FixedArray* fixed_array = FixedArray::cast(array->elements());
+ if (fixed_array->length() < array_length) {
+ array_length = fixed_array->length();
+ }
+
+ if (array_length == 0) {
+ return isolate->heap()->empty_string();
+ } else if (array_length == 1) {
+ Object* first = fixed_array->get(0);
+ if (first->IsString()) return first;
+ }
+ length = StringBuilderConcatLength(special_length, fixed_array,
+ array_length, &one_byte);
+ }
+
+ if (length == -1) {
+ return isolate->Throw(isolate->heap()->illegal_argument_string());
+ }
+
+ if (one_byte) {
+ Handle<SeqOneByteString> answer;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, answer, isolate->factory()->NewRawOneByteString(length));
+ StringBuilderConcatHelper(*special, answer->GetChars(),
+ FixedArray::cast(array->elements()),
+ array_length);
+ return *answer;
+ } else {
+ Handle<SeqTwoByteString> answer;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, answer, isolate->factory()->NewRawTwoByteString(length));
+ StringBuilderConcatHelper(*special, answer->GetChars(),
+ FixedArray::cast(array->elements()),
+ array_length);
+ return *answer;
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+ int32_t array_length;
+ if (!args[1]->ToInt32(&array_length)) {
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
+ }
+ CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
+ RUNTIME_ASSERT(array->HasFastObjectElements());
+ RUNTIME_ASSERT(array_length >= 0);
+
+ Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
+ if (fixed_array->length() < array_length) {
+ array_length = fixed_array->length();
+ }
+
+ if (array_length == 0) {
+ return isolate->heap()->empty_string();
+ } else if (array_length == 1) {
+ Object* first = fixed_array->get(0);
+ RUNTIME_ASSERT(first->IsString());
+ return first;
+ }
+
+ int separator_length = separator->length();
+ RUNTIME_ASSERT(separator_length > 0);
+ int max_nof_separators =
+ (String::kMaxLength + separator_length - 1) / separator_length;
+ if (max_nof_separators < (array_length - 1)) {
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
+ }
+ int length = (array_length - 1) * separator_length;
+ for (int i = 0; i < array_length; i++) {
+ Object* element_obj = fixed_array->get(i);
+ RUNTIME_ASSERT(element_obj->IsString());
+ String* element = String::cast(element_obj);
+ int increment = element->length();
+ if (increment > String::kMaxLength - length) {
+ STATIC_ASSERT(String::kMaxLength < kMaxInt);
+ length = kMaxInt; // Provoke exception;
+ break;
+ }
+ length += increment;
+ }
+
+ Handle<SeqTwoByteString> answer;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, answer, isolate->factory()->NewRawTwoByteString(length));
+
+ DisallowHeapAllocation no_gc;
+
+ uc16* sink = answer->GetChars();
+#ifdef DEBUG
+ uc16* end = sink + length;
+#endif
+
+ RUNTIME_ASSERT(fixed_array->get(0)->IsString());
+ String* first = String::cast(fixed_array->get(0));
+ String* separator_raw = *separator;
+ int first_length = first->length();
+ String::WriteToFlat(first, sink, 0, first_length);
+ sink += first_length;
+
+ for (int i = 1; i < array_length; i++) {
+ DCHECK(sink + separator_length <= end);
+ String::WriteToFlat(separator_raw, sink, 0, separator_length);
+ sink += separator_length;
+
+ RUNTIME_ASSERT(fixed_array->get(i)->IsString());
+ String* element = String::cast(fixed_array->get(i));
+ int element_length = element->length();
+ DCHECK(sink + element_length <= end);
+ String::WriteToFlat(element, sink, 0, element_length);
+ sink += element_length;
+ }
+ DCHECK(sink == end);
+
+ // Use %_FastOneByteArrayJoin instead.
