summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/spaces.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/heap/spaces.cc')
-rw-r--r--deps/v8/src/heap/spaces.cc1165
1 files changed, 585 insertions, 580 deletions
diff --git a/deps/v8/src/heap/spaces.cc b/deps/v8/src/heap/spaces.cc
index 8a7fd1a14f..95d5687a8f 100644
--- a/deps/v8/src/heap/spaces.cc
+++ b/deps/v8/src/heap/spaces.cc
@@ -4,13 +4,18 @@
#include "src/heap/spaces.h"
+#include <utility>
+
#include "src/base/bits.h"
#include "src/base/platform/platform.h"
+#include "src/base/platform/semaphore.h"
#include "src/full-codegen/full-codegen.h"
+#include "src/heap/array-buffer-tracker.h"
#include "src/heap/slot-set.h"
#include "src/macro-assembler.h"
#include "src/msan.h"
#include "src/snapshot/snapshot.h"
+#include "src/v8.h"
namespace v8 {
namespace internal {
@@ -19,51 +24,37 @@ namespace internal {
// ----------------------------------------------------------------------------
// HeapObjectIterator
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
- // You can't actually iterate over the anchor page. It is not a real page,
- // just an anchor for the double linked page list. Initialize as if we have
- // reached the end of the anchor page, then the first iteration will move on
- // to the first page.
- Initialize(space, NULL, NULL, kAllPagesInSpace);
-}
-
-
-HeapObjectIterator::HeapObjectIterator(Page* page) {
+HeapObjectIterator::HeapObjectIterator(PagedSpace* space)
+ : cur_addr_(nullptr),
+ cur_end_(nullptr),
+ space_(space),
+ page_range_(space->anchor()->next_page(), space->anchor()),
+ current_page_(page_range_.begin()) {}
+
+HeapObjectIterator::HeapObjectIterator(Page* page)
+ : cur_addr_(nullptr),
+ cur_end_(nullptr),
+ space_(reinterpret_cast<PagedSpace*>(page->owner())),
+ page_range_(page),
+ current_page_(page_range_.begin()) {
+#ifdef DEBUG
Space* owner = page->owner();
DCHECK(owner == page->heap()->old_space() ||
owner == page->heap()->map_space() ||
owner == page->heap()->code_space());
- Initialize(reinterpret_cast<PagedSpace*>(owner), page->area_start(),
- page->area_end(), kOnePageOnly);
- DCHECK(page->SweepingDone());
-}
-
-
-void HeapObjectIterator::Initialize(PagedSpace* space, Address cur, Address end,
- HeapObjectIterator::PageMode mode) {
- space_ = space;
- cur_addr_ = cur;
- cur_end_ = end;
- page_mode_ = mode;
+#endif // DEBUG
}
-
// We have hit the end of the page and should advance to the next block of
// objects. This happens at the end of the page.
bool HeapObjectIterator::AdvanceToNextPage() {
- DCHECK(cur_addr_ == cur_end_);
- if (page_mode_ == kOnePageOnly) return false;
- Page* cur_page;
- if (cur_addr_ == NULL) {
- cur_page = space_->anchor();
- } else {
- cur_page = Page::FromAddress(cur_addr_ - 1);
- DCHECK(cur_addr_ == cur_page->area_end());
- }
- cur_page = cur_page->next_page();
- if (cur_page == space_->anchor()) return false;
- cur_page->heap()->mark_compact_collector()->SweepOrWaitUntilSweepingCompleted(
- cur_page);
+ DCHECK_EQ(cur_addr_, cur_end_);
+ if (current_page_ == page_range_.end()) return false;
+ Page* cur_page = *(current_page_++);
+ space_->heap()
+ ->mark_compact_collector()
+ ->sweeper()
+ .SweepOrWaitUntilSweepingCompleted(cur_page);
cur_addr_ = cur_page->area_start();
cur_end_ = cur_page->area_end();
DCHECK(cur_page->SweepingDone());
@@ -115,15 +106,16 @@ bool CodeRange::SetUp(size_t requested) {
requested = kMinimumCodeRangeSize;
}
+ const size_t reserved_area =
+ kReservedCodeRangePages * base::OS::CommitPageSize();
+ if (requested < (kMaximalCodeRangeSize - reserved_area))
+ requested += reserved_area;
+
DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize);
-#ifdef V8_TARGET_ARCH_MIPS64
- // To use pseudo-relative jumps such as j/jal instructions which have 28-bit
- // encoded immediate, the addresses have to be in range of 256Mb aligned
- // region.
- code_range_ = new base::VirtualMemory(requested, kMaximalCodeRangeSize);
-#else
- code_range_ = new base::VirtualMemory(requested);
-#endif
+
+ code_range_ = new base::VirtualMemory(
+ requested, Max(kCodeRangeAreaAlignment,
+ static_cast<size_t>(base::OS::AllocateAlignment())));
CHECK(code_range_ != NULL);
if (!code_range_->IsReserved()) {
delete code_range_;
@@ -137,18 +129,16 @@ bool CodeRange::SetUp(size_t requested) {
// On some platforms, specifically Win64, we need to reserve some pages at
// the beginning of an executable space.
- if (kReservedCodeRangePages) {
- if (!code_range_->Commit(
- base, kReservedCodeRangePages * base::OS::CommitPageSize(), true)) {
+ if (reserved_area > 0) {
+ if (!code_range_->Commit(base, reserved_area, true)) {
delete code_range_;
code_range_ = NULL;
return false;
}
- base += kReservedCodeRangePages * base::OS::CommitPageSize();
+ base += reserved_area;
}
Address aligned_base = RoundUp(base, MemoryChunk::kAlignment);
- size_t size = code_range_->size() - (aligned_base - base) -
- kReservedCodeRangePages * base::OS::CommitPageSize();
+ size_t size = code_range_->size() - (aligned_base - base) - reserved_area;
allocation_list_.Add(FreeBlock(aligned_base, size));
current_allocation_block_index_ = 0;
@@ -222,7 +212,7 @@ Address CodeRange::AllocateRawMemory(const size_t requested_size,
*allocated = current.size;
DCHECK(*allocated <= current.size);
DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment));
- if (!isolate_->memory_allocator()->CommitExecutableMemory(
+ if (!isolate_->heap()->memory_allocator()->CommitExecutableMemory(
code_range_, current.start, commit_size, *allocated)) {
*allocated = 0;
ReleaseBlock(&current);
@@ -233,7 +223,8 @@ Address CodeRange::AllocateRawMemory(const size_t requested_size,
bool CodeRange::CommitRawMemory(Address start, size_t length) {
- return isolate_->memory_allocator()->CommitMemory(start, length, EXECUTABLE);
+ return isolate_->heap()->memory_allocator()->CommitMemory(start, length,
+ EXECUTABLE);
}
@@ -294,15 +285,17 @@ void CodeRange::ReleaseBlock(const FreeBlock* block) {
MemoryAllocator::MemoryAllocator(Isolate* isolate)
: isolate_(isolate),
+ code_range_(nullptr),
capacity_(0),
capacity_executable_(0),
size_(0),
size_executable_(0),
lowest_ever_allocated_(reinterpret_cast<void*>(-1)),
- highest_ever_allocated_(reinterpret_cast<void*>(0)) {}
-
+ highest_ever_allocated_(reinterpret_cast<void*>(0)),
+ unmapper_(this) {}
-bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) {
+bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable,
+ intptr_t code_range_size) {
capacity_ = RoundUp(capacity, Page::kPageSize);
capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
DCHECK_GE(capacity_, capacity_executable_);
@@ -310,21 +303,103 @@ bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) {
size_ = 0;
size_executable_ = 0;
+ code_range_ = new CodeRange(isolate_);
+ if (!code_range_->SetUp(static_cast<size_t>(code_range_size))) return false;
+
return true;
}
void MemoryAllocator::TearDown() {
- for (MemoryChunk* chunk : chunk_pool_) {
+ unmapper()->WaitUntilCompleted();
+
+ MemoryChunk* chunk = nullptr;
+ while ((chunk = unmapper()->TryGetPooledMemoryChunkSafe()) != nullptr) {
FreeMemory(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize,
NOT_EXECUTABLE);
}
+
// Check that spaces were torn down before MemoryAllocator.
DCHECK_EQ(size_.Value(), 0);
// TODO(gc) this will be true again when we fix FreeMemory.
// DCHECK(size_executable_ == 0);
capacity_ = 0;
capacity_executable_ = 0;
+
+ if (last_chunk_.IsReserved()) {
+ last_chunk_.Release();
+ }
+
+ delete code_range_;
+ code_range_ = nullptr;
+}
+
+class MemoryAllocator::Unmapper::UnmapFreeMemoryTask : public v8::Task {
+ public:
+ explicit UnmapFreeMemoryTask(Unmapper* unmapper) : unmapper_(unmapper) {}
+
+ private:
+ // v8::Task overrides.
+ void Run() override {
+ unmapper_->PerformFreeMemoryOnQueuedChunks();
+ unmapper_->pending_unmapping_tasks_semaphore_.Signal();
+ }
+
+ Unmapper* unmapper_;
+ DISALLOW_COPY_AND_ASSIGN(UnmapFreeMemoryTask);
+};
+
+void MemoryAllocator::Unmapper::FreeQueuedChunks() {
+ ReconsiderDelayedChunks();
+ if (FLAG_concurrent_sweeping) {
+ V8::GetCurrentPlatform()->CallOnBackgroundThread(
+ new UnmapFreeMemoryTask(this), v8::Platform::kShortRunningTask);
+ concurrent_unmapping_tasks_active_++;
+ } else {
+ PerformFreeMemoryOnQueuedChunks();
+ }
+}
+
+bool MemoryAllocator::Unmapper::WaitUntilCompleted() {
+ bool waited = false;
+ while (concurrent_unmapping_tasks_active_ > 0) {
+ pending_unmapping_tasks_semaphore_.Wait();
+ concurrent_unmapping_tasks_active_--;
+ waited = true;
+ }
+ return waited;
+}
+
+void MemoryAllocator::Unmapper::PerformFreeMemoryOnQueuedChunks() {
+ MemoryChunk* chunk = nullptr;
+ // Regular chunks.
