summaryrefslogtreecommitdiff
path: root/deps/v8/src/builtins/builtins-math.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/builtins/builtins-math.cc')
-rw-r--r--deps/v8/src/builtins/builtins-math.cc515
1 files changed, 232 insertions, 283 deletions
diff --git a/deps/v8/src/builtins/builtins-math.cc b/deps/v8/src/builtins/builtins-math.cc
index 30f12ba12c..1305e73db0 100644
--- a/deps/v8/src/builtins/builtins-math.cc
+++ b/deps/v8/src/builtins/builtins-math.cc
@@ -2,10 +2,10 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
-#include "src/builtins/builtins.h"
#include "src/builtins/builtins-utils.h"
-
+#include "src/builtins/builtins.h"
#include "src/code-factory.h"
+#include "src/code-stub-assembler.h"
namespace v8 {
namespace internal {
@@ -13,332 +13,300 @@ namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 20.2.2 Function Properties of the Math Object
-// ES6 section - 20.2.2.1 Math.abs ( x )
-void Builtins::Generate_MathAbs(CodeStubAssembler* assembler) {
- typedef CodeStubAssembler::Label Label;
- typedef compiler::Node Node;
- typedef CodeStubAssembler::Variable Variable;
+class MathBuiltinsAssembler : public CodeStubAssembler {
+ public:
+ explicit MathBuiltinsAssembler(compiler::CodeAssemblerState* state)
+ : CodeStubAssembler(state) {}
- Node* context = assembler->Parameter(4);
+ protected:
+ void MathRoundingOperation(Node* (CodeStubAssembler::*float64op)(Node*));
+ void MathUnaryOperation(Node* (CodeStubAssembler::*float64op)(Node*));
+};
+
+// ES6 section - 20.2.2.1 Math.abs ( x )
+TF_BUILTIN(MathAbs, CodeStubAssembler) {
+ Node* context = Parameter(4);
// We might need to loop once for ToNumber conversion.
- Variable var_x(assembler, MachineRepresentation::kTagged);
- Label loop(assembler, &var_x);
- var_x.Bind(assembler->Parameter(1));
- assembler->Goto(&loop);
- assembler->Bind(&loop);
+ Variable var_x(this, MachineRepresentation::kTagged);
+ Label loop(this, &var_x);
+ var_x.Bind(Parameter(1));
+ Goto(&loop);
+ Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
- Label if_xissmi(assembler), if_xisnotsmi(assembler);
- assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
+ Label if_xissmi(this), if_xisnotsmi(this);
+ Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
- assembler->Bind(&if_xissmi);
+ Bind(&if_xissmi);
{
// Check if {x} is already positive.
- Label if_xispositive(assembler), if_xisnotpositive(assembler);
- assembler->BranchIfSmiLessThanOrEqual(
- assembler->SmiConstant(Smi::FromInt(0)), x, &if_xispositive,
- &if_xisnotpositive);
+ Label if_xispositive(this), if_xisnotpositive(this);
+ BranchIfSmiLessThanOrEqual(SmiConstant(Smi::FromInt(0)), x,
+ &if_xispositive, &if_xisnotpositive);
- assembler->Bind(&if_xispositive);
+ Bind(&if_xispositive);
{
// Just return the input {x}.
- assembler->Return(x);
+ Return(x);
}
- assembler->Bind(&if_xisnotpositive);
+ Bind(&if_xisnotpositive);
{
// Try to negate the {x} value.
- Node* pair = assembler->IntPtrSubWithOverflow(
- assembler->IntPtrConstant(0), assembler->BitcastTaggedToWord(x));
- Node* overflow = assembler->Projection(1, pair);
- Label if_overflow(assembler, Label::kDeferred),
- if_notoverflow(assembler);
- assembler->Branch(overflow, &if_overflow, &if_notoverflow);
-
- assembler->Bind(&if_notoverflow);
+ Node* pair =
+ IntPtrSubWithOverflow(IntPtrConstant(0), BitcastTaggedToWord(x));
+ Node* overflow = Projection(1, pair);
+ Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
+ Branch(overflow, &if_overflow, &if_notoverflow);
+
+ Bind(&if_notoverflow);
{
// There is a Smi representation for negated {x}.
