aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/arm64/assembler-arm64-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/codegen/arm64/assembler-arm64-inl.h')
-rw-r--r--deps/v8/src/codegen/arm64/assembler-arm64-inl.h1036
1 files changed, 1036 insertions, 0 deletions
diff --git a/deps/v8/src/codegen/arm64/assembler-arm64-inl.h b/deps/v8/src/codegen/arm64/assembler-arm64-inl.h
new file mode 100644
index 0000000000..5680d8b054
--- /dev/null
+++ b/deps/v8/src/codegen/arm64/assembler-arm64-inl.h
@@ -0,0 +1,1036 @@
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_CODEGEN_ARM64_ASSEMBLER_ARM64_INL_H_
+#define V8_CODEGEN_ARM64_ASSEMBLER_ARM64_INL_H_
+
+#include "src/codegen/arm64/assembler-arm64.h"
+#include "src/codegen/assembler.h"
+#include "src/debug/debug.h"
+#include "src/objects/objects-inl.h"
+#include "src/objects/smi.h"
+
+namespace v8 {
+namespace internal {
+
+bool CpuFeatures::SupportsOptimizer() { return true; }
+
+bool CpuFeatures::SupportsWasmSimd128() { return true; }
+
+void RelocInfo::apply(intptr_t delta) {
+ // On arm64 only internal references and immediate branches need extra work.
+ if (RelocInfo::IsInternalReference(rmode_)) {
+ // Absolute code pointer inside code object moves with the code object.
+ intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
+ *p += delta; // Relocate entry.
+ } else {
+ Instruction* instr = reinterpret_cast<Instruction*>(pc_);
+ if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) {
+ Address old_target =
+ reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
+ Address new_target = old_target - delta;
+ instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(new_target));
+ }
+ }
+}
+
+inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
+ return (reg_size_ == other.reg_size_) && (reg_type_ == other.reg_type_);
+}
+
+inline bool CPURegister::IsZero() const {
+ DCHECK(IsValid());
+ return IsRegister() && (reg_code_ == kZeroRegCode);
+}
+
+inline bool CPURegister::IsSP() const {
+ DCHECK(IsValid());
+ return IsRegister() && (reg_code_ == kSPRegInternalCode);
+}
+
+inline void CPURegList::Combine(const CPURegList& other) {
+ DCHECK(IsValid());
+ DCHECK(other.type() == type_);
+ DCHECK(other.RegisterSizeInBits() == size_);
+ list_ |= other.list();
+}
+
+inline void CPURegList::Remove(const CPURegList& other) {
+ DCHECK(IsValid());
+ if (other.type() == type_) {
+ list_ &= ~other.list();
+ }
+}
+
+inline void CPURegList::Combine(const CPURegister& other) {
+ DCHECK(other.type() == type_);
+ DCHECK(other.SizeInBits() == size_);
+ Combine(other.code());
+}
+
+inline void CPURegList::Remove(const CPURegister& other1,
+ const CPURegister& other2,
+ const CPURegister& other3,
+ const CPURegister& other4) {
+ if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
+ if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
+ if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
+ if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
+}
+
+inline void CPURegList::Combine(int code) {
+ DCHECK(IsValid());
+ DCHECK(CPURegister::Create(code, size_, type_).IsValid());
+ list_ |= (1ULL << code);
+}
+
+inline void CPURegList::Remove(int code) {
+ DCHECK(IsValid());
+ DCHECK(CPURegister::Create(code, size_, type_).IsValid());
+ list_ &= ~(1ULL << code);
+}
+
+inline Register Register::XRegFromCode(unsigned code) {
+ if (code == kSPRegInternalCode) {
+ return sp;
+ } else {
+ DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
+ return Register::Create(code, kXRegSizeInBits);
+ }
+}
+
+inline Register Register::WRegFromCode(unsigned code) {
+ if (code == kSPRegInternalCode) {
+ return wsp;
+ } else {
+ DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