+ while ((chunk = GetMemoryChunkSafe<kRegular>()) != nullptr) {
+ bool pooled = chunk->IsFlagSet(MemoryChunk::POOLED);
+ allocator_->PerformFreeMemory(chunk);
+ if (pooled) AddMemoryChunkSafe<kPooled>(chunk);
+ }
+ // Non-regular chunks.
+ while ((chunk = GetMemoryChunkSafe<kNonRegular>()) != nullptr) {
+ allocator_->PerformFreeMemory(chunk);
+ }
+}
+
+void MemoryAllocator::Unmapper::ReconsiderDelayedChunks() {
+ std::list<MemoryChunk*> delayed_chunks(std::move(delayed_regular_chunks_));
+ // Move constructed, so the permanent list should be empty.
+ DCHECK(delayed_regular_chunks_.empty());
+ for (auto it = delayed_chunks.begin(); it != delayed_chunks.end(); ++it) {
+ AddMemoryChunkSafe<kRegular>(*it);
+ }
+}
+
+bool MemoryAllocator::CanFreeMemoryChunk(MemoryChunk* chunk) {
+ MarkCompactCollector* mc = isolate_->heap()->mark_compact_collector();
+ // We cannot free memory chunks in new space while the sweeper is running
+ // since a sweeper thread might be stuck right before trying to lock the
+ // corresponding page.
+ return !chunk->InNewSpace() || (mc == nullptr) ||
+ mc->sweeper().IsSweepingCompleted();
}
bool MemoryAllocator::CommitMemory(Address base, size_t size,
@@ -342,11 +417,9 @@ void MemoryAllocator::FreeMemory(base::VirtualMemory* reservation,
Executability executable) {
// TODO(gc) make code_range part of memory allocator?
// Code which is part of the code-range does not have its own VirtualMemory.
- DCHECK(isolate_->code_range() == NULL ||
- !isolate_->code_range()->contains(
- static_cast<Address>(reservation->address())));
- DCHECK(executable == NOT_EXECUTABLE || isolate_->code_range() == NULL ||
- !isolate_->code_range()->valid() ||
+ DCHECK(code_range() == NULL ||
+ !code_range()->contains(static_cast<Address>(reservation->address())));
+ DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid() ||
reservation->size() <= Page::kPageSize);
reservation->Release();
@@ -356,20 +429,18 @@ void MemoryAllocator::FreeMemory(base::VirtualMemory* reservation,
void MemoryAllocator::FreeMemory(Address base, size_t size,
Executability executable) {
// TODO(gc) make code_range part of memory allocator?
- if (isolate_->code_range() != NULL &&
- isolate_->code_range()->contains(static_cast<Address>(base))) {
+ if (code_range() != NULL &&
+ code_range()->contains(static_cast<Address>(base))) {
DCHECK(executable == EXECUTABLE);
- isolate_->code_range()->FreeRawMemory(base, size);
+ code_range()->FreeRawMemory(base, size);
} else {
- DCHECK(executable == NOT_EXECUTABLE || isolate_->code_range() == NULL ||
- !isolate_->code_range()->valid());
+ DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid());
bool result = base::VirtualMemory::ReleaseRegion(base, size);
USE(result);
DCHECK(result);
}
}
-
Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment,
base::VirtualMemory* controller) {
base::VirtualMemory reservation(size, alignment);
@@ -382,7 +453,6 @@ Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment,
return base;
}
-
Address MemoryAllocator::AllocateAlignedMemory(
size_t reserve_size, size_t commit_size, size_t alignment,
Executability executable, base::VirtualMemory* controller) {
@@ -415,20 +485,12 @@ Address MemoryAllocator::AllocateAlignedMemory(
return base;
}
-
-void Page::InitializeAsAnchor(PagedSpace* owner) {
- set_owner(owner);
- set_prev_page(this);
- set_next_page(this);
-}
-
-void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) {
- set_owner(semi_space);
+void Page::InitializeAsAnchor(Space* space) {
+ set_owner(space);
set_next_chunk(this);
set_prev_chunk(this);
- // Flags marks this invalid page as not being in new-space.
- // All real new-space pages will be in new-space.
SetFlags(0, ~0);
+ SetFlag(ANCHOR);
}
MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size,
@@ -448,19 +510,22 @@ MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size,
chunk->InitializeReservedMemory();
chunk->old_to_new_slots_ = nullptr;
chunk->old_to_old_slots_ = nullptr;
+ chunk->typed_old_to_new_slots_ = nullptr;
chunk->typed_old_to_old_slots_ = nullptr;
chunk->skip_list_ = nullptr;
chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity;
chunk->progress_bar_ = 0;
chunk->high_water_mark_.SetValue(static_cast<intptr_t>(area_start - base));
chunk->concurrent_sweeping_state().SetValue(kSweepingDone);
- chunk->mutex_ = nullptr;
+ chunk->mutex_ = new base::Mutex();
chunk->available_in_free_list_ = 0;
chunk->wasted_memory_ = 0;
chunk->ResetLiveBytes();
- Bitmap::Clear(chunk);
+ chunk->ClearLiveness();
chunk->set_next_chunk(nullptr);
chunk->set_prev_chunk(nullptr);
+ chunk->local_tracker_ = nullptr;
+ chunk->black_area_end_marker_map_ = nullptr;
DCHECK(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
DCHECK(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset);
@@ -496,19 +561,18 @@ bool MemoryChunk::CommitArea(size_t requested) {
if (reservation_.IsReserved()) {
Executability executable =
IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
- if (!heap()->isolate()->memory_allocator()->CommitMemory(start, length,
- executable)) {
+ if (!heap()->memory_allocator()->CommitMemory(start, length,
+ executable)) {
return false;
}
} else {
- CodeRange* code_range = heap_->isolate()->code_range();
- DCHECK(code_range != NULL && code_range->valid() &&
- IsFlagSet(IS_EXECUTABLE));
+ CodeRange* code_range = heap_->memory_allocator()->code_range();
+ DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
if (!code_range->CommitRawMemory(start, length)) return false;
}
if (Heap::ShouldZapGarbage()) {
- heap_->isolate()->memory_allocator()->ZapBlock(start, length);
+ heap_->memory_allocator()->ZapBlock(start, length);
}
} else if (commit_size < committed_size) {
DCHECK(commit_size > 0);
@@ -518,9 +582,8 @@ bool MemoryChunk::CommitArea(size_t requested) {
if (reservation_.IsReserved()) {
if (!reservation_.Uncommit(start, length)) return false;
} else {
- CodeRange* code_range = heap_->isolate()->code_range();
- DCHECK(code_range != NULL && code_range->valid() &&
- IsFlagSet(IS_EXECUTABLE));
+ CodeRange* code_range = heap_->memory_allocator()->code_range();
+ DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
if (!code_range->UncommitRawMemory(start, length)) return false;
}
}
@@ -529,6 +592,11 @@ bool MemoryChunk::CommitArea(size_t requested) {
return true;
}
+size_t MemoryChunk::CommittedPhysicalMemory() {
+ if (!base::VirtualMemory::HasLazyCommits() || owner()->identity() == LO_SPACE)
+ return size();
+ return high_water_mark_.Value();
+}
void MemoryChunk::InsertAfter(MemoryChunk* other) {
MemoryChunk* other_next = other->next_chunk();
@@ -614,13 +682,12 @@ MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size,
#ifdef V8_TARGET_ARCH_MIPS64
// Use code range only for large object space on mips64 to keep address
// range within 256-MB memory region.
- if (isolate_->code_range() != NULL && isolate_->code_range()->valid() &&
- reserve_area_size > CodePageAreaSize()) {
+ if (code_range()->valid() && reserve_area_size > CodePageAreaSize()) {
#else
- if (isolate_->code_range() != NULL && isolate_->code_range()->valid()) {
+ if (code_range()->valid()) {
#endif
- base = isolate_->code_range()->AllocateRawMemory(chunk_size, commit_size,
- &chunk_size);
+ base =
+ code_range()->AllocateRawMemory(chunk_size, commit_size, &chunk_size);
DCHECK(
IsAligned(reinterpret_cast<intptr_t>(base), MemoryChunk::kAlignment));
if (base == NULL) return NULL;
@@ -669,9 +736,22 @@ MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size,
static_cast<int>(chunk_size));
LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
- if (owner != NULL) {
- ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
- PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
+
+ // We cannot use the last chunk in the address space because we would
+ // overflow when comparing top and limit if this chunk is used for a
+ // linear allocation area.
+ if ((reinterpret_cast<uintptr_t>(base) + chunk_size) == 0u) {
+ CHECK(!last_chunk_.IsReserved());
+ last_chunk_.TakeControl(&reservation);
+ UncommitBlock(reinterpret_cast<Address>(last_chunk_.address()),
+ last_chunk_.size());
+ size_.Increment(-static_cast<intptr_t>(chunk_size));
+ if (executable == EXECUTABLE) {
+ size_executable_.Increment(-static_cast<intptr_t>(chunk_size));
+ }
+ CHECK(last_chunk_.IsReserved());
+ return AllocateChunk(reserve_area_size, commit_area_size, executable,
+ owner);
}
return MemoryChunk::Initialize(heap, base, chunk_size, area_start, area_end,
@@ -684,28 +764,30 @@ void Page::ResetFreeListStatistics() {
available_in_free_list_ = 0;
}
-LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
- Space* owner,
- Executability executable) {
- MemoryChunk* chunk =
- AllocateChunk(object_size, object_size, executable, owner);
- if (chunk == NULL) return NULL;
- if (executable && chunk->size() > LargePage::kMaxCodePageSize) {
- STATIC_ASSERT(LargePage::kMaxCodePageSize <= TypedSlotSet::kMaxOffset);
- FATAL("Code page is too large.");
- }
- return LargePage::Initialize(isolate_->heap(), chunk);
-}
+void MemoryAllocator::PartialFreeMemory(MemoryChunk* chunk,
+ Address start_free) {
+ // We do not allow partial shrink for code.
