aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/fast-dtoa.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/fast-dtoa.cc')
-rw-r--r--deps/v8/src/fast-dtoa.cc347
1 files changed, 64 insertions, 283 deletions
diff --git a/deps/v8/src/fast-dtoa.cc b/deps/v8/src/fast-dtoa.cc
index d2a00cc624..b4b7be053f 100644
--- a/deps/v8/src/fast-dtoa.cc
+++ b/deps/v8/src/fast-dtoa.cc
@@ -42,8 +42,8 @@ namespace internal {
//
// A different range might be chosen on a different platform, to optimize digit
// generation, but a smaller range requires more powers of ten to be cached.
-static const int kMinimalTargetExponent = -60;
-static const int kMaximalTargetExponent = -32;
+static const int minimal_target_exponent = -60;
+static const int maximal_target_exponent = -32;
// Adjusts the last digit of the generated number, and screens out generated
@@ -61,13 +61,13 @@ static const int kMaximalTargetExponent = -32;
// Output: returns true if the buffer is guaranteed to contain the closest
// representable number to the input.
// Modifies the generated digits in the buffer to approach (round towards) w.
-static bool RoundWeed(Vector<char> buffer,
- int length,
- uint64_t distance_too_high_w,
- uint64_t unsafe_interval,
- uint64_t rest,
- uint64_t ten_kappa,
- uint64_t unit) {
+bool RoundWeed(Vector<char> buffer,
+ int length,
+ uint64_t distance_too_high_w,
+ uint64_t unsafe_interval,
+ uint64_t rest,
+ uint64_t ten_kappa,
+ uint64_t unit) {
uint64_t small_distance = distance_too_high_w - unit;
uint64_t big_distance = distance_too_high_w + unit;
// Let w_low = too_high - big_distance, and
@@ -75,7 +75,7 @@ static bool RoundWeed(Vector<char> buffer,
// Note: w_low < w < w_high
//
// The real w (* unit) must lie somewhere inside the interval
- // ]w_low; w_high[ (often written as "(w_low; w_high)")
+ // ]w_low; w_low[ (often written as "(w_low; w_low)")
// Basically the buffer currently contains a number in the unsafe interval
// ]too_low; too_high[ with too_low < w < too_high
@@ -122,10 +122,10 @@ static bool RoundWeed(Vector<char> buffer,
// inside the safe interval then we simply do not know and bail out (returning
// false).
//
- // Similarly we have to take into account the imprecision of 'w' when finding
- // the closest representation of 'w'. If we have two potential
- // representations, and one is closer to both w_low and w_high, then we know
- // it is closer to the actual value v.
+ // Similarly we have to take into account the imprecision of 'w' when rounding
+ // the buffer. If we have two potential representations we need to make sure
+ // that the chosen one is closer to w_low and w_high since v can be anywhere
+ // between them.
//
// By generating the digits of too_high we got the largest (closest to
// too_high) buffer that is still in the unsafe interval. In the case where
@@ -139,9 +139,6 @@ static bool RoundWeed(Vector<char> buffer,
// (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
// Instead of using the buffer directly we use its distance to too_high.
// Conceptually rest ~= too_high - buffer
- // We need to do the following tests in this order to avoid over- and
- // underflows.
- ASSERT(rest <= unsafe_interval);
while (rest < small_distance && // Negated condition 1
unsafe_interval - rest >= ten_kappa && // Negated condition 2
(rest + ten_kappa < small_distance || // buffer{-1} > w_high
@@ -169,62 +166,6 @@ static bool RoundWeed(Vector<char> buffer,
}
-// Rounds the buffer upwards if the result is closer to v by possibly adding
-// 1 to the buffer. If the precision of the calculation is not sufficient to
-// round correctly, return false.
-// The rounding might shift the whole buffer in which case the kappa is
-// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
-//
-// If 2*rest > ten_kappa then the buffer needs to be round up.
-// rest can have an error of +/- 1 unit. This function accounts for the
-// imprecision and returns false, if the rounding direction cannot be
-// unambiguously determined.
-//
-// Precondition: rest < ten_kappa.
-static bool RoundWeedCounted(Vector<char> buffer,
- int length,
- uint64_t rest,
- uint64_t ten_kappa,
- uint64_t unit,
- int* kappa) {
- ASSERT(rest < ten_kappa);
- // The following tests are done in a specific order to avoid overflows. They
- // will work correctly with any uint64 values of rest < ten_kappa and unit.
- //
- // If the unit is too big, then we don't know which way to round. For example
- // a unit of 50 means that the real number lies within rest +/- 50. If
- // 10^kappa == 40 then there is no way to tell which way to round.
- if (unit >= ten_kappa) return false;
- // Even if unit is just half the size of 10^kappa we are already completely
- // lost. (And after the previous test we know that the expression will not
- // over/underflow.)
