aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/objects-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/objects/objects-inl.h')
-rw-r--r--deps/v8/src/objects/objects-inl.h1039
1 files changed, 1039 insertions, 0 deletions
diff --git a/deps/v8/src/objects/objects-inl.h b/deps/v8/src/objects/objects-inl.h
new file mode 100644
index 0000000000..ce92d64f2f
--- /dev/null
+++ b/deps/v8/src/objects/objects-inl.h
@@ -0,0 +1,1039 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+// Review notes:
+//
+// - The use of macros in these inline functions may seem superfluous
+// but it is absolutely needed to make sure gcc generates optimal
+// code. gcc is not happy when attempting to inline too deep.
+//
+
+#ifndef V8_OBJECTS_OBJECTS_INL_H_
+#define V8_OBJECTS_OBJECTS_INL_H_
+
+#include "src/objects/objects.h"
+
+#include "src/base/bits.h"
+#include "src/builtins/builtins.h"
+#include "src/common/v8memory.h"
+#include "src/handles/handles-inl.h"
+#include "src/heap/factory.h"
+#include "src/heap/heap-write-barrier-inl.h"
+#include "src/numbers/conversions.h"
+#include "src/numbers/double.h"
+#include "src/objects/bigint.h"
+#include "src/objects/heap-number-inl.h"
+#include "src/objects/heap-object.h"
+#include "src/objects/js-proxy-inl.h" // TODO(jkummerow): Drop.
+#include "src/objects/keys.h"
+#include "src/objects/literal-objects.h"
+#include "src/objects/lookup-inl.h" // TODO(jkummerow): Drop.
+#include "src/objects/oddball.h"
+#include "src/objects/property-details.h"
+#include "src/objects/property.h"
+#include "src/objects/regexp-match-info.h"
+#include "src/objects/scope-info.h"
+#include "src/objects/shared-function-info.h"
+#include "src/objects/slots-inl.h"
+#include "src/objects/smi-inl.h"
+#include "src/objects/tagged-impl-inl.h"
+#include "src/objects/templates.h"
+#include "src/sanitizer/tsan.h"
+#include "torque-generated/class-definitions-tq-inl.h"
+
+// Has to be the last include (doesn't have include guards):
+#include "src/objects/object-macros.h"
+
+namespace v8 {
+namespace internal {
+
+PropertyDetails::PropertyDetails(Smi smi) { value_ = smi.value(); }
+
+Smi PropertyDetails::AsSmi() const {
+ // Ensure the upper 2 bits have the same value by sign extending it. This is
+ // necessary to be able to use the 31st bit of the property details.
+ int value = value_ << 1;
+ return Smi::FromInt(value >> 1);
+}
+
+int PropertyDetails::field_width_in_words() const {
+ DCHECK_EQ(location(), kField);
+ if (!FLAG_unbox_double_fields) return 1;
+ if (kDoubleSize == kTaggedSize) return 1;
+ return representation().IsDouble() ? kDoubleSize / kTaggedSize : 1;
+}
+
+bool HeapObject::IsSloppyArgumentsElements() const {
+ return IsFixedArrayExact();
+}
+
+bool HeapObject::IsJSSloppyArgumentsObject() const {
+ return IsJSArgumentsObject();
+}
+
+bool HeapObject::IsJSGeneratorObject() const {
+ return map().instance_type() == JS_GENERATOR_OBJECT_TYPE ||
+ IsJSAsyncFunctionObject() || IsJSAsyncGeneratorObject();
+}
+
+bool HeapObject::IsDataHandler() const {
+ return IsLoadHandler() || IsStoreHandler();
+}
+
+bool HeapObject::IsClassBoilerplate() const { return IsFixedArrayExact(); }
+
+#define IS_TYPE_FUNCTION_DEF(type_) \
+ bool Object::Is##type_() const { \
+ return IsHeapObject() && HeapObject::cast(*this).Is##type_(); \
+ }
+HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF)
+#undef IS_TYPE_FUNCTION_DEF
+
+#define IS_TYPE_FUNCTION_DEF(Type, Value) \
+ bool Object::Is##Type(Isolate* isolate) const { \
+ return Is##Type(ReadOnlyRoots(isolate->heap())); \
+ } \
+ bool Object::Is##Type(ReadOnlyRoots roots) const { \
+ return *this == roots.Value(); \
+ } \
+ bool Object::Is##Type() const { \
+ return IsHeapObject() && HeapObject::cast(*this).Is##Type(); \
+ } \
+ bool HeapObject::Is##Type(Isolate* isolate) const { \
+ return Object::Is##Type(isolate); \
+ } \
+ bool HeapObject::Is##Type(ReadOnlyRoots roots) const { \
+ return Object::Is##Type(roots); \
+ } \
+ bool HeapObject::Is##Type() const { return Is##Type(GetReadOnlyRoots()); }
+ODDBALL_LIST(IS_TYPE_FUNCTION_DEF)
+#undef IS_TYPE_FUNCTION_DEF
+
+bool Object::IsNullOrUndefined(Isolate* isolate) const {
+ return IsNullOrUndefined(ReadOnlyRoots(isolate));
+}
+
+bool Object::IsNullOrUndefined(ReadOnlyRoots roots) const {