+ DCHECK(chunk->executable() == NOT_EXECUTABLE);
+
+ intptr_t size;
+ base::VirtualMemory* reservation = chunk->reserved_memory();
+ DCHECK(reservation->IsReserved());
+ size = static_cast<intptr_t>(reservation->size());
+ size_t to_free_size = size - (start_free - chunk->address());
+
+ DCHECK(size_.Value() >= static_cast<intptr_t>(to_free_size));
+ size_.Increment(-static_cast<intptr_t>(to_free_size));
+ isolate_->counters()->memory_allocated()->Decrement(
+ static_cast<int>(to_free_size));
+ chunk->set_size(size - to_free_size);
+
+ reservation->ReleasePartial(start_free);
+}
void MemoryAllocator::PreFreeMemory(MemoryChunk* chunk) {
DCHECK(!chunk->IsFlagSet(MemoryChunk::PRE_FREED));
LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
- if (chunk->owner() != NULL) {
- ObjectSpace space =
- static_cast<ObjectSpace>(1 << chunk->owner()->identity());
- PerformAllocationCallback(space, kAllocationActionFree, chunk->size());
- }
isolate_->heap()->RememberUnmappedPage(reinterpret_cast<Address>(chunk),
chunk->IsEvacuationCandidate());
@@ -735,36 +817,52 @@ void MemoryAllocator::PerformFreeMemory(MemoryChunk* chunk) {
chunk->ReleaseAllocatedMemory();
base::VirtualMemory* reservation = chunk->reserved_memory();
- if (reservation->IsReserved()) {
- FreeMemory(reservation, chunk->executable());
+ if (chunk->IsFlagSet(MemoryChunk::POOLED)) {
+ UncommitBlock(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize);
} else {
- FreeMemory(chunk->address(), chunk->size(), chunk->executable());
+ if (reservation->IsReserved()) {
+ FreeMemory(reservation, chunk->executable());
+ } else {
+ FreeMemory(chunk->address(), chunk->size(), chunk->executable());
+ }
}
}
-template <MemoryAllocator::AllocationMode mode>
+template <MemoryAllocator::FreeMode mode>
void MemoryAllocator::Free(MemoryChunk* chunk) {
- if (mode == kRegular) {
- PreFreeMemory(chunk);
- PerformFreeMemory(chunk);
- } else {
- DCHECK_EQ(mode, kPooled);
- FreePooled(chunk);
+ switch (mode) {
+ case kFull:
+ PreFreeMemory(chunk);
+ PerformFreeMemory(chunk);
+ break;
+ case kPooledAndQueue:
+ DCHECK_EQ(chunk->size(), static_cast<size_t>(MemoryChunk::kPageSize));
+ DCHECK_EQ(chunk->executable(), NOT_EXECUTABLE);
+ chunk->SetFlag(MemoryChunk::POOLED);
+ // Fall through to kPreFreeAndQueue.
+ case kPreFreeAndQueue:
+ PreFreeMemory(chunk);
+ // The chunks added to this queue will be freed by a concurrent thread.
+ unmapper()->AddMemoryChunkSafe(chunk);
+ break;
+ default:
+ UNREACHABLE();
}
}
-template void MemoryAllocator::Free<MemoryAllocator::kRegular>(
+template void MemoryAllocator::Free<MemoryAllocator::kFull>(MemoryChunk* chunk);
+
+template void MemoryAllocator::Free<MemoryAllocator::kPreFreeAndQueue>(
MemoryChunk* chunk);
-template void MemoryAllocator::Free<MemoryAllocator::kPooled>(
+template void MemoryAllocator::Free<MemoryAllocator::kPooledAndQueue>(
MemoryChunk* chunk);
-template <typename PageType, MemoryAllocator::AllocationMode mode,
- typename SpaceType>
-PageType* MemoryAllocator::AllocatePage(intptr_t size, SpaceType* owner,
- Executability executable) {
+template <MemoryAllocator::AllocationMode alloc_mode, typename SpaceType>
+Page* MemoryAllocator::AllocatePage(intptr_t size, SpaceType* owner,
+ Executability executable) {
MemoryChunk* chunk = nullptr;
- if (mode == kPooled) {
+ if (alloc_mode == kPooled) {
DCHECK_EQ(size, static_cast<intptr_t>(MemoryChunk::kAllocatableMemory));
DCHECK_EQ(executable, NOT_EXECUTABLE);
chunk = AllocatePagePooled(owner);
@@ -773,22 +871,32 @@ PageType* MemoryAllocator::AllocatePage(intptr_t size, SpaceType* owner,
chunk = AllocateChunk(size, size, executable, owner);
}
if (chunk == nullptr) return nullptr;
- return PageType::Initialize(isolate_->heap(), chunk, executable, owner);
+ return Page::Initialize(isolate_->heap(), chunk, executable, owner);
}
-template Page* MemoryAllocator::AllocatePage<Page, MemoryAllocator::kRegular,
- PagedSpace>(intptr_t, PagedSpace*,
- Executability);
+template Page*
+MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>(
+ intptr_t size, PagedSpace* owner, Executability executable);
+template Page*
+MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>(
+ intptr_t size, SemiSpace* owner, Executability executable);
+template Page*
+MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>(
+ intptr_t size, SemiSpace* owner, Executability executable);
-template NewSpacePage* MemoryAllocator::AllocatePage<
- NewSpacePage, MemoryAllocator::kPooled, SemiSpace>(intptr_t, SemiSpace*,
- Executability);
+LargePage* MemoryAllocator::AllocateLargePage(intptr_t size,
+ LargeObjectSpace* owner,
+ Executability executable) {
+ MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
+ if (chunk == nullptr) return nullptr;
+ return LargePage::Initialize(isolate_->heap(), chunk, executable, owner);
+}
template <typename SpaceType>
MemoryChunk* MemoryAllocator::AllocatePagePooled(SpaceType* owner) {
- if (chunk_pool_.is_empty()) return nullptr;
+ MemoryChunk* chunk = unmapper()->TryGetPooledMemoryChunkSafe();
+ if (chunk == nullptr) return nullptr;
const int size = MemoryChunk::kPageSize;
- MemoryChunk* chunk = chunk_pool_.RemoveLast();
const Address start = reinterpret_cast<Address>(chunk);
const Address area_start = start + MemoryChunk::kObjectStartOffset;
const Address area_end = start + size;
@@ -802,18 +910,6 @@ MemoryChunk* MemoryAllocator::AllocatePagePooled(SpaceType* owner) {
return chunk;
}
-void MemoryAllocator::FreePooled(MemoryChunk* chunk) {
- DCHECK_EQ(chunk->size(), static_cast<size_t>(MemoryChunk::kPageSize));
- DCHECK_EQ(chunk->executable(), NOT_EXECUTABLE);
- chunk_pool_.Add(chunk);
- intptr_t chunk_size = static_cast<intptr_t>(chunk->size());
- if (chunk->executable() == EXECUTABLE) {
- size_executable_.Increment(-chunk_size);
- }
- size_.Increment(-chunk_size);
- UncommitBlock(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize);
-}
-
bool MemoryAllocator::CommitBlock(Address start, size_t size,
Executability executable) {
if (!CommitMemory(start, size, executable)) return false;
@@ -840,60 +936,11 @@ void MemoryAllocator::ZapBlock(Address start, size_t size) {
}
}
-
-void MemoryAllocator::PerformAllocationCallback(ObjectSpace space,
- AllocationAction action,
- size_t size) {
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
- MemoryAllocationCallbackRegistration registration =
- memory_allocation_callbacks_[i];
- if ((registration.space & space) == space &&
- (registration.action & action) == action)
- registration.callback(space, action, static_cast<int>(size));
- }
-}
-
-
-bool MemoryAllocator::MemoryAllocationCallbackRegistered(
- MemoryAllocationCallback callback) {
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
- if (memory_allocation_callbacks_[i].callback == callback) return true;
- }
- return false;
-}
-
-
-void MemoryAllocator::AddMemoryAllocationCallback(
- MemoryAllocationCallback callback, ObjectSpace space,
- AllocationAction action) {
- DCHECK(callback != NULL);
- MemoryAllocationCallbackRegistration registration(callback, space, action);
- DCHECK(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback));
- return memory_allocation_callbacks_.Add(registration);
-}
-
-
-void MemoryAllocator::RemoveMemoryAllocationCallback(
- MemoryAllocationCallback callback) {
- DCHECK(callback != NULL);
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
- if (memory_allocation_callbacks_[i].callback == callback) {
- memory_allocation_callbacks_.Remove(i);
- return;
- }
- }
- UNREACHABLE();
-}
-
-
#ifdef DEBUG
void MemoryAllocator::ReportStatistics() {
intptr_t size = Size();
float pct = static_cast<float>(capacity_ - size) / capacity_;
- PrintF(" capacity: %" V8_PTR_PREFIX
- "d"
- ", used: %" V8_PTR_PREFIX
- "d"
+ PrintF(" capacity: %" V8PRIdPTR ", used: %" V8PRIdPTR
", available: %%%d\n\n",
capacity_, size, static_cast<int>(pct * 100));
}
@@ -959,12 +1006,19 @@ bool MemoryAllocator::CommitExecutableMemory(base::VirtualMemory* vm,
// MemoryChunk implementation