- if (ten_kappa - unit <= unit) return false;
- // If 2 * (rest + unit) <= 10^kappa we can safely round down.
- if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
- return true;
- }
- // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
- if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
- // Increment the last digit recursively until we find a non '9' digit.
- buffer[length - 1]++;
- for (int i = length - 1; i > 0; --i) {
- if (buffer[i] != '0' + 10) break;
- buffer[i] = '0';
- buffer[i - 1]++;
- }
- // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
- // exception of the first digit all digits are now '0'. Simply switch the
- // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
- // the power (the kappa) is increased.
- if (buffer[0] == '0' + 10) {
- buffer[0] = '1';
- (*kappa) += 1;
- }
- return true;
- }
- return false;
-}
-
static const uint32_t kTen4 = 10000;
static const uint32_t kTen5 = 100000;
@@ -237,7 +178,7 @@ static const uint32_t kTen9 = 1000000000;
// number. We furthermore receive the maximum number of bits 'number' has.
// If number_bits == 0 then 0^-1 is returned
// The number of bits must be <= 32.
-// Precondition: number < (1 << (number_bits + 1)).
+// Precondition: (1 << number_bits) <= number < (1 << (number_bits + 1)).
static void BiggestPowerTen(uint32_t number,
int number_bits,
uint32_t* power,
@@ -340,18 +281,18 @@ static void BiggestPowerTen(uint32_t number,
// Generates the digits of input number w.
// w is a floating-point number (DiyFp), consisting of a significand and an
-// exponent. Its exponent is bounded by kMinimalTargetExponent and
-// kMaximalTargetExponent.
+// exponent. Its exponent is bounded by minimal_target_exponent and
+// maximal_target_exponent.
// Hence -60 <= w.e() <= -32.
//
// Returns false if it fails, in which case the generated digits in the buffer
// should not be used.
// Preconditions:
// * low, w and high are correct up to 1 ulp (unit in the last place). That
-// is, their error must be less than a unit of their last digits.
+// is, their error must be less that a unit of their last digits.
// * low.e() == w.e() == high.e()
// * low < w < high, and taking into account their error: low~ <= high~
-// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
+// * minimal_target_exponent <= w.e() <= maximal_target_exponent
// Postconditions: returns false if procedure fails.
// otherwise:
// * buffer is not null-terminated, but len contains the number of digits.
@@ -380,15 +321,15 @@ static void BiggestPowerTen(uint32_t number,
// represent 'w' we can stop. Everything inside the interval low - high
// represents w. However we have to pay attention to low, high and w's
// imprecision.
-static bool DigitGen(DiyFp low,
- DiyFp w,
- DiyFp high,
- Vector<char> buffer,
- int* length,
- int* kappa) {
+bool DigitGen(DiyFp low,
+ DiyFp w,
+ DiyFp high,
+ Vector<char> buffer,
+ int* length,
+ int* kappa) {
ASSERT(low.e() == w.e() && w.e() == high.e());
ASSERT(low.f() + 1 <= high.f() - 1);
- ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
+ ASSERT(minimal_target_exponent <= w.e() && w.e() <= maximal_target_exponent);
// low, w and high are imprecise, but by less than one ulp (unit in the last
// place).
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
@@ -418,23 +359,23 @@ static bool DigitGen(DiyFp low,
uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
// Modulo by one is an and.
uint64_t fractionals = too_high.f() & (one.f() - 1);
- uint32_t divisor;
- int divisor_exponent;
+ uint32_t divider;
+ int divider_exponent;
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
- &divisor, &divisor_exponent);
- *kappa = divisor_exponent + 1;
+ &divider, &divider_exponent);
+ *kappa = divider_exponent + 1;
*length = 0;
// Loop invariant: buffer = too_high / 10^kappa (integer division)
// The invariant holds for the first iteration: kappa has been initialized
- // with the divisor exponent + 1. And the divisor is the biggest power of ten
+ // with the divider exponent + 1. And the divider is the biggest power of ten
// that is smaller than integrals.
while (*kappa > 0) {
- int digit = integrals / divisor;
+ int digit = integrals / divider;
buffer[*length] = '0' + digit;
(*length)++;
- integrals %= divisor;
+ integrals %= divider;
(*kappa)--;
- // Note that kappa now equals the exponent of the divisor and that the
+ // Note that kappa now equals the exponent of the divider and that the
// invariant thus holds again.
uint64_t rest =
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
@@ -445,24 +386,32 @@ static bool DigitGen(DiyFp low,
// that lies within the unsafe interval.
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
unsafe_interval.f(), rest,
- static_cast<uint64_t>(divisor) << -one.e(), unit);
+ static_cast<uint64_t>(divider) << -one.e(), unit);
}
- divisor /= 10;
+ divider /= 10;
}
// The integrals have been generated. We are at the point of the decimal
// separator. In the following loop we simply multiply the remaining digits by
// 10 and divide by one. We just need to pay attention to multiply associated
// data (like the interval or 'unit'), too.