+ return IsNull(roots) || IsUndefined(roots);
+}
+
+bool Object::IsNullOrUndefined() const {
+ return IsHeapObject() && HeapObject::cast(*this).IsNullOrUndefined();
+}
+
+bool Object::IsZero() const { return *this == Smi::zero(); }
+
+bool Object::IsNoSharedNameSentinel() const {
+ return *this == SharedFunctionInfo::kNoSharedNameSentinel;
+}
+
+bool HeapObject::IsNullOrUndefined(Isolate* isolate) const {
+ return Object::IsNullOrUndefined(isolate);
+}
+
+bool HeapObject::IsNullOrUndefined(ReadOnlyRoots roots) const {
+ return Object::IsNullOrUndefined(roots);
+}
+
+bool HeapObject::IsNullOrUndefined() const {
+ return IsNullOrUndefined(GetReadOnlyRoots());
+}
+
+bool HeapObject::IsUniqueName() const {
+ return IsInternalizedString() || IsSymbol();
+}
+
+bool HeapObject::IsFunction() const {
+ STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
+ return map().instance_type() >= FIRST_FUNCTION_TYPE;
+}
+
+bool HeapObject::IsCallable() const { return map().is_callable(); }
+
+bool HeapObject::IsConstructor() const { return map().is_constructor(); }
+
+bool HeapObject::IsModuleInfo() const {
+ return map() == GetReadOnlyRoots().module_info_map();
+}
+
+bool HeapObject::IsTemplateInfo() const {
+ return IsObjectTemplateInfo() || IsFunctionTemplateInfo();
+}
+
+bool HeapObject::IsConsString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsCons();
+}
+
+bool HeapObject::IsThinString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsThin();
+}
+
+bool HeapObject::IsSlicedString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsSliced();
+}
+
+bool HeapObject::IsSeqString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsSequential();
+}
+
+bool HeapObject::IsSeqOneByteString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsSequential() &&
+ String::cast(*this).IsOneByteRepresentation();
+}
+
+bool HeapObject::IsSeqTwoByteString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsSequential() &&
+ String::cast(*this).IsTwoByteRepresentation();
+}
+
+bool HeapObject::IsExternalString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsExternal();
+}
+
+bool HeapObject::IsExternalOneByteString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsExternal() &&
+ String::cast(*this).IsOneByteRepresentation();
+}
+
+bool HeapObject::IsExternalTwoByteString() const {
+ if (!IsString()) return false;
+ return StringShape(String::cast(*this)).IsExternal() &&
+ String::cast(*this).IsTwoByteRepresentation();
+}
+
+bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); }
+
+bool Object::IsNumeric() const { return IsNumber() || IsBigInt(); }
+
+bool HeapObject::IsFiller() const {
+ InstanceType instance_type = map().instance_type();
+ return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
+}
+
+bool HeapObject::IsJSWeakCollection() const {
+ return IsJSWeakMap() || IsJSWeakSet();
+}
+
+bool HeapObject::IsJSCollection() const { return IsJSMap() || IsJSSet(); }
+
+bool HeapObject::IsPromiseReactionJobTask() const {
+ return IsPromiseFulfillReactionJobTask() || IsPromiseRejectReactionJobTask();
+}
+
+bool HeapObject::IsFrameArray() const { return IsFixedArrayExact(); }
+
+bool HeapObject::IsArrayList() const {
+ return map() == GetReadOnlyRoots().array_list_map() ||
+ *this == GetReadOnlyRoots().empty_fixed_array();
+}
+
+bool HeapObject::IsRegExpMatchInfo() const { return IsFixedArrayExact(); }
+
+bool Object::IsLayoutDescriptor() const { return IsSmi() || IsByteArray(); }
+
+bool HeapObject::IsDeoptimizationData() const {
+ // Must be a fixed array.
+ if (!IsFixedArrayExact()) return false;
+
+ // There's no sure way to detect the difference between a fixed array and
+ // a deoptimization data array. Since this is used for asserts we can
+ // check that the length is zero or else the fixed size plus a multiple of
+ // the entry size.
+ int length = FixedArray::cast(*this).length();
+ if (length == 0) return true;
+
+ length -= DeoptimizationData::kFirstDeoptEntryIndex;
+ return length >= 0 && length % DeoptimizationData::kDeoptEntrySize == 0;
+}
+
+bool HeapObject::IsHandlerTable() const {
+ if (!IsFixedArrayExact()) return false;
+ // There's actually no way to see the difference between a fixed array and
+ // a handler table array.
