summaryrefslogtreecommitdiff
path: root/deps/v8/src/ast/scopes.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/ast/scopes.cc')
-rw-r--r--deps/v8/src/ast/scopes.cc1698
1 files changed, 1698 insertions, 0 deletions
diff --git a/deps/v8/src/ast/scopes.cc b/deps/v8/src/ast/scopes.cc
new file mode 100644
index 0000000000..c2b05b7c04
--- /dev/null
+++ b/deps/v8/src/ast/scopes.cc
@@ -0,0 +1,1698 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/ast/scopes.h"
+
+#include "src/accessors.h"
+#include "src/ast/scopeinfo.h"
+#include "src/bootstrapper.h"
+#include "src/messages.h"
+#include "src/parsing/parser.h" // for ParseInfo
+
+namespace v8 {
+namespace internal {
+
+// ----------------------------------------------------------------------------
+// Implementation of LocalsMap
+//
+// Note: We are storing the handle locations as key values in the hash map.
+// When inserting a new variable via Declare(), we rely on the fact that
+// the handle location remains alive for the duration of that variable
+// use. Because a Variable holding a handle with the same location exists
+// this is ensured.
+
+VariableMap::VariableMap(Zone* zone)
+ : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
+ zone_(zone) {}
+VariableMap::~VariableMap() {}
+
+
+Variable* VariableMap::Declare(Scope* scope, const AstRawString* name,
+ VariableMode mode, Variable::Kind kind,
+ InitializationFlag initialization_flag,
+ MaybeAssignedFlag maybe_assigned_flag,
+ int declaration_group_start) {
+ // AstRawStrings are unambiguous, i.e., the same string is always represented
+ // by the same AstRawString*.
+ // FIXME(marja): fix the type of Lookup.
+ Entry* p =
+ ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
+ ZoneAllocationPolicy(zone()));
+ if (p->value == NULL) {
+ // The variable has not been declared yet -> insert it.
+ DCHECK(p->key == name);
+ if (kind == Variable::CLASS) {
+ p->value = new (zone())
+ ClassVariable(scope, name, mode, initialization_flag,
+ maybe_assigned_flag, declaration_group_start);
+ } else {
+ p->value = new (zone()) Variable(
+ scope, name, mode, kind, initialization_flag, maybe_assigned_flag);
+ }
+ }
+ return reinterpret_cast<Variable*>(p->value);
+}
+
+
+Variable* VariableMap::Lookup(const AstRawString* name) {
+ Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash());
+ if (p != NULL) {
+ DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
+ DCHECK(p->value != NULL);
+ return reinterpret_cast<Variable*>(p->value);
+ }
+ return NULL;
+}
+
+
+SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone)
+ : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
+ zone_(zone) {}
+SloppyBlockFunctionMap::~SloppyBlockFunctionMap() {}
+
+
+void SloppyBlockFunctionMap::Declare(const AstRawString* name,
+ SloppyBlockFunctionStatement* stmt) {
+ // AstRawStrings are unambiguous, i.e., the same string is always represented
+ // by the same AstRawString*.
+ Entry* p =
+ ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
+ ZoneAllocationPolicy(zone_));
+ if (p->value == nullptr) {
+ p->value = new (zone_->New(sizeof(Vector))) Vector(zone_);
+ }
+ Vector* delegates = static_cast<Vector*>(p->value);
+ delegates->push_back(stmt);
+}
+
+
+// ----------------------------------------------------------------------------
+// Implementation of Scope
+
+Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
+ AstValueFactory* ast_value_factory, FunctionKind function_kind)
+ : inner_scopes_(4, zone),
+ variables_(zone),
+ temps_(4, zone),
+ params_(4, zone),
+ unresolved_(16, zone),
+ decls_(4, zone),
+ module_descriptor_(
+ scope_type == MODULE_SCOPE ? ModuleDescriptor::New(zone) : NULL),
+ sloppy_block_function_map_(zone),
+ already_resolved_(false),
+ ast_value_factory_(ast_value_factory),
+ zone_(zone),
+ class_declaration_group_start_(-1) {
+ SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null(),
+ function_kind);
+ // The outermost scope must be a script scope.
