summaryrefslogtreecommitdiff
path: root/deps/v8/src/regexp/regexp-interpreter.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/regexp/regexp-interpreter.cc')
-rw-r--r--deps/v8/src/regexp/regexp-interpreter.cc1166
1 files changed, 685 insertions, 481 deletions
diff --git a/deps/v8/src/regexp/regexp-interpreter.cc b/deps/v8/src/regexp/regexp-interpreter.cc
index 881758861c..cf2fb55e4a 100644
--- a/deps/v8/src/regexp/regexp-interpreter.cc
+++ b/deps/v8/src/regexp/regexp-interpreter.cc
@@ -8,6 +8,7 @@
#include "src/ast/ast.h"
#include "src/base/small-vector.h"
+#include "src/objects/js-regexp-inl.h"
#include "src/objects/objects-inl.h"
#include "src/regexp/regexp-bytecodes.h"
#include "src/regexp/regexp-macro-assembler.h"
@@ -19,12 +20,20 @@
#include "unicode/uchar.h"
#endif // V8_INTL_SUPPORT
+// Use token threaded dispatch iff the compiler supports computed gotos and the
+// build argument v8_enable_regexp_interpreter_threaded_dispatch was set.
+#if V8_HAS_COMPUTED_GOTO && \
+ defined(V8_ENABLE_REGEXP_INTERPRETER_THREADED_DISPATCH)
+#define V8_USE_COMPUTED_GOTO 1
+#endif // V8_HAS_COMPUTED_GOTO
+
namespace v8 {
namespace internal {
-static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current,
- int len, Vector<const uc16> subject,
- bool unicode) {
+namespace {
+
+bool BackRefMatchesNoCase(Isolate* isolate, int from, int current, int len,
+ Vector<const uc16> subject, bool unicode) {
Address offset_a =
reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(from)));
Address offset_b =
@@ -34,9 +43,8 @@ static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current,
offset_a, offset_b, length, unicode ? nullptr : isolate) == 1;
}
-static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current,
- int len, Vector<const uint8_t> subject,
- bool unicode) {
+bool BackRefMatchesNoCase(Isolate* isolate, int from, int current, int len,
+ Vector<const uint8_t> subject, bool unicode) {
// For Latin1 characters the unicode flag makes no difference.
for (int i = 0; i < len; i++) {
unsigned int old_char = subject[from++];
@@ -55,49 +63,48 @@ static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current,
return true;
}
+void DisassembleSingleBytecode(const byte* code_base, const byte* pc) {
+ PrintF("%s", RegExpBytecodeName(*pc));
+
+ // Args and the bytecode as hex.
+ for (int i = 0; i < RegExpBytecodeLength(*pc); i++) {
+ PrintF(", %02x", pc[i]);
+ }
+ PrintF(" ");
+
+ // Args as ascii.
+ for (int i = 1; i < RegExpBytecodeLength(*pc); i++) {
+ unsigned char b = pc[i];
+ PrintF("%c", std::isprint(b) ? b : '.');
+ }
+ PrintF("\n");
+}
+
#ifdef DEBUG
-static void TraceInterpreter(const byte* code_base, const byte* pc,
- int stack_depth, int current_position,
- uint32_t current_char, int bytecode_length,
- const char* bytecode_name) {
+void MaybeTraceInterpreter(const byte* code_base, const byte* pc,
+ int stack_depth, int current_position,
+ uint32_t current_char, int bytecode_length,
+ const char* bytecode_name) {
if (FLAG_trace_regexp_bytecodes) {
- bool printable = (current_char < 127 && current_char >= 32);
+ const bool printable = std::isprint(current_char);
const char* format =
printable
- ? "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s"
- : "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s";
+ ? "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = "
+ : "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = ";
PrintF(format, pc - code_base, stack_depth, current_position, current_char,
- printable ? current_char : '.', bytecode_name);
- for (int i = 0; i < bytecode_length; i++) {
- printf(", %02x", pc[i]);
- }
- printf(" ");
- for (int i = 1; i < bytecode_length; i++) {
- unsigned char b = pc[i];
- if (b < 127 && b >= 32) {
- printf("%c", b);
- } else {
- printf(".");
- }
- }
- printf("\n");
+ printable ? current_char : '.');
+
+ DisassembleSingleBytecode(code_base, pc);
}
}
+#endif // DEBUG
-#define BYTECODE(name) \
- case BC_##name: \
- TraceInterpreter(code_base, pc, backtrack_stack.sp(), current, \
- current_char, BC_##name##_LENGTH, #name);
-#else
-#define BYTECODE(name) case BC_##name:
-#endif
-
-static int32_t Load32Aligned(const byte* pc) {
+int32_t Load32Aligned(const byte* pc) {
DCHECK_EQ(0, reinterpret_cast<intptr_t>(pc) & 3);
return *reinterpret_cast<const int32_t*>(pc);
}
-static int32_t Load16Aligned(const byte* pc) {
+int32_t Load16Aligned(const byte* pc) {
DCHECK_EQ(0, reinterpret_cast<intptr_t>(pc) & 1);
return *reinterpret_cast<const uint16_t*>(pc);
}
@@ -139,9 +146,9 @@ class BacktrackStack {
DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
};
-namespace {
-
-IrregexpInterpreter::Result StackOverflow(Isolate* isolate) {
+IrregexpInterpreter::Result StackOverflow(Isolate* isolate,
+ RegExp::CallOrigin call_origin) {
+ CHECK(call_origin == RegExp::CallOrigin::kFromRuntime);
// We abort interpreter execution after the stack overflow is thrown, and thus
// allow allocation here despite the outer DisallowHeapAllocationScope.