+ return true;
+}
+
+bool HeapObject::IsTemplateList() const {
+ if (!IsFixedArrayExact()) return false;
+ // There's actually no way to see the difference between a fixed array and
+ // a template list.
+ if (FixedArray::cast(*this).length() < 1) return false;
+ return true;
+}
+
+bool HeapObject::IsDependentCode() const {
+ if (!IsWeakFixedArray()) return false;
+ // There's actually no way to see the difference between a weak fixed array
+ // and a dependent codes array.
+ return true;
+}
+
+bool HeapObject::IsAbstractCode() const {
+ return IsBytecodeArray() || IsCode();
+}
+
+bool HeapObject::IsStringWrapper() const {
+ return IsJSValue() && JSValue::cast(*this).value().IsString();
+}
+
+bool HeapObject::IsBooleanWrapper() const {
+ return IsJSValue() && JSValue::cast(*this).value().IsBoolean();
+}
+
+bool HeapObject::IsScriptWrapper() const {
+ return IsJSValue() && JSValue::cast(*this).value().IsScript();
+}
+
+bool HeapObject::IsNumberWrapper() const {
+ return IsJSValue() && JSValue::cast(*this).value().IsNumber();
+}
+
+bool HeapObject::IsBigIntWrapper() const {
+ return IsJSValue() && JSValue::cast(*this).value().IsBigInt();
+}
+
+bool HeapObject::IsSymbolWrapper() const {
+ return IsJSValue() && JSValue::cast(*this).value().IsSymbol();
+}
+
+bool HeapObject::IsJSArrayBufferView() const {
+ return IsJSDataView() || IsJSTypedArray();
+}
+
+bool HeapObject::IsStringSet() const { return IsHashTable(); }
+
+bool HeapObject::IsObjectHashSet() const { return IsHashTable(); }
+
+bool HeapObject::IsCompilationCacheTable() const { return IsHashTable(); }
+
+bool HeapObject::IsMapCache() const { return IsHashTable(); }
+
+bool HeapObject::IsObjectHashTable() const { return IsHashTable(); }
+
+bool Object::IsHashTableBase() const { return IsHashTable(); }
+
+bool Object::IsSmallOrderedHashTable() const {
+ return IsSmallOrderedHashSet() || IsSmallOrderedHashMap() ||
+ IsSmallOrderedNameDictionary();
+}
+
+bool Object::IsPrimitive() const {
+ return IsSmi() || HeapObject::cast(*this).map().IsPrimitiveMap();
+}
+
+// static
+Maybe<bool> Object::IsArray(Handle<Object> object) {
+ if (object->IsSmi()) return Just(false);
+ Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
+ if (heap_object->IsJSArray()) return Just(true);
+ if (!heap_object->IsJSProxy()) return Just(false);
+ return JSProxy::IsArray(Handle<JSProxy>::cast(object));
+}
+
+bool HeapObject::IsUndetectable() const { return map().is_undetectable(); }
+
+bool HeapObject::IsAccessCheckNeeded() const {
+ if (IsJSGlobalProxy()) {
+ const JSGlobalProxy proxy = JSGlobalProxy::cast(*this);
+ JSGlobalObject global = proxy.GetIsolate()->context().global_object();
+ return proxy.IsDetachedFrom(global);
+ }
+ return map().is_access_check_needed();
+}
+
+bool HeapObject::IsStruct() const {
+ switch (map().instance_type()) {
+#define MAKE_STRUCT_CASE(TYPE, Name, name) \
+ case TYPE: \
+ return true;
+ STRUCT_LIST(MAKE_STRUCT_CASE)
+#undef MAKE_STRUCT_CASE
+ // It is hard to include ALLOCATION_SITE_TYPE in STRUCT_LIST because
+ // that macro is used for many things and AllocationSite needs a few
+ // special cases.
+ case ALLOCATION_SITE_TYPE:
+ return true;
+ case LOAD_HANDLER_TYPE:
+ case STORE_HANDLER_TYPE:
+ return true;
+ case FEEDBACK_CELL_TYPE:
+ return true;
+ case CALL_HANDLER_INFO_TYPE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
+ bool Object::Is##Name() const { \
+ return IsHeapObject() && HeapObject::cast(*this).Is##Name(); \
+ } \
+ TYPE_CHECKER(Name)
+STRUCT_LIST(MAKE_STRUCT_PREDICATE)
+#undef MAKE_STRUCT_PREDICATE
+
+double Object::Number() const {
+ DCHECK(IsNumber());
+ return IsSmi() ? static_cast<double>(Smi(this->ptr()).value())
+ : HeapNumber::unchecked_cast(*this).value();
+}
+
+// static
+bool Object::SameNumberValue(double value1, double value2) {
+ // SameNumberValue(NaN, NaN) is true.
