aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/ia32/assembler-ia32.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/codegen/ia32/assembler-ia32.h')
-rw-r--r--deps/v8/src/codegen/ia32/assembler-ia32.h1795
1 files changed, 1795 insertions, 0 deletions
diff --git a/deps/v8/src/codegen/ia32/assembler-ia32.h b/deps/v8/src/codegen/ia32/assembler-ia32.h
new file mode 100644
index 0000000000..d2dcb0f348
--- /dev/null
+++ b/deps/v8/src/codegen/ia32/assembler-ia32.h
@@ -0,0 +1,1795 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2011 the V8 project authors. All rights reserved.
+
+// A light-weight IA32 Assembler.
+
+#ifndef V8_CODEGEN_IA32_ASSEMBLER_IA32_H_
+#define V8_CODEGEN_IA32_ASSEMBLER_IA32_H_
+
+#include <deque>
+
+#include "src/codegen/assembler.h"
+#include "src/codegen/ia32/constants-ia32.h"
+#include "src/codegen/ia32/register-ia32.h"
+#include "src/codegen/ia32/sse-instr.h"
+#include "src/codegen/label.h"
+#include "src/execution/isolate.h"
+#include "src/objects/smi.h"
+#include "src/utils/utils.h"
+
+namespace v8 {
+namespace internal {
+
+class SafepointTableBuilder;
+
+enum Condition {
+ // any value < 0 is considered no_condition
+ no_condition = -1,
+
+ overflow = 0,
+ no_overflow = 1,
+ below = 2,
+ above_equal = 3,
+ equal = 4,
+ not_equal = 5,
+ below_equal = 6,
+ above = 7,
+ negative = 8,
+ positive = 9,
+ parity_even = 10,
+ parity_odd = 11,
+ less = 12,
+ greater_equal = 13,
+ less_equal = 14,
+ greater = 15,
+
+ // aliases
+ carry = below,
+ not_carry = above_equal,
+ zero = equal,
+ not_zero = not_equal,
+ sign = negative,
+ not_sign = positive
+};
+
+// Returns the equivalent of !cc.
+// Negation of the default no_condition (-1) results in a non-default
+// no_condition value (-2). As long as tests for no_condition check
+// for condition < 0, this will work as expected.
+inline Condition NegateCondition(Condition cc) {
+ return static_cast<Condition>(cc ^ 1);
+}
+
+enum RoundingMode {
+ kRoundToNearest = 0x0,
+ kRoundDown = 0x1,
+ kRoundUp = 0x2,
+ kRoundToZero = 0x3
+};
+
+// -----------------------------------------------------------------------------
+// Machine instruction Immediates
+
+class Immediate {
+ public:
+ // Calls where x is an Address (uintptr_t) resolve to this overload.
+ inline explicit Immediate(int x, RelocInfo::Mode rmode = RelocInfo::NONE) {
+ value_.immediate = x;
+ rmode_ = rmode;
+ }
+ inline explicit Immediate(const ExternalReference& ext)
+ : Immediate(ext.address(), RelocInfo::EXTERNAL_REFERENCE) {}
+ inline explicit Immediate(Handle<HeapObject> handle)
+ : Immediate(handle.address(), RelocInfo::FULL_EMBEDDED_OBJECT) {}
+ inline explicit Immediate(Smi value)
+ : Immediate(static_cast<intptr_t>(value.ptr())) {}
+
+ static Immediate EmbeddedNumber(double number); // Smi or HeapNumber.
+ static Immediate EmbeddedStringConstant(const StringConstantBase* str);
+
+ static Immediate CodeRelativeOffset(Label* label) { return Immediate(label); }
+
+ bool is_heap_object_request() const {
+ DCHECK_IMPLIES(is_heap_object_request_,
+ rmode_ == RelocInfo::FULL_EMBEDDED_OBJECT ||
+ rmode_ == RelocInfo::CODE_TARGET);
+ return is_heap_object_request_;
+ }
+
+ HeapObjectRequest heap_object_request() const {
+ DCHECK(is_heap_object_request());
+ return value_.heap_object_request;
+ }
+
+ int immediate() const {
+ DCHECK(!is_heap_object_request());
+ return value_.immediate;
+ }
+
+ bool is_embedded_object() const {
+ return !is_heap_object_request() &&
+ rmode() == RelocInfo::FULL_EMBEDDED_OBJECT;
+ }
+
+ Handle<HeapObject> embedded_object() const {
+ return Handle<HeapObject>(reinterpret_cast<Address*>(immediate()));
+ }
+
+ bool is_external_reference() const {
+ return rmode() == RelocInfo::EXTERNAL_REFERENCE;
+ }
+
+ ExternalReference external_reference() const {
+ DCHECK(is_external_reference());
+ return bit_cast<ExternalReference>(immediate());
+ }
+
+ bool is_zero() const { return RelocInfo::IsNone(rmode_) && immediate() == 0; }
+ bool is_int8() const {
+ return RelocInfo::IsNone(rmode_) && i::is_int8(immediate());
+ }
+ bool is_uint8() const {
+ return RelocInfo::IsNone(rmode_) && i::is_uint8(immediate());
+ }
+ bool is_int16() const {
+ return RelocInfo::IsNone(rmode_) && i::is_int16(immediate());
+ }
+
+ bool is_uint16() const {
+ return RelocInfo::IsNone(rmode_) && i::is_uint16(immediate());
+ }
+
+ RelocInfo::Mode rmode() const { return rmode_; }
+
+ private:
+ inline explicit Immediate(Label* value) {
+ value_.immediate = reinterpret_cast<int32_t>(value);
+ rmode_ = RelocInfo::INTERNAL_REFERENCE;
+ }
+
+ union Value {
+ Value() {}
+ HeapObjectRequest heap_object_request;
+ int immediate;
+ } value_;
+ bool is_heap_object_request_ = false;
+ RelocInfo::Mode rmode_;
+
+ friend class Operand;
+ friend class Assembler;
+ friend class MacroAssembler;
+};
+
+// -----------------------------------------------------------------------------
+// Machine instruction Operands
+
+enum ScaleFactor {
+ times_1 = 0,
+ times_2 = 1,
+ times_4 = 2,
+ times_8 = 3,
+ times_int_size = times_4,
+
+ times_half_system_pointer_size = times_2,
+ times_system_pointer_size = times_4,
+
+ times_tagged_size = times_4,
+};
+
+class V8_EXPORT_PRIVATE Operand {
+ public:
+ // reg
+ V8_INLINE explicit Operand(Register reg) { set_modrm(3, reg); }
+
+ // XMM reg
+ V8_INLINE explicit Operand(XMMRegister xmm_reg) {
+ Register reg = Register::from_code(xmm_reg.code());
+ set_modrm(3, reg);
+ }
+
+ // [disp/r]
+ V8_INLINE explicit Operand(int32_t disp, RelocInfo::Mode rmode) {
+ set_modrm(0, ebp);
+ set_dispr(disp, rmode);
+ }
+
+ // [disp/r]
+ V8_INLINE explicit Operand(Immediate imm) {
+ set_modrm(0, ebp);
+ set_dispr(imm.immediate(), imm.rmode_);
+ }
+
+ // [base + disp/r]
+ explicit Operand(Register base, int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ // [base + index*scale + disp/r]
+ explicit Operand(Register base, Register index, ScaleFactor scale,
+ int32_t disp, RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ // [index*scale + disp/r]
+ explicit Operand(Register index, ScaleFactor scale, int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
+ return Operand(index, scale, reinterpret_cast<int32_t>(table),
+ RelocInfo::INTERNAL_REFERENCE);
+ }
+
+ static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
+ return Operand(base, imm.value_.immediate, imm.rmode_);
+ }
+
+ // Returns true if this Operand is a wrapper for the specified register.