AllowHeapAllocation yes_gc;
@@ -149,72 +156,154 @@ IrregexpInterpreter::Result StackOverflow(Isolate* isolate) {
return IrregexpInterpreter::EXCEPTION;
}
-// Runs all pending interrupts. Callers must update unhandlified object
-// references after this function completes.
-IrregexpInterpreter::Result HandleInterrupts(Isolate* isolate,
- Handle<String> subject_string) {
+template <typename Char>
+void UpdateCodeAndSubjectReferences(
+ Isolate* isolate, Handle<ByteArray> code_array,
+ Handle<String> subject_string, ByteArray* code_array_out,
+ const byte** code_base_out, const byte** pc_out, String* subject_string_out,
+ Vector<const Char>* subject_string_vector_out) {
DisallowHeapAllocation no_gc;
- StackLimitCheck check(isolate);
- if (check.JsHasOverflowed()) {
- return StackOverflow(isolate); // A real stack overflow.
+ if (*code_base_out != code_array->GetDataStartAddress()) {
+ *code_array_out = *code_array;
+ const intptr_t pc_offset = *pc_out - *code_base_out;
+ DCHECK_GT(pc_offset, 0);
+ *code_base_out = code_array->GetDataStartAddress();
+ *pc_out = *code_base_out + pc_offset;
}
- // Handle interrupts if any exist.
- if (check.InterruptRequested()) {
- const bool was_one_byte =
- String::IsOneByteRepresentationUnderneath(*subject_string);
+ DCHECK(subject_string->IsFlat());
+ *subject_string_out = *subject_string;
+ *subject_string_vector_out = subject_string->GetCharVector<Char>(no_gc);
+}
- Object result;
- {
- AllowHeapAllocation yes_gc;
- result = isolate->stack_guard()->HandleInterrupts();
- }
+// Runs all pending interrupts and updates unhandlified object references if
+// necessary.
+template <typename Char>
+IrregexpInterpreter::Result HandleInterrupts(
+ Isolate* isolate, RegExp::CallOrigin call_origin, ByteArray* code_array_out,
+ String* subject_string_out, const byte** code_base_out,
+ Vector<const Char>* subject_string_vector_out, const byte** pc_out) {
+ DisallowHeapAllocation no_gc;
- if (result.IsException(isolate)) {
+ StackLimitCheck check(isolate);
+ bool js_has_overflowed = check.JsHasOverflowed();
+
+ if (call_origin == RegExp::CallOrigin::kFromJs) {
+ // Direct calls from JavaScript can be interrupted in two ways:
+ // 1. A real stack overflow, in which case we let the caller throw the
+ // exception.
+ // 2. The stack guard was used to interrupt execution for another purpose,
+ // forcing the call through the runtime system.
+ if (js_has_overflowed) {
return IrregexpInterpreter::EXCEPTION;
- }
-
- // If we changed between a LATIN1 and a UC16 string, we need to restart
- // regexp matching with the appropriate template instantiation of RawMatch.
- if (String::IsOneByteRepresentationUnderneath(*subject_string) !=
- was_one_byte) {
+ } else if (check.InterruptRequested()) {
return IrregexpInterpreter::RETRY;
}
+ } else {
+ DCHECK(call_origin == RegExp::CallOrigin::kFromRuntime);
+ // Prepare for possible GC.
+ HandleScope handles(isolate);
+ Handle<ByteArray> code_handle(*code_array_out, isolate);
+ Handle<String> subject_handle(*subject_string_out, isolate);
+
+ if (js_has_overflowed) {
+ return StackOverflow(isolate, call_origin);
+ } else if (check.InterruptRequested()) {
+ const bool was_one_byte =
+ String::IsOneByteRepresentationUnderneath(*subject_string_out);
+ Object result;
+ {
+ AllowHeapAllocation yes_gc;
+ result = isolate->stack_guard()->HandleInterrupts();
+ }
+ if (result.IsException(isolate)) {
+ return IrregexpInterpreter::EXCEPTION;
+ }
+
+ // If we changed between a LATIN1 and a UC16 string, we need to restart
+ // regexp matching with the appropriate template instantiation of
+ // RawMatch.
+ if (String::IsOneByteRepresentationUnderneath(*subject_handle) !=
+ was_one_byte) {
+ return IrregexpInterpreter::RETRY;
+ }
+
+ UpdateCodeAndSubjectReferences(
+ isolate, code_handle, subject_handle, code_array_out, code_base_out,
+ pc_out, subject_string_out, subject_string_vector_out);
+ }
}
return IrregexpInterpreter::SUCCESS;
}
-template <typename Char>
-void UpdateCodeAndSubjectReferences(Isolate* isolate,
- Handle<ByteArray> code_array,
- Handle<String> subject_string,
- const byte** code_base_out,
- const byte** pc_out,
- Vector<const Char>* subject_string_out) {
- DisallowHeapAllocation no_gc;
+// If computed gotos are supported by the compiler, we can get addresses to
+// labels directly in C/C++. Every bytecode handler has its own label and we
+// store the addresses in a dispatch table indexed by bytecode. To execute the
+// next handler we simply jump (goto) directly to its address.