- Node* result = assembler->Projection(0, pair);
- result = assembler->BitcastWordToTagged(result);
- assembler->Return(result);
+ Node* result = Projection(0, pair);
+ Return(BitcastWordToTagged(result));
}
- assembler->Bind(&if_overflow);
- {
- Node* result = assembler->NumberConstant(0.0 - Smi::kMinValue);
- assembler->Return(result);
- }
+ Bind(&if_overflow);
+ { Return(NumberConstant(0.0 - Smi::kMinValue)); }
}
}
- assembler->Bind(&if_xisnotsmi);
+ Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
- Label if_xisheapnumber(assembler),
- if_xisnotheapnumber(assembler, Label::kDeferred);
- assembler->Branch(
- assembler->WordEqual(assembler->LoadMap(x),
- assembler->HeapNumberMapConstant()),
- &if_xisheapnumber, &if_xisnotheapnumber);
-
- assembler->Bind(&if_xisheapnumber);
+ Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred);
+ Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber,
+ &if_xisnotheapnumber);
+
+ Bind(&if_xisheapnumber);
{
- Node* x_value = assembler->LoadHeapNumberValue(x);
- Node* value = assembler->Float64Abs(x_value);
- Node* result = assembler->AllocateHeapNumberWithValue(value);
- assembler->Return(result);
+ Node* x_value = LoadHeapNumberValue(x);
+ Node* value = Float64Abs(x_value);
+ Node* result = AllocateHeapNumberWithValue(value);
+ Return(result);
}
- assembler->Bind(&if_xisnotheapnumber);
+ Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
- Callable callable =
- CodeFactory::NonNumberToNumber(assembler->isolate());
- var_x.Bind(assembler->CallStub(callable, context, x));
- assembler->Goto(&loop);
+ Callable callable = CodeFactory::NonNumberToNumber(isolate());
+ var_x.Bind(CallStub(callable, context, x));
+ Goto(&loop);
}
}
}
}
-namespace {
-
-void Generate_MathRoundingOperation(
- CodeStubAssembler* assembler,
- compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) {
- typedef CodeStubAssembler::Label Label;
- typedef compiler::Node Node;
- typedef CodeStubAssembler::Variable Variable;
-
- Node* context = assembler->Parameter(4);
+void MathBuiltinsAssembler::MathRoundingOperation(
+ Node* (CodeStubAssembler::*float64op)(Node*)) {
+ Node* context = Parameter(4);
// We might need to loop once for ToNumber conversion.
- Variable var_x(assembler, MachineRepresentation::kTagged);
- Label loop(assembler, &var_x);
- var_x.Bind(assembler->Parameter(1));
- assembler->Goto(&loop);
- assembler->Bind(&loop);
+ Variable var_x(this, MachineRepresentation::kTagged);
+ Label loop(this, &var_x);
+ var_x.Bind(Parameter(1));
+ Goto(&loop);
+ Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
- Label if_xissmi(assembler), if_xisnotsmi(assembler);
- assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
+ Label if_xissmi(this), if_xisnotsmi(this);
+ Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
- assembler->Bind(&if_xissmi);
+ Bind(&if_xissmi);
{
// Nothing to do when {x} is a Smi.