+ bool is_reg(Register reg) const { return is_reg(reg.code()); }
+ bool is_reg(XMMRegister reg) const { return is_reg(reg.code()); }
+
+ // Returns true if this Operand is a wrapper for one register.
+ bool is_reg_only() const;
+
+ // Asserts that this Operand is a wrapper for one register and returns the
+ // register.
+ Register reg() const;
+
+ private:
+ // Set the ModRM byte without an encoded 'reg' register. The
+ // register is encoded later as part of the emit_operand operation.
+ inline void set_modrm(int mod, Register rm) {
+ DCHECK_EQ(mod & -4, 0);
+ buf_[0] = mod << 6 | rm.code();
+ len_ = 1;
+ }
+
+ inline void set_sib(ScaleFactor scale, Register index, Register base);
+ inline void set_disp8(int8_t disp);
+ inline void set_dispr(int32_t disp, RelocInfo::Mode rmode) {
+ DCHECK(len_ == 1 || len_ == 2);
+ Address p = reinterpret_cast<Address>(&buf_[len_]);
+ WriteUnalignedValue(p, disp);
+ len_ += sizeof(int32_t);
+ rmode_ = rmode;
+ }
+
+ inline bool is_reg(int reg_code) const {
+ return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
+ && ((buf_[0] & 0x07) == reg_code); // register codes match.
+ }
+
+ byte buf_[6];
+ // The number of bytes in buf_.
+ uint8_t len_ = 0;
+ // Only valid if len_ > 4.
+ RelocInfo::Mode rmode_ = RelocInfo::NONE;
+
+ // TODO(clemensh): Get rid of this friendship, or make Operand immutable.
+ friend class Assembler;
+};
+ASSERT_TRIVIALLY_COPYABLE(Operand);
+static_assert(sizeof(Operand) <= 2 * kSystemPointerSize,
+ "Operand must be small enough to pass it by value");
+
+// -----------------------------------------------------------------------------
+// A Displacement describes the 32bit immediate field of an instruction which
+// may be used together with a Label in order to refer to a yet unknown code
+// position. Displacements stored in the instruction stream are used to describe
+// the instruction and to chain a list of instructions using the same Label.
+// A Displacement contains 2 different fields:
+//
+// next field: position of next displacement in the chain (0 = end of list)
+// type field: instruction type
+//
+// A next value of null (0) indicates the end of a chain (note that there can
+// be no displacement at position zero, because there is always at least one
+// instruction byte before the displacement).
+//
+// Displacement _data field layout
+//
+// |31.....2|1......0|
+// [ next | type |
+
+class Displacement {
+ public:
+ enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
+
+ int data() const { return data_; }
+ Type type() const { return TypeField::decode(data_); }
+ void next(Label* L) const {
+ int n = NextField::decode(data_);
+ n > 0 ? L->link_to(n) : L->Unuse();
+ }
+ void link_to(Label* L) { init(L, type()); }
+
+ explicit Displacement(int data) { data_ = data; }
+
+ Displacement(Label* L, Type type) { init(L, type); }
+
+ void print() {
+ PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
+ NextField::decode(data_));
+ }
+
+ private:
+ int data_;
+
+ class TypeField : public BitField<Type, 0, 2> {};
+ class NextField : public BitField<int, 2, 32 - 2> {};
+
+ void init(Label* L, Type type);
+};
+
+class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
+ private:
+ // We check before assembling an instruction that there is sufficient
+ // space to write an instruction and its relocation information.
+ // The relocation writer's position must be kGap bytes above the end of
+ // the generated instructions. This leaves enough space for the
+ // longest possible ia32 instruction, 15 bytes, and the longest possible
+ // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
+ // (There is a 15 byte limit on ia32 instruction length that rules out some
+ // otherwise valid instructions.)
+ // This allows for a single, fast space check per instruction.
+ static constexpr int kGap = 32;
+
+ public:
+ // Create an assembler. Instructions and relocation information are emitted
+ // into a buffer, with the instructions starting from the beginning and the
+ // relocation information starting from the end of the buffer. See CodeDesc
+ // for a detailed comment on the layout (globals.h).
+ //
+ // If the provided buffer is nullptr, the assembler allocates and grows its
+ // own buffer. Otherwise it takes ownership of the provided buffer.
+ explicit Assembler(const AssemblerOptions&,
+ std::unique_ptr<AssemblerBuffer> = {});
+ virtual ~Assembler() {}
+
+ // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
+ static constexpr int kNoHandlerTable = 0;
+ static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
+ void GetCode(Isolate* isolate, CodeDesc* desc,
+ SafepointTableBuilder* safepoint_table_builder,
+ int handler_table_offset);
+
+ // Convenience wrapper for code without safepoint or handler tables.
+ void GetCode(Isolate* isolate, CodeDesc* desc) {
+ GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
+ }
+
+ void FinalizeJumpOptimizationInfo();
+
+ // Unused on this architecture.
+ void MaybeEmitOutOfLineConstantPool() {}
+
+ // Read/Modify the code target in the branch/call instruction at pc.
+ // The isolate argument is unused (and may be nullptr) when skipping flushing.
+ inline static Address target_address_at(Address pc, Address constant_pool);
+ inline static void set_target_address_at(
+ Address pc, Address constant_pool, Address target,
+ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
+
+ // This sets the branch destination (which is in the instruction on x86).
+ // This is for calls and branches within generated code.
+ inline static void deserialization_set_special_target_at(
+ Address instruction_payload, Code code, Address target);
+
+ // Get the size of the special target encoded at 'instruction_payload'.
+ inline static int deserialization_special_target_size(
+ Address instruction_payload);
+
+ // This sets the internal reference at the pc.
+ inline static void deserialization_set_target_internal_reference_at(
+ Address pc, Address target,
+ RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
+
+ static constexpr int kSpecialTargetSize = kSystemPointerSize;
+
+ // One byte opcode for test al, 0xXX.
+ static constexpr byte kTestAlByte = 0xA8;
+ // One byte opcode for nop.
+ static constexpr byte kNopByte = 0x90;
+
+ // One byte opcode for a short unconditional jump.
+ static constexpr byte kJmpShortOpcode = 0xEB;
+ // One byte prefix for a short conditional jump.
+ static constexpr byte kJccShortPrefix = 0x70;
+ static constexpr byte kJncShortOpcode = kJccShortPrefix | not_carry;
+ static constexpr byte kJcShortOpcode = kJccShortPrefix | carry;
+ static constexpr byte kJnzShortOpcode = kJccShortPrefix | not_zero;
+ static constexpr byte kJzShortOpcode = kJccShortPrefix | zero;
+
+ // ---------------------------------------------------------------------------
+ // Code generation
+ //
+ // - function names correspond one-to-one to ia32 instruction mnemonics
+ // - unless specified otherwise, instructions operate on 32bit operands
+ // - instructions on 8bit (byte) operands/registers have a trailing '_b'
+ // - instructions on 16bit (word) operands/registers have a trailing '_w'
+ // - naming conflicts with C++ keywords are resolved via a trailing '_'
+
+ // NOTE ON INTERFACE: Currently, the interface is not very consistent
+ // in the sense that some operations (e.g. mov()) can be called in more
+ // the one way to generate the same instruction: The Register argument
+ // can in some cases be replaced with an Operand(Register) argument.
+ // This should be cleaned up and made more orthogonal. The questions
+ // is: should we always use Operands instead of Registers where an
+ // Operand is possible, or should we have a Register (overloaded) form
+ // instead? We must be careful to make sure that the selected instruction
+ // is obvious from the parameters to avoid hard-to-find code generation
+ // bugs.
+
+ // Insert the smallest number of nop instructions
+ // possible to align the pc offset to a multiple
+ // of m. m must be a power of 2.