+ return Register::Create(code, kWRegSizeInBits);
+ }
+}
+
+inline VRegister VRegister::BRegFromCode(unsigned code) {
+ DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
+ return VRegister::Create(code, kBRegSizeInBits);
+}
+
+inline VRegister VRegister::HRegFromCode(unsigned code) {
+ DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
+ return VRegister::Create(code, kHRegSizeInBits);
+}
+
+inline VRegister VRegister::SRegFromCode(unsigned code) {
+ DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
+ return VRegister::Create(code, kSRegSizeInBits);
+}
+
+inline VRegister VRegister::DRegFromCode(unsigned code) {
+ DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
+ return VRegister::Create(code, kDRegSizeInBits);
+}
+
+inline VRegister VRegister::QRegFromCode(unsigned code) {
+ DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
+ return VRegister::Create(code, kQRegSizeInBits);
+}
+
+inline VRegister VRegister::VRegFromCode(unsigned code) {
+ DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
+ return VRegister::Create(code, kVRegSizeInBits);
+}
+
+inline Register CPURegister::W() const {
+ DCHECK(IsRegister());
+ return Register::WRegFromCode(reg_code_);
+}
+
+inline Register CPURegister::Reg() const {
+ DCHECK(IsRegister());
+ return Register::Create(reg_code_, reg_size_);
+}
+
+inline VRegister CPURegister::VReg() const {
+ DCHECK(IsVRegister());
+ return VRegister::Create(reg_code_, reg_size_);
+}
+
+inline Register CPURegister::X() const {
+ DCHECK(IsRegister());
+ return Register::XRegFromCode(reg_code_);
+}
+
+inline VRegister CPURegister::V() const {
+ DCHECK(IsVRegister());
+ return VRegister::VRegFromCode(reg_code_);
+}
+
+inline VRegister CPURegister::B() const {
+ DCHECK(IsVRegister());
+ return VRegister::BRegFromCode(reg_code_);
+}
+
+inline VRegister CPURegister::H() const {
+ DCHECK(IsVRegister());
+ return VRegister::HRegFromCode(reg_code_);
+}
+
+inline VRegister CPURegister::S() const {
+ DCHECK(IsVRegister());
+ return VRegister::SRegFromCode(reg_code_);
+}
+
+inline VRegister CPURegister::D() const {
+ DCHECK(IsVRegister());
+ return VRegister::DRegFromCode(reg_code_);
+}
+
+inline VRegister CPURegister::Q() const {
+ DCHECK(IsVRegister());
+ return VRegister::QRegFromCode(reg_code_);
+}
+
+// Immediate.
+// Default initializer is for int types
+template <typename T>
+struct ImmediateInitializer {
+ static const bool kIsIntType = true;
+ static inline RelocInfo::Mode rmode_for(T) { return RelocInfo::NONE; }
+ static inline int64_t immediate_for(T t) {
+ STATIC_ASSERT(sizeof(T) <= 8);
+ return t;
+ }
+};
+
+template <>
+struct ImmediateInitializer<Smi> {
+ static const bool kIsIntType = false;
+ static inline RelocInfo::Mode rmode_for(Smi t) { return RelocInfo::NONE; }
+ static inline int64_t immediate_for(Smi t) {
+ return static_cast<int64_t>(t.ptr());
+ }
+};
+
+template <>
+struct ImmediateInitializer<ExternalReference> {
+ static const bool kIsIntType = false;
+ static inline RelocInfo::Mode rmode_for(ExternalReference t) {
+ return RelocInfo::EXTERNAL_REFERENCE;
+ }
+ static inline int64_t immediate_for(ExternalReference t) {
+ return static_cast<int64_t>(t.address());
+ }
+};
+
+template <typename T>
+Immediate::Immediate(Handle<T> value) {
+ InitializeHandle(value);
+}
+
+template <typename T>
+Immediate::Immediate(T t)
+ : value_(ImmediateInitializer<T>::immediate_for(t)),
+ rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
+
+template <typename T>
+Immediate::Immediate(T t, RelocInfo::Mode rmode)
+ : value_(ImmediateInitializer<T>::immediate_for(t)), rmode_(rmode) {
+ STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
+}
+
+// Operand.