- // Note that the multiplication by 10 does not overflow, because w.e >= -60
- // and thus one.e >= -60.
- ASSERT(one.e() >= -60);
- ASSERT(fractionals < one.f());
- ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
+ // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
+ // increase its (imaginary) exponent. At the same time we decrease the
+ // divider's (one's) exponent and shift its significand.
+ // Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
+ // fractionals.f *= 10;
+ // fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
+ // one.f >>= 1; one.e++; // value remains unchanged.
+ // and we have again fractionals.e == one.e which allows us to divide
+ // fractionals.f() by one.f()
+ // We simply combine the *= 10 and the >>= 1.
while (true) {
- fractionals *= 10;
- unit *= 10;
- unsafe_interval.set_f(unsafe_interval.f() * 10);
+ fractionals *= 5;
+ unit *= 5;
+ unsafe_interval.set_f(unsafe_interval.f() * 5);
+ unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
+ one.set_f(one.f() >> 1);
+ one.set_e(one.e() + 1);
// Integer division by one.
int digit = static_cast<int>(fractionals >> -one.e());
buffer[*length] = '0' + digit;
@@ -477,113 +426,6 @@ static bool DigitGen(DiyFp low,
}
-
-// Generates (at most) requested_digits of input number w.
-// w is a floating-point number (DiyFp), consisting of a significand and an
-// exponent. Its exponent is bounded by kMinimalTargetExponent and
-// kMaximalTargetExponent.
-// Hence -60 <= w.e() <= -32.
-//
-// Returns false if it fails, in which case the generated digits in the buffer
-// should not be used.
-// Preconditions:
-// * w is correct up to 1 ulp (unit in the last place). That
-// is, its error must be strictly less than a unit of its last digit.
-// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
-//
-// Postconditions: returns false if procedure fails.
-// otherwise:
-// * buffer is not null-terminated, but length contains the number of
-// digits.
-// * the representation in buffer is the most precise representation of
-// requested_digits digits.
-// * buffer contains at most requested_digits digits of w. If there are less
-// than requested_digits digits then some trailing '0's have been removed.
-// * kappa is such that
-// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
-//
-// Remark: This procedure takes into account the imprecision of its input
-// numbers. If the precision is not enough to guarantee all the postconditions
-// then false is returned. This usually happens rarely, but the failure-rate
-// increases with higher requested_digits.
-static bool DigitGenCounted(DiyFp w,
- int requested_digits,
- Vector<char> buffer,
- int* length,
- int* kappa) {
- ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
- ASSERT(kMinimalTargetExponent >= -60);
- ASSERT(kMaximalTargetExponent <= -32);
- // w is assumed to have an error less than 1 unit. Whenever w is scaled we
- // also scale its error.
- uint64_t w_error = 1;
- // We cut the input number into two parts: the integral digits and the
- // fractional digits. We don't emit any decimal separator, but adapt kappa
- // instead. Example: instead of writing "1.2" we put "12" into the buffer and
- // increase kappa by 1.
- DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
- // Division by one is a shift.
- uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
- // Modulo by one is an and.
- uint64_t fractionals = w.f() & (one.f() - 1);
- uint32_t divisor;
- int divisor_exponent;
- BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
- &divisor, &divisor_exponent);
- *kappa = divisor_exponent + 1;
- *length = 0;
-
- // Loop invariant: buffer = w / 10^kappa (integer division)
- // The invariant holds for the first iteration: kappa has been initialized
- // with the divisor exponent + 1. And the divisor is the biggest power of ten
- // that is smaller than 'integrals'.
- while (*kappa > 0) {
- int digit = integrals / divisor;
- buffer[*length] = '0' + digit;
- (*length)++;
- requested_digits--;
- integrals %= divisor;
- (*kappa)--;
- // Note that kappa now equals the exponent of the divisor and that the
- // invariant thus holds again.
- if (requested_digits == 0) break;
- divisor /= 10;
- }
-
- if (requested_digits == 0) {
- uint64_t rest =
- (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
- return RoundWeedCounted(buffer, *length, rest,
- static_cast<uint64_t>(divisor) << -one.e(), w_error,
- kappa);
- }
-
- // The integrals have been generated. We are at the point of the decimal
- // separator. In the following loop we simply multiply the remaining digits by
- // 10 and divide by one. We just need to pay attention to multiply associated
- // data (the 'unit'), too.
- // Note that the multiplication by 10 does not overflow, because w.e >= -60
- // and thus one.e >= -60.
- ASSERT(one.e() >= -60);
- ASSERT(fractionals < one.f());
- ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
- while (requested_digits > 0 && fractionals > w_error) {
- fractionals *= 10;
- w_error *= 10;
- // Integer division by one.