void MemoryChunk::ReleaseAllocatedMemory() {
- delete skip_list_;
- skip_list_ = nullptr;
- delete mutex_;
- mutex_ = nullptr;
- ReleaseOldToNewSlots();
- ReleaseOldToOldSlots();
+ if (skip_list_ != nullptr) {
+ delete skip_list_;
+ skip_list_ = nullptr;
+ }
+ if (mutex_ != nullptr) {
+ delete mutex_;
+ mutex_ = nullptr;
+ }
+ if (old_to_new_slots_ != nullptr) ReleaseOldToNewSlots();
+ if (old_to_old_slots_ != nullptr) ReleaseOldToOldSlots();
+ if (typed_old_to_new_slots_ != nullptr) ReleaseTypedOldToNewSlots();
+ if (typed_old_to_old_slots_ != nullptr) ReleaseTypedOldToOldSlots();
+ if (local_tracker_ != nullptr) ReleaseLocalTracker();
}
static SlotSet* AllocateSlotSet(size_t size, Address page_start) {
@@ -997,6 +1051,16 @@ void MemoryChunk::ReleaseOldToOldSlots() {
old_to_old_slots_ = nullptr;
}
+void MemoryChunk::AllocateTypedOldToNewSlots() {
+ DCHECK(nullptr == typed_old_to_new_slots_);
+ typed_old_to_new_slots_ = new TypedSlotSet(address());
+}
+
+void MemoryChunk::ReleaseTypedOldToNewSlots() {
+ delete typed_old_to_new_slots_;
+ typed_old_to_new_slots_ = nullptr;
+}
+
void MemoryChunk::AllocateTypedOldToOldSlots() {
DCHECK(nullptr == typed_old_to_old_slots_);
typed_old_to_old_slots_ = new TypedSlotSet(address());
@@ -1006,6 +1070,23 @@ void MemoryChunk::ReleaseTypedOldToOldSlots() {
delete typed_old_to_old_slots_;
typed_old_to_old_slots_ = nullptr;
}
+
+void MemoryChunk::AllocateLocalTracker() {
+ DCHECK_NULL(local_tracker_);
+ local_tracker_ = new LocalArrayBufferTracker(heap());
+}
+
+void MemoryChunk::ReleaseLocalTracker() {
+ DCHECK_NOT_NULL(local_tracker_);
+ delete local_tracker_;
+ local_tracker_ = nullptr;
+}
+
+void MemoryChunk::ClearLiveness() {
+ markbits()->Clear();
+ ResetLiveBytes();
+}
+
// -----------------------------------------------------------------------------
// PagedSpace implementation
@@ -1029,13 +1110,11 @@ void Space::AllocationStep(Address soon_object, int size) {
PagedSpace::PagedSpace(Heap* heap, AllocationSpace space,
Executability executable)
- : Space(heap, space, executable), free_list_(this) {
+ : Space(heap, space, executable), anchor_(this), free_list_(this) {
area_size_ = MemoryAllocator::PageAreaSize(space);
accounting_stats_.Clear();
allocation_info_.Reset(nullptr, nullptr);
-
- anchor_.InitializeAsAnchor(this);
}
@@ -1046,9 +1125,10 @@ bool PagedSpace::HasBeenSetUp() { return true; }
void PagedSpace::TearDown() {
- PageIterator iterator(this);
- while (iterator.has_next()) {
- heap()->isolate()->memory_allocator()->Free(iterator.next());
+ for (auto it = begin(); it != end();) {
+ Page* page = *(it++); // Will be erased.
+ ArrayBufferTracker::FreeAll(page);
+ heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
}
anchor_.set_next_page(&anchor_);
anchor_.set_prev_page(&anchor_);
@@ -1063,17 +1143,14 @@ void PagedSpace::RefillFreeList() {
return;
}
MarkCompactCollector* collector = heap()->mark_compact_collector();
- List<Page*>* swept_pages = collector->swept_pages(identity());
intptr_t added = 0;
{
- base::LockGuard<base::Mutex> guard(collector->swept_pages_mutex());
- for (int i = swept_pages->length() - 1; i >= 0; --i) {
- Page* p = (*swept_pages)[i];
+ Page* p = nullptr;
+ while ((p = collector->sweeper().GetSweptPageSafe(this)) != nullptr) {
// Only during compaction pages can actually change ownership. This is
// safe because there exists no other competing action on the page links
// during compaction.
if (is_local() && (p->owner() != this)) {
- if (added > kCompactionMemoryWanted) break;
base::LockGuard<base::Mutex> guard(
reinterpret_cast<PagedSpace*>(p->owner())->mutex());
p->Unlink();
@@ -1082,7 +1159,7 @@ void PagedSpace::RefillFreeList() {
}
added += RelinkFreeListCategories(p);
added += p->wasted_memory();
- swept_pages->Remove(i);
+ if (is_local() && (added > kCompactionMemoryWanted)) break;
}
}
accounting_stats_.IncreaseCapacity(added);
@@ -1107,10 +1184,8 @@ void PagedSpace::MergeCompactionSpace(CompactionSpace* other) {
AccountCommitted(other->CommittedMemory());
// Move over pages.
- PageIterator it(other);
- Page* p = nullptr;
- while (it.has_next()) {
- p = it.next();
+ for (auto it = other->begin(); it != other->end();) {
+ Page* p = *(it++);
// Relinking requires the category to be unlinked.
other->UnlinkFreeListCategories(p);
@@ -1127,18 +1202,16 @@ size_t PagedSpace::CommittedPhysicalMemory() {
if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
size_t size = 0;
- PageIterator it(this);
- while (it.has_next()) {
- size += it.next()->CommittedPhysicalMemory();
+ for (Page* page : *this) {
+ size += page->CommittedPhysicalMemory();
}
return size;
}
bool PagedSpace::ContainsSlow(Address addr) {
Page* p = Page::FromAddress(addr);
- PageIterator iterator(this);
- while (iterator.has_next()) {
- if (iterator.next() == p) return true;
+ for (Page* page : *this) {
+ if (page == p) return true;
}
return false;
}
@@ -1162,48 +1235,22 @@ Object* PagedSpace::FindObject(Address addr) {
return Smi::FromInt(0);
}
-
-bool PagedSpace::CanExpand(size_t size) {
- DCHECK(heap()->mark_compact_collector()->is_compacting() ||
- Capacity() <= heap()->MaxOldGenerationSize());
-
- // Are we going to exceed capacity for this space? At this point we can be
- // way over the maximum size because of AlwaysAllocate scopes and large
- // objects.
- if (!heap()->CanExpandOldGeneration(static_cast<int>(size))) return false;
-
- return true;
-}
-
-
bool PagedSpace::Expand() {
- intptr_t size = AreaSize();
+ int size = AreaSize();
if (snapshotable() && !HasPages()) {
size = Snapshot::SizeOfFirstPage(heap()->isolate(), identity());
}
- if (!CanExpand(size)) return false;
+ if (!heap()->CanExpandOldGeneration(size)) return false;
- Page* p = heap()->isolate()->memory_allocator()->AllocatePage<Page>(
- size, this, executable());
- if (p == NULL) return false;
+ Page* p = heap()->memory_allocator()->AllocatePage(size, this, executable());
+ if (p == nullptr) return false;
AccountCommitted(static_cast<intptr_t>(p->size()));
// Pages created during bootstrapping may contain immortal immovable objects.
if (!heap()->deserialization_complete()) p->MarkNeverEvacuate();
- // When incremental marking was activated, old space pages are allocated
- // black.
- if (heap()->incremental_marking()->black_allocation() &&
- identity() == OLD_SPACE) {
- Bitmap::SetAllBits(p);
- p->SetFlag(Page::BLACK_PAGE);
- if (FLAG_trace_incremental_marking) {
- PrintIsolate(heap()->isolate(), "Added black page %p\n", p);
- }
- }
-
DCHECK(Capacity() <= heap()->MaxOldGenerationSize());
p->InsertAfter(anchor_.prev_page());
@@ -1213,27 +1260,78 @@ bool PagedSpace::Expand() {
int PagedSpace::CountTotalPages() {
- PageIterator it(this);
int count = 0;
- while (it.has_next()) {
- it.next();
+ for (Page* page : *this) {
count++;
+ USE(page);
}
return count;
}
void PagedSpace::ResetFreeListStatistics() {
- PageIterator page_iterator(this);
- while (page_iterator.has_next()) {
- Page* page = page_iterator.next();
+ for (Page* page : *this) {
page->ResetFreeListStatistics();
}
}
+void PagedSpace::SetAllocationInfo(Address top, Address limit) {
+ SetTopAndLimit(top, limit);
+ if (top != nullptr && top != limit &&
+ heap()->incremental_marking()->black_allocation()) {
+ Page* page = Page::FromAllocationAreaAddress(top);
+ page->markbits()->SetRange(page->AddressToMarkbitIndex(top),
+ page->AddressToMarkbitIndex(limit));
+ page->IncrementLiveBytes(static_cast<int>(limit - top));
+ }
+}
+
+void PagedSpace::MarkAllocationInfoBlack() {
+ DCHECK(heap()->incremental_marking()->black_allocation());
+ Address current_top = top();
+ Address current_limit = limit();
+ if (current_top != nullptr && current_top != current_limit) {
+ Page* page = Page::FromAllocationAreaAddress(current_top);
+ page->markbits()->SetRange(page->AddressToMarkbitIndex(current_top),
+ page->AddressToMarkbitIndex(current_limit));
+ page->IncrementLiveBytes(static_cast<int>(current_limit - current_top));
+ }
+}
+
+// Empty space allocation info, returning unused area to free list.