+ void Align(int m);
+ // Insert the smallest number of zero bytes possible to align the pc offset
+ // to a mulitple of m. m must be a power of 2 (>= 2).
+ void DataAlign(int m);
+ void Nop(int bytes = 1);
+ // Aligns code to something that's optimal for a jump target for the platform.
+ void CodeTargetAlign();
+
+ // Stack
+ void pushad();
+ void popad();
+
+ void pushfd();
+ void popfd();
+
+ void push(const Immediate& x);
+ void push_imm32(int32_t imm32);
+ void push(Register src);
+ void push(Operand src);
+
+ void pop(Register dst);
+ void pop(Operand dst);
+
+ void enter(const Immediate& size);
+ void leave();
+
+ // Moves
+ void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
+ void mov_b(Register dst, Operand src);
+ void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
+ void mov_b(Operand dst, int8_t src) { mov_b(dst, Immediate(src)); }
+ void mov_b(Operand dst, const Immediate& src);
+ void mov_b(Operand dst, Register src);
+
+ void mov_w(Register dst, Operand src);
+ void mov_w(Operand dst, int16_t src) { mov_w(dst, Immediate(src)); }
+ void mov_w(Operand dst, const Immediate& src);
+ void mov_w(Operand dst, Register src);
+
+ void mov(Register dst, int32_t imm32);
+ void mov(Register dst, const Immediate& x);
+ void mov(Register dst, Handle<HeapObject> handle);
+ void mov(Register dst, Operand src);
+ void mov(Register dst, Register src);
+ void mov(Operand dst, const Immediate& x);
+ void mov(Operand dst, Handle<HeapObject> handle);
+ void mov(Operand dst, Register src);
+ void mov(Operand dst, Address src, RelocInfo::Mode);
+
+ void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
+ void movsx_b(Register dst, Operand src);
+
+ void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
+ void movsx_w(Register dst, Operand src);
+
+ void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
+ void movzx_b(Register dst, Operand src);
+
+ void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
+ void movzx_w(Register dst, Operand src);
+
+ void movq(XMMRegister dst, Operand src);
+ // Conditional moves
+ void cmov(Condition cc, Register dst, Register src) {
+ cmov(cc, dst, Operand(src));
+ }
+ void cmov(Condition cc, Register dst, Operand src);
+
+ // Flag management.
+ void cld();
+
+ // Repetitive string instructions.
+ void rep_movs();
+ void rep_stos();
+ void stos();
+
+ // Exchange
+ void xchg(Register dst, Register src);
+ void xchg(Register dst, Operand src);
+ void xchg_b(Register reg, Operand op);
+ void xchg_w(Register reg, Operand op);
+
+ // Lock prefix
+ void lock();
+
+ // CompareExchange
+ void cmpxchg(Operand dst, Register src);
+ void cmpxchg_b(Operand dst, Register src);
+ void cmpxchg_w(Operand dst, Register src);
+ void cmpxchg8b(Operand dst);
+
+ // Memory Fence
+ void lfence();
+
+ void pause();
+
+ // Arithmetics
+ void adc(Register dst, int32_t imm32);
+ void adc(Register dst, Register src) { adc(dst, Operand(src)); }
+ void adc(Register dst, Operand src);
+
+ void add(Register dst, Register src) { add(dst, Operand(src)); }
+ void add(Register dst, Operand src);
+ void add(Operand dst, Register src);
+ void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
+ void add(Operand dst, const Immediate& x);
+
+ void and_(Register dst, int32_t imm32);
+ void and_(Register dst, const Immediate& x);
+ void and_(Register dst, Register src) { and_(dst, Operand(src)); }
+ void and_(Register dst, Operand src);
+ void and_(Operand dst, Register src);
+ void and_(Operand dst, const Immediate& x);
+
+ void cmpb(Register reg, Immediate imm8) {
+ DCHECK(reg.is_byte_register());
+ cmpb(Operand(reg), imm8);
+ }
+ void cmpb(Operand op, Immediate imm8);
+ void cmpb(Register reg, Operand op);
+ void cmpb(Operand op, Register reg);
+ void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
+ void cmpb_al(Operand op);
+ void cmpw_ax(Operand op);
+ void cmpw(Operand dst, Immediate src);
+ void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
+ void cmpw(Register dst, Operand src);
+ void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
+ void cmpw(Operand dst, Register src);
+ void cmp(Register reg, int32_t imm32);
+ void cmp(Register reg, Handle<HeapObject> handle);
+ void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
+ void cmp(Register reg, Operand op);
+ void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
+ void cmp(Operand op, Register reg);
+ void cmp(Operand op, const Immediate& imm);
+ void cmp(Operand op, Handle<HeapObject> handle);
+
+ void dec_b(Register dst);
+ void dec_b(Operand dst);
+
+ void dec(Register dst);
+ void dec(Operand dst);
+
+ void cdq();
+
+ void idiv(Register src) { idiv(Operand(src)); }
+ void idiv(Operand src);
+ void div(Register src) { div(Operand(src)); }
+ void div(Operand src);
+
+ // Signed multiply instructions.
+ void imul(Register src); // edx:eax = eax * src.
+ void imul(Register dst, Register src) { imul(dst, Operand(src)); }
+ void imul(Register dst, Operand src); // dst = dst * src.
+ void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
+ void imul(Register dst, Operand src, int32_t imm32);
+
+ void inc(Register dst);
+ void inc(Operand dst);
+
+ void lea(Register dst, Operand src);
+
+ // Unsigned multiply instruction.
+ void mul(Register src); // edx:eax = eax * reg.
+
+ void neg(Register dst);
+ void neg(Operand dst);
+
+ void not_(Register dst);
+ void not_(Operand dst);
+
+ void or_(Register dst, int32_t imm32);
+ void or_(Register dst, Register src) { or_(dst, Operand(src)); }
+ void or_(Register dst, Operand src);
+ void or_(Operand dst, Register src);
+ void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
+ void or_(Operand dst, const Immediate& x);
+
+ void rcl(Register dst, uint8_t imm8);
+ void rcr(Register dst, uint8_t imm8);
+
+ void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
+ void ror(Operand dst, uint8_t imm8);
+ void ror_cl(Register dst) { ror_cl(Operand(dst)); }
+ void ror_cl(Operand dst);
+
+ void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
+ void sar(Operand dst, uint8_t imm8);
+ void sar_cl(Register dst) { sar_cl(Operand(dst)); }
+ void sar_cl(Operand dst);
+
+ void sbb(Register dst, Register src) { sbb(dst, Operand(src)); }
+ void sbb(Register dst, Operand src);
+
+ void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
+ void shl(Operand dst, uint8_t imm8);
+ void shl_cl(Register dst) { shl_cl(Operand(dst)); }
+ void shl_cl(Operand dst);
+ void shld(Register dst, Register src, uint8_t shift);
+ void shld_cl(Register dst, Register src);
+
+ void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
+ void shr(Operand dst, uint8_t imm8);
+ void shr_cl(Register dst) { shr_cl(Operand(dst)); }
+ void shr_cl(Operand dst);
+ void shrd(Register dst, Register src, uint8_t shift);
+ void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
+ void shrd_cl(Operand dst, Register src);
+
+ void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
+ void sub(Operand dst, const Immediate& x);
+ void sub(Register dst, Register src) { sub(dst, Operand(src)); }
+ void sub(Register dst, Operand src);
+ void sub(Operand dst, Register src);
+ void sub_sp_32(uint32_t imm);
+
+ void test(Register reg, const Immediate& imm);
+ void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
+ void test(Register reg, Operand op);
+ void test(Operand op, const Immediate& imm);
+ void test(Operand op, Register reg) { test(reg, op); }
+ void test_b(Register reg, Operand op);
+ void test_b(Register reg, Immediate imm8);
+ void test_b(Operand op, Immediate imm8);
+ void test_b(Operand op, Register reg) { test_b(reg, op); }
+ void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
+ void test_w(Register reg, Operand op);
+ void test_w(Register reg, Immediate imm16);
+ void test_w(Operand op, Immediate imm16);
+ void test_w(Operand op, Register reg) { test_w(reg, op); }
+ void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }
+
+ void xor_(Register dst, int32_t imm32);
+ void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
+ void xor_(Register dst, Operand src);
+ void xor_(Operand dst, Register src);
+ void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
+ void xor_(Operand dst, const Immediate& x);
+
+ // Bit operations.