- int digit = static_cast<int>(fractionals >> -one.e());
- buffer[*length] = '0' + digit;
- (*length)++;
- requested_digits--;
- fractionals &= one.f() - 1; // Modulo by one.
- (*kappa)--;
- }
- if (requested_digits != 0) return false;
- return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
- kappa);
-}
-
-
// Provides a decimal representation of v.
// Returns true if it succeeds, otherwise the result cannot be trusted.
// There will be *length digits inside the buffer (not null-terminated).
@@ -595,10 +437,7 @@ static bool DigitGenCounted(DiyFp w,
// The last digit will be closest to the actual v. That is, even if several
// digits might correctly yield 'v' when read again, the closest will be
// computed.
-static bool Grisu3(double v,
- Vector<char> buffer,
- int* length,
- int* decimal_exponent) {
+bool grisu3(double v, Vector<char> buffer, int* length, int* decimal_exponent) {
DiyFp w = Double(v).AsNormalizedDiyFp();
// boundary_minus and boundary_plus are the boundaries between v and its
// closest floating-point neighbors. Any number strictly between
@@ -609,12 +448,12 @@ static bool Grisu3(double v,
ASSERT(boundary_plus.e() == w.e());
DiyFp ten_mk; // Cached power of ten: 10^-k
int mk; // -k
- GetCachedPower(w.e() + DiyFp::kSignificandSize, kMinimalTargetExponent,
- kMaximalTargetExponent, &mk, &ten_mk);
- ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
- DiyFp::kSignificandSize) &&
- (kMaximalTargetExponent >= w.e() + ten_mk.e() +
- DiyFp::kSignificandSize));
+ GetCachedPower(w.e() + DiyFp::kSignificandSize, minimal_target_exponent,
+ maximal_target_exponent, &mk, &ten_mk);
+ ASSERT(minimal_target_exponent <= w.e() + ten_mk.e() +
+ DiyFp::kSignificandSize &&
+ maximal_target_exponent >= w.e() + ten_mk.e() +
+ DiyFp::kSignificandSize);
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
@@ -649,75 +488,17 @@ static bool Grisu3(double v,
}
-// The "counted" version of grisu3 (see above) only generates requested_digits
-// number of digits. This version does not generate the shortest representation,
-// and with enough requested digits 0.1 will at some point print as 0.9999999...
-// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
-// therefore the rounding strategy for halfway cases is irrelevant.
-static bool Grisu3Counted(double v,
- int requested_digits,
- Vector<char> buffer,
- int* length,
- int* decimal_exponent) {
- DiyFp w = Double(v).AsNormalizedDiyFp();
- DiyFp ten_mk; // Cached power of ten: 10^-k
- int mk; // -k
- GetCachedPower(w.e() + DiyFp::kSignificandSize, kMinimalTargetExponent,
- kMaximalTargetExponent, &mk, &ten_mk);
- ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
- DiyFp::kSignificandSize) &&
- (kMaximalTargetExponent >= w.e() + ten_mk.e() +
- DiyFp::kSignificandSize));
- // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
- // 64 bit significand and ten_mk is thus only precise up to 64 bits.
-
- // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
- // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
- // off by a small amount.
- // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
- // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
- // (f-1) * 2^e < w*10^k < (f+1) * 2^e
- DiyFp scaled_w = DiyFp::Times(w, ten_mk);
-
- // We now have (double) (scaled_w * 10^-mk).
- // DigitGen will generate the first requested_digits digits of scaled_w and
- // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
- // will not always be exactly the same since DigitGenCounted only produces a
- // limited number of digits.)
- int kappa;
- bool result = DigitGenCounted(scaled_w, requested_digits,
- buffer, length, &kappa);
- *decimal_exponent = -mk + kappa;
- return result;
-}
-
-
bool FastDtoa(double v,
- FastDtoaMode mode,
- int requested_digits,
Vector<char> buffer,
int* length,
- int* decimal_point) {
+ int* point) {
ASSERT(v > 0);
ASSERT(!Double(v).IsSpecial());
- bool result = false;
- int decimal_exponent = 0;
- switch (mode) {
- case FAST_DTOA_SHORTEST:
- result = Grisu3(v, buffer, length, &decimal_exponent);
- break;
- case FAST_DTOA_PRECISION:
- result = Grisu3Counted(v, requested_digits,
- buffer, length, &decimal_exponent);
- break;
- default:
- UNREACHABLE();
- }
- if (result) {
- *decimal_point = *length + decimal_exponent;
- buffer[*length] = '\0';
- }
+ int decimal_exponent;
+ bool result = grisu3(v, buffer, length, &decimal_exponent);
+ *point = *length + decimal_exponent;
+ buffer[*length] = '\0';
return result;
}