+template <typename T>
+Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
+
+template <typename T>
+Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
+
+template <typename T>
+Operand::Operand(T t, RelocInfo::Mode rmode)
+ : immediate_(t, rmode), reg_(NoReg) {}
+
+Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
+ : immediate_(0),
+ reg_(reg),
+ shift_(shift),
+ extend_(NO_EXTEND),
+ shift_amount_(shift_amount) {
+ DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
+ DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
+ DCHECK_IMPLIES(reg.IsSP(), shift_amount == 0);
+}
+
+Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
+ : immediate_(0),
+ reg_(reg),
+ shift_(NO_SHIFT),
+ extend_(extend),
+ shift_amount_(shift_amount) {
+ DCHECK(reg.IsValid());
+ DCHECK_LE(shift_amount, 4);
+ DCHECK(!reg.IsSP());
+
+ // Extend modes SXTX and UXTX require a 64-bit register.
+ DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
+}
+
+bool Operand::IsHeapObjectRequest() const {
+ DCHECK_IMPLIES(heap_object_request_.has_value(), reg_.Is(NoReg));
+ DCHECK_IMPLIES(heap_object_request_.has_value(),
+ immediate_.rmode() == RelocInfo::FULL_EMBEDDED_OBJECT ||
+ immediate_.rmode() == RelocInfo::CODE_TARGET);
+ return heap_object_request_.has_value();
+}
+
+HeapObjectRequest Operand::heap_object_request() const {
+ DCHECK(IsHeapObjectRequest());
+ return *heap_object_request_;
+}
+
+bool Operand::IsImmediate() const {
+ return reg_.Is(NoReg) && !IsHeapObjectRequest();
+}
+
+bool Operand::IsShiftedRegister() const {
+ return reg_.IsValid() && (shift_ != NO_SHIFT);
+}
+
+bool Operand::IsExtendedRegister() const {
+ return reg_.IsValid() && (extend_ != NO_EXTEND);
+}
+
+bool Operand::IsZero() const {
+ if (IsImmediate()) {
+ return ImmediateValue() == 0;
+ } else {
+ return reg().IsZero();
+ }
+}
+
+Operand Operand::ToExtendedRegister() const {
+ DCHECK(IsShiftedRegister());
+ DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
+ return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
+}
+
+Immediate Operand::immediate_for_heap_object_request() const {
+ DCHECK((heap_object_request().kind() == HeapObjectRequest::kHeapNumber &&
+ immediate_.rmode() == RelocInfo::FULL_EMBEDDED_OBJECT) ||
+ (heap_object_request().kind() == HeapObjectRequest::kStringConstant &&
+ immediate_.rmode() == RelocInfo::FULL_EMBEDDED_OBJECT));
+ return immediate_;
+}
+
+Immediate Operand::immediate() const {
+ DCHECK(IsImmediate());
+ return immediate_;
+}
+
+int64_t Operand::ImmediateValue() const {
+ DCHECK(IsImmediate());
+ return immediate_.value();
+}
+
+RelocInfo::Mode Operand::ImmediateRMode() const {
+ DCHECK(IsImmediate() || IsHeapObjectRequest());
+ return immediate_.rmode();
+}
+
+Register Operand::reg() const {
+ DCHECK(IsShiftedRegister() || IsExtendedRegister());
+ return reg_;
+}
+
+Shift Operand::shift() const {
+ DCHECK(IsShiftedRegister());
+ return shift_;
+}
+
+Extend Operand::extend() const {
+ DCHECK(IsExtendedRegister());
+ return extend_;
+}
+
+unsigned Operand::shift_amount() const {
+ DCHECK(IsShiftedRegister() || IsExtendedRegister());
+ return shift_amount_;
+}
+
+MemOperand::MemOperand()
+ : base_(NoReg),
+ regoffset_(NoReg),
+ offset_(0),
+ addrmode_(Offset),
+ shift_(NO_SHIFT),
+ extend_(NO_EXTEND),
+ shift_amount_(0) {}
+
+MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
+ : base_(base),
+ regoffset_(NoReg),
+ offset_(offset),
+ addrmode_(addrmode),
+ shift_(NO_SHIFT),
+ extend_(NO_EXTEND),
+ shift_amount_(0) {
+ DCHECK(base.Is64Bits() && !base.IsZero());
+}
+
+MemOperand::MemOperand(Register base, Register regoffset, Extend extend,
+ unsigned shift_amount)
+ : base_(base),
+ regoffset_(regoffset),
+ offset_(0),
+ addrmode_(Offset),
+ shift_(NO_SHIFT),
+ extend_(extend),
+ shift_amount_(shift_amount) {
+ DCHECK(base.Is64Bits() && !base.IsZero());
+ DCHECK(!regoffset.IsSP());
+ DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
+
+ // SXTX extend mode requires a 64-bit offset register.