+#if V8_USE_COMPUTED_GOTO
+#define BC_LABEL(name) BC_##name:
+#define DECODE() \
+ do { \
+ next_insn = Load32Aligned(next_pc); \
+ next_handler_addr = dispatch_table[next_insn & BYTECODE_MASK]; \
+ } while (false)
+#define DISPATCH() \
+ pc = next_pc; \
+ insn = next_insn; \
+ goto* next_handler_addr
+// Without computed goto support, we fall back to a simple switch-based
+// dispatch (A large switch statement inside a loop with a case for every
+// bytecode).
+#else // V8_USE_COMPUTED_GOTO
+#define BC_LABEL(name) case BC_##name:
+#define DECODE() next_insn = Load32Aligned(next_pc)
+#define DISPATCH() \
+ pc = next_pc; \
+ insn = next_insn; \
+ break
+#endif // V8_USE_COMPUTED_GOTO
+
+// ADVANCE/SET_PC_FROM_OFFSET are separated from DISPATCH, because ideally some
+// instructions can be executed between ADVANCE/SET_PC_FROM_OFFSET and DISPATCH.
+// We want those two macros as far apart as possible, because the goto in
+// DISPATCH is dependent on a memory load in ADVANCE/SET_PC_FROM_OFFSET. If we
+// don't hit the cache and have to fetch the next handler address from physical
+// memory, instructions between ADVANCE/SET_PC_FROM_OFFSET and DISPATCH can
+// potentially be executed unconditionally, reducing memory stall.
+#define ADVANCE(name) \
+ next_pc = pc + RegExpBytecodeLength(BC_##name); \
+ DECODE()
+#define SET_PC_FROM_OFFSET(offset) \
+ next_pc = code_base + offset; \
+ DECODE()
- if (*code_base_out != code_array->GetDataStartAddress()) {
- const intptr_t pc_offset = *pc_out - *code_base_out;
- DCHECK_GT(pc_offset, 0);
- *code_base_out = code_array->GetDataStartAddress();
- *pc_out = *code_base_out + pc_offset;
- }
-
- DCHECK(subject_string->IsFlat());
- *subject_string_out = subject_string->GetCharVector<Char>(no_gc);
-}
+#ifdef DEBUG
+#define BYTECODE(name) \
+ BC_LABEL(name) \
+ MaybeTraceInterpreter(code_base, pc, backtrack_stack.sp(), current, \
+ current_char, RegExpBytecodeLength(BC_##name), #name);
+#else
+#define BYTECODE(name) BC_LABEL(name)
+#endif // DEBUG
template <typename Char>
-IrregexpInterpreter::Result RawMatch(Isolate* isolate,
- Handle<ByteArray> code_array,
- Handle<String> subject_string,
+IrregexpInterpreter::Result RawMatch(Isolate* isolate, ByteArray code_array,
+ String subject_string,
Vector<const Char> subject, int* registers,
- int current, uint32_t current_char) {
+ int current, uint32_t current_char,
+ RegExp::CallOrigin call_origin) {
DisallowHeapAllocation no_gc;
- const byte* pc = code_array->GetDataStartAddress();
+#if V8_USE_COMPUTED_GOTO
+#define DECLARE_DISPATCH_TABLE_ENTRY(name, code, length) &&BC_##name,
+ static const void* const dispatch_table[] = {
+ BYTECODE_ITERATOR(DECLARE_DISPATCH_TABLE_ENTRY)};
+#undef DECLARE_DISPATCH_TABLE_ENTRY
+#endif
+
+ const byte* pc = code_array.GetDataStartAddress();
const byte* code_base = pc;
BacktrackStack backtrack_stack;
@@ -224,457 +313,572 @@ IrregexpInterpreter::Result RawMatch(Isolate* isolate,
PrintF("\n\nStart bytecode interpreter\n\n");
}
#endif
+
while (true) {
- const int32_t insn = Load32Aligned(pc);
+ const byte* next_pc = pc;
+ int32_t insn;
+ int32_t next_insn;
+#if V8_USE_COMPUTED_GOTO
+ const void* next_handler_addr;
+ DECODE();
+ DISPATCH();
+#else
+ insn = Load32Aligned(pc);
switch (insn & BYTECODE_MASK) {
- BYTECODE(BREAK) { UNREACHABLE(); }
- BYTECODE(PUSH_CP) {
- backtrack_stack.push(current);
- pc += BC_PUSH_CP_LENGTH;
- break;
- }
- BYTECODE(PUSH_BT) {
- backtrack_stack.push(Load32Aligned(pc + 4));
- pc += BC_PUSH_BT_LENGTH;
- break;
- }
- BYTECODE(PUSH_REGISTER) {
- backtrack_stack.push(registers[insn >> BYTECODE_SHIFT]);
- pc += BC_PUSH_REGISTER_LENGTH;
- break;
- }
- BYTECODE(SET_REGISTER) {
- registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
- pc += BC_SET_REGISTER_LENGTH;
- break;
- }
- BYTECODE(ADVANCE_REGISTER) {
- registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
- pc += BC_ADVANCE_REGISTER_LENGTH;
- break;
- }
- BYTECODE(SET_REGISTER_TO_CP) {
- registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
- pc += BC_SET_REGISTER_TO_CP_LENGTH;
- break;
- }
- BYTECODE(SET_CP_TO_REGISTER) {
- current = registers[insn >> BYTECODE_SHIFT];
- pc += BC_SET_CP_TO_REGISTER_LENGTH;
- break;
- }
- BYTECODE(SET_REGISTER_TO_SP) {
- registers[insn >> BYTECODE_SHIFT] = backtrack_stack.sp();
- pc += BC_SET_REGISTER_TO_SP_LENGTH;
- break;
- }
- BYTECODE(SET_SP_TO_REGISTER) {
- backtrack_stack.set_sp(registers[insn >> BYTECODE_SHIFT]);
- pc += BC_SET_SP_TO_REGISTER_LENGTH;
- break;
- }
- BYTECODE(POP_CP) {
- current = backtrack_stack.pop();
- pc += BC_POP_CP_LENGTH;
- break;
- }
- BYTECODE(POP_BT) {
- IrregexpInterpreter::Result return_code =
- HandleInterrupts(isolate, subject_string);
- if (return_code != IrregexpInterpreter::SUCCESS) return return_code;
-
- UpdateCodeAndSubjectReferences(isolate, code_array, subject_string,
- &code_base, &pc, &subject);
-
- pc = code_base + backtrack_stack.pop();
- break;
- }
- BYTECODE(POP_REGISTER) {
- registers[insn >> BYTECODE_SHIFT] = backtrack_stack.pop();