+ DCHECK(!answer->IsOneByteRepresentation());
+ return *answer;
+}
+
+template <typename Char>
+static void JoinSparseArrayWithSeparator(FixedArray* elements,
+ int elements_length,
+ uint32_t array_length,
+ String* separator,
+ Vector<Char> buffer) {
+ DisallowHeapAllocation no_gc;
+ int previous_separator_position = 0;
+ int separator_length = separator->length();
+ int cursor = 0;
+ for (int i = 0; i < elements_length; i += 2) {
+ int position = NumberToInt32(elements->get(i));
+ String* string = String::cast(elements->get(i + 1));
+ int string_length = string->length();
+ if (string->length() > 0) {
+ while (previous_separator_position < position) {
+ String::WriteToFlat<Char>(separator, &buffer[cursor], 0,
+ separator_length);
+ cursor += separator_length;
+ previous_separator_position++;
+ }
+ String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length);
+ cursor += string->length();
+ }
+ }
+ if (separator_length > 0) {
+ // Array length must be representable as a signed 32-bit number,
+ // otherwise the total string length would have been too large.
+ DCHECK(array_length <= 0x7fffffff); // Is int32_t.
+ int last_array_index = static_cast<int>(array_length - 1);
+ while (previous_separator_position < last_array_index) {
+ String::WriteToFlat<Char>(separator, &buffer[cursor], 0,
+ separator_length);
+ cursor += separator_length;
+ previous_separator_position++;
+ }
+ }
+ DCHECK(cursor <= buffer.length());
+}
+
+
+RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
+ CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
+ CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
+ // elements_array is fast-mode JSarray of alternating positions
+ // (increasing order) and strings.
+ RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements());
+ // array_length is length of original array (used to add separators);
+ // separator is string to put between elements. Assumed to be non-empty.
+ RUNTIME_ASSERT(array_length > 0);
+
+ // Find total length of join result.
+ int string_length = 0;
+ bool is_one_byte = separator->IsOneByteRepresentation();
+ bool overflow = false;
+ CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
+ RUNTIME_ASSERT(elements_length <= elements_array->elements()->length());
+ RUNTIME_ASSERT((elements_length & 1) == 0); // Even length.
+ FixedArray* elements = FixedArray::cast(elements_array->elements());
+ for (int i = 0; i < elements_length; i += 2) {
+ RUNTIME_ASSERT(elements->get(i)->IsNumber());
+ CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i));
+ RUNTIME_ASSERT(position < array_length);
+ RUNTIME_ASSERT(elements->get(i + 1)->IsString());
+ }
+
+ {
+ DisallowHeapAllocation no_gc;
+ for (int i = 0; i < elements_length; i += 2) {
+ String* string = String::cast(elements->get(i + 1));
+ int length = string->length();
+ if (is_one_byte && !string->IsOneByteRepresentation()) {
+ is_one_byte = false;
+ }
+ if (length > String::kMaxLength ||
+ String::kMaxLength - length < string_length) {
+ overflow = true;
+ break;
+ }
+ string_length += length;
+ }
+ }
+
+ int separator_length = separator->length();
+ if (!overflow && separator_length > 0) {
+ if (array_length <= 0x7fffffffu) {
+ int separator_count = static_cast<int>(array_length) - 1;
+ int remaining_length = String::kMaxLength - string_length;
+ if ((remaining_length / separator_length) >= separator_count) {
+ string_length += separator_length * (array_length - 1);
+ } else {
+ // Not room for the separators within the maximal string length.
+ overflow = true;
+ }
+ } else {
+ // Nonempty separator and at least 2^31-1 separators necessary
+ // means that the string is too large to create.
+ STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
+ overflow = true;
+ }
+ }
+ if (overflow) {
+ // Throw an exception if the resulting string is too large. See
+ // https://code.google.com/p/chromium/issues/detail?id=336820
+ // for details.