+ DCHECK(regoffset.Is64Bits() || (extend != SXTX));
+}
+
+MemOperand::MemOperand(Register base, Register regoffset, Shift shift,
+ unsigned shift_amount)
+ : base_(base),
+ regoffset_(regoffset),
+ offset_(0),
+ addrmode_(Offset),
+ shift_(shift),
+ extend_(NO_EXTEND),
+ shift_amount_(shift_amount) {
+ DCHECK(base.Is64Bits() && !base.IsZero());
+ DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
+ DCHECK(shift == LSL);
+}
+
+MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
+ : base_(base), regoffset_(NoReg), addrmode_(addrmode) {
+ DCHECK(base.Is64Bits() && !base.IsZero());
+
+ if (offset.IsImmediate()) {
+ offset_ = offset.ImmediateValue();
+ } else if (offset.IsShiftedRegister()) {
+ DCHECK((addrmode == Offset) || (addrmode == PostIndex));
+
+ regoffset_ = offset.reg();
+ shift_ = offset.shift();
+ shift_amount_ = offset.shift_amount();
+
+ extend_ = NO_EXTEND;
+ offset_ = 0;
+
+ // These assertions match those in the shifted-register constructor.
+ DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
+ DCHECK(shift_ == LSL);
+ } else {
+ DCHECK(offset.IsExtendedRegister());
+ DCHECK(addrmode == Offset);
+
+ regoffset_ = offset.reg();
+ extend_ = offset.extend();
+ shift_amount_ = offset.shift_amount();
+
+ shift_ = NO_SHIFT;
+ offset_ = 0;
+
+ // These assertions match those in the extended-register constructor.
+ DCHECK(!regoffset_.IsSP());
+ DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
+ DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
+ }
+}
+
+bool MemOperand::IsImmediateOffset() const {
+ return (addrmode_ == Offset) && regoffset_.Is(NoReg);
+}
+
+bool MemOperand::IsRegisterOffset() const {
+ return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
+}
+
+bool MemOperand::IsPreIndex() const { return addrmode_ == PreIndex; }
+
+bool MemOperand::IsPostIndex() const { return addrmode_ == PostIndex; }
+
+Operand MemOperand::OffsetAsOperand() const {
+ if (IsImmediateOffset()) {
+ return offset();
+ } else {
+ DCHECK(IsRegisterOffset());
+ if (extend() == NO_EXTEND) {
+ return Operand(regoffset(), shift(), shift_amount());
+ } else {
+ return Operand(regoffset(), extend(), shift_amount());
+ }
+ }
+}
+
+void Assembler::Unreachable() {
+#ifdef USE_SIMULATOR
+ debug("UNREACHABLE", __LINE__, BREAK);
+#else
+ // Crash by branching to 0. lr now points near the fault.
+ Emit(BLR | Rn(xzr));
+#endif
+}
+
+Address Assembler::target_pointer_address_at(Address pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(pc);
+ DCHECK(instr->IsLdrLiteralX());
+ return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
+}
+
+// Read/Modify the code target address in the branch/call instruction at pc.