+ if (value1 != value2) {
+ return std::isnan(value1) && std::isnan(value2);
+ }
+ // SameNumberValue(0.0, -0.0) is false.
+ return (std::signbit(value1) == std::signbit(value2));
+}
+
+bool Object::IsNaN() const {
+ return this->IsHeapNumber() && std::isnan(HeapNumber::cast(*this).value());
+}
+
+bool Object::IsMinusZero() const {
+ return this->IsHeapNumber() &&
+ i::IsMinusZero(HeapNumber::cast(*this).value());
+}
+
+OBJECT_CONSTRUCTORS_IMPL(RegExpMatchInfo, FixedArray)
+OBJECT_CONSTRUCTORS_IMPL(ScopeInfo, FixedArray)
+OBJECT_CONSTRUCTORS_IMPL(BigIntBase, HeapObject)
+OBJECT_CONSTRUCTORS_IMPL(BigInt, BigIntBase)
+OBJECT_CONSTRUCTORS_IMPL(FreshlyAllocatedBigInt, BigIntBase)
+
+// ------------------------------------
+// Cast operations
+
+CAST_ACCESSOR(BigInt)
+CAST_ACCESSOR(RegExpMatchInfo)
+CAST_ACCESSOR(ScopeInfo)
+
+bool Object::HasValidElements() {
+ // Dictionary is covered under FixedArray. ByteArray is used
+ // for the JSTypedArray backing stores.
+ return IsFixedArray() || IsFixedDoubleArray() || IsByteArray();
+}
+
+bool Object::FilterKey(PropertyFilter filter) {
+ DCHECK(!IsPropertyCell());
+ if (filter == PRIVATE_NAMES_ONLY) {
+ if (!IsSymbol()) return true;
+ return !Symbol::cast(*this).is_private_name();
+ } else if (IsSymbol()) {
+ if (filter & SKIP_SYMBOLS) return true;
+
+ if (Symbol::cast(*this).is_private()) return true;
+ } else {
+ if (filter & SKIP_STRINGS) return true;
+ }
+ return false;
+}
+
+Representation Object::OptimalRepresentation() {
+ if (!FLAG_track_fields) return Representation::Tagged();
+ if (IsSmi()) {
+ return Representation::Smi();
+ } else if (FLAG_track_double_fields && IsHeapNumber()) {
+ return Representation::Double();
+ } else if (FLAG_track_computed_fields && IsUninitialized()) {
+ return Representation::None();
+ } else if (FLAG_track_heap_object_fields) {
+ DCHECK(IsHeapObject());
+ return Representation::HeapObject();
+ } else {
+ return Representation::Tagged();
+ }
+}
+
+ElementsKind Object::OptimalElementsKind() {
+ if (IsSmi()) return PACKED_SMI_ELEMENTS;
+ if (IsNumber()) return PACKED_DOUBLE_ELEMENTS;
+ return PACKED_ELEMENTS;
+}
+
+bool Object::FitsRepresentation(Representation representation) {
+ if (FLAG_track_fields && representation.IsSmi()) {
+ return IsSmi();
+ } else if (FLAG_track_double_fields && representation.IsDouble()) {
+ return IsMutableHeapNumber() || IsNumber();
+ } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
+ return IsHeapObject();
+ } else if (FLAG_track_fields && representation.IsNone()) {
+ return false;
+ }
+ return true;
+}
+
+bool Object::ToUint32(uint32_t* value) const {
+ if (IsSmi()) {
+ int num = Smi::ToInt(*this);
+ if (num < 0) return false;
+ *value = static_cast<uint32_t>(num);
+ return true;
+ }
+ if (IsHeapNumber()) {
+ double num = HeapNumber::cast(*this).value();
+ return DoubleToUint32IfEqualToSelf(num, value);
+ }
+ return false;
+}
+
+// static
+MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
+ Handle<Object> object,
+ const char* method_name) {
+ if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
+ return ToObjectImpl(isolate, object, method_name);
+}
+
+// static
+MaybeHandle<Name> Object::ToName(Isolate* isolate, Handle<Object> input) {
+ if (input->IsName()) return Handle<Name>::cast(input);
+ return ConvertToName(isolate, input);
+}
+
+// static
+MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate,
+ Handle<Object> value) {
+ if (value->IsSmi() || HeapObject::cast(*value).IsName()) return value;
+ return ConvertToPropertyKey(isolate, value);
+}
+
+// static
+MaybeHandle<Object> Object::ToPrimitive(Handle<Object> input,
+ ToPrimitiveHint hint) {
+ if (input->IsPrimitive()) return input;
+ return JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), hint);
+}
+
+// static
+MaybeHandle<Object> Object::ToNumber(Isolate* isolate, Handle<Object> input) {
+ if (input->IsNumber()) return input; // Shortcut.