- pc += BC_POP_REGISTER_LENGTH;
- break;
- }
- BYTECODE(FAIL) { return IrregexpInterpreter::FAILURE; }
- BYTECODE(SUCCEED) { return IrregexpInterpreter::SUCCESS; }
- BYTECODE(ADVANCE_CP) {
- current += insn >> BYTECODE_SHIFT;
- pc += BC_ADVANCE_CP_LENGTH;
- break;
- }
- BYTECODE(GOTO) {
- pc = code_base + Load32Aligned(pc + 4);
- break;
- }
- BYTECODE(ADVANCE_CP_AND_GOTO) {
- current += insn >> BYTECODE_SHIFT;
- pc = code_base + Load32Aligned(pc + 4);
- break;
- }
- BYTECODE(CHECK_GREEDY) {
- if (current == backtrack_stack.peek()) {
- backtrack_stack.pop();
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_GREEDY_LENGTH;
- }
- break;
- }
- BYTECODE(LOAD_CURRENT_CHAR) {
- int pos = current + (insn >> BYTECODE_SHIFT);
- if (pos >= subject.length() || pos < 0) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- current_char = subject[pos];
- pc += BC_LOAD_CURRENT_CHAR_LENGTH;
- }
- break;
+#endif // V8_USE_COMPUTED_GOTO
+ BYTECODE(BREAK) { UNREACHABLE(); }
+ BYTECODE(PUSH_CP) {
+ ADVANCE(PUSH_CP);
+ backtrack_stack.push(current);
+ DISPATCH();
+ }
+ BYTECODE(PUSH_BT) {
+ ADVANCE(PUSH_BT);
+ backtrack_stack.push(Load32Aligned(pc + 4));
+ DISPATCH();
+ }
+ BYTECODE(PUSH_REGISTER) {
+ ADVANCE(PUSH_REGISTER);
+ backtrack_stack.push(registers[insn >> BYTECODE_SHIFT]);
+ DISPATCH();
+ }
+ BYTECODE(SET_REGISTER) {
+ ADVANCE(SET_REGISTER);
+ registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
+ DISPATCH();
+ }
+ BYTECODE(ADVANCE_REGISTER) {
+ ADVANCE(ADVANCE_REGISTER);
+ registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
+ DISPATCH();
+ }
+ BYTECODE(SET_REGISTER_TO_CP) {
+ ADVANCE(SET_REGISTER_TO_CP);
+ registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
+ DISPATCH();
+ }
+ BYTECODE(SET_CP_TO_REGISTER) {
+ ADVANCE(SET_CP_TO_REGISTER);
+ current = registers[insn >> BYTECODE_SHIFT];
+ DISPATCH();
+ }
+ BYTECODE(SET_REGISTER_TO_SP) {
+ ADVANCE(SET_REGISTER_TO_SP);
+ registers[insn >> BYTECODE_SHIFT] = backtrack_stack.sp();
+ DISPATCH();
+ }
+ BYTECODE(SET_SP_TO_REGISTER) {
+ ADVANCE(SET_SP_TO_REGISTER);
+ backtrack_stack.set_sp(registers[insn >> BYTECODE_SHIFT]);
+ DISPATCH();
+ }
+ BYTECODE(POP_CP) {
+ ADVANCE(POP_CP);
+ current = backtrack_stack.pop();
+ DISPATCH();
+ }
+ BYTECODE(POP_BT) {
+ IrregexpInterpreter::Result return_code =
+ HandleInterrupts(isolate, call_origin, &code_array, &subject_string,
+ &code_base, &subject, &pc);
+ if (return_code != IrregexpInterpreter::SUCCESS) return return_code;
+
+ SET_PC_FROM_OFFSET(backtrack_stack.pop());
+ DISPATCH();
+ }
+ BYTECODE(POP_REGISTER) {
+ ADVANCE(POP_REGISTER);
+ registers[insn >> BYTECODE_SHIFT] = backtrack_stack.pop();
+ DISPATCH();
+ }
+ BYTECODE(FAIL) { return IrregexpInterpreter::FAILURE; }
+ BYTECODE(SUCCEED) { return IrregexpInterpreter::SUCCESS; }
+ BYTECODE(ADVANCE_CP) {
+ ADVANCE(ADVANCE_CP);
+ current += insn >> BYTECODE_SHIFT;
+ DISPATCH();
+ }
+ BYTECODE(GOTO) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ DISPATCH();
+ }
+ BYTECODE(ADVANCE_CP_AND_GOTO) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ current += insn >> BYTECODE_SHIFT;
+ DISPATCH();
+ }
+ BYTECODE(CHECK_GREEDY) {
+ if (current == backtrack_stack.peek()) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ backtrack_stack.pop();
+ } else {
+ ADVANCE(CHECK_GREEDY);
}
- BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
- int pos = current + (insn >> BYTECODE_SHIFT);
+ DISPATCH();
+ }
+ BYTECODE(LOAD_CURRENT_CHAR) {
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ if (pos >= subject.length() || pos < 0) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(LOAD_CURRENT_CHAR);
current_char = subject[pos];
- pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
- break;
- }
- BYTECODE(LOAD_2_CURRENT_CHARS) {
- int pos = current + (insn >> BYTECODE_SHIFT);
- if (pos + 2 > subject.length() || pos < 0) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- Char next = subject[pos + 1];
- current_char =
- (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
- pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
- }
- break;
}
- BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
- int pos = current + (insn >> BYTECODE_SHIFT);
+ DISPATCH();
+ }
+ BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
+ ADVANCE(LOAD_CURRENT_CHAR_UNCHECKED);
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ current_char = subject[pos];
+ DISPATCH();
+ }
+ BYTECODE(LOAD_2_CURRENT_CHARS) {
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ if (pos + 2 > subject.length() || pos < 0) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(LOAD_2_CURRENT_CHARS);
Char next = subject[pos + 1];
current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
- pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
- break;
- }
- BYTECODE(LOAD_4_CURRENT_CHARS) {
- DCHECK_EQ(1, sizeof(Char));
- int pos = current + (insn >> BYTECODE_SHIFT);
- if (pos + 4 > subject.length() || pos < 0) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- Char next1 = subject[pos + 1];