- assembler->Return(x);
+ Return(x);
}
- assembler->Bind(&if_xisnotsmi);
+ Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
- Label if_xisheapnumber(assembler),
- if_xisnotheapnumber(assembler, Label::kDeferred);
- assembler->Branch(
- assembler->WordEqual(assembler->LoadMap(x),
- assembler->HeapNumberMapConstant()),
- &if_xisheapnumber, &if_xisnotheapnumber);
-
- assembler->Bind(&if_xisheapnumber);
+ Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred);
+ Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber,
+ &if_xisnotheapnumber);
+
+ Bind(&if_xisheapnumber);
{
- Node* x_value = assembler->LoadHeapNumberValue(x);
- Node* value = (assembler->*float64op)(x_value);
- Node* result = assembler->ChangeFloat64ToTagged(value);
- assembler->Return(result);
+ Node* x_value = LoadHeapNumberValue(x);
+ Node* value = (this->*float64op)(x_value);
+ Node* result = ChangeFloat64ToTagged(value);
+ Return(result);
}
- assembler->Bind(&if_xisnotheapnumber);
+ Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
- Callable callable =
- CodeFactory::NonNumberToNumber(assembler->isolate());
- var_x.Bind(assembler->CallStub(callable, context, x));
- assembler->Goto(&loop);
+ Callable callable = CodeFactory::NonNumberToNumber(isolate());
+ var_x.Bind(CallStub(callable, context, x));
+ Goto(&loop);
}
}
}
}
-void Generate_MathUnaryOperation(
- CodeStubAssembler* assembler,
- compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) {
- typedef compiler::Node Node;
-
- Node* x = assembler->Parameter(1);
- Node* context = assembler->Parameter(4);
- Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
- Node* value = (assembler->*float64op)(x_value);
- Node* result = assembler->AllocateHeapNumberWithValue(value);
- assembler->Return(result);
+void MathBuiltinsAssembler::MathUnaryOperation(
+ Node* (CodeStubAssembler::*float64op)(Node*)) {
+ Node* x = Parameter(1);
+ Node* context = Parameter(4);
+ Node* x_value = TruncateTaggedToFloat64(context, x);
+ Node* value = (this->*float64op)(x_value);
+ Node* result = AllocateHeapNumberWithValue(value);
+ Return(result);
}
-} // namespace
-
// ES6 section 20.2.2.2 Math.acos ( x )
-void Builtins::Generate_MathAcos(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acos);
+TF_BUILTIN(MathAcos, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Acos);
}
// ES6 section 20.2.2.3 Math.acosh ( x )
-void Builtins::Generate_MathAcosh(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acosh);
+TF_BUILTIN(MathAcosh, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Acosh);
}
// ES6 section 20.2.2.4 Math.asin ( x )
-void Builtins::Generate_MathAsin(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asin);
+TF_BUILTIN(MathAsin, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Asin);
}
// ES6 section 20.2.2.5 Math.asinh ( x )
-void Builtins::Generate_MathAsinh(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asinh);
+TF_BUILTIN(MathAsinh, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Asinh);
}
-
// ES6 section 20.2.2.6 Math.atan ( x )
-void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atan);
+TF_BUILTIN(MathAtan, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Atan);
}
// ES6 section 20.2.2.7 Math.atanh ( x )
-void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atanh);
+TF_BUILTIN(MathAtanh, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Atanh);
}
// ES6 section 20.2.2.8 Math.atan2 ( y, x )
-void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) {
- using compiler::Node;
+TF_BUILTIN(MathAtan2, CodeStubAssembler) {
+ Node* y = Parameter(1);
+ Node* x = Parameter(2);
+ Node* context = Parameter(5);
- Node* y = assembler->Parameter(1);
- Node* x = assembler->Parameter(2);
- Node* context = assembler->Parameter(5);
- Node* y_value = assembler->TruncateTaggedToFloat64(context, y);
- Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
- Node* value = assembler->Float64Atan2(y_value, x_value);
- Node* result = assembler->AllocateHeapNumberWithValue(value);
- assembler->Return(result);
+ Node* y_value = TruncateTaggedToFloat64(context, y);
+ Node* x_value = TruncateTaggedToFloat64(context, x);
+ Node* value = Float64Atan2(y_value, x_value);
+ Node* result = AllocateHeapNumberWithValue(value);
+ Return(result);
}
// ES6 section 20.2.2.10 Math.ceil ( x )
-void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) {
- Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Ceil);
+TF_BUILTIN(MathCeil, MathBuiltinsAssembler) {
+ MathRoundingOperation(&CodeStubAssembler::Float64Ceil);
}
// ES6 section 20.2.2.9 Math.cbrt ( x )
-void Builtins::Generate_MathCbrt(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cbrt);
+TF_BUILTIN(MathCbrt, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Cbrt);
}
// ES6 section 20.2.2.11 Math.clz32 ( x )
-void Builtins::Generate_MathClz32(CodeStubAssembler* assembler) {
- typedef CodeStubAssembler::Label Label;
- typedef compiler::Node Node;
- typedef CodeStubAssembler::Variable Variable;
-
- Node* context = assembler->Parameter(4);
+TF_BUILTIN(MathClz32, CodeStubAssembler) {
+ Node* context = Parameter(4);
// Shared entry point for the clz32 operation.