+ return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber);
+}
+
+// static
+MaybeHandle<Object> Object::ToNumeric(Isolate* isolate, Handle<Object> input) {
+ if (input->IsNumber() || input->IsBigInt()) return input; // Shortcut.
+ return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumeric);
+}
+
+// static
+MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) {
+ if (input->IsSmi()) return input;
+ return ConvertToInteger(isolate, input);
+}
+
+// static
+MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) {
+ if (input->IsSmi()) return input;
+ return ConvertToInt32(isolate, input);
+}
+
+// static
+MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) {
+ if (input->IsSmi()) return handle(Smi::cast(*input).ToUint32Smi(), isolate);
+ return ConvertToUint32(isolate, input);
+}
+
+// static
+MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) {
+ if (input->IsString()) return Handle<String>::cast(input);
+ return ConvertToString(isolate, input);
+}
+
+// static
+MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) {
+ if (input->IsSmi()) {
+ int value = std::max(Smi::ToInt(*input), 0);
+ return handle(Smi::FromInt(value), isolate);
+ }
+ return ConvertToLength(isolate, input);
+}
+
+// static
+MaybeHandle<Object> Object::ToIndex(Isolate* isolate, Handle<Object> input,
+ MessageTemplate error_index) {
+ if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input;
+ return ConvertToIndex(isolate, input, error_index);
+}
+
+MaybeHandle<Object> Object::GetProperty(Isolate* isolate, Handle<Object> object,
+ Handle<Name> name) {
+ LookupIterator it(isolate, object, name);
+ if (!it.IsFound()) return it.factory()->undefined_value();
+ return GetProperty(&it);
+}
+
+MaybeHandle<Object> Object::GetElement(Isolate* isolate, Handle<Object> object,
+ uint32_t index) {
+ LookupIterator it(isolate, object, index);
+ if (!it.IsFound()) return it.factory()->undefined_value();
+ return GetProperty(&it);
+}
+
+MaybeHandle<Object> Object::SetElement(Isolate* isolate, Handle<Object> object,
+ uint32_t index, Handle<Object> value,
+ ShouldThrow should_throw) {
+ LookupIterator it(isolate, object, index);
+ MAYBE_RETURN_NULL(
+ SetProperty(&it, value, StoreOrigin::kMaybeKeyed, Just(should_throw)));
+ return value;
+}
+
+ObjectSlot HeapObject::RawField(int byte_offset) const {
+ return ObjectSlot(FIELD_ADDR(*this, byte_offset));
+}
+
+MaybeObjectSlot HeapObject::RawMaybeWeakField(int byte_offset) const {
+ return MaybeObjectSlot(FIELD_ADDR(*this, byte_offset));
+}
+
+MapWord MapWord::FromMap(const Map map) { return MapWord(map.ptr()); }
+
+Map MapWord::ToMap() const { return Map::unchecked_cast(Object(value_)); }
+
+bool MapWord::IsForwardingAddress() const { return HAS_SMI_TAG(value_); }
+
+MapWord MapWord::FromForwardingAddress(HeapObject object) {
+ return MapWord(object.ptr() - kHeapObjectTag);
+}
+
+HeapObject MapWord::ToForwardingAddress() {
+ DCHECK(IsForwardingAddress());
+ return HeapObject::FromAddress(value_);
+}
+
+#ifdef VERIFY_HEAP
+void HeapObject::VerifyObjectField(Isolate* isolate, int offset) {
+ VerifyPointer(isolate, READ_FIELD(*this, offset));
+ STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size);
+}
+
+void HeapObject::VerifyMaybeObjectField(Isolate* isolate, int offset) {
+ MaybeObject::VerifyMaybeObjectPointer(isolate,
+ READ_WEAK_FIELD(*this, offset));
+ STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size);
+}
+
+void HeapObject::VerifySmiField(int offset) {
+ CHECK(READ_FIELD(*this, offset).IsSmi());
+ STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size);
+}
+
+#endif
+
+ReadOnlyRoots HeapObject::GetReadOnlyRoots() const {
+ return ReadOnlyHeap::GetReadOnlyRoots(*this);
+}
+
+Map HeapObject::map() const { return map_word().ToMap(); }
+
+void HeapObject::set_map(Map value) {
+ if (!value.is_null()) {
+#ifdef VERIFY_HEAP
+ GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value);
+#endif
+ }
+ set_map_word(MapWord::FromMap(value));
+ if (!value.is_null()) {
+ // TODO(1600) We are passing kNullAddress as a slot because maps can never
+ // be on an evacuation candidate.