+Address Assembler::target_address_at(Address pc, Address constant_pool) {
+ Instruction* instr = reinterpret_cast<Instruction*>(pc);
+ if (instr->IsLdrLiteralX()) {
+ return Memory<Address>(target_pointer_address_at(pc));
+ } else {
+ DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
+ return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
+ }
+}
+
+Handle<Code> Assembler::code_target_object_handle_at(Address pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(pc);
+ if (instr->IsLdrLiteralX()) {
+ return Handle<Code>(reinterpret_cast<Address*>(
+ Assembler::target_address_at(pc, 0 /* unused */)));
+ } else {
+ DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
+ DCHECK_EQ(instr->ImmPCOffset() % kInstrSize, 0);
+ return GetCodeTarget(instr->ImmPCOffset() >> kInstrSizeLog2);
+ }
+}
+
+Handle<HeapObject> Assembler::compressed_embedded_object_handle_at(Address pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(pc);
+ CHECK(!instr->IsLdrLiteralX());
+ return GetCompressedEmbeddedObject(ReadUnalignedValue<int32_t>(pc));
+}
+
+Address Assembler::runtime_entry_at(Address pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(pc);
+ if (instr->IsLdrLiteralX()) {
+ return Assembler::target_address_at(pc, 0 /* unused */);
+ } else {
+ DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
+ return instr->ImmPCOffset() + options().code_range_start;
+ }
+}
+
+int Assembler::deserialization_special_target_size(Address location) {
+ Instruction* instr = reinterpret_cast<Instruction*>(location);
+ if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) {
+ return kSpecialTargetSize;
+ } else {
+ DCHECK_EQ(instr->InstructionBits(), 0);
+ return kSystemPointerSize;
+ }
+}
+
+void Assembler::deserialization_set_special_target_at(Address location,
+ Code code,
+ Address target) {
+ Instruction* instr = reinterpret_cast<Instruction*>(location);
+ if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) {
+ if (target == 0) {
+ // We are simply wiping the target out for serialization. Set the offset
+ // to zero instead.
+ target = location;
+ }
+ instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(target));
+ FlushInstructionCache(location, kInstrSize);
+ } else {
+ DCHECK_EQ(instr->InstructionBits(), 0);
+ Memory<Address>(location) = target;
+ // Intuitively, we would think it is necessary to always flush the
+ // instruction cache after patching a target address in the code. However,
+ // in this case, only the constant pool contents change. The instruction
+ // accessing the constant pool remains unchanged, so a flush is not
+ // required.
+ }
+}
+
+void Assembler::deserialization_set_target_internal_reference_at(
+ Address pc, Address target, RelocInfo::Mode mode) {
+ Memory<Address>(pc) = target;
+}
+
+void Assembler::set_target_address_at(Address pc, Address constant_pool,
+ Address target,
+ ICacheFlushMode icache_flush_mode) {
+ Instruction* instr = reinterpret_cast<Instruction*>(pc);
+ if (instr->IsLdrLiteralX()) {
+ Memory<Address>(target_pointer_address_at(pc)) = target;
+ // Intuitively, we would think it is necessary to always flush the
+ // instruction cache after patching a target address in the code. However,
+ // in this case, only the constant pool contents change. The instruction
+ // accessing the constant pool remains unchanged, so a flush is not
+ // required.
+ } else {
+ DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
+ if (target == 0) {
+ // We are simply wiping the target out for serialization. Set the offset
+ // to zero instead.
+ target = pc;
+ }
+ instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(target));
+ if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
+ FlushInstructionCache(pc, kInstrSize);
+ }
+ }
+}
+
+int RelocInfo::target_address_size() {
+ if (IsCodedSpecially()) {
+ return Assembler::kSpecialTargetSize;
+ } else {
+ DCHECK(reinterpret_cast<Instruction*>(pc_)->IsLdrLiteralX());
+ return kSystemPointerSize;
+ }
+}
+
+Address RelocInfo::target_address() {
+ DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
+ return Assembler::target_address_at(pc_, constant_pool_);
+}
+
+Address RelocInfo::target_address_address() {
+ DCHECK(HasTargetAddressAddress());
+ Instruction* instr = reinterpret_cast<Instruction*>(pc_);
+ // Read the address of the word containing the target_address in an
+ // instruction stream.
+ // The only architecture-independent user of this function is the serializer.
+ // The serializer uses it to find out how many raw bytes of instruction to
+ // output before the next target.
+ // For an instruction like B/BL, where the target bits are mixed into the
+ // instruction bits, the size of the target will be zero, indicating that the
+ // serializer should not step forward in memory after a target is resolved
+ // and written.
+ // For LDR literal instructions, we can skip up to the constant pool entry
+ // address. We make sure that RelocInfo is ordered by the
+ // target_address_address so that we do not skip over any relocatable
+ // instruction sequences.