+void PagedSpace::EmptyAllocationInfo() {
+ // Mark the old linear allocation area with a free space map so it can be
+ // skipped when scanning the heap.
+ Address current_top = top();
+ Address current_limit = limit();
+ if (current_top == nullptr) {
+ DCHECK(current_limit == nullptr);
+ return;
+ }
+
+ if (heap()->incremental_marking()->black_allocation()) {
+ Page* page = Page::FromAllocationAreaAddress(current_top);
+ // We have to remember the end of the current black allocation area if
+ // something was allocated in the current bump pointer range.
+ if (allocation_info_.original_top() != current_top) {
+ Address end_black_area = current_top - kPointerSize;
+ page->AddBlackAreaEndMarker(end_black_area);
+ }
+
+ // Clear the bits in the unused black area.
+ if (current_top != current_limit) {
+ page->markbits()->ClearRange(page->AddressToMarkbitIndex(current_top),
+ page->AddressToMarkbitIndex(current_limit));
+ page->IncrementLiveBytes(-static_cast<int>(current_limit - current_top));
+ }
+ }
-void PagedSpace::IncreaseCapacity(int size) {
- accounting_stats_.ExpandSpace(size);
+ SetTopAndLimit(NULL, NULL);
+ Free(current_top, static_cast<int>(current_limit - current_top));
+}
+
+void PagedSpace::IncreaseCapacity(size_t bytes) {
+ accounting_stats_.ExpandSpace(bytes);
}
void PagedSpace::ReleasePage(Page* page) {
@@ -1244,7 +1342,9 @@ void PagedSpace::ReleasePage(Page* page) {
free_list_.EvictFreeListItems(page);
DCHECK(!free_list_.ContainsPageFreeListItems(page));
- if (Page::FromAllocationTop(allocation_info_.top()) == page) {
+ page->ReleaseBlackAreaEndMarkerMap();
+
+ if (Page::FromAllocationAreaAddress(allocation_info_.top()) == page) {
allocation_info_.Reset(nullptr, nullptr);
}
@@ -1255,7 +1355,7 @@ void PagedSpace::ReleasePage(Page* page) {
}
AccountUncommitted(static_cast<intptr_t>(page->size()));
- heap()->QueueMemoryChunkForFree(page);
+ heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
DCHECK(Capacity() > 0);
accounting_stats_.ShrinkSpace(AreaSize());
@@ -1269,11 +1369,9 @@ void PagedSpace::Print() {}
void PagedSpace::Verify(ObjectVisitor* visitor) {
bool allocation_pointer_found_in_space =
(allocation_info_.top() == allocation_info_.limit());
- PageIterator page_iterator(this);
- while (page_iterator.has_next()) {
- Page* page = page_iterator.next();
+ for (Page* page : *this) {
CHECK(page->owner() == this);
- if (page == Page::FromAllocationTop(allocation_info_.top())) {
+ if (page == Page::FromAllocationAreaAddress(allocation_info_.top())) {
allocation_pointer_found_in_space = true;
}
CHECK(page->SweepingDone());
@@ -1299,8 +1397,7 @@ void PagedSpace::Verify(ObjectVisitor* visitor) {
// All the interior pointers should be contained in the heap.
int size = object->Size();
object->IterateBody(map->instance_type(), size, visitor);
- if (!page->IsFlagSet(Page::BLACK_PAGE) &&
- Marking::IsBlack(Marking::MarkBitFrom(object))) {
+ if (Marking::IsBlack(ObjectMarking::MarkBitFrom(object))) {
black_size += size;
}
@@ -1358,7 +1455,6 @@ void NewSpace::TearDown() {
from_space_.TearDown();
}
-
void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }
@@ -1404,6 +1500,48 @@ void NewSpace::Shrink() {
DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}
+bool NewSpace::Rebalance() {
+ CHECK(heap()->promotion_queue()->is_empty());
+ // Order here is important to make use of the page pool.
+ return to_space_.EnsureCurrentCapacity() &&
+ from_space_.EnsureCurrentCapacity();
+}
+
+bool SemiSpace::EnsureCurrentCapacity() {
+ if (is_committed()) {
+ const int expected_pages = current_capacity_ / Page::kPageSize;
+ int actual_pages = 0;
+ Page* current_page = anchor()->next_page();
+ while (current_page != anchor()) {
+ actual_pages++;
+ current_page = current_page->next_page();
+ if (actual_pages > expected_pages) {
+ Page* to_remove = current_page->prev_page();
+ // Make sure we don't overtake the actual top pointer.
+ CHECK_NE(to_remove, current_page_);
+ to_remove->Unlink();
+ heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
+ to_remove);
+ }
+ }
+ while (actual_pages < expected_pages) {
+ actual_pages++;
+ current_page =
+ heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
+ Page::kAllocatableMemory, this, executable());
+ if (current_page == nullptr) return false;
+ DCHECK_NOT_NULL(current_page);
+ current_page->InsertAfter(anchor());
+ current_page->ClearLiveness();
+ current_page->SetFlags(anchor()->prev_page()->GetFlags(),
+ Page::kCopyAllFlags);
+ heap()->CreateFillerObjectAt(current_page->area_start(),
+ current_page->area_size(),
+ ClearRecordedSlots::kNo);
+ }
+ }
+ return true;
+}
void LocalAllocationBuffer::Close() {
if (IsValid()) {
@@ -1460,11 +1598,9 @@ void NewSpace::ResetAllocationInfo() {
Address old_top = allocation_info_.top();
to_space_.Reset();
UpdateAllocationInfo();
- pages_used_ = 0;
// Clear all mark-bits in the to-space.
- NewSpacePageIterator it(&to_space_);
- while (it.has_next()) {
- Bitmap::Clear(it.next());
+ for (Page* p : to_space_) {
+ p->ClearLiveness();
}
InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);
}
@@ -1492,21 +1628,20 @@ void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) {
bool NewSpace::AddFreshPage() {
Address top = allocation_info_.top();
- DCHECK(!NewSpacePage::IsAtStart(top));
+ DCHECK(!Page::IsAtObjectStart(top));
if (!to_space_.AdvancePage()) {
// No more pages left to advance.
return false;
}
// Clear remainder of current page.
- Address limit = NewSpacePage::FromLimit(top)->area_end();
+ Address limit = Page::FromAllocationAreaAddress(top)->area_end();
if (heap()->gc_state() == Heap::SCAVENGE) {
heap()->promotion_queue()->SetNewLimit(limit);
}
int remaining_in_page = static_cast<int>(limit - top);
heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);
- pages_used_++;
UpdateAllocationInfo();
return true;
@@ -1526,7 +1661,7 @@ bool NewSpace::EnsureAllocation(int size_in_bytes,
int filler_size = Heap::GetFillToAlign(old_top, alignment);
int aligned_size_in_bytes = size_in_bytes + filler_size;
- if (old_top + aligned_size_in_bytes >= high) {
+ if (old_top + aligned_size_in_bytes > high) {
// Not enough room in the page, try to allocate a new one.
if (!AddFreshPage()) {
return false;
@@ -1537,10 +1672,9 @@ bool NewSpace::EnsureAllocation(int size_in_bytes,
old_top = allocation_info_.top();
high = to_space_.page_high();
filler_size = Heap::GetFillToAlign(old_top, alignment);
- aligned_size_in_bytes = size_in_bytes + filler_size;
}
- DCHECK(old_top + aligned_size_in_bytes < high);
+ DCHECK(old_top + aligned_size_in_bytes <= high);
if (allocation_info_.limit() < high) {
// Either the limit has been lowered because linear allocation was disabled
@@ -1626,9 +1760,9 @@ void NewSpace::Verify() {
CHECK_EQ(current, to_space_.space_start());
while (current != top()) {
- if (!NewSpacePage::IsAtEnd(current)) {
+ if (!Page::IsAlignedToPageSize(current)) {
// The allocation pointer should not be in the middle of an object.
- CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) ||
+ CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
current < top());
HeapObject* object = HeapObject::FromAddress(current);
@@ -1654,7 +1788,7 @@ void NewSpace::Verify() {
current += size;
} else {
// At end of page, switch to next page.
- NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page();
+ Page* page = Page::FromAllocationAreaAddress(current)->next_page();
// Next page should be valid.
CHECK(!page->is_anchor());
current = page->area_start();
@@ -1683,22 +1817,24 @@ void SemiSpace::SetUp(int initial_capacity, int maximum_capacity) {
void SemiSpace::TearDown() {
// Properly uncommit memory to keep the allocator counters in sync.