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
+ }
+
+ if (is_one_byte) {
+ Handle<SeqOneByteString> result = isolate->factory()
+ ->NewRawOneByteString(string_length)
+ .ToHandleChecked();
+ JoinSparseArrayWithSeparator<uint8_t>(
+ FixedArray::cast(elements_array->elements()), elements_length,
+ array_length, *separator,
+ Vector<uint8_t>(result->GetChars(), string_length));
+ return *result;
+ } else {
+ Handle<SeqTwoByteString> result = isolate->factory()
+ ->NewRawTwoByteString(string_length)
+ .ToHandleChecked();
+ JoinSparseArrayWithSeparator<uc16>(
+ FixedArray::cast(elements_array->elements()), elements_length,
+ array_length, *separator,
+ Vector<uc16>(result->GetChars(), string_length));
+ return *result;
+ }
+}
+
+
+// Copies Latin1 characters to the given fixed array looking up
+// one-char strings in the cache. Gives up on the first char that is
+// not in the cache and fills the remainder with smi zeros. Returns
+// the length of the successfully copied prefix.
+static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
+ FixedArray* elements, int length) {
+ DisallowHeapAllocation no_gc;
+ FixedArray* one_byte_cache = heap->single_character_string_cache();
+ Object* undefined = heap->undefined_value();
+ int i;
+ WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
+ for (i = 0; i < length; ++i) {
+ Object* value = one_byte_cache->get(chars[i]);
+ if (value == undefined) break;
+ elements->set(i, value, mode);
+ }
+ if (i < length) {
+ DCHECK(Smi::FromInt(0) == 0);
+ memset(elements->data_start() + i, 0, kPointerSize * (length - i));
+ }
+#ifdef DEBUG
+ for (int j = 0; j < length; ++j) {
+ Object* element = elements->get(j);
+ DCHECK(element == Smi::FromInt(0) ||
+ (element->IsString() && String::cast(element)->LooksValid()));
+ }
+#endif
+ return i;
+}
+
+
+// Converts a String to JSArray.
+// For example, "foo" => ["f", "o", "o"].
+RUNTIME_FUNCTION(Runtime_StringToArray) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
+ CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
+
+ s = String::Flatten(s);
+ const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
+
+ Handle<FixedArray> elements;
+ int position = 0;
+ if (s->IsFlat() && s->IsOneByteRepresentation()) {
+ // Try using cached chars where possible.
+ elements = isolate->factory()->NewUninitializedFixedArray(length);
+
+ DisallowHeapAllocation no_gc;
+ String::FlatContent content = s->GetFlatContent();
+ if (content.IsOneByte()) {
+ Vector<const uint8_t> chars = content.ToOneByteVector();
+ // Note, this will initialize all elements (not only the prefix)
+ // to prevent GC from seeing partially initialized array.
+ position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
+ *elements, length);
+ } else {
+ MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(),
+ length);
+ }
+ } else {
+ elements = isolate->factory()->NewFixedArray(length);
+ }
+ for (int i = position; i < length; ++i) {
+ Handle<Object> str =
+ isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
+ elements->set(i, *str);
+ }
+
+#ifdef DEBUG
+ for (int i = 0; i < length; ++i) {
+ DCHECK(String::cast(elements->get(i))->length() == 1);
+ }
+#endif
+
+ return *isolate->factory()->NewJSArrayWithElements(elements);
+}
+
+
+static inline bool ToUpperOverflows(uc32 character) {
+ // y with umlauts and the micro sign are the only characters that stop
+ // fitting into one-byte when converting to uppercase.
+ static const uc32 yuml_code = 0xff;
+ static const uc32 micro_code = 0xb5;
+ return (character == yuml_code || character == micro_code);
+}
+
+
+template <class Converter>
+MUST_USE_RESULT static Object* ConvertCaseHelper(
+ Isolate* isolate, String* string, SeqString* result, int result_length,
+ unibrow::Mapping<Converter, 128>* mapping) {
+ DisallowHeapAllocation no_gc;
+ // We try this twice, once with the assumption that the result is no longer
+ // than the input and, if that assumption breaks, again with the exact
+ // length. This may not be pretty, but it is nicer than what was here before
+ // and I hereby claim my vaffel-is.