- Char next2 = subject[pos + 2];
- Char next3 = subject[pos + 3];
- current_char =
- (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24));
- pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
- }
- break;
}
- BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
- DCHECK_EQ(1, sizeof(Char));
- int pos = current + (insn >> BYTECODE_SHIFT);
+ DISPATCH();
+ }
+ BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
+ ADVANCE(LOAD_2_CURRENT_CHARS_UNCHECKED);
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ Char next = subject[pos + 1];
+ current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
+ DISPATCH();
+ }
+ BYTECODE(LOAD_4_CURRENT_CHARS) {
+ DCHECK_EQ(1, sizeof(Char));
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ if (pos + 4 > subject.length() || pos < 0) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(LOAD_4_CURRENT_CHARS);
Char next1 = subject[pos + 1];
Char next2 = subject[pos + 2];
Char next3 = subject[pos + 3];
current_char =
(subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24));
- pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
- break;
- }
- BYTECODE(CHECK_4_CHARS) {
- uint32_t c = Load32Aligned(pc + 4);
- if (c == current_char) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_4_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- if (c == current_char) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_NOT_4_CHARS) {
- uint32_t c = Load32Aligned(pc + 4);
- if (c != current_char) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_NOT_4_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_NOT_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- if (c != current_char) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_NOT_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(AND_CHECK_4_CHARS) {
- uint32_t c = Load32Aligned(pc + 4);
- if (c == (current_char & Load32Aligned(pc + 8))) {
- pc = code_base + Load32Aligned(pc + 12);
- } else {
- pc += BC_AND_CHECK_4_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(AND_CHECK_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- if (c == (current_char & Load32Aligned(pc + 4))) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_AND_CHECK_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(AND_CHECK_NOT_4_CHARS) {
- uint32_t c = Load32Aligned(pc + 4);
- if (c != (current_char & Load32Aligned(pc + 8))) {
- pc = code_base + Load32Aligned(pc + 12);
- } else {
- pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(AND_CHECK_NOT_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- if (c != (current_char & Load32Aligned(pc + 4))) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- uint32_t minus = Load16Aligned(pc + 4);
- uint32_t mask = Load16Aligned(pc + 6);
- if (c != ((current_char - minus) & mask)) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_CHAR_IN_RANGE) {
- uint32_t from = Load16Aligned(pc + 4);
- uint32_t to = Load16Aligned(pc + 6);
- if (from <= current_char && current_char <= to) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
- uint32_t from = Load16Aligned(pc + 4);
- uint32_t to = Load16Aligned(pc + 6);
- if (from > current_char || current_char > to) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_BIT_IN_TABLE) {
- int mask = RegExpMacroAssembler::kTableMask;
- byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
- int bit = (current_char & (kBitsPerByte - 1));
- if ((b & (1 << bit)) != 0) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_LT) {
- uint32_t limit = (insn >> BYTECODE_SHIFT);
- if (current_char < limit) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_LT_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_GT) {
- uint32_t limit = (insn >> BYTECODE_SHIFT);
- if (current_char > limit) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_GT_LENGTH;
- }
- break;
}
- BYTECODE(CHECK_REGISTER_LT) {
- if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_REGISTER_LT_LENGTH;
- }
- break;
+ DISPATCH();
+ }
+ BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
+ ADVANCE(LOAD_4_CURRENT_CHARS_UNCHECKED);
+ DCHECK_EQ(1, sizeof(Char));
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ Char next1 = subject[pos + 1];
+ Char next2 = subject[pos + 2];
+ Char next3 = subject[pos + 3];
+ current_char =
+ (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24));
+ DISPATCH();
+ }
+ BYTECODE(CHECK_4_CHARS) {
+ uint32_t c = Load32Aligned(pc + 4);
+ if (c == current_char) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(CHECK_4_CHARS);
}
- BYTECODE(CHECK_REGISTER_GE) {
- if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_REGISTER_GE_LENGTH;
- }
- break;
+ DISPATCH();
+ }
+ BYTECODE(CHECK_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ if (c == current_char) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(CHECK_CHAR);
}
- BYTECODE(CHECK_REGISTER_EQ_POS) {
- if (registers[insn >> BYTECODE_SHIFT] == current) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_NOT_REGS_EQUAL) {
- if (registers[insn >> BYTECODE_SHIFT] ==
- registers[Load32Aligned(pc + 4)]) {
- pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
- } else {
- pc = code_base + Load32Aligned(pc + 8);
- }
- break;
- }
- BYTECODE(CHECK_NOT_BACK_REF) {
- int from = registers[insn >> BYTECODE_SHIFT];
- int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
- if (from >= 0 && len > 0) {
- if (current + len > subject.length() ||
- CompareChars(&subject[from], &subject[current], len) != 0) {
- pc = code_base + Load32Aligned(pc + 4);
- break;
- }
- current += len;
- }
- pc += BC_CHECK_NOT_BACK_REF_LENGTH;
- break;
- }
- BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) {
- int from = registers[insn >> BYTECODE_SHIFT];
- int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
- if (from >= 0 && len > 0) {
- if (current - len < 0 ||
- CompareChars(&subject[from], &subject[current - len], len) != 0) {
- pc = code_base + Load32Aligned(pc + 4);
- break;
- }
- current -= len;
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_4_CHARS) {
+ uint32_t c = Load32Aligned(pc + 4);
+ if (c != current_char) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(CHECK_NOT_4_CHARS);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ if (c != current_char) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(CHECK_NOT_CHAR);
+ }
+ DISPATCH();
+ }
+ BYTECODE(AND_CHECK_4_CHARS) {
+ uint32_t c = Load32Aligned(pc + 4);
+ if (c == (current_char & Load32Aligned(pc + 8))) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 12));
+ } else {
+ ADVANCE(AND_CHECK_4_CHARS);
+ }
+ DISPATCH();
+ }
+ BYTECODE(AND_CHECK_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ if (c == (current_char & Load32Aligned(pc + 4))) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(AND_CHECK_CHAR);
+ }
+ DISPATCH();
+ }
+ BYTECODE(AND_CHECK_NOT_4_CHARS) {
+ uint32_t c = Load32Aligned(pc + 4);
+ if (c != (current_char & Load32Aligned(pc + 8))) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 12));
+ } else {
+ ADVANCE(AND_CHECK_NOT_4_CHARS);
+ }
+ DISPATCH();
+ }
+ BYTECODE(AND_CHECK_NOT_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ if (c != (current_char & Load32Aligned(pc + 4))) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(AND_CHECK_NOT_CHAR);
+ }
+ DISPATCH();
+ }
+ BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ uint32_t minus = Load16Aligned(pc + 4);
+ uint32_t mask = Load16Aligned(pc + 6);
+ if (c != ((current_char - minus) & mask)) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(MINUS_AND_CHECK_NOT_CHAR);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_CHAR_IN_RANGE) {
+ uint32_t from = Load16Aligned(pc + 4);
+ uint32_t to = Load16Aligned(pc + 6);
+ if (from <= current_char && current_char <= to) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(CHECK_CHAR_IN_RANGE);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
+ uint32_t from = Load16Aligned(pc + 4);
+ uint32_t to = Load16Aligned(pc + 6);
+ if (from > current_char || current_char > to) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(CHECK_CHAR_NOT_IN_RANGE);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_BIT_IN_TABLE) {
+ int mask = RegExpMacroAssembler::kTableMask;
+ byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
+ int bit = (current_char & (kBitsPerByte - 1));
+ if ((b & (1 << bit)) != 0) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(CHECK_BIT_IN_TABLE);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_LT) {
+ uint32_t limit = (insn >> BYTECODE_SHIFT);
+ if (current_char < limit) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(CHECK_LT);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_GT) {
+ uint32_t limit = (insn >> BYTECODE_SHIFT);
+ if (current_char > limit) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(CHECK_GT);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_REGISTER_LT) {
+ if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(CHECK_REGISTER_LT);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_REGISTER_GE) {
+ if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ } else {
+ ADVANCE(CHECK_REGISTER_GE);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_REGISTER_EQ_POS) {
+ if (registers[insn >> BYTECODE_SHIFT] == current) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(CHECK_REGISTER_EQ_POS);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_REGS_EQUAL) {
+ if (registers[insn >> BYTECODE_SHIFT] ==
+ registers[Load32Aligned(pc + 4)]) {
+ ADVANCE(CHECK_NOT_REGS_EQUAL);
+ } else {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_BACK_REF) {
+ int from = registers[insn >> BYTECODE_SHIFT];
+ int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+ if (from >= 0 && len > 0) {
+ if (current + len > subject.length() ||
+ CompareChars(&subject[from], &subject[current], len) != 0) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ DISPATCH();
}
- pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH;
- break;
- }
- BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE)
- V8_FALLTHROUGH;
- BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