- Variable var_clz32_x(assembler, MachineRepresentation::kWord32);
- Label do_clz32(assembler);
+ Variable var_clz32_x(this, MachineRepresentation::kWord32);
+ Label do_clz32(this);
// We might need to loop once for ToNumber conversion.
- Variable var_x(assembler, MachineRepresentation::kTagged);
- Label loop(assembler, &var_x);
- var_x.Bind(assembler->Parameter(1));
- assembler->Goto(&loop);
- assembler->Bind(&loop);
+ Variable var_x(this, MachineRepresentation::kTagged);
+ Label loop(this, &var_x);
+ var_x.Bind(Parameter(1));
+ Goto(&loop);
+ Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
- Label if_xissmi(assembler), if_xisnotsmi(assembler);
- assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
+ Label if_xissmi(this), if_xisnotsmi(this);
+ Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi);
- assembler->Bind(&if_xissmi);
+ Bind(&if_xissmi);
{
- var_clz32_x.Bind(assembler->SmiToWord32(x));
- assembler->Goto(&do_clz32);
+ var_clz32_x.Bind(SmiToWord32(x));
+ Goto(&do_clz32);
}
- assembler->Bind(&if_xisnotsmi);
+ Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
- Label if_xisheapnumber(assembler),
- if_xisnotheapnumber(assembler, Label::kDeferred);
- assembler->Branch(
- assembler->WordEqual(assembler->LoadMap(x),
- assembler->HeapNumberMapConstant()),
- &if_xisheapnumber, &if_xisnotheapnumber);
-
- assembler->Bind(&if_xisheapnumber);
+ Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred);
+ Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber,
+ &if_xisnotheapnumber);
+
+ Bind(&if_xisheapnumber);
{
- var_clz32_x.Bind(assembler->TruncateHeapNumberValueToWord32(x));
- assembler->Goto(&do_clz32);
+ var_clz32_x.Bind(TruncateHeapNumberValueToWord32(x));
+ Goto(&do_clz32);
}
- assembler->Bind(&if_xisnotheapnumber);
+ Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
- Callable callable =
- CodeFactory::NonNumberToNumber(assembler->isolate());
- var_x.Bind(assembler->CallStub(callable, context, x));
- assembler->Goto(&loop);
+ Callable callable = CodeFactory::NonNumberToNumber(isolate());
+ var_x.Bind(CallStub(callable, context, x));
+ Goto(&loop);
}
}
}
- assembler->Bind(&do_clz32);
+ Bind(&do_clz32);
{
Node* x_value = var_clz32_x.value();
- Node* value = assembler->Word32Clz(x_value);
- Node* result = assembler->ChangeInt32ToTagged(value);
- assembler->Return(result);
+ Node* value = Word32Clz(x_value);
+ Node* result = ChangeInt32ToTagged(value);
+ Return(result);
}
}
// ES6 section 20.2.2.12 Math.cos ( x )
-void Builtins::Generate_MathCos(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cos);
+TF_BUILTIN(MathCos, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Cos);
}
// ES6 section 20.2.2.13 Math.cosh ( x )
-void Builtins::Generate_MathCosh(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cosh);
+TF_BUILTIN(MathCosh, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Cosh);
}
// ES6 section 20.2.2.14 Math.exp ( x )
-void Builtins::Generate_MathExp(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Exp);
+TF_BUILTIN(MathExp, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Exp);
}