+ MarkingBarrier(*this, ObjectSlot(kNullAddress), value);
+ }
+}
+
+Map HeapObject::synchronized_map() const {
+ return synchronized_map_word().ToMap();
+}
+
+void HeapObject::synchronized_set_map(Map value) {
+ if (!value.is_null()) {
+#ifdef VERIFY_HEAP
+ GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value);
+#endif
+ }
+ synchronized_set_map_word(MapWord::FromMap(value));
+ if (!value.is_null()) {
+ // TODO(1600) We are passing kNullAddress as a slot because maps can never
+ // be on an evacuation candidate.
+ MarkingBarrier(*this, ObjectSlot(kNullAddress), value);
+ }
+}
+
+// Unsafe accessor omitting write barrier.
+void HeapObject::set_map_no_write_barrier(Map value) {
+ if (!value.is_null()) {
+#ifdef VERIFY_HEAP
+ GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value);
+#endif
+ }
+ set_map_word(MapWord::FromMap(value));
+}
+
+void HeapObject::set_map_after_allocation(Map value, WriteBarrierMode mode) {
+ set_map_word(MapWord::FromMap(value));
+ if (mode != SKIP_WRITE_BARRIER) {
+ DCHECK(!value.is_null());
+ // TODO(1600) We are passing kNullAddress as a slot because maps can never
+ // be on an evacuation candidate.
+ MarkingBarrier(*this, ObjectSlot(kNullAddress), value);
+ }
+}
+
+MapWordSlot HeapObject::map_slot() const {
+ return MapWordSlot(FIELD_ADDR(*this, kMapOffset));
+}
+
+MapWord HeapObject::map_word() const {
+ return MapWord(map_slot().Relaxed_Load().ptr());
+}
+
+void HeapObject::set_map_word(MapWord map_word) {
+ map_slot().Relaxed_Store(Object(map_word.value_));
+}
+
+MapWord HeapObject::synchronized_map_word() const {
+ return MapWord(map_slot().Acquire_Load().ptr());
+}
+
+void HeapObject::synchronized_set_map_word(MapWord map_word) {
+ map_slot().Release_Store(Object(map_word.value_));
+}
+
+int HeapObject::Size() const { return SizeFromMap(map()); }
+
+inline bool IsSpecialReceiverInstanceType(InstanceType instance_type) {
+ return instance_type <= LAST_SPECIAL_RECEIVER_TYPE;
+}
+
+// This should be in objects/map-inl.h, but can't, because of a cyclic
+// dependency.
+bool Map::IsSpecialReceiverMap() const {
+ bool result = IsSpecialReceiverInstanceType(instance_type());
+ DCHECK_IMPLIES(!result,
+ !has_named_interceptor() && !is_access_check_needed());
+ return result;
+}
+
+inline bool IsCustomElementsReceiverInstanceType(InstanceType instance_type) {
+ return instance_type <= LAST_CUSTOM_ELEMENTS_RECEIVER;
+}
+
+// This should be in objects/map-inl.h, but can't, because of a cyclic
+// dependency.
+bool Map::IsCustomElementsReceiverMap() const {
+ return IsCustomElementsReceiverInstanceType(instance_type());
+}
+
+bool Object::ToArrayLength(uint32_t* index) const {
+ return Object::ToUint32(index);
+}
+
+bool Object::ToArrayIndex(uint32_t* index) const {
+ return Object::ToUint32(index) && *index != kMaxUInt32;
+}
+
+int RegExpMatchInfo::NumberOfCaptureRegisters() {
+ DCHECK_GE(length(), kLastMatchOverhead);
+ Object obj = get(kNumberOfCapturesIndex);
+ return Smi::ToInt(obj);
+}
+
+void RegExpMatchInfo::SetNumberOfCaptureRegisters(int value) {
+ DCHECK_GE(length(), kLastMatchOverhead);
+ set(kNumberOfCapturesIndex, Smi::FromInt(value));
+}
+
+String RegExpMatchInfo::LastSubject() {
+ DCHECK_GE(length(), kLastMatchOverhead);
+ return String::cast(get(kLastSubjectIndex));
+}
+
+void RegExpMatchInfo::SetLastSubject(String value) {
+ DCHECK_GE(length(), kLastMatchOverhead);
+ set(kLastSubjectIndex, value);
+}
+
+Object RegExpMatchInfo::LastInput() {
+ DCHECK_GE(length(), kLastMatchOverhead);
+ return get(kLastInputIndex);
+}
+
+void RegExpMatchInfo::SetLastInput(Object value) {
+ DCHECK_GE(length(), kLastMatchOverhead);
+ set(kLastInputIndex, value);
+}
+
+int RegExpMatchInfo::Capture(int i) {
+ DCHECK_LT(i, NumberOfCaptureRegisters());
+ Object obj = get(kFirstCaptureIndex + i);
+ return Smi::ToInt(obj);
+}
+
+void RegExpMatchInfo::SetCapture(int i, int value) {
+ DCHECK_LT(i, NumberOfCaptureRegisters());
+ set(kFirstCaptureIndex + i, Smi::FromInt(value));
+}
+
+WriteBarrierMode HeapObject::GetWriteBarrierMode(
+ const DisallowHeapAllocation& promise) {
+ return GetWriteBarrierModeForObject(*this, &promise);
+}
+
+// static
+AllocationAlignment HeapObject::RequiredAlignment(Map map) {
+ // TODO(bmeurer, v8:4153): We should think about requiring double alignment
+ // in general for ByteArray, since they are used as backing store for typed
+ // arrays now.