+ //
+ // NOTE: This assumes that the upper/lower case of an ASCII
+ // character is also ASCII. This is currently the case, but it
+ // might break in the future if we implement more context and locale
+ // dependent upper/lower conversions.
+ bool has_changed_character = false;
+
+ // Convert all characters to upper case, assuming that they will fit
+ // in the buffer
+ Access<ConsStringIteratorOp> op(isolate->runtime_state()->string_iterator());
+ StringCharacterStream stream(string, op.value());
+ unibrow::uchar chars[Converter::kMaxWidth];
+ // We can assume that the string is not empty
+ uc32 current = stream.GetNext();
+ bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
+ for (int i = 0; i < result_length;) {
+ bool has_next = stream.HasMore();
+ uc32 next = has_next ? stream.GetNext() : 0;
+ int char_length = mapping->get(current, next, chars);
+ if (char_length == 0) {
+ // The case conversion of this character is the character itself.
+ result->Set(i, current);
+ i++;
+ } else if (char_length == 1 &&
+ (ignore_overflow || !ToUpperOverflows(current))) {
+ // Common case: converting the letter resulted in one character.
+ DCHECK(static_cast<uc32>(chars[0]) != current);
+ result->Set(i, chars[0]);
+ has_changed_character = true;
+ i++;
+ } else if (result_length == string->length()) {
+ bool overflows = ToUpperOverflows(current);
+ // We've assumed that the result would be as long as the
+ // input but here is a character that converts to several
+ // characters. No matter, we calculate the exact length
+ // of the result and try the whole thing again.
+ //
+ // Note that this leaves room for optimization. We could just
+ // memcpy what we already have to the result string. Also,
+ // the result string is the last object allocated we could
+ // "realloc" it and probably, in the vast majority of cases,
+ // extend the existing string to be able to hold the full
+ // result.
+ int next_length = 0;
+ if (has_next) {
+ next_length = mapping->get(next, 0, chars);
+ if (next_length == 0) next_length = 1;
+ }
+ int current_length = i + char_length + next_length;
+ while (stream.HasMore()) {
+ current = stream.GetNext();
+ overflows |= ToUpperOverflows(current);
+ // NOTE: we use 0 as the next character here because, while
+ // the next character may affect what a character converts to,
+ // it does not in any case affect the length of what it convert
+ // to.
+ int char_length = mapping->get(current, 0, chars);
+ if (char_length == 0) char_length = 1;
+ current_length += char_length;
+ if (current_length > String::kMaxLength) {
+ AllowHeapAllocation allocate_error_and_return;
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate,
+ NewInvalidStringLengthError());
+ }
+ }
+ // Try again with the real length. Return signed if we need
+ // to allocate a two-byte string for to uppercase.
+ return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
+ : Smi::FromInt(current_length);
+ } else {
+ for (int j = 0; j < char_length; j++) {
+ result->Set(i, chars[j]);
+ i++;
+ }
+ has_changed_character = true;
+ }
+ current = next;
+ }
+ if (has_changed_character) {
+ return result;
+ } else {
+ // If we didn't actually change anything in doing the conversion
+ // we simple return the result and let the converted string
+ // become garbage; there is no reason to keep two identical strings
+ // alive.
+ return string;
+ }
+}
+
+
+static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
+static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
+
+// Given a word and two range boundaries returns a word with high bit
+// set in every byte iff the corresponding input byte was strictly in
+// the range (m, n). All the other bits in the result are cleared.
+// This function is only useful when it can be inlined and the
+// boundaries are statically known.
+// Requires: all bytes in the input word and the boundaries must be
+// ASCII (less than 0x7F).
+static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
+ // Use strict inequalities since in edge cases the function could be
+ // further simplified.
+ DCHECK(0 < m && m < n);
+ // Has high bit set in every w byte less than n.
+ uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
+ // Has high bit set in every w byte greater than m.
+ uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
+ return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
+}
+
+
+#ifdef DEBUG
+static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
+ bool changed, bool is_to_lower) {
+ bool expected_changed = false;
+ for (int i = 0; i < length; i++) {
+ if (dst[i] == src[i]) continue;
+ expected_changed = true;
+ if (is_to_lower) {
+ DCHECK('A' <= src[i] && src[i] <= 'Z');
+ DCHECK(dst[i] == src[i] + ('a' - 'A'));
+ } else {
+ DCHECK('a' <= src[i] && src[i] <= 'z');
+ DCHECK(dst[i] == src[i] - ('a' - 'A'));
+ }
+ }
+ return (expected_changed == changed);
+}
+#endif
+
+
+template <class Converter>
+static bool FastAsciiConvert(char* dst, const char* src, int length,
+ bool* changed_out) {
+#ifdef DEBUG
+ char* saved_dst = dst;
+ const char* saved_src = src;
+#endif
+ DisallowHeapAllocation no_gc;
+ // We rely on the distance between upper and lower case letters
+ // being a known power of 2.
+ DCHECK('a' - 'A' == (1 << 5));
+ // Boundaries for the range of input characters than require conversion.
+ static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
+ static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
+ bool changed = false;
+ uintptr_t or_acc = 0;
+ const char* const limit = src + length;
+
+ // dst is newly allocated and always aligned.
+ DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
+ // Only attempt processing one word at a time if src is also aligned.
+ if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
+ // Process the prefix of the input that requires no conversion one aligned
+ // (machine) word at a time.
+ while (src <= limit - sizeof(uintptr_t)) {
+ const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
+ or_acc |= w;
+ if (AsciiRangeMask(w, lo, hi) != 0) {
+ changed = true;
+ break;
+ }
+ *reinterpret_cast<uintptr_t*>(dst) = w;
+ src += sizeof(uintptr_t);
+ dst += sizeof(uintptr_t);
+ }
+ // Process the remainder of the input performing conversion when
+ // required one word at a time.
+ while (src <= limit - sizeof(uintptr_t)) {
+ const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
+ or_acc |= w;
+ uintptr_t m = AsciiRangeMask(w, lo, hi);
+ // The mask has high (7th) bit set in every byte that needs
+ // conversion and we know that the distance between cases is
+ // 1 << 5.
+ *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
+ src += sizeof(uintptr_t);
+ dst += sizeof(uintptr_t);
+ }
+ }
+ // Process the last few bytes of the input (or the whole input if
+ // unaligned access is not supported).
+ while (src < limit) {
+ char c = *src;
+ or_acc |= c;
+ if (lo < c && c < hi) {
+ c ^= (1 << 5);
+ changed = true;
+ }
+ *dst = c;
+ ++src;
+ ++dst;
+ }
+
+ if ((or_acc & kAsciiMask) != 0) return false;
+
+ DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
+ Converter::kIsToLower));
+
+ *changed_out = changed;
+ return true;
+}
+
+
+template <class Converter>
+MUST_USE_RESULT static Object* ConvertCase(
+ Handle<String> s, Isolate* isolate,
+ unibrow::Mapping<Converter, 128>* mapping) {
+ s = String::Flatten(s);
+ int length = s->length();
+ // Assume that the string is not empty; we need this assumption later
+ if (length == 0) return *s;
+
+ // Simpler handling of ASCII strings.
+ //
+ // NOTE: This assumes that the upper/lower case of an ASCII
+ // character is also ASCII. This is currently the case, but it
+ // might break in the future if we implement more context and locale
+ // dependent upper/lower conversions.
+ if (s->IsOneByteRepresentationUnderneath()) {
+ // Same length as input.
+ Handle<SeqOneByteString> result =
+ isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
+ DisallowHeapAllocation no_gc;
+ String::FlatContent flat_content = s->GetFlatContent();
+ DCHECK(flat_content.IsFlat());
+ bool has_changed_character = false;
+ bool is_ascii = FastAsciiConvert<Converter>(
+ reinterpret_cast<char*>(result->GetChars()),
+ reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
+ length, &has_changed_character);
+ // If not ASCII, we discard the result and take the 2 byte path.