+ if (instr->IsLdrLiteralX()) {
+ return constant_pool_entry_address();
+ } else {
+ DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
+ return pc_;
+ }
+}
+
+Address RelocInfo::constant_pool_entry_address() {
+ DCHECK(IsInConstantPool());
+ return Assembler::target_pointer_address_at(pc_);
+}
+
+HeapObject RelocInfo::target_object() {
+ DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
+ return HeapObject::cast(
+ Object(Assembler::target_address_at(pc_, constant_pool_)));
+}
+
+HeapObject RelocInfo::target_object_no_host(Isolate* isolate) {
+ return target_object();
+}
+
+Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
+ if (IsFullEmbeddedObject(rmode_)) {
+ return Handle<HeapObject>(reinterpret_cast<Address*>(
+ Assembler::target_address_at(pc_, constant_pool_)));
+ } else {
+ DCHECK(IsCodeTarget(rmode_));
+ return origin->code_target_object_handle_at(pc_);
+ }
+}
+
+void RelocInfo::set_target_object(Heap* heap, HeapObject target,
+ WriteBarrierMode write_barrier_mode,
+ ICacheFlushMode icache_flush_mode) {
+ DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
+ Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
+ icache_flush_mode);
+ if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null()) {
+ WriteBarrierForCode(host(), this, target);
+ }
+}
+
+Address RelocInfo::target_external_reference() {
+ DCHECK(rmode_ == EXTERNAL_REFERENCE);
+ return Assembler::target_address_at(pc_, constant_pool_);
+}
+
+void RelocInfo::set_target_external_reference(
+ Address target, ICacheFlushMode icache_flush_mode) {
+ DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
+ Assembler::set_target_address_at(pc_, constant_pool_, target,
+ icache_flush_mode);
+}
+
+Address RelocInfo::target_internal_reference() {
+ DCHECK(rmode_ == INTERNAL_REFERENCE);
+ return Memory<Address>(pc_);
+}
+
+Address RelocInfo::target_internal_reference_address() {
+ DCHECK(rmode_ == INTERNAL_REFERENCE);
+ return pc_;
+}
+
+Address RelocInfo::target_runtime_entry(Assembler* origin) {
+ DCHECK(IsRuntimeEntry(rmode_));
+ return origin->runtime_entry_at(pc_);
+}
+
+void RelocInfo::set_target_runtime_entry(Address target,
+ WriteBarrierMode write_barrier_mode,
+ ICacheFlushMode icache_flush_mode) {
+ DCHECK(IsRuntimeEntry(rmode_));
+ if (target_address() != target) {
+ set_target_address(target, write_barrier_mode, icache_flush_mode);
+ }
+}
+
+Address RelocInfo::target_off_heap_target() {
+ DCHECK(IsOffHeapTarget(rmode_));
+ return Assembler::target_address_at(pc_, constant_pool_);
+}
+
+void RelocInfo::WipeOut() {
+ DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
+ IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
+ IsInternalReference(rmode_) || IsOffHeapTarget(rmode_));
+ if (IsInternalReference(rmode_)) {
+ Memory<Address>(pc_) = kNullAddress;
+ } else {
+ Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
+ }
+}
+
+LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
+ DCHECK(rt.IsValid());
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDR_x : LDR_w;
+ } else {
+ DCHECK(rt.IsVRegister());
+ switch (rt.SizeInBits()) {
+ case kBRegSizeInBits:
+ return LDR_b;
+ case kHRegSizeInBits:
+ return LDR_h;