// ES6 section 20.2.2.15 Math.expm1 ( x )
-void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Expm1);
+TF_BUILTIN(MathExpm1, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Expm1);
}
// ES6 section 20.2.2.16 Math.floor ( x )
-void Builtins::Generate_MathFloor(CodeStubAssembler* assembler) {
- Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Floor);
+TF_BUILTIN(MathFloor, MathBuiltinsAssembler) {
+ MathRoundingOperation(&CodeStubAssembler::Float64Floor);
}
// ES6 section 20.2.2.17 Math.fround ( x )
-void Builtins::Generate_MathFround(CodeStubAssembler* assembler) {
- using compiler::Node;
-
- Node* x = assembler->Parameter(1);
- Node* context = assembler->Parameter(4);
- Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
- Node* value32 = assembler->TruncateFloat64ToFloat32(x_value);
- Node* value = assembler->ChangeFloat32ToFloat64(value32);
- Node* result = assembler->AllocateHeapNumberWithValue(value);
- assembler->Return(result);
+TF_BUILTIN(MathFround, CodeStubAssembler) {
+ Node* x = Parameter(1);
+ Node* context = Parameter(4);
+ Node* x_value = TruncateTaggedToFloat64(context, x);
+ Node* value32 = TruncateFloat64ToFloat32(x_value);
+ Node* value = ChangeFloat32ToFloat64(value32);
+ Node* result = AllocateHeapNumberWithValue(value);
+ Return(result);
}
// ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values )
@@ -351,7 +319,7 @@ BUILTIN(MathHypot) {
bool one_arg_is_nan = false;
List<double> abs_values(length);
for (int i = 0; i < length; i++) {
- Handle<Object> x = args.at<Object>(i + 1);
+ Handle<Object> x = args.at(i + 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x, Object::ToNumber(x));
double abs_value = std::abs(x->Number());
@@ -394,153 +362,134 @@ BUILTIN(MathHypot) {
}
// ES6 section 20.2.2.19 Math.imul ( x, y )
-void Builtins::Generate_MathImul(CodeStubAssembler* assembler) {
- using compiler::Node;
-
- Node* x = assembler->Parameter(1);
- Node* y = assembler->Parameter(2);
- Node* context = assembler->Parameter(5);
- Node* x_value = assembler->TruncateTaggedToWord32(context, x);
- Node* y_value = assembler->TruncateTaggedToWord32(context, y);
- Node* value = assembler->Int32Mul(x_value, y_value);
- Node* result = assembler->ChangeInt32ToTagged(value);
- assembler->Return(result);
+TF_BUILTIN(MathImul, CodeStubAssembler) {
+ Node* x = Parameter(1);
+ Node* y = Parameter(2);
+ Node* context = Parameter(5);
+ Node* x_value = TruncateTaggedToWord32(context, x);
+ Node* y_value = TruncateTaggedToWord32(context, y);
+ Node* value = Int32Mul(x_value, y_value);
+ Node* result = ChangeInt32ToTagged(value);
+ Return(result);
}
// ES6 section 20.2.2.20 Math.log ( x )
-void Builtins::Generate_MathLog(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log);
+TF_BUILTIN(MathLog, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Log);
}
// ES6 section 20.2.2.21 Math.log1p ( x )
-void Builtins::Generate_MathLog1p(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log1p);
+TF_BUILTIN(MathLog1p, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Log1p);
}
// ES6 section 20.2.2.22 Math.log10 ( x )
