summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/backend/gap-resolver.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/compiler/backend/gap-resolver.cc')
-rw-r--r--deps/v8/src/compiler/backend/gap-resolver.cc270
1 files changed, 270 insertions, 0 deletions
diff --git a/deps/v8/src/compiler/backend/gap-resolver.cc b/deps/v8/src/compiler/backend/gap-resolver.cc
new file mode 100644
index 0000000000..6cb7d7fbaf
--- /dev/null
+++ b/deps/v8/src/compiler/backend/gap-resolver.cc
@@ -0,0 +1,270 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/compiler/backend/gap-resolver.h"
+
+#include <algorithm>
+#include <set>
+
+#include "src/base/enum-set.h"
+#include "src/register-configuration.h"
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+namespace {
+
+// Splits a FP move between two location operands into the equivalent series of
+// moves between smaller sub-operands, e.g. a double move to two single moves.
+// This helps reduce the number of cycles that would normally occur under FP
+// aliasing, and makes swaps much easier to implement.
+MoveOperands* Split(MoveOperands* move, MachineRepresentation smaller_rep,
+ ParallelMove* moves) {
+ DCHECK(!kSimpleFPAliasing);
+ // Splitting is only possible when the slot size is the same as float size.
+ DCHECK_EQ(kSystemPointerSize, kFloatSize);
+ const LocationOperand& src_loc = LocationOperand::cast(move->source());
+ const LocationOperand& dst_loc = LocationOperand::cast(move->destination());
+ MachineRepresentation dst_rep = dst_loc.representation();
+ DCHECK_NE(smaller_rep, dst_rep);
+ auto src_kind = src_loc.location_kind();
+ auto dst_kind = dst_loc.location_kind();
+
+ int aliases =
+ 1 << (ElementSizeLog2Of(dst_rep) - ElementSizeLog2Of(smaller_rep));
+ int base = -1;
+ USE(base);
+ DCHECK_EQ(aliases, RegisterConfiguration::Default()->GetAliases(
+ dst_rep, 0, smaller_rep, &base));
+
+ int src_index = -1;
+ int slot_size = (1 << ElementSizeLog2Of(smaller_rep)) / kSystemPointerSize;
+ int src_step = 1;
+ if (src_kind == LocationOperand::REGISTER) {
+ src_index = src_loc.register_code() * aliases;
+ } else {
+ src_index = src_loc.index();
+ // For operands that occupy multiple slots, the index refers to the last
+ // slot. On little-endian architectures, we start at the high slot and use a
+ // negative step so that register-to-slot moves are in the correct order.
+ src_step = -slot_size;
+ }
+ int dst_index = -1;
+ int dst_step = 1;
+ if (dst_kind == LocationOperand::REGISTER) {
+ dst_index = dst_loc.register_code() * aliases;
+ } else {
+ dst_index = dst_loc.index();
+ dst_step = -slot_size;
+ }
+
+ // Reuse 'move' for the first fragment. It is not pending.
+ move->set_source(AllocatedOperand(src_kind, smaller_rep, src_index));
+ move->set_destination(AllocatedOperand(dst_kind, smaller_rep, dst_index));
+ // Add the remaining fragment moves.
+ for (int i = 1; i < aliases; ++i) {
+ src_index += src_step;
+ dst_index += dst_step;
+ moves->AddMove(AllocatedOperand(src_kind, smaller_rep, src_index),
+ AllocatedOperand(dst_kind, smaller_rep, dst_index));
+ }
+ // Return the first fragment.
+ return move;
+}
+
+enum MoveOperandKind : uint8_t { kConstant, kGpReg, kFpReg, kStack };
+
+MoveOperandKind GetKind(const InstructionOperand& move) {
+ if (move.IsConstant()) return kConstant;
+ LocationOperand loc_op = LocationOperand::cast(move);
+ if (loc_op.location_kind() != LocationOperand::REGISTER) return kStack;
+ return IsFloatingPoint(loc_op.representation()) ? kFpReg : kGpReg;
+}
+
+} // namespace
+
+void GapResolver::Resolve(ParallelMove* moves) {
+ base::EnumSet<MoveOperandKind, uint8_t> source_kinds;
+ base::EnumSet<MoveOperandKind, uint8_t> destination_kinds;
+
+ // Remove redundant moves, collect source kinds and destination kinds to
+ // detect simple non-overlapping moves, and collect FP move representations if
+ // aliasing is non-simple.
+ int fp_reps = 0;
+ for (auto it = moves->begin(); it != moves->end();) {
+ MoveOperands* move = *it;
+ if (move->IsRedundant()) {
+ *it = moves->back();
+ moves->pop_back();
+ continue;
+ }
+ source_kinds.Add(GetKind(move->source()));
+ destination_kinds.Add(GetKind(move->destination()));
+ if (!kSimpleFPAliasing && move->destination().IsFPRegister()) {
+ fp_reps |= RepresentationBit(
+ LocationOperand::cast(move->destination()).representation());
+ }
+ ++it;
+ }
+
+ if ((source_kinds & destination_kinds).empty() || moves->size() < 2) {
+ // Fast path for non-conflicting parallel moves.
+ for (MoveOperands* move : *moves) {
+ assembler_->AssembleMove(&move->source(), &move->destination());
+ }
+ return;
+ }
+
+ if (!kSimpleFPAliasing) {
+ if (fp_reps && !base::bits::IsPowerOfTwo(fp_reps)) {
+ // Start with the smallest FP moves, so we never encounter smaller moves
+ // in the middle of a cycle of larger moves.
