summaryrefslogtreecommitdiff
path: root/deps/v8/src/runtime/runtime-maths.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/runtime/runtime-maths.cc')
-rw-r--r--deps/v8/src/runtime/runtime-maths.cc247
1 files changed, 247 insertions, 0 deletions
diff --git a/deps/v8/src/runtime/runtime-maths.cc b/deps/v8/src/runtime/runtime-maths.cc
new file mode 100644
index 0000000000..16acb390f2
--- /dev/null
+++ b/deps/v8/src/runtime/runtime-maths.cc
@@ -0,0 +1,247 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/assembler.h"
+#include "src/codegen.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+#include "third_party/fdlibm/fdlibm.h"
+
+
+namespace v8 {
+namespace internal {
+
+#define RUNTIME_UNARY_MATH(Name, name) \
+ RUNTIME_FUNCTION(Runtime_Math##Name) { \
+ HandleScope scope(isolate); \
+ DCHECK(args.length() == 1); \
+ isolate->counters()->math_##name()->Increment(); \
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); \
+ return *isolate->factory()->NewHeapNumber(std::name(x)); \
+ }
+
+RUNTIME_UNARY_MATH(Acos, acos)
+RUNTIME_UNARY_MATH(Asin, asin)
+RUNTIME_UNARY_MATH(Atan, atan)
+RUNTIME_UNARY_MATH(LogRT, log)
+#undef RUNTIME_UNARY_MATH
+
+
+RUNTIME_FUNCTION(Runtime_DoubleHi) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ uint64_t integer = double_to_uint64(x);
+ integer = (integer >> 32) & 0xFFFFFFFFu;
+ return *isolate->factory()->NewNumber(static_cast<int32_t>(integer));
+}
+
+
+RUNTIME_FUNCTION(Runtime_DoubleLo) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ return *isolate->factory()->NewNumber(
+ static_cast<int32_t>(double_to_uint64(x) & 0xFFFFFFFFu));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ConstructDouble) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_NUMBER_CHECKED(uint32_t, hi, Uint32, args[0]);
+ CONVERT_NUMBER_CHECKED(uint32_t, lo, Uint32, args[1]);
+ uint64_t result = (static_cast<uint64_t>(hi) << 32) | lo;
+ return *isolate->factory()->NewNumber(uint64_to_double(result));
+}
+
+
+RUNTIME_FUNCTION(Runtime_RemPiO2) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ Factory* factory = isolate->factory();
+ double y[2];
+ int n = fdlibm::rempio2(x, y);
+ Handle<FixedArray> array = factory->NewFixedArray(3);
+ Handle<HeapNumber> y0 = factory->NewHeapNumber(y[0]);
+ Handle<HeapNumber> y1 = factory->NewHeapNumber(y[1]);
+ array->set(0, Smi::FromInt(n));
+ array->set(1, *y0);
+ array->set(2, *y1);
+ return *factory->NewJSArrayWithElements(array);
+}
+
+
+static const double kPiDividedBy4 = 0.78539816339744830962;
+
+
+RUNTIME_FUNCTION(Runtime_MathAtan2) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ isolate->counters()->math_atan2()->Increment();
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ double result;
+ if (std::isinf(x) && std::isinf(y)) {
+ // Make sure that the result in case of two infinite arguments
+ // is a multiple of Pi / 4. The sign of the result is determined
+ // by the first argument (x) and the sign of the second argument
+ // determines the multiplier: one or three.
+ int multiplier = (x < 0) ? -1 : 1;
+ if (y < 0) multiplier *= 3;
+ result = multiplier * kPiDividedBy4;
+ } else {
+ result = std::atan2(x, y);
+ }
+ return *isolate->factory()->NewNumber(result);
+}
+
+
+RUNTIME_FUNCTION(Runtime_MathExpRT) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ isolate->counters()->math_exp()->Increment();
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ lazily_initialize_fast_exp();
+ return *isolate->factory()->NewNumber(fast_exp(x));
+}
+
+
+RUNTIME_FUNCTION(Runtime_MathFloorRT) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ isolate->counters()->math_floor()->Increment();
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ return *isolate->factory()->NewNumber(Floor(x));
+}
+
+
+// Slow version of Math.pow. We check for fast paths for special cases.
+// Used if VFP3 is not available.
+RUNTIME_FUNCTION(Runtime_MathPowSlow) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ isolate->counters()->math_pow()->Increment();
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+
+ // If the second argument is a smi, it is much faster to call the
+ // custom powi() function than the generic pow().
+ if (args[1]->IsSmi()) {
+ int y = args.smi_at(1);
+ return *isolate->factory()->NewNumber(power_double_int(x, y));
+ }
+
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ double result = power_helper(x, y);
+ if (std::isnan(result)) return isolate->heap()->nan_value();
+ return *isolate->factory()->NewNumber(result);
+}
+
+
+// Fast version of Math.pow if we know that y is not an integer and y is not
+// -0.5 or 0.5. Used as slow case from full codegen.
+RUNTIME_FUNCTION(Runtime_MathPowRT) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ isolate->counters()->math_pow()->Increment();
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ if (y == 0) {
+ return Smi::FromInt(1);
+ } else {
+ double result = power_double_double(x, y);
+ if (std::isnan(result)) return isolate->heap()->nan_value();
+ return *isolate->factory()->NewNumber(result);
+ }
+}
+
+
+RUNTIME_FUNCTION(Runtime_RoundNumber) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_NUMBER_ARG_HANDLE_CHECKED(input, 0);
+ isolate->counters()->math_round()->Increment();
+
+ if (!input->IsHeapNumber()) {
+ DCHECK(input->IsSmi());
+ return *input;
+ }
+
+ Handle<HeapNumber> number = Handle<HeapNumber>::cast(input);
+
+ double value = number->value();
+ int exponent = number->get_exponent();
+ int sign = number->get_sign();
+
+ if (exponent < -1) {
+ // Number in range ]-0.5..0.5[. These always round to +/-zero.
+ if (sign) return isolate->heap()->minus_zero_value();
+ return Smi::FromInt(0);
+ }
+
+ // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and
+ // should be rounded to 2^30, which is not smi (for 31-bit smis, similar
+ // argument holds for 32-bit smis).
+ if (!sign && exponent < kSmiValueSize - 2) {
+ return Smi::FromInt(static_cast<int>(value + 0.5));
+ }
+
+ // If the magnitude is big enough, there's no place for fraction part. If we
+ // try to add 0.5 to this number, 1.0 will be added instead.
+ if (exponent >= 52) {
+ return *number;
+ }
+
+ if (sign && value >= -0.5) return isolate->heap()->minus_zero_value();
+
+ // Do not call NumberFromDouble() to avoid extra checks.
+ return *isolate->factory()->NewNumber(Floor(value + 0.5));
+}
+
+
+RUNTIME_FUNCTION(Runtime_MathSqrtRT) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ isolate->counters()->math_sqrt()->Increment();
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ return *isolate->factory()->NewNumber(fast_sqrt(x));
+}
+
+
+RUNTIME_FUNCTION(Runtime_MathFround) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ float xf = DoubleToFloat32(x);
+ return *isolate->factory()->NewNumber(xf);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_MathPow) {
+ SealHandleScope shs(isolate);
+ return __RT_impl_Runtime_MathPowSlow(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsMinusZero) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ if (!obj->IsHeapNumber()) return isolate->heap()->false_value();
+ HeapNumber* number = HeapNumber::cast(obj);
+ return isolate->heap()->ToBoolean(IsMinusZero(number->value()));
+}
+}
+} // namespace v8::internal