-void Builtins::Generate_MathLog10(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log10);
+TF_BUILTIN(MathLog10, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Log10);
}
// ES6 section 20.2.2.23 Math.log2 ( x )
-void Builtins::Generate_MathLog2(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log2);
+TF_BUILTIN(MathLog2, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Log2);
}
// ES6 section 20.2.2.26 Math.pow ( x, y )
-void Builtins::Generate_MathPow(CodeStubAssembler* assembler) {
- using compiler::Node;
-
- Node* x = assembler->Parameter(1);
- Node* y = assembler->Parameter(2);
- Node* context = assembler->Parameter(5);
- Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
- Node* y_value = assembler->TruncateTaggedToFloat64(context, y);
- Node* value = assembler->Float64Pow(x_value, y_value);
- Node* result = assembler->ChangeFloat64ToTagged(value);
- assembler->Return(result);
+TF_BUILTIN(MathPow, CodeStubAssembler) {
+ Node* x = Parameter(1);
+ Node* y = Parameter(2);
+ Node* context = Parameter(5);
+ Node* x_value = TruncateTaggedToFloat64(context, x);
+ Node* y_value = TruncateTaggedToFloat64(context, y);
+ Node* value = Float64Pow(x_value, y_value);
+ Node* result = ChangeFloat64ToTagged(value);
+ Return(result);
}
// ES6 section 20.2.2.27 Math.random ( )
-void Builtins::Generate_MathRandom(CodeStubAssembler* assembler) {
- using compiler::Node;
-
- Node* context = assembler->Parameter(3);
- Node* native_context = assembler->LoadNativeContext(context);
+TF_BUILTIN(MathRandom, CodeStubAssembler) {
+ Node* context = Parameter(3);
+ Node* native_context = LoadNativeContext(context);
// Load cache index.
- CodeStubAssembler::Variable smi_index(assembler,
- MachineRepresentation::kTagged);
- smi_index.Bind(assembler->LoadContextElement(
- native_context, Context::MATH_RANDOM_INDEX_INDEX));
+ Variable smi_index(this, MachineRepresentation::kTagged);
+ smi_index.Bind(
+ LoadContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX));
// Cached random numbers are exhausted if index is 0. Go to slow path.
- CodeStubAssembler::Label if_cached(assembler);
- assembler->GotoIf(assembler->SmiAbove(smi_index.value(),
- assembler->SmiConstant(Smi::kZero)),
- &if_cached);
+ Label if_cached(this);
+ GotoIf(SmiAbove(smi_index.value(), SmiConstant(Smi::kZero)), &if_cached);
// Cache exhausted, populate the cache. Return value is the new index.
- smi_index.Bind(
- assembler->CallRuntime(Runtime::kGenerateRandomNumbers, context));
- assembler->Goto(&if_cached);
+ smi_index.Bind(CallRuntime(Runtime::kGenerateRandomNumbers, context));
+ Goto(&if_cached);
// Compute next index by decrement.
- assembler->Bind(&if_cached);
- Node* new_smi_index = assembler->SmiSub(
- smi_index.value(), assembler->SmiConstant(Smi::FromInt(1)));
- assembler->StoreContextElement(
- native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index);
+ Bind(&if_cached);
+ Node* new_smi_index = SmiSub(smi_index.value(), SmiConstant(Smi::FromInt(1)));
+ StoreContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX,
+ new_smi_index);
// Load and return next cached random number.