+ void bswap(Register dst);
+ void bt(Operand dst, Register src);
+ void bts(Register dst, Register src) { bts(Operand(dst), src); }
+ void bts(Operand dst, Register src);
+ void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
+ void bsr(Register dst, Operand src);
+ void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
+ void bsf(Register dst, Operand src);
+
+ // Miscellaneous
+ void hlt();
+ void int3();
+ void nop();
+ void ret(int imm16);
+ void ud2();
+
+ // Label operations & relative jumps (PPUM Appendix D)
+ //
+ // Takes a branch opcode (cc) and a label (L) and generates
+ // either a backward branch or a forward branch and links it
+ // to the label fixup chain. Usage:
+ //
+ // Label L; // unbound label
+ // j(cc, &L); // forward branch to unbound label
+ // bind(&L); // bind label to the current pc
+ // j(cc, &L); // backward branch to bound label
+ // bind(&L); // illegal: a label may be bound only once
+ //
+ // Note: The same Label can be used for forward and backward branches
+ // but it may be bound only once.
+
+ void bind(Label* L); // binds an unbound label L to the current code position
+
+ // Calls
+ void call(Label* L);
+ void call(Address entry, RelocInfo::Mode rmode);
+ void call(Register reg) { call(Operand(reg)); }
+ void call(Operand adr);
+ void call(Handle<Code> code, RelocInfo::Mode rmode);
+ void wasm_call(Address address, RelocInfo::Mode rmode);
+
+ // Jumps
+ // unconditional jump to L
+ void jmp(Label* L, Label::Distance distance = Label::kFar);
+ void jmp(Address entry, RelocInfo::Mode rmode);
+ void jmp(Register reg) { jmp(Operand(reg)); }
+ void jmp(Operand adr);
+ void jmp(Handle<Code> code, RelocInfo::Mode rmode);
+ // Unconditional jump relative to the current address. Low-level routine,
+ // use with caution!
+ void jmp_rel(int offset);
+
+ // Conditional jumps
+ void j(Condition cc, Label* L, Label::Distance distance = Label::kFar);
+ void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
+ void j(Condition cc, Handle<Code> code,
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
+
+ // Floating-point operations
+ void fld(int i);
+ void fstp(int i);
+
+ void fld1();
+ void fldz();
+ void fldpi();
+ void fldln2();
+
+ void fld_s(Operand adr);
+ void fld_d(Operand adr);
+
+ void fstp_s(Operand adr);
+ void fst_s(Operand adr);
+ void fstp_d(Operand adr);
+ void fst_d(Operand adr);
+
+ void fild_s(Operand adr);
+ void fild_d(Operand adr);
+
+ void fist_s(Operand adr);
+
+ void fistp_s(Operand adr);
+ void fistp_d(Operand adr);
+
+ // The fisttp instructions require SSE3.
+ void fisttp_s(Operand adr);
+ void fisttp_d(Operand adr);
+
+ void fabs();
+ void fchs();
+ void fcos();
+ void fsin();
+ void fptan();
+ void fyl2x();
+ void f2xm1();
+ void fscale();
+ void fninit();
+
+ void fadd(int i);
+ void fadd_i(int i);
+ void fsub(int i);
+ void fsub_i(int i);
+ void fmul(int i);
+ void fmul_i(int i);
+ void fdiv(int i);
+ void fdiv_i(int i);
+
+ void fisub_s(Operand adr);
+
+ void faddp(int i = 1);
+ void fsubp(int i = 1);
+ void fsubrp(int i = 1);
+ void fmulp(int i = 1);
+ void fdivp(int i = 1);
+ void fprem();
+ void fprem1();
+
+ void fxch(int i = 1);
+ void fincstp();
+ void ffree(int i = 0);
+
+ void ftst();
+ void fucomp(int i);
+ void fucompp();
+ void fucomi(int i);
+ void fucomip();
+ void fcompp();
+ void fnstsw_ax();
+ void fwait();
+ void fnclex();
+
+ void frndint();
+
+ void sahf();
+ void setcc(Condition cc, Register reg);
+
+ void cpuid();
+
+ // SSE instructions
+ void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
+ void addss(XMMRegister dst, Operand src);
+ void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
+ void subss(XMMRegister dst, Operand src);
+ void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
+ void mulss(XMMRegister dst, Operand src);
+ void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
+ void divss(XMMRegister dst, Operand src);
+ void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
+ void sqrtss(XMMRegister dst, Operand src);
+
+ void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
+ void ucomiss(XMMRegister dst, Operand src);
+ void movaps(XMMRegister dst, XMMRegister src) { movaps(dst, Operand(src)); }
+ void movaps(XMMRegister dst, Operand src);
+ void movups(XMMRegister dst, XMMRegister src) { movups(dst, Operand(src)); }
+ void movups(XMMRegister dst, Operand src);
+ void movups(Operand dst, XMMRegister src);
+ void shufps(XMMRegister dst, XMMRegister src, byte imm8);
+
+ void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
+ void maxss(XMMRegister dst, Operand src);
+ void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
+ void minss(XMMRegister dst, Operand src);
+
+ void andps(XMMRegister dst, Operand src);
+ void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
+ void andnps(XMMRegister dst, Operand src);
+ void andnps(XMMRegister dst, XMMRegister src) { andnps(dst, Operand(src)); }
+ void xorps(XMMRegister dst, Operand src);
+ void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
+ void orps(XMMRegister dst, Operand src);
+ void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
+
+ void addps(XMMRegister dst, Operand src);
+ void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
+ void subps(XMMRegister dst, Operand src);
+ void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
+ void mulps(XMMRegister dst, Operand src);
+ void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
+ void divps(XMMRegister dst, Operand src);
+ void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
+ void rcpps(XMMRegister dst, Operand src);
+ void rcpps(XMMRegister dst, XMMRegister src) { rcpps(dst, Operand(src)); }
+ void rsqrtps(XMMRegister dst, Operand src);
+ void rsqrtps(XMMRegister dst, XMMRegister src) { rsqrtps(dst, Operand(src)); }
+ void haddps(XMMRegister dst, Operand src);
+ void haddps(XMMRegister dst, XMMRegister src) { haddps(dst, Operand(src)); }
+
+ void minps(XMMRegister dst, Operand src);
+ void minps(XMMRegister dst, XMMRegister src) { minps(dst, Operand(src)); }
+ void maxps(XMMRegister dst, Operand src);
+ void maxps(XMMRegister dst, XMMRegister src) { maxps(dst, Operand(src)); }
+
+ void cmpps(XMMRegister dst, Operand src, uint8_t cmp);
+ void cmpps(XMMRegister dst, XMMRegister src, uint8_t cmp) {
+ cmpps(dst, Operand(src), cmp);
+ }
+#define SSE_CMP_P(instr, imm8) \
+ void instr##ps(XMMRegister dst, XMMRegister src) { \
+ cmpps(dst, Operand(src), imm8); \
+ } \
+ void instr##ps(XMMRegister dst, Operand src) { cmpps(dst, src, imm8); }
+
+ SSE_CMP_P(cmpeq, 0x0)
+ SSE_CMP_P(cmplt, 0x1)
+ SSE_CMP_P(cmple, 0x2)
+ SSE_CMP_P(cmpneq, 0x4)
+
+#undef SSE_CMP_P
+
+ // SSE2 instructions
+ void cvttss2si(Register dst, Operand src);
+ void cvttss2si(Register dst, XMMRegister src) {
+ cvttss2si(dst, Operand(src));
+ }
+ void cvttsd2si(Register dst, Operand src);
+ void cvttsd2si(Register dst, XMMRegister src) {
+ cvttsd2si(dst, Operand(src));
+ }
+ void cvtsd2si(Register dst, XMMRegister src);
+
+ void cvtsi2ss(XMMRegister dst, Register src) { cvtsi2ss(dst, Operand(src)); }
+ void cvtsi2ss(XMMRegister dst, Operand src);
+ void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
+ void cvtsi2sd(XMMRegister dst, Operand src);
+ void cvtss2sd(XMMRegister dst, Operand src);
+ void cvtss2sd(XMMRegister dst, XMMRegister src) {
+ cvtss2sd(dst, Operand(src));
+ }
+ void cvtsd2ss(XMMRegister dst, Operand src);
+ void cvtsd2ss(XMMRegister dst, XMMRegister src) {
+ cvtsd2ss(dst, Operand(src));
+ }
+ void cvtdq2ps(XMMRegister dst, XMMRegister src) {
+ cvtdq2ps(dst, Operand(src));
+ }
+ void cvtdq2ps(XMMRegister dst, Operand src);
+ void cvttps2dq(XMMRegister dst, XMMRegister src) {
+ cvttps2dq(dst, Operand(src));
+ }
+ void cvttps2dq(XMMRegister dst, Operand src);
+
+ void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
+ void addsd(XMMRegister dst, Operand src);