- if (is_committed()) Uncommit();
+ if (is_committed()) {
+ for (Page* p : *this) {
+ ArrayBufferTracker::FreeAll(p);
+ }
+ Uncommit();
+ }
current_capacity_ = maximum_capacity_ = 0;
}
bool SemiSpace::Commit() {
DCHECK(!is_committed());
- NewSpacePage* current = anchor();
+ Page* current = anchor();
const int num_pages = current_capacity_ / Page::kPageSize;
for (int pages_added = 0; pages_added < num_pages; pages_added++) {
- NewSpacePage* new_page =
- heap()
- ->isolate()
- ->memory_allocator()
- ->AllocatePage<NewSpacePage, MemoryAllocator::kPooled>(
- NewSpacePage::kAllocatableMemory, this, executable());
+ Page* new_page =
+ heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
+ Page::kAllocatableMemory, this, executable());
if (new_page == nullptr) {
RewindPages(current, pages_added);
return false;
@@ -1718,15 +1854,15 @@ bool SemiSpace::Commit() {
bool SemiSpace::Uncommit() {
DCHECK(is_committed());
- NewSpacePageIterator it(this);
- while (it.has_next()) {
- heap()->isolate()->memory_allocator()->Free<MemoryAllocator::kPooled>(
- it.next());
+ for (auto it = begin(); it != end();) {
+ Page* p = *(it++);
+ heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(p);
}
anchor()->set_next_page(anchor());
anchor()->set_prev_page(anchor());
AccountUncommitted(current_capacity_);
committed_ = false;
+ heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
return true;
}
@@ -1734,9 +1870,8 @@ bool SemiSpace::Uncommit() {
size_t SemiSpace::CommittedPhysicalMemory() {
if (!is_committed()) return 0;
size_t size = 0;
- NewSpacePageIterator it(this);
- while (it.has_next()) {
- size += it.next()->CommittedPhysicalMemory();
+ for (Page* p : *this) {
+ size += p->CommittedPhysicalMemory();
}
return size;
}
@@ -1746,30 +1881,26 @@ bool SemiSpace::GrowTo(int new_capacity) {
if (!is_committed()) {
if (!Commit()) return false;
}
- DCHECK_EQ(new_capacity & NewSpacePage::kPageAlignmentMask, 0);
+ DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0);
DCHECK_LE(new_capacity, maximum_capacity_);
DCHECK_GT(new_capacity, current_capacity_);
const int delta = new_capacity - current_capacity_;
DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
- int delta_pages = delta / NewSpacePage::kPageSize;
- NewSpacePage* last_page = anchor()->prev_page();
+ const int delta_pages = delta / Page::kPageSize;
+ Page* last_page = anchor()->prev_page();
DCHECK_NE(last_page, anchor());
for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
- NewSpacePage* new_page =
- heap()
- ->isolate()
- ->memory_allocator()
- ->AllocatePage<NewSpacePage, MemoryAllocator::kPooled>(
- NewSpacePage::kAllocatableMemory, this, executable());
+ Page* new_page =
+ heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
+ Page::kAllocatableMemory, this, executable());
if (new_page == nullptr) {
RewindPages(last_page, pages_added);
return false;
}
new_page->InsertAfter(last_page);
- Bitmap::Clear(new_page);
+ new_page->ClearLiveness();
// Duplicate the flags that was set on the old page.
- new_page->SetFlags(last_page->GetFlags(),
- NewSpacePage::kCopyOnFlipFlagsMask);
+ new_page->SetFlags(last_page->GetFlags(), Page::kCopyOnFlipFlagsMask);
last_page = new_page;
}
AccountCommitted(static_cast<intptr_t>(delta));
@@ -1777,9 +1908,9 @@ bool SemiSpace::GrowTo(int new_capacity) {
return true;
}
-void SemiSpace::RewindPages(NewSpacePage* start, int num_pages) {
- NewSpacePage* new_last_page = nullptr;
- NewSpacePage* last_page = start;
+void SemiSpace::RewindPages(Page* start, int num_pages) {
+ Page* new_last_page = nullptr;
+ Page* last_page = start;
while (num_pages > 0) {
DCHECK_NE(last_page, anchor());
new_last_page = last_page->prev_page();
@@ -1791,25 +1922,26 @@ void SemiSpace::RewindPages(NewSpacePage* start, int num_pages) {
}
bool SemiSpace::ShrinkTo(int new_capacity) {
- DCHECK_EQ(new_capacity & NewSpacePage::kPageAlignmentMask, 0);
+ DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0);
DCHECK_GE(new_capacity, minimum_capacity_);
DCHECK_LT(new_capacity, current_capacity_);
if (is_committed()) {
const int delta = current_capacity_ - new_capacity;
DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
- int delta_pages = delta / NewSpacePage::kPageSize;
- NewSpacePage* new_last_page;
- NewSpacePage* last_page;
+ int delta_pages = delta / Page::kPageSize;
+ Page* new_last_page;
+ Page* last_page;
while (delta_pages > 0) {
last_page = anchor()->prev_page();
new_last_page = last_page->prev_page();
new_last_page->set_next_page(anchor());
anchor()->set_prev_page(new_last_page);
- heap()->isolate()->memory_allocator()->Free<MemoryAllocator::kPooled>(
+ heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
last_page);
delta_pages--;
}
AccountUncommitted(static_cast<intptr_t>(delta));
+ heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
}
current_capacity_ = new_capacity;
return true;
@@ -1817,13 +1949,10 @@ bool SemiSpace::ShrinkTo(int new_capacity) {
void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
anchor_.set_owner(this);
- // Fixup back-pointers to anchor. Address of anchor changes when we swap.
anchor_.prev_page()->set_next_page(&anchor_);
anchor_.next_page()->set_prev_page(&anchor_);
- NewSpacePageIterator it(this);
- while (it.has_next()) {
- NewSpacePage* page = it.next();
+ for (Page* page : *this) {
page->set_owner(this);
page->SetFlags(flags, mask);
if (id_ == kToSpace) {
@@ -1844,8 +1973,22 @@ void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
void SemiSpace::Reset() {
DCHECK_NE(anchor_.next_page(), &anchor_);
current_page_ = anchor_.next_page();
+ pages_used_ = 0;
+}
+
+void SemiSpace::RemovePage(Page* page) {
+ if (current_page_ == page) {
+ current_page_ = page->prev_page();
+ }
+ page->Unlink();
}
+void SemiSpace::PrependPage(Page* page) {
+ page->SetFlags(current_page()->GetFlags(), Page::kCopyAllFlags);
+ page->set_owner(this);
+ page->InsertAfter(anchor());
+ pages_used_++;
+}
void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
// We won't be swapping semispaces without data in them.
@@ -1863,18 +2006,17 @@ void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
std::swap(from->anchor_, to->anchor_);
std::swap(from->current_page_, to->current_page_);
- to->FixPagesFlags(saved_to_space_flags, NewSpacePage::kCopyOnFlipFlagsMask);
+ to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
from->FixPagesFlags(0, 0);
}
void SemiSpace::set_age_mark(Address mark) {
- DCHECK_EQ(NewSpacePage::FromLimit(mark)->semi_space(), this);
+ DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
age_mark_ = mark;
// Mark all pages up to the one containing mark.
- NewSpacePageIterator it(space_start(), mark);
- while (it.has_next()) {
- it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
+ for (Page* p : NewSpacePageRange(space_start(), mark)) {
+ p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
}
}
@@ -1886,10 +2028,10 @@ void SemiSpace::Print() {}
#ifdef VERIFY_HEAP
void SemiSpace::Verify() {
bool is_from_space = (id_ == kFromSpace);
- NewSpacePage* page = anchor_.next_page();
- CHECK(anchor_.semi_space() == this);
+ Page* page = anchor_.next_page();
+ CHECK(anchor_.owner() == this);
while (page != &anchor_) {
- CHECK_EQ(page->semi_space(), this);
+ CHECK_EQ(page->owner(), this);
CHECK(page->InNewSpace());
CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
: MemoryChunk::IN_TO_SPACE));
@@ -1917,10 +2059,10 @@ void SemiSpace::Verify() {
#ifdef DEBUG
void SemiSpace::AssertValidRange(Address start, Address end) {
// Addresses belong to same semi-space
- NewSpacePage* page = NewSpacePage::FromLimit(start);
- NewSpacePage* end_page = NewSpacePage::FromLimit(end);
- SemiSpace* space = page->semi_space();
- CHECK_EQ(space, end_page->semi_space());
+ Page* page = Page::FromAllocationAreaAddress(start);
+ Page* end_page = Page::FromAllocationAreaAddress(end);
+ SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
+ CHECK_EQ(space, end_page->owner());
// Start address is before end address, either on same page,
// or end address is on a later page in the linked list of
// semi-space pages.
@@ -1950,7 +2092,6 @@ void SemiSpaceIterator::Initialize(Address start, Address end) {
limit_ = end;
}
-
#ifdef DEBUG
// heap_histograms is shared, always clear it before using it.
static void ClearHistograms(Isolate* isolate) {
@@ -1966,27 +2107,6 @@ static void ClearHistograms(Isolate* isolate) {
isolate->js_spill_information()->Clear();
}
-
-static void ClearCodeKindStatistics(int* code_kind_statistics) {
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
- code_kind_statistics[i] = 0;
- }
-}
-
-
-static void ReportCodeKindStatistics(int* code_kind_statistics) {
- PrintF("\n Code kind histograms: \n");
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
- if (code_kind_statistics[i] > 0) {
- PrintF(" %-20s: %10d bytes\n",
- Code::Kind2String(static_cast<Code::Kind>(i)),
- code_kind_statistics[i]);
- }
- }
- PrintF("\n");
-}
-
-
static int CollectHistogramInfo(HeapObject* obj) {
Isolate* isolate = obj->GetIsolate();
InstanceType type = obj->map()->instance_type();
@@ -2087,9 +2207,7 @@ void NewSpace::ReportStatistics() {
#ifdef DEBUG
if (FLAG_heap_stats) {
float pct = static_cast<float>(Available()) / TotalCapacity();
- PrintF(" capacity: %" V8_PTR_PREFIX
- "d"
- ", available: %" V8_PTR_PREFIX "d, %%%d\n",
+ PrintF(" capacity: %" V8PRIdPTR ", available: %" V8PRIdPTR ", %%%d\n",
TotalCapacity(), Available(), static_cast<int>(pct * 100));
PrintF("\n Object Histogram:\n");
for (int i = 0; i <= LAST_TYPE; i++) {
@@ -2321,6 +2439,9 @@ FreeSpace* FreeList::SearchForNodeInList(FreeListCategoryType type,
DCHECK(IsVeryLong() || Available() == SumFreeLists());
return node;
}
+ if (current->is_empty()) {
+ RemoveCategory(current);
+ }
}
return node;
}
@@ -2373,8 +2494,7 @@ HeapObject* FreeList::Allocate(int size_in_bytes) {
// Mark the old linear allocation area with a free space map so it can be
// skipped when scanning the heap. This also puts it back in the free list
// if it is big enough.