- bool unicode =
- (insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE;
- int from = registers[insn >> BYTECODE_SHIFT];
- int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
- if (from >= 0 && len > 0) {
- if (current + len > subject.length() ||
- !BackRefMatchesNoCase(isolate, from, current, len, subject,
- unicode)) {
- pc = code_base + Load32Aligned(pc + 4);
- break;
- }
- current += len;
+ current += len;
+ }
+ ADVANCE(CHECK_NOT_BACK_REF);
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) {
+ int from = registers[insn >> BYTECODE_SHIFT];
+ int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+ if (from >= 0 && len > 0) {
+ if (current - len < 0 ||
+ CompareChars(&subject[from], &subject[current - len], len) != 0) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ DISPATCH();
}
- pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
- break;
- }
- BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD)
- V8_FALLTHROUGH;
- BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) {
- bool unicode = (insn & BYTECODE_MASK) ==
- BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD;
- int from = registers[insn >> BYTECODE_SHIFT];
- int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
- if (from >= 0 && len > 0) {
- if (current - len < 0 ||
- !BackRefMatchesNoCase(isolate, from, current - len, len, subject,
- unicode)) {
- pc = code_base + Load32Aligned(pc + 4);
- break;
- }
- current -= len;
+ current -= len;
+ }
+ ADVANCE(CHECK_NOT_BACK_REF_BACKWARD);
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE) {
+ int from = registers[insn >> BYTECODE_SHIFT];
+ int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+ if (from >= 0 && len > 0) {
+ if (current + len > subject.length() ||
+ !BackRefMatchesNoCase(isolate, from, current, len, subject, true)) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ DISPATCH();
}
- pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH;
- break;
- }
- BYTECODE(CHECK_AT_START) {
- if (current == 0) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_AT_START_LENGTH;
+ current += len;
+ }
+ ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE);
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
+ int from = registers[insn >> BYTECODE_SHIFT];
+ int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+ if (from >= 0 && len > 0) {
+ if (current + len > subject.length() ||
+ !BackRefMatchesNoCase(isolate, from, current, len, subject,
+ false)) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ DISPATCH();
}
- break;
+ current += len;
}
- BYTECODE(CHECK_NOT_AT_START) {
- if (current + (insn >> BYTECODE_SHIFT) == 0) {
- pc += BC_CHECK_NOT_AT_START_LENGTH;
- } else {
- pc = code_base + Load32Aligned(pc + 4);
+ ADVANCE(CHECK_NOT_BACK_REF_NO_CASE);
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD) {
+ int from = registers[insn >> BYTECODE_SHIFT];
+ int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+ if (from >= 0 && len > 0) {
+ if (current - len < 0 ||
+ !BackRefMatchesNoCase(isolate, from, current - len, len, subject,
+ true)) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ DISPATCH();
}
- break;
+ current -= len;
}
- BYTECODE(SET_CURRENT_POSITION_FROM_END) {
- int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
- if (subject.length() - current > by) {
- current = subject.length() - by;
- current_char = subject[current - 1];
+ ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD);
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) {
+ int from = registers[insn >> BYTECODE_SHIFT];
+ int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+ if (from >= 0 && len > 0) {
+ if (current - len < 0 ||
+ !BackRefMatchesNoCase(isolate, from, current - len, len, subject,
+ false)) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ DISPATCH();
}
- pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
- break;
+ current -= len;
}
+ ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD);
+ DISPATCH();
+ }
+ BYTECODE(CHECK_AT_START) {
+ if (current + (insn >> BYTECODE_SHIFT) == 0) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(CHECK_AT_START);
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_NOT_AT_START) {
+ if (current + (insn >> BYTECODE_SHIFT) == 0) {
+ ADVANCE(CHECK_NOT_AT_START);
+ } else {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ }
+ DISPATCH();
+ }
+ BYTECODE(SET_CURRENT_POSITION_FROM_END) {
+ ADVANCE(SET_CURRENT_POSITION_FROM_END);
+ int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
+ if (subject.length() - current > by) {
+ current = subject.length() - by;
+ current_char = subject[current - 1];
+ }
+ DISPATCH();
+ }
+ BYTECODE(CHECK_CURRENT_POSITION) {
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ if (pos > subject.length() || pos < 0) {
+ SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
+ } else {
+ ADVANCE(CHECK_CURRENT_POSITION);
+ }
+ DISPATCH();
+ }
+#if V8_USE_COMPUTED_GOTO
+// Lint gets confused a lot if we just use !V8_USE_COMPUTED_GOTO or ifndef
+// V8_USE_COMPUTED_GOTO here.