- Node* array = assembler->LoadContextElement(native_context,
- Context::MATH_RANDOM_CACHE_INDEX);
- Node* random = assembler->LoadFixedDoubleArrayElement(
- array, new_smi_index, MachineType::Float64(), 0,
- CodeStubAssembler::SMI_PARAMETERS);
- assembler->Return(assembler->AllocateHeapNumberWithValue(random));
+ Node* array =
+ LoadContextElement(native_context, Context::MATH_RANDOM_CACHE_INDEX);
+ Node* random = LoadFixedDoubleArrayElement(
+ array, new_smi_index, MachineType::Float64(), 0, SMI_PARAMETERS);
+ Return(AllocateHeapNumberWithValue(random));
}
// ES6 section 20.2.2.28 Math.round ( x )
-void Builtins::Generate_MathRound(CodeStubAssembler* assembler) {
- Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Round);
+TF_BUILTIN(MathRound, MathBuiltinsAssembler) {
+ MathRoundingOperation(&CodeStubAssembler::Float64Round);
}
// ES6 section 20.2.2.29 Math.sign ( x )
-void Builtins::Generate_MathSign(CodeStubAssembler* assembler) {
- typedef CodeStubAssembler::Label Label;
- using compiler::Node;
-
+TF_BUILTIN(MathSign, CodeStubAssembler) {
// Convert the {x} value to a Number.
- Node* x = assembler->Parameter(1);
- Node* context = assembler->Parameter(4);
- Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
+ Node* x = Parameter(1);
+ Node* context = Parameter(4);
+ Node* x_value = TruncateTaggedToFloat64(context, x);
// Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself.
- Label if_xisnegative(assembler), if_xispositive(assembler);
- assembler->GotoIf(
- assembler->Float64LessThan(x_value, assembler->Float64Constant(0.0)),
- &if_xisnegative);
- assembler->GotoIf(
- assembler->Float64LessThan(assembler->Float64Constant(0.0), x_value),
- &if_xispositive);
- assembler->Return(assembler->ChangeFloat64ToTagged(x_value));
+ Label if_xisnegative(this), if_xispositive(this);
+ GotoIf(Float64LessThan(x_value, Float64Constant(0.0)), &if_xisnegative);
+ GotoIf(Float64LessThan(Float64Constant(0.0), x_value), &if_xispositive);
+ Return(ChangeFloat64ToTagged(x_value));
- assembler->Bind(&if_xisnegative);
- assembler->Return(assembler->SmiConstant(Smi::FromInt(-1)));
+ Bind(&if_xisnegative);
+ Return(SmiConstant(Smi::FromInt(-1)));
- assembler->Bind(&if_xispositive);
- assembler->Return(assembler->SmiConstant(Smi::FromInt(1)));
+ Bind(&if_xispositive);
+ Return(SmiConstant(Smi::FromInt(1)));
}
// ES6 section 20.2.2.30 Math.sin ( x )
-void Builtins::Generate_MathSin(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sin);
+TF_BUILTIN(MathSin, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Sin);
}
// ES6 section 20.2.2.31 Math.sinh ( x )
-void Builtins::Generate_MathSinh(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sinh);
+TF_BUILTIN(MathSinh, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Sinh);
}
// ES6 section 20.2.2.32 Math.sqrt ( x )
-void Builtins::Generate_MathSqrt(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sqrt);
+TF_BUILTIN(MathSqrt, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Sqrt);
}
// ES6 section 20.2.2.33 Math.tan ( x )
-void Builtins::Generate_MathTan(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tan);
+TF_BUILTIN(MathTan, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Tan);
}
// ES6 section 20.2.2.34 Math.tanh ( x )
-void Builtins::Generate_MathTanh(CodeStubAssembler* assembler) {
- Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tanh);
+TF_BUILTIN(MathTanh, MathBuiltinsAssembler) {
+ MathUnaryOperation(&CodeStubAssembler::Float64Tanh);
}
// ES6 section 20.2.2.35 Math.trunc ( x )
-void Builtins::Generate_MathTrunc(CodeStubAssembler* assembler) {
- Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Trunc);
+TF_BUILTIN(MathTrunc, MathBuiltinsAssembler) {
+ MathRoundingOperation(&CodeStubAssembler::Float64Trunc);
}
void Builtins::Generate_MathMax(MacroAssembler* masm) {