- owner_->Free(owner_->top(), old_linear_size);
- owner_->SetTopAndLimit(nullptr, nullptr);
+ owner_->EmptyAllocationInfo();
owner_->heap()->incremental_marking()->OldSpaceStep(size_in_bytes -
old_linear_size);
@@ -2382,7 +2502,6 @@ HeapObject* FreeList::Allocate(int size_in_bytes) {
int new_node_size = 0;
FreeSpace* new_node = FindNodeFor(size_in_bytes, &new_node_size);
if (new_node == nullptr) return nullptr;
- owner_->AllocationStep(new_node->address(), size_in_bytes);
int bytes_left = new_node_size - size_in_bytes;
DCHECK(bytes_left >= 0);
@@ -2409,7 +2528,8 @@ HeapObject* FreeList::Allocate(int size_in_bytes) {
// Keep the linear allocation area empty if requested to do so, just
// return area back to the free list instead.
owner_->Free(new_node->address() + size_in_bytes, bytes_left);
- DCHECK(owner_->top() == NULL && owner_->limit() == NULL);
+ owner_->SetAllocationInfo(new_node->address() + size_in_bytes,
+ new_node->address() + size_in_bytes);
} else if (bytes_left > kThreshold &&
owner_->heap()->incremental_marking()->IsMarkingIncomplete() &&
FLAG_incremental_marking) {
@@ -2419,13 +2539,15 @@ HeapObject* FreeList::Allocate(int size_in_bytes) {
// we want to do another increment until the linear area is used up.
owner_->Free(new_node->address() + size_in_bytes + linear_size,
new_node_size - size_in_bytes - linear_size);
- owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
- new_node->address() + size_in_bytes + linear_size);
- } else if (bytes_left > 0) {
+ owner_->SetAllocationInfo(
+ new_node->address() + size_in_bytes,
+ new_node->address() + size_in_bytes + linear_size);
+ } else {
+ DCHECK(bytes_left >= 0);
// Normally we give the rest of the node to the allocator as its new
// linear allocation area.
- owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
- new_node->address() + new_node_size);
+ owner_->SetAllocationInfo(new_node->address() + size_in_bytes,
+ new_node->address() + new_node_size);
}
return new_node;
@@ -2495,10 +2617,11 @@ void FreeList::RemoveCategory(FreeListCategory* category) {
void FreeList::PrintCategories(FreeListCategoryType type) {
FreeListCategoryIterator it(this, type);
- PrintF("FreeList[%p, top=%p, %d] ", this, categories_[type], type);
+ PrintF("FreeList[%p, top=%p, %d] ", static_cast<void*>(this),
+ static_cast<void*>(categories_[type]), type);
while (it.HasNext()) {
FreeListCategory* current = it.Next();
- PrintF("%p -> ", current);
+ PrintF("%p -> ", static_cast<void*>(current));
}
PrintF("null\n");
}
@@ -2582,9 +2705,7 @@ void PagedSpace::RepairFreeListsAfterDeserialization() {
free_list_.RepairLists(heap());
// Each page may have a small free space that is not tracked by a free list.
// Update the maps for those free space objects.
- PageIterator iterator(this);
- while (iterator.has_next()) {
- Page* page = iterator.next();
+ for (Page* page : *this) {
int size = static_cast<int>(page->wasted_memory());
if (size == 0) continue;
Address address = page->OffsetToAddress(Page::kPageSize - size);
@@ -2596,7 +2717,7 @@ void PagedSpace::RepairFreeListsAfterDeserialization() {
void PagedSpace::EvictEvacuationCandidatesFromLinearAllocationArea() {
if (allocation_info_.top() >= allocation_info_.limit()) return;
- if (!Page::FromAllocationTop(allocation_info_.top())->CanAllocate()) {
+ if (!Page::FromAllocationAreaAddress(allocation_info_.top())->CanAllocate()) {
// Create filler object to keep page iterable if it was iterable.
int remaining =
static_cast<int>(allocation_info_.limit() - allocation_info_.top());
@@ -2648,8 +2769,8 @@ HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
if (object != NULL) return object;
// If sweeping is still in progress try to sweep pages on the main thread.
- int max_freed = collector->SweepInParallel(heap()->paged_space(identity()),
- size_in_bytes, kMaxPagesToSweep);
+ int max_freed = collector->sweeper().ParallelSweepSpace(
+ identity(), size_in_bytes, kMaxPagesToSweep);
RefillFreeList();
if (max_freed >= size_in_bytes) {
object = free_list_.Allocate(size_in_bytes);
@@ -2681,145 +2802,11 @@ HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
return SweepAndRetryAllocation(size_in_bytes);
}
-
#ifdef DEBUG
-void PagedSpace::ReportCodeStatistics(Isolate* isolate) {
- CommentStatistic* comments_statistics =
- isolate->paged_space_comments_statistics();
- ReportCodeKindStatistics(isolate->code_kind_statistics());
- PrintF(
- "Code comment statistics (\" [ comment-txt : size/ "
- "count (average)\"):\n");
- for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
- const CommentStatistic& cs = comments_statistics[i];
- if (cs.size > 0) {
- PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
- cs.size / cs.count);
- }
- }
- PrintF("\n");
-}
-
-
-void PagedSpace::ResetCodeStatistics(Isolate* isolate) {
- CommentStatistic* comments_statistics =
- isolate->paged_space_comments_statistics();
- ClearCodeKindStatistics(isolate->code_kind_statistics());
- for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
- comments_statistics[i].Clear();
- }
- comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
- comments_statistics[CommentStatistic::kMaxComments].size = 0;
- comments_statistics[CommentStatistic::kMaxComments].count = 0;
-}
-
-
-// Adds comment to 'comment_statistics' table. Performance OK as long as
-// 'kMaxComments' is small
-static void EnterComment(Isolate* isolate, const char* comment, int delta) {
- CommentStatistic* comments_statistics =
- isolate->paged_space_comments_statistics();
- // Do not count empty comments
- if (delta <= 0) return;
- CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
- // Search for a free or matching entry in 'comments_statistics': 'cs'
- // points to result.
- for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
- if (comments_statistics[i].comment == NULL) {
- cs = &comments_statistics[i];
- cs->comment = comment;
- break;
- } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
- cs = &comments_statistics[i];
- break;
- }
- }
- // Update entry for 'comment'
- cs->size += delta;
- cs->count += 1;
-}
-
-
-// Call for each nested comment start (start marked with '[ xxx', end marked
-// with ']'. RelocIterator 'it' must point to a comment reloc info.
-static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
- DCHECK(!it->done());
- DCHECK(it->rinfo()->rmode() == RelocInfo::COMMENT);
- const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
- if (tmp[0] != '[') {
- // Not a nested comment; skip
- return;
- }
-
- // Search for end of nested comment or a new nested comment
- const char* const comment_txt =
- reinterpret_cast<const char*>(it->rinfo()->data());
- const byte* prev_pc = it->rinfo()->pc();
- int flat_delta = 0;
- it->next();
- while (true) {
- // All nested comments must be terminated properly, and therefore exit
- // from loop.
- DCHECK(!it->done());
- if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
- const char* const txt =
- reinterpret_cast<const char*>(it->rinfo()->data());
- flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
- if (txt[0] == ']') break; // End of nested comment
- // A new comment
- CollectCommentStatistics(isolate, it);
- // Skip code that was covered with previous comment
- prev_pc = it->rinfo()->pc();
- }
- it->next();
- }
- EnterComment(isolate, comment_txt, flat_delta);
-}
-
-
-// Collects code size statistics:
-// - by code kind
-// - by code comment
-void PagedSpace::CollectCodeStatistics() {
- Isolate* isolate = heap()->isolate();
- HeapObjectIterator obj_it(this);
- for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
- if (obj->IsAbstractCode()) {
- AbstractCode* code = AbstractCode::cast(obj);
- isolate->code_kind_statistics()[code->kind()] += code->Size();
- }
- if (obj->IsCode()) {
- // TODO(mythria): Also enable this for BytecodeArray when it supports
- // RelocInformation.