+#else
default:
UNREACHABLE();
- break;
}
+#endif // V8_USE_COMPUTED_GOTO
}
}
#undef BYTECODE
+#undef DISPATCH
+#undef DECODE
+#undef SET_PC_FROM_OFFSET
+#undef ADVANCE
+#undef BC_LABEL
+#undef V8_USE_COMPUTED_GOTO
} // namespace
// static
+void IrregexpInterpreter::Disassemble(ByteArray byte_array,
+ const std::string& pattern) {
+ DisallowHeapAllocation no_gc;
+
+ PrintF("[generated bytecode for regexp pattern: '%s']\n", pattern.c_str());
+
+ const byte* const code_base = byte_array.GetDataStartAddress();
+ const int byte_array_length = byte_array.length();
+ ptrdiff_t offset = 0;
+
+ while (offset < byte_array_length) {
+ const byte* const pc = code_base + offset;
+ PrintF("%p %4" V8PRIxPTRDIFF " ", pc, offset);
+ DisassembleSingleBytecode(code_base, pc);
+ offset += RegExpBytecodeLength(*pc);
+ }
+}
+
+// static
IrregexpInterpreter::Result IrregexpInterpreter::Match(
- Isolate* isolate, Handle<ByteArray> code_array,
- Handle<String> subject_string, int* registers, int start_position) {
- DCHECK(subject_string->IsFlat());
+ Isolate* isolate, JSRegExp regexp, String subject_string, int* registers,
+ int registers_length, int start_position, RegExp::CallOrigin call_origin) {
+ if (FLAG_regexp_tier_up) {
+ regexp.MarkTierUpForNextExec();
+ }
+
+ bool is_one_byte = String::IsOneByteRepresentationUnderneath(subject_string);
+ ByteArray code_array = ByteArray::cast(regexp.Bytecode(is_one_byte));
- // Note: Heap allocation *is* allowed in two situations:
+ return MatchInternal(isolate, code_array, subject_string, registers,
+ registers_length, start_position, call_origin);
+}
+
+IrregexpInterpreter::Result IrregexpInterpreter::MatchInternal(
+ Isolate* isolate, ByteArray code_array, String subject_string,
+ int* registers, int registers_length, int start_position,
+ RegExp::CallOrigin call_origin) {
+ DCHECK(subject_string.IsFlat());
+
+ // Note: Heap allocation *is* allowed in two situations if calling from
+ // Runtime:
// 1. When creating & throwing a stack overflow exception. The interpreter
// aborts afterwards, and thus possible-moved objects are never used.
// 2. When handling interrupts. We manually relocate unhandlified references
// after interrupts have run.
DisallowHeapAllocation no_gc;
+ // Reset registers to -1 (=undefined).
+ // This is necessary because registers are only written when a
+ // capture group matched.
+ // Resetting them ensures that previous matches are cleared.
+ memset(registers, -1, sizeof(registers[0]) * registers_length);
+
uc16 previous_char = '\n';
- String::FlatContent subject_content = subject_string->GetFlatContent(no_gc);
+ String::FlatContent subject_content = subject_string.GetFlatContent(no_gc);
if (subject_content.IsOneByte()) {
Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
if (start_position != 0) previous_char = subject_vector[start_position - 1];
return RawMatch(isolate, code_array, subject_string, subject_vector,
- registers, start_position, previous_char);
+ registers, start_position, previous_char, call_origin);
} else {
DCHECK(subject_content.IsTwoByte());
Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
if (start_position != 0) previous_char = subject_vector[start_position - 1];
return RawMatch(isolate, code_array, subject_string, subject_vector,
- registers, start_position, previous_char);
+ registers, start_position, previous_char, call_origin);
}
}
+// This method is called through an external reference from RegExpExecInternal
+// builtin.
+IrregexpInterpreter::Result IrregexpInterpreter::MatchForCallFromJs(
+ Address subject, int32_t start_position, Address, Address, int* registers,
+ int32_t registers_length, Address, RegExp::CallOrigin call_origin,
+ Isolate* isolate, Address regexp) {
+ DCHECK_NOT_NULL(isolate);
+ DCHECK_NOT_NULL(registers);
+ DCHECK(call_origin == RegExp::CallOrigin::kFromJs);
+
+ DisallowHeapAllocation no_gc;
+ DisallowJavascriptExecution no_js(isolate);
+
+ String subject_string = String::cast(Object(subject));
+ JSRegExp regexp_obj = JSRegExp::cast(Object(regexp));
+
+ return Match(isolate, regexp_obj, subject_string, registers, registers_length,
+ start_position, call_origin);
+}
+
+IrregexpInterpreter::Result IrregexpInterpreter::MatchForCallFromRuntime(
+ Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject_string,
+ int* registers, int registers_length, int start_position) {
+ return Match(isolate, *regexp, *subject_string, registers, registers_length,
+ start_position, RegExp::CallOrigin::kFromRuntime);
+}
+
} // namespace internal
} // namespace v8