+ void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
+ void subsd(XMMRegister dst, Operand src);
+ void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
+ void mulsd(XMMRegister dst, Operand src);
+ void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
+ void divsd(XMMRegister dst, Operand src);
+ void xorpd(XMMRegister dst, XMMRegister src) { xorpd(dst, Operand(src)); }
+ void xorpd(XMMRegister dst, Operand src);
+ void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
+ void sqrtsd(XMMRegister dst, Operand src);
+
+ void andpd(XMMRegister dst, XMMRegister src) { andpd(dst, Operand(src)); }
+ void andpd(XMMRegister dst, Operand src);
+ void orpd(XMMRegister dst, XMMRegister src) { orpd(dst, Operand(src)); }
+ void orpd(XMMRegister dst, Operand src);
+
+ void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
+ void ucomisd(XMMRegister dst, Operand src);
+
+ void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
+ void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
+
+ void movmskpd(Register dst, XMMRegister src);
+ void movmskps(Register dst, XMMRegister src);
+
+ void cmpltsd(XMMRegister dst, XMMRegister src);
+
+ void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
+ void maxsd(XMMRegister dst, Operand src);
+ void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
+ void minsd(XMMRegister dst, Operand src);
+
+ void movdqa(XMMRegister dst, Operand src);
+ void movdqa(Operand dst, XMMRegister src);
+ void movdqu(XMMRegister dst, Operand src);
+ void movdqu(Operand dst, XMMRegister src);
+ void movdq(bool aligned, XMMRegister dst, Operand src) {
+ if (aligned) {
+ movdqa(dst, src);
+ } else {
+ movdqu(dst, src);
+ }
+ }
+
+ void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
+ void movd(XMMRegister dst, Operand src);
+ void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
+ void movd(Operand dst, XMMRegister src);
+ void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
+ void movsd(XMMRegister dst, Operand src);
+ void movsd(Operand dst, XMMRegister src);
+
+ void movss(XMMRegister dst, Operand src);
+ void movss(Operand dst, XMMRegister src);
+ void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
+ void extractps(Register dst, XMMRegister src, byte imm8);
+
+ void psllw(XMMRegister reg, uint8_t shift);
+ void pslld(XMMRegister reg, uint8_t shift);
+ void psrlw(XMMRegister reg, uint8_t shift);
+ void psrld(XMMRegister reg, uint8_t shift);
+ void psraw(XMMRegister reg, uint8_t shift);
+ void psrad(XMMRegister reg, uint8_t shift);
+ void psllq(XMMRegister reg, uint8_t shift);
+ void psllq(XMMRegister dst, XMMRegister src);
+ void psrlq(XMMRegister reg, uint8_t shift);
+ void psrlq(XMMRegister dst, XMMRegister src);
+
+ void pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
+ pshufhw(dst, Operand(src), shuffle);
+ }
+ void pshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
+ void pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
+ pshuflw(dst, Operand(src), shuffle);
+ }
+ void pshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
+ void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
+ pshufd(dst, Operand(src), shuffle);
+ }
+ void pshufd(XMMRegister dst, Operand src, uint8_t shuffle);
+
+ void pblendw(XMMRegister dst, XMMRegister src, uint8_t mask) {
+ pblendw(dst, Operand(src), mask);
+ }
+ void pblendw(XMMRegister dst, Operand src, uint8_t mask);
+
+ void palignr(XMMRegister dst, XMMRegister src, uint8_t mask) {
+ palignr(dst, Operand(src), mask);
+ }
+ void palignr(XMMRegister dst, Operand src, uint8_t mask);
+
+ void pextrb(Register dst, XMMRegister src, uint8_t offset) {
+ pextrb(Operand(dst), src, offset);
+ }
+ void pextrb(Operand dst, XMMRegister src, uint8_t offset);
+ // Use SSE4_1 encoding for pextrw reg, xmm, imm8 for consistency
+ void pextrw(Register dst, XMMRegister src, uint8_t offset) {
+ pextrw(Operand(dst), src, offset);
+ }
+ void pextrw(Operand dst, XMMRegister src, uint8_t offset);
+ void pextrd(Register dst, XMMRegister src, uint8_t offset) {
+ pextrd(Operand(dst), src, offset);
+ }
+ void pextrd(Operand dst, XMMRegister src, uint8_t offset);
+
+ void insertps(XMMRegister dst, XMMRegister src, uint8_t offset) {
+ insertps(dst, Operand(src), offset);
+ }
+ void insertps(XMMRegister dst, Operand src, uint8_t offset);
+ void pinsrb(XMMRegister dst, Register src, uint8_t offset) {
+ pinsrb(dst, Operand(src), offset);
+ }
+ void pinsrb(XMMRegister dst, Operand src, uint8_t offset);
+ void pinsrw(XMMRegister dst, Register src, uint8_t offset) {
+ pinsrw(dst, Operand(src), offset);
+ }
+ void pinsrw(XMMRegister dst, Operand src, uint8_t offset);
+ void pinsrd(XMMRegister dst, Register src, uint8_t offset) {
+ pinsrd(dst, Operand(src), offset);
+ }
+ void pinsrd(XMMRegister dst, Operand src, uint8_t offset);
+
+ // AVX instructions
+ void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmadd132sd(dst, src1, Operand(src2));
+ }
+ void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmadd213sd(dst, src1, Operand(src2));
+ }
+ void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmadd231sd(dst, src1, Operand(src2));
+ }
+ void vfmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0x99, dst, src1, src2);
+ }
+ void vfmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0xa9, dst, src1, src2);
+ }
+ void vfmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0xb9, dst, src1, src2);
+ }
+ void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmsub132sd(dst, src1, Operand(src2));
+ }
+ void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmsub213sd(dst, src1, Operand(src2));
+ }
+ void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmsub231sd(dst, src1, Operand(src2));
+ }
+ void vfmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0x9b, dst, src1, src2);
+ }
+ void vfmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0xab, dst, src1, src2);
+ }
+ void vfmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0xbb, dst, src1, src2);
+ }
+ void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmadd132sd(dst, src1, Operand(src2));
+ }
+ void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmadd213sd(dst, src1, Operand(src2));
+ }
+ void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmadd231sd(dst, src1, Operand(src2));
+ }
+ void vfnmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0x9d, dst, src1, src2);
+ }
+ void vfnmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0xad, dst, src1, src2);
+ }
+ void vfnmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0xbd, dst, src1, src2);
+ }
+ void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmsub132sd(dst, src1, Operand(src2));
+ }
+ void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmsub213sd(dst, src1, Operand(src2));
+ }
+ void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmsub231sd(dst, src1, Operand(src2));
+ }
+ void vfnmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0x9f, dst, src1, src2);
+ }
+ void vfnmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0xaf, dst, src1, src2);
+ }
+ void vfnmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmasd(0xbf, dst, src1, src2);
+ }
+ void vfmasd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
+
+ void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmadd132ss(dst, src1, Operand(src2));
+ }
+ void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmadd213ss(dst, src1, Operand(src2));
+ }
+ void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmadd231ss(dst, src1, Operand(src2));
+ }
+ void vfmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0x99, dst, src1, src2);
+ }
+ void vfmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0xa9, dst, src1, src2);
+ }
+ void vfmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0xb9, dst, src1, src2);
+ }
+ void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmsub132ss(dst, src1, Operand(src2));
+ }