- Code* code = Code::cast(obj);
- RelocIterator it(code);
- int delta = 0;
- const byte* prev_pc = code->instruction_start();
- while (!it.done()) {
- if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
- delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
- CollectCommentStatistics(isolate, &it);
- prev_pc = it.rinfo()->pc();
- }
- it.next();
- }
-
- DCHECK(code->instruction_start() <= prev_pc &&
- prev_pc <= code->instruction_end());
- delta += static_cast<int>(code->instruction_end() - prev_pc);
- EnterComment(isolate, "NoComment", delta);
- }
- }
-}
-
-
void PagedSpace::ReportStatistics() {
int pct = static_cast<int>(Available() * 100 / Capacity());
- PrintF(" capacity: %" V8_PTR_PREFIX
- "d"
- ", waste: %" V8_PTR_PREFIX
- "d"
- ", available: %" V8_PTR_PREFIX "d, %%%d\n",
+ PrintF(" capacity: %" V8PRIdPTR ", waste: %" V8PRIdPTR
+ ", available: %" V8PRIdPTR ", %%%d\n",
Capacity(), Waste(), Available(), pct);
if (heap()->mark_compact_collector()->sweeping_in_progress()) {
@@ -2841,6 +2828,25 @@ void PagedSpace::ReportStatistics() {
void MapSpace::VerifyObject(HeapObject* object) { CHECK(object->IsMap()); }
#endif
+Address LargePage::GetAddressToShrink() {
+ HeapObject* object = GetObject();
+ if (executable() == EXECUTABLE) {
+ return 0;
+ }
+ size_t used_size = RoundUp((object->address() - address()) + object->Size(),
+ base::OS::CommitPageSize());
+ if (used_size < CommittedPhysicalMemory()) {
+ return address() + used_size;
+ }
+ return 0;
+}
+
+void LargePage::ClearOutOfLiveRangeSlots(Address free_start) {
+ RememberedSet<OLD_TO_NEW>::RemoveRange(this, free_start, area_end());
+ RememberedSet<OLD_TO_OLD>::RemoveRange(this, free_start, area_end());
+ RememberedSet<OLD_TO_NEW>::RemoveRangeTyped(this, free_start, area_end());
+ RememberedSet<OLD_TO_OLD>::RemoveRangeTyped(this, free_start, area_end());
+}
// -----------------------------------------------------------------------------
// LargeObjectIterator
@@ -2862,15 +2868,13 @@ HeapObject* LargeObjectIterator::Next() {
// -----------------------------------------------------------------------------
// LargeObjectSpace
-
LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
: Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
first_page_(NULL),
size_(0),
page_count_(0),
objects_size_(0),
- chunk_map_(HashMap::PointersMatch, 1024) {}
-
+ chunk_map_(base::HashMap::PointersMatch, 1024) {}
LargeObjectSpace::~LargeObjectSpace() {}
@@ -2890,11 +2894,7 @@ void LargeObjectSpace::TearDown() {
LargePage* page = first_page_;
first_page_ = first_page_->next_page();
LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
-
- ObjectSpace space = static_cast<ObjectSpace>(1 << identity());
- heap()->isolate()->memory_allocator()->PerformAllocationCallback(
- space, kAllocationActionFree, page->size());
- heap()->isolate()->memory_allocator()->Free(page);
+ heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
}
SetUp();
}
@@ -2908,7 +2908,7 @@ AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
return AllocationResult::Retry(identity());
}
- LargePage* page = heap()->isolate()->memory_allocator()->AllocateLargePage(
+ LargePage* page = heap()->memory_allocator()->AllocateLargePage(
object_size, this, executable);
if (page == NULL) return AllocationResult::Retry(identity());
DCHECK(page->area_size() >= object_size);
@@ -2920,16 +2920,7 @@ AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
page->set_next_page(first_page_);
first_page_ = page;
- // Register all MemoryChunk::kAlignment-aligned chunks covered by
- // this large page in the chunk map.
- uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
- uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment;
- for (uintptr_t key = base; key <= limit; key++) {
- HashMap::Entry* entry = chunk_map_.LookupOrInsert(
- reinterpret_cast<void*>(key), static_cast<uint32_t>(key));
- DCHECK(entry != NULL);
- entry->value = page;
- }
+ InsertChunkMapEntries(page);
HeapObject* object = page->GetObject();
MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), object_size);
@@ -2944,19 +2935,20 @@ AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
heap()->incremental_marking()->OldSpaceStep(object_size);
AllocationStep(object->address(), object_size);
+
+ if (heap()->incremental_marking()->black_allocation()) {
+ Marking::MarkBlack(ObjectMarking::MarkBitFrom(object));
+ MemoryChunk::IncrementLiveBytesFromGC(object, object_size);
+ }
return object;
}
size_t LargeObjectSpace::CommittedPhysicalMemory() {
- if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
- size_t size = 0;
- LargePage* current = first_page_;
- while (current != NULL) {
- size += current->CommittedPhysicalMemory();
- current = current->next_page();
- }
- return size;
+ // On a platform that provides lazy committing of memory, we over-account
+ // the actually committed memory. There is no easy way right now to support
+ // precise accounting of committed memory in large object space.
+ return CommittedMemory();
}
@@ -2972,8 +2964,8 @@ Object* LargeObjectSpace::FindObject(Address a) {
LargePage* LargeObjectSpace::FindPage(Address a) {
uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment;
- HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
- static_cast<uint32_t>(key));
+ base::HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
+ static_cast<uint32_t>(key));
if (e != NULL) {
DCHECK(e->value != NULL);
LargePage* page = reinterpret_cast<LargePage*>(e->value);
@@ -2990,7 +2982,7 @@ void LargeObjectSpace::ClearMarkingStateOfLiveObjects() {
LargePage* current = first_page_;
while (current != NULL) {
HeapObject* object = current->GetObject();
- MarkBit mark_bit = Marking::MarkBitFrom(object);
+ MarkBit mark_bit = ObjectMarking::MarkBitFrom(object);
DCHECK(Marking::IsBlack(mark_bit));
Marking::BlackToWhite(mark_bit);
Page::FromAddress(object->address())->ResetProgressBar();
@@ -2999,15 +2991,51 @@ void LargeObjectSpace::ClearMarkingStateOfLiveObjects() {
}
}
+void LargeObjectSpace::InsertChunkMapEntries(LargePage* page) {
+ // Register all MemoryChunk::kAlignment-aligned chunks covered by
+ // this large page in the chunk map.
+ uintptr_t start = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
+ uintptr_t limit = (reinterpret_cast<uintptr_t>(page) + (page->size() - 1)) /
+ MemoryChunk::kAlignment;
+ for (uintptr_t key = start; key <= limit; key++) {
+ base::HashMap::Entry* entry = chunk_map_.InsertNew(
+ reinterpret_cast<void*>(key), static_cast<uint32_t>(key));
+ DCHECK(entry != NULL);
+ entry->value = page;
+ }
+}
+
+void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page) {
+ RemoveChunkMapEntries(page, page->address());
+}
+
+void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page,
+ Address free_start) {
+ uintptr_t start = RoundUp(reinterpret_cast<uintptr_t>(free_start),
+ MemoryChunk::kAlignment) /
+ MemoryChunk::kAlignment;
+ uintptr_t limit = (reinterpret_cast<uintptr_t>(page) + (page->size() - 1)) /
+ MemoryChunk::kAlignment;
+ for (uintptr_t key = start; key <= limit; key++) {
+ chunk_map_.Remove(reinterpret_cast<void*>(key), static_cast<uint32_t>(key));
+ }
+}
void LargeObjectSpace::FreeUnmarkedObjects() {
LargePage* previous = NULL;
LargePage* current = first_page_;
while (current != NULL) {
HeapObject* object = current->GetObject();
- MarkBit mark_bit = Marking::MarkBitFrom(object);
+ MarkBit mark_bit = ObjectMarking::MarkBitFrom(object);
DCHECK(!Marking::IsGrey(mark_bit));
if (Marking::IsBlack(mark_bit)) {
+ Address free_start;
+ if ((free_start = current->GetAddressToShrink()) != 0) {
+ // TODO(hpayer): Perform partial free concurrently.
+ current->ClearOutOfLiveRangeSlots(free_start);
+ RemoveChunkMapEntries(current, free_start);
+ heap()->memory_allocator()->PartialFreeMemory(current, free_start);
+ }
previous = current;
current = current->next_page();
} else {
@@ -3026,18 +3054,8 @@ void LargeObjectSpace::FreeUnmarkedObjects() {
objects_size_ -= object->Size();
page_count_--;
- // Remove entries belonging to this page.
- // Use variable alignment to help pass length check (<= 80 characters)
- // of single line in tools/presubmit.py.
- const intptr_t alignment = MemoryChunk::kAlignment;
- uintptr_t base = reinterpret_cast<uintptr_t>(page) / alignment;
- uintptr_t limit = base + (page->size() - 1) / alignment;
- for (uintptr_t key = base; key <= limit; key++) {
- chunk_map_.Remove(reinterpret_cast<void*>(key),
- static_cast<uint32_t>(key));
- }
-
- heap()->QueueMemoryChunkForFree(page);
+ RemoveChunkMapEntries(page);
+ heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
}
}
}
@@ -3103,7 +3121,6 @@ void LargeObjectSpace::Verify() {
}
#endif
-
#ifdef DEBUG
void LargeObjectSpace::Print() {
OFStream os(stdout);
@@ -3115,7 +3132,7 @@ void LargeObjectSpace::Print() {
void LargeObjectSpace::ReportStatistics() {
- PrintF(" size: %" V8_PTR_PREFIX "d\n", size_);
+ PrintF(" size: %" V8PRIdPTR "\n", size_);
int num_objects = 0;
ClearHistograms(heap()->isolate());
LargeObjectIterator it(this);
@@ -3126,34 +3143,22 @@ void LargeObjectSpace::ReportStatistics() {
PrintF(
" number of objects %d, "
- "size of objects %" V8_PTR_PREFIX "d\n",
+ "size of objects %" V8PRIdPTR "\n",
num_objects, objects_size_);
if (num_objects > 0) ReportHistogram(heap()->isolate(), false);
}
-void LargeObjectSpace::CollectCodeStatistics() {
- Isolate* isolate = heap()->isolate();
- LargeObjectIterator obj_it(this);
- for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
- if (obj->IsAbstractCode()) {
- AbstractCode* code = AbstractCode::cast(obj);
- isolate->code_kind_statistics()[code->kind()] += code->Size();
- }
- }
-}
-
-
void Page::Print() {
// Make a best-effort to print the objects in the page.
- PrintF("Page@%p in %s\n", this->address(),
+ PrintF("Page@%p in %s\n", static_cast<void*>(this->address()),
AllocationSpaceName(this->owner()->identity()));
printf(" --------------------------------------\n");
HeapObjectIterator objects(this);
unsigned mark_size = 0;
for (HeapObject* object = objects.Next(); object != NULL;
object = objects.Next()) {
- bool is_marked = Marking::IsBlackOrGrey(Marking::MarkBitFrom(object));
+ bool is_marked = Marking::IsBlackOrGrey(ObjectMarking::MarkBitFrom(object));
PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little.
if (is_marked) {
mark_size += object->Size();