+#ifdef V8_COMPRESS_POINTERS
+ // TODO(ishell, v8:8875): Consider using aligned allocations once the
+ // allocation alignment inconsistency is fixed. For now we keep using
+ // unaligned access since both x64 and arm64 architectures (where pointer
+ // compression is supported) allow unaligned access to doubles and full words.
+#endif // V8_COMPRESS_POINTERS
+#ifdef V8_HOST_ARCH_32_BIT
+ int instance_type = map.instance_type();
+ if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) return kDoubleAligned;
+ if (instance_type == HEAP_NUMBER_TYPE) return kDoubleUnaligned;
+#endif // V8_HOST_ARCH_32_BIT
+ return kWordAligned;
+}
+
+Address HeapObject::GetFieldAddress(int field_offset) const {
+ return FIELD_ADDR(*this, field_offset);
+}
+
+// static
+Maybe<bool> Object::GreaterThan(Isolate* isolate, Handle<Object> x,
+ Handle<Object> y) {
+ Maybe<ComparisonResult> result = Compare(isolate, x, y);
+ if (result.IsJust()) {
+ switch (result.FromJust()) {
+ case ComparisonResult::kGreaterThan:
+ return Just(true);
+ case ComparisonResult::kLessThan:
+ case ComparisonResult::kEqual:
+ case ComparisonResult::kUndefined:
+ return Just(false);
+ }
+ }
+ return Nothing<bool>();
+}
+
+// static
+Maybe<bool> Object::GreaterThanOrEqual(Isolate* isolate, Handle<Object> x,
+ Handle<Object> y) {
+ Maybe<ComparisonResult> result = Compare(isolate, x, y);
+ if (result.IsJust()) {
+ switch (result.FromJust()) {
+ case ComparisonResult::kEqual:
+ case ComparisonResult::kGreaterThan:
+ return Just(true);
+ case ComparisonResult::kLessThan:
+ case ComparisonResult::kUndefined:
+ return Just(false);
+ }
+ }
+ return Nothing<bool>();
+}
+
+// static
+Maybe<bool> Object::LessThan(Isolate* isolate, Handle<Object> x,
+ Handle<Object> y) {
+ Maybe<ComparisonResult> result = Compare(isolate, x, y);
+ if (result.IsJust()) {
+ switch (result.FromJust()) {
+ case ComparisonResult::kLessThan:
+ return Just(true);
+ case ComparisonResult::kEqual:
+ case ComparisonResult::kGreaterThan:
+ case ComparisonResult::kUndefined:
+ return Just(false);
+ }
+ }
+ return Nothing<bool>();
+}
+
+// static
+Maybe<bool> Object::LessThanOrEqual(Isolate* isolate, Handle<Object> x,
+ Handle<Object> y) {
+ Maybe<ComparisonResult> result = Compare(isolate, x, y);
+ if (result.IsJust()) {
+ switch (result.FromJust()) {
+ case ComparisonResult::kEqual:
+ case ComparisonResult::kLessThan:
+ return Just(true);
+ case ComparisonResult::kGreaterThan:
+ case ComparisonResult::kUndefined:
+ return Just(false);
+ }
+ }
+ return Nothing<bool>();
+}
+
+MaybeHandle<Object> Object::GetPropertyOrElement(Isolate* isolate,
+ Handle<Object> object,
+ Handle<Name> name) {
+ LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name);
+ return GetProperty(&it);
+}
+
+MaybeHandle<Object> Object::SetPropertyOrElement(
+ Isolate* isolate, Handle<Object> object, Handle<Name> name,
+ Handle<Object> value, Maybe<ShouldThrow> should_throw,
+ StoreOrigin store_origin) {
+ LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name);
+ MAYBE_RETURN_NULL(SetProperty(&it, value, store_origin, should_throw));
+ return value;
+}
+
+MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> receiver,
+ Handle<Name> name,
+ Handle<JSReceiver> holder) {
+ LookupIterator it = LookupIterator::PropertyOrElement(holder->GetIsolate(),
+ receiver, name, holder);
+ return GetProperty(&it);
+}
+
+// static
+Object Object::GetSimpleHash(Object object) {
+ DisallowHeapAllocation no_gc;
+ if (object.IsSmi()) {
+ uint32_t hash = ComputeUnseededHash(Smi::ToInt(object));
+ return Smi::FromInt(hash & Smi::kMaxValue);
+ }
+ if (object.IsHeapNumber()) {
+ double num = HeapNumber::cast(object).value();
+ if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue);
+ // Use ComputeUnseededHash for all values in Signed32 range, including -0,
+ // which is considered equal to 0 because collections use SameValueZero.