+ void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmsub213ss(dst, src1, Operand(src2));
+ }
+ void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfmsub231ss(dst, src1, Operand(src2));
+ }
+ void vfmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0x9b, dst, src1, src2);
+ }
+ void vfmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0xab, dst, src1, src2);
+ }
+ void vfmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0xbb, dst, src1, src2);
+ }
+ void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmadd132ss(dst, src1, Operand(src2));
+ }
+ void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmadd213ss(dst, src1, Operand(src2));
+ }
+ void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmadd231ss(dst, src1, Operand(src2));
+ }
+ void vfnmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0x9d, dst, src1, src2);
+ }
+ void vfnmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0xad, dst, src1, src2);
+ }
+ void vfnmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0xbd, dst, src1, src2);
+ }
+ void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmsub132ss(dst, src1, Operand(src2));
+ }
+ void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmsub213ss(dst, src1, Operand(src2));
+ }
+ void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vfnmsub231ss(dst, src1, Operand(src2));
+ }
+ void vfnmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0x9f, dst, src1, src2);
+ }
+ void vfnmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0xaf, dst, src1, src2);
+ }
+ void vfnmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vfmass(0xbf, dst, src1, src2);
+ }
+ void vfmass(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
+
+ void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vaddsd(dst, src1, Operand(src2));
+ }
+ void vaddsd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vsd(0x58, dst, src1, src2);
+ }
+ void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vsubsd(dst, src1, Operand(src2));
+ }
+ void vsubsd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vsd(0x5c, dst, src1, src2);
+ }
+ void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vmulsd(dst, src1, Operand(src2));
+ }
+ void vmulsd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vsd(0x59, dst, src1, src2);
+ }
+ void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vdivsd(dst, src1, Operand(src2));
+ }
+ void vdivsd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vsd(0x5e, dst, src1, src2);
+ }
+ void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vmaxsd(dst, src1, Operand(src2));
+ }
+ void vmaxsd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vsd(0x5f, dst, src1, src2);
+ }
+ void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vminsd(dst, src1, Operand(src2));
+ }
+ void vminsd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vsd(0x5d, dst, src1, src2);
+ }
+ void vsqrtsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vsqrtsd(dst, src1, Operand(src2));
+ }
+ void vsqrtsd(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vsd(0x51, dst, src1, src2);
+ }
+ void vsd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
+
+ void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vaddss(dst, src1, Operand(src2));
+ }
+ void vaddss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vss(0x58, dst, src1, src2);
+ }
+ void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vsubss(dst, src1, Operand(src2));
+ }
+ void vsubss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vss(0x5c, dst, src1, src2);
+ }
+ void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vmulss(dst, src1, Operand(src2));
+ }
+ void vmulss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vss(0x59, dst, src1, src2);
+ }
+ void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vdivss(dst, src1, Operand(src2));
+ }
+ void vdivss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vss(0x5e, dst, src1, src2);
+ }
+ void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vmaxss(dst, src1, Operand(src2));
+ }
+ void vmaxss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vss(0x5f, dst, src1, src2);
+ }
+ void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vminss(dst, src1, Operand(src2));
+ }
+ void vminss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vss(0x5d, dst, src1, src2);
+ }
+ void vsqrtss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vsqrtss(dst, src1, Operand(src2));
+ }
+ void vsqrtss(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vss(0x51, dst, src1, src2);
+ }
+ void vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
+
+ void vrcpps(XMMRegister dst, XMMRegister src) { vrcpps(dst, Operand(src)); }
+ void vrcpps(XMMRegister dst, Operand src) {
+ vinstr(0x53, dst, xmm0, src, kNone, k0F, kWIG);
+ }
+ void vrsqrtps(XMMRegister dst, XMMRegister src) {
+ vrsqrtps(dst, Operand(src));
+ }
+ void vrsqrtps(XMMRegister dst, Operand src) {
+ vinstr(0x52, dst, xmm0, src, kNone, k0F, kWIG);
+ }
+ void vhaddps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
+ vhaddps(dst, src1, Operand(src2));
+ }
+ void vhaddps(XMMRegister dst, XMMRegister src1, Operand src2) {
+ vinstr(0x7C, dst, src1, src2, kF2, k0F, kWIG);
+ }
+ void vmovaps(XMMRegister dst, XMMRegister src) { vmovaps(dst, Operand(src)); }
+ void vmovaps(XMMRegister dst, Operand src) { vps(0x28, dst, xmm0, src); }
+ void vmovups(XMMRegister dst, XMMRegister src) { vmovups(dst, Operand(src)); }
+ void vmovups(XMMRegister dst, Operand src) { vps(0x10, dst, xmm0, src); }
+ void vshufps(XMMRegister dst, XMMRegister src1, XMMRegister src2, byte imm8) {
+ vshufps(dst, src1, Operand(src2), imm8);
+ }
+ void vshufps(XMMRegister dst, XMMRegister src1, Operand src2, byte imm8);
+
+ void vpsllw(XMMRegister dst, XMMRegister src, uint8_t imm8);
+ void vpslld(XMMRegister dst, XMMRegister src, uint8_t imm8);
+ void vpsrlw(XMMRegister dst, XMMRegister src, uint8_t imm8);
+ void vpsrld(XMMRegister dst, XMMRegister src, uint8_t imm8);
+ void vpsraw(XMMRegister dst, XMMRegister src, uint8_t imm8);
+ void vpsrad(XMMRegister dst, XMMRegister src, uint8_t imm8);
+
+ void vpshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
+ vpshufhw(dst, Operand(src), shuffle);
+ }
+ void vpshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
+ void vpshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
+ vpshuflw(dst, Operand(src), shuffle);
+ }
+ void vpshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
+ void vpshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
+ vpshufd(dst, Operand(src), shuffle);
+ }
+ void vpshufd(XMMRegister dst, Operand src, uint8_t shuffle);
+
+ void vpblendw(XMMRegister dst, XMMRegister src1, XMMRegister src2,
+ uint8_t mask) {
+ vpblendw(dst, src1, Operand(src2), mask);
+ }
+ void vpblendw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t mask);
+
+ void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2,
+ uint8_t mask) {
+ vpalignr(dst, src1, Operand(src2), mask);
+ }
+ void vpalignr(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t mask);
+
+ void vpextrb(Register dst, XMMRegister src, uint8_t offset) {
+ vpextrb(Operand(dst), src, offset);
+ }
+ void vpextrb(Operand dst, XMMRegister src, uint8_t offset);
+ void vpextrw(Register dst, XMMRegister src, uint8_t offset) {
+ vpextrw(Operand(dst), src, offset);
+ }
+ void vpextrw(Operand dst, XMMRegister src, uint8_t offset);
+ void vpextrd(Register dst, XMMRegister src, uint8_t offset) {
+ vpextrd(Operand(dst), src, offset);
+ }
+ void vpextrd(Operand dst, XMMRegister src, uint8_t offset);
+
+ void vinsertps(XMMRegister dst, XMMRegister src1, XMMRegister src2,
+ uint8_t offset) {
+ vinsertps(dst, src1, Operand(src2), offset);
+ }
+ void vinsertps(XMMRegister dst, XMMRegister src1, Operand src2,
+ uint8_t offset);
+ void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2,
+ uint8_t offset) {
+ vpinsrb(dst, src1, Operand(src2), offset);
+ }
+ void vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t offset);