+ if ((fp_reps & RepresentationBit(MachineRepresentation::kFloat32)) != 0) {
+ split_rep_ = MachineRepresentation::kFloat32;
+ for (size_t i = 0; i < moves->size(); ++i) {
+ auto move = (*moves)[i];
+ if (!move->IsEliminated() && move->destination().IsFloatRegister())
+ PerformMove(moves, move);
+ }
+ }
+ if ((fp_reps & RepresentationBit(MachineRepresentation::kFloat64)) != 0) {
+ split_rep_ = MachineRepresentation::kFloat64;
+ for (size_t i = 0; i < moves->size(); ++i) {
+ auto move = (*moves)[i];
+ if (!move->IsEliminated() && move->destination().IsDoubleRegister())
+ PerformMove(moves, move);
+ }
+ }
+ }
+ split_rep_ = MachineRepresentation::kSimd128;
+ }
+
+ for (size_t i = 0; i < moves->size(); ++i) {
+ auto move = (*moves)[i];
+ if (!move->IsEliminated()) PerformMove(moves, move);
+ }
+}
+
+void GapResolver::PerformMove(ParallelMove* moves, MoveOperands* move) {
+ // Each call to this function performs a move and deletes it from the move
+ // graph. We first recursively perform any move blocking this one. We mark a
+ // move as "pending" on entry to PerformMove in order to detect cycles in the
+ // move graph. We use operand swaps to resolve cycles, which means that a
+ // call to PerformMove could change any source operand in the move graph.
+ DCHECK(!move->IsPending());
+ DCHECK(!move->IsRedundant());
+
+ // Clear this move's destination to indicate a pending move. The actual
+ // destination is saved on the side.
+ InstructionOperand source = move->source();
+ DCHECK(!source.IsInvalid()); // Or else it will look eliminated.
+ InstructionOperand destination = move->destination();
+ move->SetPending();
+
+ // We may need to split moves between FP locations differently.
+ const bool is_fp_loc_move =
+ !kSimpleFPAliasing && destination.IsFPLocationOperand();
+
+ // Perform a depth-first traversal of the move graph to resolve dependencies.
+ // Any unperformed, unpending move with a source the same as this one's
+ // destination blocks this one so recursively perform all such moves.
+ for (size_t i = 0; i < moves->size(); ++i) {
+ auto other = (*moves)[i];
+ if (other->IsEliminated()) continue;
+ if (other->IsPending()) continue;
+ if (other->source().InterferesWith(destination)) {
+ if (is_fp_loc_move &&
+ LocationOperand::cast(other->source()).representation() >
+ split_rep_) {
+ // 'other' must also be an FP location move. Break it into fragments
+ // of the same size as 'move'. 'other' is set to one of the fragments,
+ // and the rest are appended to 'moves'.
+ other = Split(other, split_rep_, moves);
+ // 'other' may not block destination now.
+ if (!other->source().InterferesWith(destination)) continue;
+ }
+ // Though PerformMove can change any source operand in the move graph,
+ // this call cannot create a blocking move via a swap (this loop does not
+ // miss any). Assume there is a non-blocking move with source A and this
+ // move is blocked on source B and there is a swap of A and B. Then A and
+ // B must be involved in the same cycle (or they would not be swapped).
+ // Since this move's destination is B and there is only a single incoming
+ // edge to an operand, this move must also be involved in the same cycle.
+ // In that case, the blocking move will be created but will be "pending"
+ // when we return from PerformMove.
+ PerformMove(moves, other);
+ }
+ }
+
+ // This move's source may have changed due to swaps to resolve cycles and so
+ // it may now be the last move in the cycle. If so remove it.
+ source = move->source();
+ if (source.EqualsCanonicalized(destination)) {
+ move->Eliminate();
+ return;
+ }
+
+ // We are about to resolve this move and don't need it marked as pending, so
+ // restore its destination.
+ move->set_destination(destination);
+
+ // The move may be blocked on a (at most one) pending move, in which case we
+ // have a cycle. Search for such a blocking move and perform a swap to
+ // resolve it.
+ auto blocker =
+ std::find_if(moves->begin(), moves->end(), [&](MoveOperands* move) {
+ return !move->IsEliminated() &&
+ move->source().InterferesWith(destination);
+ });
+ if (blocker == moves->end()) {
+ // The easy case: This move is not blocked.
+ assembler_->AssembleMove(&source, &destination);
+ move->Eliminate();
+ return;
+ }
+
+ // Ensure source is a register or both are stack slots, to limit swap cases.
+ if (source.IsStackSlot() || source.IsFPStackSlot()) {
+ std::swap(source, destination);
+ }
+ assembler_->AssembleSwap(&source, &destination);
+ move->Eliminate();
+
+ // Update outstanding moves whose source may now have been moved.
+ if (is_fp_loc_move) {
+ // We may have to split larger moves.
+ for (size_t i = 0; i < moves->size(); ++i) {
+ auto other = (*moves)[i];
+ if (other->IsEliminated()) continue;
+ if (source.InterferesWith(other->source())) {
+ if (LocationOperand::cast(other->source()).representation() >
+ split_rep_) {
+ other = Split(other, split_rep_, moves);
+ if (!source.InterferesWith(other->source())) continue;
+ }
+ other->set_source(destination);
+ } else if (destination.InterferesWith(other->source())) {
+ if (LocationOperand::cast(other->source()).representation() >
+ split_rep_) {
+ other = Split(other, split_rep_, moves);
+ if (!destination.InterferesWith(other->source())) continue;
+ }
+ other->set_source(source);
+ }
+ }
+ } else {
+ for (auto other : *moves) {
+ if (other->IsEliminated()) continue;
+ if (source.EqualsCanonicalized(other->source())) {
+ other->set_source(destination);
+ } else if (destination.EqualsCanonicalized(other->source())) {
+ other->set_source(source);
+ }
+ }
+ }
+}
+} // namespace compiler
+} // namespace internal
+} // namespace v8