+ if (is_ascii) return has_changed_character ? *result : *s;
+ }
+
+ Handle<SeqString> result; // Same length as input.
+ if (s->IsOneByteRepresentation()) {
+ result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
+ } else {
+ result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
+ }
+
+ Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
+ if (answer->IsException() || answer->IsString()) return answer;
+
+ DCHECK(answer->IsSmi());
+ length = Smi::cast(answer)->value();
+ if (s->IsOneByteRepresentation() && length > 0) {
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, isolate->factory()->NewRawOneByteString(length));
+ } else {
+ if (length < 0) length = -length;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, isolate->factory()->NewRawTwoByteString(length));
+ }
+ return ConvertCaseHelper(isolate, *s, *result, length, mapping);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
+ return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
+ return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringTrim) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 3);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
+ CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1);
+ CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2);
+
+ string = String::Flatten(string);
+ int length = string->length();
+
+ int left = 0;
+ UnicodeCache* unicode_cache = isolate->unicode_cache();
+ if (trimLeft) {
+ while (left < length &&
+ unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
+ left++;
+ }
+ }
+
+ int right = length;
+ if (trimRight) {
+ while (
+ right > left &&
+ unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) {
+ right--;
+ }
+ }
+
+ return *isolate->factory()->NewSubString(string, left, right);
+}
+
+
+RUNTIME_FUNCTION(Runtime_TruncateString) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0);
+ CONVERT_INT32_ARG_CHECKED(new_length, 1);
+ RUNTIME_ASSERT(new_length >= 0);
+ return *SeqString::Truncate(string, new_length);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewString) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_INT32_ARG_CHECKED(length, 0);
+ CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1);
+ if (length == 0) return isolate->heap()->empty_string();
+ Handle<String> result;
+ if (is_one_byte) {
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, isolate->factory()->NewRawOneByteString(length));
+ } else {
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, isolate->factory()->NewRawTwoByteString(length));
+ }
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringEquals) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
+ CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
+
+ bool not_equal = !String::Equals(x, y);
+ // This is slightly convoluted because the value that signifies
+ // equality is 0 and inequality is 1 so we have to negate the result
+ // from String::Equals.
+ DCHECK(not_equal == 0 || not_equal == 1);
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(NOT_EQUAL == 1);
+ return Smi::FromInt(not_equal);
+}
+
+
+RUNTIME_FUNCTION(Runtime_FlattenString) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
+ return *String::Flatten(str);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode) {
+ SealHandleScope shs(isolate);
+ return __RT_impl_Runtime_CharFromCode(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringCharAt) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ if (!args[0]->IsString()) return Smi::FromInt(0);
+ if (!args[1]->IsNumber()) return Smi::FromInt(0);
+ if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string();
+ Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
+ if (code->IsNaN()) return isolate->heap()->empty_string();
+ return __RT_impl_Runtime_CharFromCode(Arguments(1, &code), isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_INT32_ARG_CHECKED(index, 0);
+ CONVERT_INT32_ARG_CHECKED(value, 1);
+ CONVERT_ARG_CHECKED(SeqOneByteString, string, 2);
+ string->SeqOneByteStringSet(index, value);
+ return string;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 3);
+ CONVERT_INT32_ARG_CHECKED(index, 0);
+ CONVERT_INT32_ARG_CHECKED(value, 1);
+ CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2);
+ string->SeqTwoByteStringSet(index, value);
+ return string;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringCompare) {
+ SealHandleScope shs(isolate);
+ return __RT_impl_Runtime_StringCompare(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ if (!args[0]->IsString()) return isolate->heap()->undefined_value();
+ if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
+ if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
+ return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_SubString) {
+ SealHandleScope shs(isolate);
+ return __RT_impl_Runtime_SubString(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringAdd) {
+ SealHandleScope shs(isolate);
+ return __RT_impl_Runtime_StringAdd(args, isolate);
+}
+}
+} // namespace v8::internal