+ case kSRegSizeInBits:
+ return LDR_s;
+ case kDRegSizeInBits:
+ return LDR_d;
+ default:
+ DCHECK(rt.IsQ());
+ return LDR_q;
+ }
+ }
+}
+
+LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
+ DCHECK(rt.IsValid());
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STR_x : STR_w;
+ } else {
+ DCHECK(rt.IsVRegister());
+ switch (rt.SizeInBits()) {
+ case kBRegSizeInBits:
+ return STR_b;
+ case kHRegSizeInBits:
+ return STR_h;
+ case kSRegSizeInBits:
+ return STR_s;
+ case kDRegSizeInBits:
+ return STR_d;
+ default:
+ DCHECK(rt.IsQ());
+ return STR_q;
+ }
+ }
+}
+
+LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2) {
+ DCHECK_EQ(STP_w | LoadStorePairLBit, LDP_w);
+ return static_cast<LoadStorePairOp>(StorePairOpFor(rt, rt2) |
+ LoadStorePairLBit);
+}
+
+LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2) {
+ DCHECK(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STP_x : STP_w;
+ } else {
+ DCHECK(rt.IsVRegister());
+ switch (rt.SizeInBits()) {
+ case kSRegSizeInBits:
+ return STP_s;
+ case kDRegSizeInBits:
+ return STP_d;
+ default:
+ DCHECK(rt.IsQ());
+ return STP_q;
+ }
+ }
+}
+
+LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
+ } else {
+ DCHECK(rt.IsVRegister());
+ return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
+ }
+}
+
+int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
+ DCHECK_EQ(kStartOfLabelLinkChain, 0);
+ int offset = LinkAndGetByteOffsetTo(label);
+ DCHECK(IsAligned(offset, kInstrSize));
+ return offset >> kInstrSizeLog2;
+}
+
+Instr Assembler::Flags(FlagsUpdate S) {
+ if (S == SetFlags) {
+ return 1 << FlagsUpdate_offset;
+ } else if (S == LeaveFlags) {
+ return 0 << FlagsUpdate_offset;
+ }
+ UNREACHABLE();
+}
+
+Instr Assembler::Cond(Condition cond) { return cond << Condition_offset; }
+
+Instr Assembler::ImmPCRelAddress(int imm21) {
+ CHECK(is_int21(imm21));
+ Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
+ Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
+ Instr immlo = imm << ImmPCRelLo_offset;
+ return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
+}
+
+Instr Assembler::ImmUncondBranch(int imm26) {
+ CHECK(is_int26(imm26));
+ return truncate_to_int26(imm26) << ImmUncondBranch_offset;
+}
+
+Instr Assembler::ImmCondBranch(int imm19) {
+ CHECK(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCondBranch_offset;
+}
+
+Instr Assembler::ImmCmpBranch(int imm19) {
+ CHECK(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCmpBranch_offset;
+}
+
+Instr Assembler::ImmTestBranch(int imm14) {
+ CHECK(is_int14(imm14));
+ return truncate_to_int14(imm14) << ImmTestBranch_offset;
+}
+
+Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
+ DCHECK(is_uint6(bit_pos));
+ // Subtract five from the shift offset, as we need bit 5 from bit_pos.
+ unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
+ unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
+ b5 &= ImmTestBranchBit5_mask;
+ b40 &= ImmTestBranchBit40_mask;
+ return b5 | b40;
+}
+
+Instr Assembler::SF(Register rd) {
+ return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
+}
+
+Instr Assembler::ImmAddSub(int imm) {
+ DCHECK(IsImmAddSub(imm));
+ if (is_uint12(imm)) { // No shift required.