+ uint32_t hash;
+ // Check range before conversion to avoid undefined behavior.
+ if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) {
+ hash = ComputeUnseededHash(FastD2I(num));
+ } else {
+ hash = ComputeLongHash(double_to_uint64(num));
+ }
+ return Smi::FromInt(hash & Smi::kMaxValue);
+ }
+ if (object.IsName()) {
+ uint32_t hash = Name::cast(object).Hash();
+ return Smi::FromInt(hash);
+ }
+ if (object.IsOddball()) {
+ uint32_t hash = Oddball::cast(object).to_string().Hash();
+ return Smi::FromInt(hash);
+ }
+ if (object.IsBigInt()) {
+ uint32_t hash = BigInt::cast(object).Hash();
+ return Smi::FromInt(hash & Smi::kMaxValue);
+ }
+ if (object.IsSharedFunctionInfo()) {
+ uint32_t hash = SharedFunctionInfo::cast(object).Hash();
+ return Smi::FromInt(hash & Smi::kMaxValue);
+ }
+ DCHECK(object.IsJSReceiver());
+ return object;
+}
+
+Object Object::GetHash() {
+ DisallowHeapAllocation no_gc;
+ Object hash = GetSimpleHash(*this);
+ if (hash.IsSmi()) return hash;
+
+ DCHECK(IsJSReceiver());
+ JSReceiver receiver = JSReceiver::cast(*this);
+ return receiver.GetIdentityHash();
+}
+
+Handle<Object> ObjectHashTableShape::AsHandle(Handle<Object> key) {
+ return key;
+}
+
+Relocatable::Relocatable(Isolate* isolate) {
+ isolate_ = isolate;
+ prev_ = isolate->relocatable_top();
+ isolate->set_relocatable_top(this);
+}
+
+Relocatable::~Relocatable() {
+ DCHECK_EQ(isolate_->relocatable_top(), this);
+ isolate_->set_relocatable_top(prev_);
+}
+
+// Predictably converts HeapObject or Address to uint32 by calculating
+// offset of the address in respective MemoryChunk.
+static inline uint32_t ObjectAddressForHashing(Address object) {
+ uint32_t value = static_cast<uint32_t>(object);
+ return value & kPageAlignmentMask;
+}
+
+static inline Handle<Object> MakeEntryPair(Isolate* isolate, uint32_t index,
+ Handle<Object> value) {
+ Handle<Object> key = isolate->factory()->Uint32ToString(index);
+ Handle<FixedArray> entry_storage =
+ isolate->factory()->NewUninitializedFixedArray(2);
+ {
+ entry_storage->set(0, *key, SKIP_WRITE_BARRIER);
+ entry_storage->set(1, *value, SKIP_WRITE_BARRIER);
+ }
+ return isolate->factory()->NewJSArrayWithElements(entry_storage,
+ PACKED_ELEMENTS, 2);
+}
+
+static inline Handle<Object> MakeEntryPair(Isolate* isolate, Handle<Object> key,
+ Handle<Object> value) {
+ Handle<FixedArray> entry_storage =
+ isolate->factory()->NewUninitializedFixedArray(2);
+ {
+ entry_storage->set(0, *key, SKIP_WRITE_BARRIER);
+ entry_storage->set(1, *value, SKIP_WRITE_BARRIER);
+ }
+ return isolate->factory()->NewJSArrayWithElements(entry_storage,
+ PACKED_ELEMENTS, 2);
+}
+
+bool ScopeInfo::IsAsmModule() const {
+ return IsAsmModuleField::decode(Flags());
+}
+
+bool ScopeInfo::HasSimpleParameters() const {
+ return HasSimpleParametersField::decode(Flags());
+}
+
+#define FIELD_ACCESSORS(name) \
+ void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \
+ int ScopeInfo::name() const { \
+ if (length() > 0) { \
+ return Smi::ToInt(get(k##name)); \
+ } else { \
+ return 0; \
+ } \
+ }
+FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS)
+#undef FIELD_ACCESSORS
+
+FreshlyAllocatedBigInt FreshlyAllocatedBigInt::cast(Object object) {
+ SLOW_DCHECK(object.IsBigInt());
+ return FreshlyAllocatedBigInt(object.ptr());
+}
+
+} // namespace internal
+} // namespace v8
+
+#include "src/objects/object-macros-undef.h"
+
+#endif // V8_OBJECTS_OBJECTS_INL_H_