+ void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2,
+ uint8_t offset) {
+ vpinsrw(dst, src1, Operand(src2), offset);
+ }
+ void vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t offset);
+ void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2,
+ uint8_t offset) {
+ vpinsrd(dst, src1, Operand(src2), offset);
+ }
+ void vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t offset);
+
+ void vcvtdq2ps(XMMRegister dst, XMMRegister src) {
+ vcvtdq2ps(dst, Operand(src));
+ }
+ void vcvtdq2ps(XMMRegister dst, Operand src) {
+ vinstr(0x5B, dst, xmm0, src, kNone, k0F, kWIG);
+ }
+ void vcvttps2dq(XMMRegister dst, XMMRegister src) {
+ vcvttps2dq(dst, Operand(src));
+ }
+ void vcvttps2dq(XMMRegister dst, Operand src) {
+ vinstr(0x5B, dst, xmm0, src, kF3, k0F, kWIG);
+ }
+
+ void vmovdqu(XMMRegister dst, Operand src) {
+ vinstr(0x6F, dst, xmm0, src, kF3, k0F, kWIG);
+ }
+ void vmovdqu(Operand dst, XMMRegister src) {
+ vinstr(0x7F, src, xmm0, dst, kF3, k0F, kWIG);
+ }
+ void vmovd(XMMRegister dst, Register src) { vmovd(dst, Operand(src)); }
+ void vmovd(XMMRegister dst, Operand src) {
+ vinstr(0x6E, dst, xmm0, src, k66, k0F, kWIG);
+ }
+ void vmovd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
+ void vmovd(Operand dst, XMMRegister src) {
+ vinstr(0x7E, src, xmm0, dst, k66, k0F, kWIG);
+ }
+
+ // BMI instruction
+ void andn(Register dst, Register src1, Register src2) {
+ andn(dst, src1, Operand(src2));
+ }
+ void andn(Register dst, Register src1, Operand src2) {
+ bmi1(0xf2, dst, src1, src2);
+ }
+ void bextr(Register dst, Register src1, Register src2) {
+ bextr(dst, Operand(src1), src2);
+ }
+ void bextr(Register dst, Operand src1, Register src2) {
+ bmi1(0xf7, dst, src2, src1);
+ }
+ void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
+ void blsi(Register dst, Operand src) { bmi1(0xf3, ebx, dst, src); }
+ void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
+ void blsmsk(Register dst, Operand src) { bmi1(0xf3, edx, dst, src); }
+ void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
+ void blsr(Register dst, Operand src) { bmi1(0xf3, ecx, dst, src); }
+ void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
+ void tzcnt(Register dst, Operand src);
+
+ void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
+ void lzcnt(Register dst, Operand src);
+
+ void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
+ void popcnt(Register dst, Operand src);
+
+ void bzhi(Register dst, Register src1, Register src2) {
+ bzhi(dst, Operand(src1), src2);
+ }
+ void bzhi(Register dst, Operand src1, Register src2) {
+ bmi2(kNone, 0xf5, dst, src2, src1);
+ }
+ void mulx(Register dst1, Register dst2, Register src) {
+ mulx(dst1, dst2, Operand(src));
+ }
+ void mulx(Register dst1, Register dst2, Operand src) {
+ bmi2(kF2, 0xf6, dst1, dst2, src);
+ }
+ void pdep(Register dst, Register src1, Register src2) {
+ pdep(dst, src1, Operand(src2));
+ }
+ void pdep(Register dst, Register src1, Operand src2) {
+ bmi2(kF2, 0xf5, dst, src1, src2);
+ }
+ void pext(Register dst, Register src1, Register src2) {
+ pext(dst, src1, Operand(src2));
+ }
+ void pext(Register dst, Register src1, Operand src2) {
+ bmi2(kF3, 0xf5, dst, src1, src2);
+ }
+ void sarx(Register dst, Register src1, Register src2) {
+ sarx(dst, Operand(src1), src2);
+ }
+ void sarx(Register dst, Operand src1, Register src2) {
+ bmi2(kF3, 0xf7, dst, src2, src1);
+ }
+ void shlx(Register dst, Register src1, Register src2) {
+ shlx(dst, Operand(src1), src2);
+ }
+ void shlx(Register dst, Operand src1, Register src2) {
+ bmi2(k66, 0xf7, dst, src2, src1);
+ }
+ void shrx(Register dst, Register src1, Register src2) {
+ shrx(dst, Operand(src1), src2);
+ }
+ void shrx(Register dst, Operand src1, Register src2) {
+ bmi2(kF2, 0xf7, dst, src2, src1);
+ }
+ void rorx(Register dst, Register src, byte imm8) {
+ rorx(dst, Operand(src), imm8);
+ }
+ void rorx(Register dst, Operand src, byte imm8);
+
+#define PACKED_OP_LIST(V) \
+ V(and, 0x54) \
+ V(andn, 0x55) \
+ V(or, 0x56) \
+ V(xor, 0x57) \
+ V(add, 0x58) \
+ V(mul, 0x59) \
+ V(sub, 0x5c) \
+ V(min, 0x5d) \
+ V(div, 0x5e) \
+ V(max, 0x5f)
+
+#define AVX_PACKED_OP_DECLARE(name, opcode) \
+ void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
+ vps(opcode, dst, src1, Operand(src2)); \
+ } \
+ void v##name##ps(XMMRegister dst, XMMRegister src1, Operand src2) { \
+ vps(opcode, dst, src1, src2); \
+ } \
+ void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
+ vpd(opcode, dst, src1, Operand(src2)); \
+ } \
+ void v##name##pd(XMMRegister dst, XMMRegister src1, Operand src2) { \
+ vpd(opcode, dst, src1, src2); \
+ }
+
+ PACKED_OP_LIST(AVX_PACKED_OP_DECLARE)
+ void vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
+ void vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
+
+ void vcmpps(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t cmp);
+#define AVX_CMP_P(instr, imm8) \
+ void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
+ vcmpps(dst, src1, Operand(src2), imm8); \
+ } \
+ void instr##ps(XMMRegister dst, XMMRegister src1, Operand src2) { \
+ vcmpps(dst, src1, src2, imm8); \
+ }
+
+ AVX_CMP_P(vcmpeq, 0x0)
+ AVX_CMP_P(vcmplt, 0x1)
+ AVX_CMP_P(vcmple, 0x2)
+ AVX_CMP_P(vcmpneq, 0x4)
+
+#undef AVX_CMP_P
+
+// Other SSE and AVX instructions
+#define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
+ void instruction(XMMRegister dst, XMMRegister src) { \
+ instruction(dst, Operand(src)); \
+ } \
+ void instruction(XMMRegister dst, Operand src) { \
+ sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode); \
+ }
+
+ SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
+#undef DECLARE_SSE2_INSTRUCTION
+
+#define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode) \
+ void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
+ v##instruction(dst, src1, Operand(src2)); \
+ } \
+ void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) { \
+ vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0); \
+ }
+
+ SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
+#undef DECLARE_SSE2_AVX_INSTRUCTION
+
+#define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2, \
+ opcode) \
+ void instruction(XMMRegister dst, XMMRegister src) { \
+ instruction(dst, Operand(src)); \
+ } \
+ void instruction(XMMRegister dst, Operand src) { \
+ ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
+ }
+
+ SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
+#undef DECLARE_SSSE3_INSTRUCTION
+
+#define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2, \
+ opcode) \
+ void instruction(XMMRegister dst, XMMRegister src) { \
+ instruction(dst, Operand(src)); \
+ } \
+ void instruction(XMMRegister dst, Operand src) { \
+ sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
+ }
+
+ SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
+ SSE4_RM_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
+#undef DECLARE_SSE4_INSTRUCTION
+
+#define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2, \
+ opcode) \
+ void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
+ v##instruction(dst, src1, Operand(src2)); \
+ } \
+ void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) { \
+ vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
+ }
+
+ SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
+ SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
+#undef DECLARE_SSE34_AVX_INSTRUCTION
+
+#define DECLARE_SSE4_AVX_RM_INSTRUCTION(instruction, prefix, escape1, escape2, \
+ opcode) \
+ void v##instruction(XMMRegister dst, XMMRegister src) { \
+ v##instruction(dst, Operand(src)); \
+ } \
+ void v##instruction(XMMRegister dst, Operand src) { \
+ vinstr(0x##opcode, dst, xmm0, src, k##prefix, k##escape1##escape2, kW0); \
+ }
+
+ SSE4_RM_INSTRUCTION_LIST(DECLARE_SSE4_AVX_RM_INSTRUCTION)
+#undef DECLARE_SSE4_AVX_RM_INSTRUCTION
+
+ // Prefetch src position into cache level.
+ // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
+ // non-temporal
+ void prefetch(Operand src, int level);
+ // TODO(lrn): Need SFENCE for movnt?
+
+ // Check the code size generated from label to here.
+ int SizeOfCodeGeneratedSince(Label* label) {
+ return pc_offset() - label->pos();
+ }
+
+ // Record a deoptimization reason that can be used by a log or cpu profiler.
+ // Use --trace-deopt to enable.
+ void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
+ int id);
+
+ // Writes a single byte or word of data in the code stream. Used for
+ // inline tables, e.g., jump-tables.
+ void db(uint8_t data);
+ void dd(uint32_t data);
+ void dq(uint64_t data);
+ void dp(uintptr_t data) { dd(data); }
+ void dd(Label* label);
+
+ // Check if there is less than kGap bytes available in the buffer.
+ // If this is the case, we need to grow the buffer before emitting
+ // an instruction or relocation information.
+ inline bool buffer_overflow() const {
+ return pc_ >= reloc_info_writer.pos() - kGap;
+ }
+
+ // Get the number of bytes available in the buffer.
+ inline int available_space() const { return reloc_info_writer.pos() - pc_; }
+
+ static bool IsNop(Address addr);
+
+ int relocation_writer_size() {
+ return (buffer_start_ + buffer_->size()) - reloc_info_writer.pos();
+ }
+
+ // Avoid overflows for displacements etc.
+ static constexpr int kMaximalBufferSize = 512 * MB;
+
+ byte byte_at(int pos) { return buffer_start_[pos]; }
+ void set_byte_at(int pos, byte value) { buffer_start_[pos] = value; }
+
+ protected:
+ void emit_sse_operand(XMMRegister reg, Operand adr);
+ void emit_sse_operand(XMMRegister dst, XMMRegister src);
+ void emit_sse_operand(Register dst, XMMRegister src);
+ void emit_sse_operand(XMMRegister dst, Register src);
+
+ Address addr_at(int pos) {
+ return reinterpret_cast<Address>(buffer_start_ + pos);
+ }
+
+ private:
+ uint32_t long_at(int pos) {
+ return ReadUnalignedValue<uint32_t>(addr_at(pos));
+ }
+ void long_at_put(int pos, uint32_t x) {
+ WriteUnalignedValue(addr_at(pos), x);
+ }
+
+ // code emission
+ void GrowBuffer();
+ inline void emit(uint32_t x);
+ inline void emit(Handle<HeapObject> handle);
+ inline void emit(uint32_t x, RelocInfo::Mode rmode);
+ inline void emit(Handle<Code> code, RelocInfo::Mode rmode);
+ inline void emit(const Immediate& x);
+ inline void emit_b(Immediate x);
+ inline void emit_w(const Immediate& x);
+ inline void emit_q(uint64_t x);
+
+ // Emit the code-object-relative offset of the label's position
+ inline void emit_code_relative_offset(Label* label);
+
+ // instruction generation
+ void emit_arith_b(int op1, int op2, Register dst, int imm8);
+
+ // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
+ // with a given destination expression and an immediate operand. It attempts
+ // to use the shortest encoding possible.
+ // sel specifies the /n in the modrm byte (see the Intel PRM).
+ void emit_arith(int sel, Operand dst, const Immediate& x);
+
+ void emit_operand(int code, Operand adr);
+ void emit_operand(Register reg, Operand adr);
+ void emit_operand(XMMRegister reg, Operand adr);
+
+ void emit_label(Label* label);
+
+ void emit_farith(int b1, int b2, int i);
+
+ // Emit vex prefix
+ enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
+ enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
+ enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
+ enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
+ inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
+ LeadingOpcode m, VexW w);
+ inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
+ LeadingOpcode m, VexW w);
+
+ // labels
+ void print(const Label* L);
+ void bind_to(Label* L, int pos);
+
+ // displacements
+ inline Displacement disp_at(Label* L);
+ inline void disp_at_put(Label* L, Displacement disp);
+ inline void emit_disp(Label* L, Displacement::Type type);
+ inline void emit_near_disp(Label* L);
+
+ void sse2_instr(XMMRegister dst, Operand src, byte prefix, byte escape,
+ byte opcode);
+ void ssse3_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
+ byte escape2, byte opcode);
+ void sse4_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
+ byte escape2, byte opcode);
+ void vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
+ SIMDPrefix pp, LeadingOpcode m, VexW w);
+ // Most BMI instructions are similar.
+ void bmi1(byte op, Register reg, Register vreg, Operand rm);
+ void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
+
+ // record reloc info for current pc_
+ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
+
+ // record the position of jmp/jcc instruction
+ void record_farjmp_position(Label* L, int pos);
+
+ bool is_optimizable_farjmp(int idx);
+
+ void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
+
+ int WriteCodeComments();
+
+ friend class EnsureSpace;
+
+ // Internal reference positions, required for (potential) patching in
+ // GrowBuffer(); contains only those internal references whose labels
+ // are already bound.
+ std::deque<int> internal_reference_positions_;
+
+ // code generation
+ RelocInfoWriter reloc_info_writer;
+
+ // Variables for this instance of assembler
+ int farjmp_num_ = 0;
+ std::deque<int> farjmp_positions_;
+ std::map<Label*, std::vector<int>> label_farjmp_maps_;
+};
+
+// Helper class that ensures that there is enough space for generating
+// instructions and relocation information. The constructor makes
+// sure that there is enough space and (in debug mode) the destructor
+// checks that we did not generate too much.
+class EnsureSpace {
+ public:
+ explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
+ if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
+#ifdef DEBUG
+ space_before_ = assembler_->available_space();
+#endif
+ }
+
+#ifdef DEBUG
+ ~EnsureSpace() {
+ int bytes_generated = space_before_ - assembler_->available_space();
+ DCHECK(bytes_generated < assembler_->kGap);
+ }
+#endif
+
+ private:
+ Assembler* assembler_;
+#ifdef DEBUG
+ int space_before_;
+#endif
+};
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_CODEGEN_IA32_ASSEMBLER_IA32_H_