+ imm <<= ImmAddSub_offset;
+ } else {
+ imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
+ }
+ return imm;
+}
+
+Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
+ DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
+ ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
+ USE(reg_size);
+ return imms << ImmS_offset;
+}
+
+Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
+ DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
+ ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
+ USE(reg_size);
+ DCHECK(is_uint6(immr));
+ return immr << ImmR_offset;
+}
+
+Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
+ DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
+ DCHECK(is_uint6(imms));
+ DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
+ USE(reg_size);
+ return imms << ImmSetBits_offset;
+}
+
+Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
+ DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
+ DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
+ ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
+ USE(reg_size);
+ return immr << ImmRotate_offset;
+}
+
+Instr Assembler::ImmLLiteral(int imm19) {
+ CHECK(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmLLiteral_offset;
+}
+
+Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
+ DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
+ DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
+ USE(reg_size);
+ return bitn << BitN_offset;
+}
+
+Instr Assembler::ShiftDP(Shift shift) {
+ DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+ return shift << ShiftDP_offset;
+}
+
+Instr Assembler::ImmDPShift(unsigned amount) {
+ DCHECK(is_uint6(amount));
+ return amount << ImmDPShift_offset;
+}
+
+Instr Assembler::ExtendMode(Extend extend) {
+ return extend << ExtendMode_offset;
+}
+
+Instr Assembler::ImmExtendShift(unsigned left_shift) {
+ DCHECK_LE(left_shift, 4);
+ return left_shift << ImmExtendShift_offset;
+}
+
+Instr Assembler::ImmCondCmp(unsigned imm) {
+ DCHECK(is_uint5(imm));
+ return imm << ImmCondCmp_offset;
+}
+
+Instr Assembler::Nzcv(StatusFlags nzcv) {
+ return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
+}
+
+Instr Assembler::ImmLSUnsigned(int imm12) {
+ DCHECK(is_uint12(imm12));
+ return imm12 << ImmLSUnsigned_offset;
+}
+
+Instr Assembler::ImmLS(int imm9) {
+ DCHECK(is_int9(imm9));
+ return truncate_to_int9(imm9) << ImmLS_offset;
+}
+
+Instr Assembler::ImmLSPair(int imm7, unsigned size) {
+ DCHECK_EQ((imm7 >> size) << size, imm7);
+ int scaled_imm7 = imm7 >> size;
+ DCHECK(is_int7(scaled_imm7));
+ return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
+}
+
+Instr Assembler::ImmShiftLS(unsigned shift_amount) {
+ DCHECK(is_uint1(shift_amount));
+ return shift_amount << ImmShiftLS_offset;
+}
+
+Instr Assembler::ImmException(int imm16) {
+ DCHECK(is_uint16(imm16));
+ return imm16 << ImmException_offset;
+}
+
+Instr Assembler::ImmSystemRegister(int imm15) {
+ DCHECK(is_uint15(imm15));
+ return imm15 << ImmSystemRegister_offset;
+}
+
+Instr Assembler::ImmHint(int imm7) {
+ DCHECK(is_uint7(imm7));
+ return imm7 << ImmHint_offset;
+}
+
+Instr Assembler::ImmBarrierDomain(int imm2) {
+ DCHECK(is_uint2(imm2));
+ return imm2 << ImmBarrierDomain_offset;
+}
+
+Instr Assembler::ImmBarrierType(int imm2) {
+ DCHECK(is_uint2(imm2));
+ return imm2 << ImmBarrierType_offset;
+}
+
+unsigned Assembler::CalcLSDataSize(LoadStoreOp op) {
+ DCHECK((LSSize_offset + LSSize_width) == (kInstrSize * 8));
+ unsigned size = static_cast<Instr>(op >> LSSize_offset);
+ if ((op & LSVector_mask) != 0) {
+ // Vector register memory operations encode the access size in the "size"
+ // and "opc" fields.
+ if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
+ size = kQRegSizeLog2;
+ }
+ }
+ return size;
+}
+
+Instr Assembler::ImmMoveWide(int imm) {
+ DCHECK(is_uint16(imm));
+ return imm << ImmMoveWide_offset;
+}
+
+Instr Assembler::ShiftMoveWide(int shift) {
+ DCHECK(is_uint2(shift));
+ return shift << ShiftMoveWide_offset;
+}
+
+Instr Assembler::FPType(VRegister fd) { return fd.Is64Bits() ? FP64 : FP32; }
+
+Instr Assembler::FPScale(unsigned scale) {
+ DCHECK(is_uint6(scale));
+ return scale << FPScale_offset;
+}
+
+const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
+ return reg.Is64Bits() ? xzr : wzr;
+}
+
+inline void Assembler::CheckBufferSpace() {
+ DCHECK_LT(pc_, buffer_start_ + buffer_->size());
+ if (buffer_space() < kGap) {
+ GrowBuffer();
+ }
+}
+
+inline void Assembler::CheckBuffer() {
+ CheckBufferSpace();
+ if (pc_offset() >= next_veneer_pool_check_) {
+ CheckVeneerPool(false, true);
+ }
+ if (pc_offset() >= next_constant_pool_check_) {
+ CheckConstPool(false, true);
+ }
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_CODEGEN_ARM64_ASSEMBLER_ARM64_INL_H_