+ DCHECK(scope_type == SCRIPT_SCOPE || outer_scope != NULL);
+ DCHECK(!HasIllegalRedeclaration());
+}
+
+
+Scope::Scope(Zone* zone, Scope* inner_scope, ScopeType scope_type,
+ Handle<ScopeInfo> scope_info, AstValueFactory* value_factory)
+ : inner_scopes_(4, zone),
+ variables_(zone),
+ temps_(4, zone),
+ params_(4, zone),
+ unresolved_(16, zone),
+ decls_(4, zone),
+ module_descriptor_(NULL),
+ sloppy_block_function_map_(zone),
+ already_resolved_(true),
+ ast_value_factory_(value_factory),
+ zone_(zone),
+ class_declaration_group_start_(-1) {
+ SetDefaults(scope_type, NULL, scope_info);
+ if (!scope_info.is_null()) {
+ num_heap_slots_ = scope_info_->ContextLength();
+ }
+ // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
+ num_heap_slots_ = Max(num_heap_slots_,
+ static_cast<int>(Context::MIN_CONTEXT_SLOTS));
+ AddInnerScope(inner_scope);
+}
+
+
+Scope::Scope(Zone* zone, Scope* inner_scope,
+ const AstRawString* catch_variable_name,
+ AstValueFactory* value_factory)
+ : inner_scopes_(1, zone),
+ variables_(zone),
+ temps_(0, zone),
+ params_(0, zone),
+ unresolved_(0, zone),
+ decls_(0, zone),
+ module_descriptor_(NULL),
+ sloppy_block_function_map_(zone),
+ already_resolved_(true),
+ ast_value_factory_(value_factory),
+ zone_(zone),
+ class_declaration_group_start_(-1) {
+ SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
+ AddInnerScope(inner_scope);
+ ++num_var_or_const_;
+ num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
+ Variable* variable = variables_.Declare(this,
+ catch_variable_name,
+ VAR,
+ Variable::NORMAL,
+ kCreatedInitialized);
+ AllocateHeapSlot(variable);
+}
+
+
+void Scope::SetDefaults(ScopeType scope_type, Scope* outer_scope,
+ Handle<ScopeInfo> scope_info,
+ FunctionKind function_kind) {
+ outer_scope_ = outer_scope;
+ scope_type_ = scope_type;
+ is_declaration_scope_ =
+ is_eval_scope() || is_function_scope() ||
+ is_module_scope() || is_script_scope();
+ function_kind_ = function_kind;
+ scope_name_ = ast_value_factory_->empty_string();
+ dynamics_ = nullptr;
+ receiver_ = nullptr;
+ new_target_ = nullptr;
+ function_ = nullptr;
+ arguments_ = nullptr;
+ this_function_ = nullptr;
+ illegal_redecl_ = nullptr;
+ scope_inside_with_ = false;
+ scope_contains_with_ = false;
+ scope_calls_eval_ = false;
+ scope_uses_arguments_ = false;
+ scope_uses_super_property_ = false;
+ asm_module_ = false;
+ asm_function_ = outer_scope != NULL && outer_scope->asm_module_;
+ // Inherit the language mode from the parent scope.
+ language_mode_ = outer_scope != NULL ? outer_scope->language_mode_ : SLOPPY;
+ outer_scope_calls_sloppy_eval_ = false;
+ inner_scope_calls_eval_ = false;
+ scope_nonlinear_ = false;
+ force_eager_compilation_ = false;
+ force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
+ ? outer_scope->has_forced_context_allocation() : false;
+ num_var_or_const_ = 0;
+ num_stack_slots_ = 0;
+ num_heap_slots_ = 0;
+ num_global_slots_ = 0;
+ arity_ = 0;
+ has_simple_parameters_ = true;
+ rest_parameter_ = NULL;
+ rest_index_ = -1;
+ scope_info_ = scope_info;
+ start_position_ = RelocInfo::kNoPosition;
+ end_position_ = RelocInfo::kNoPosition;
+ if (!scope_info.is_null()) {
+ scope_calls_eval_ = scope_info->CallsEval();
+ language_mode_ = scope_info->language_mode();
+ is_declaration_scope_ = scope_info->is_declaration_scope();
+ function_kind_ = scope_info->function_kind();
+ }
+}
+
+
+Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
+ Context* context, Scope* script_scope) {
+ // Reconstruct the outer scope chain from a closure's context chain.
+ Scope* current_scope = NULL;
+ Scope* innermost_scope = NULL;
+ bool contains_with = false;
+ while (!context->IsNativeContext()) {
+ if (context->IsWithContext()) {
+ Scope* with_scope = new (zone)
+ Scope(zone, current_scope, WITH_SCOPE, Handle<ScopeInfo>::null(),
+ script_scope->ast_value_factory_);
+ current_scope = with_scope;
+ // All the inner scopes are inside a with.
+ contains_with = true;
+ for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
+ s->scope_inside_with_ = true;
+ }
+ } else if (context->IsScriptContext()) {
+ ScopeInfo* scope_info = context->scope_info();
+ current_scope = new (zone) Scope(zone, current_scope, SCRIPT_SCOPE,
+ Handle<ScopeInfo>(scope_info),
+ script_scope->ast_value_factory_);
+ } else if (context->IsModuleContext()) {
+ ScopeInfo* scope_info = context->module()->scope_info();
+ current_scope = new (zone) Scope(zone, current_scope, MODULE_SCOPE,
+ Handle<ScopeInfo>(scope_info),
+ script_scope->ast_value_factory_);
+ } else if (context->IsFunctionContext()) {
+ ScopeInfo* scope_info = context->closure()->shared()->scope_info();
+ current_scope = new (zone) Scope(zone, current_scope, FUNCTION_SCOPE,
+ Handle<ScopeInfo>(scope_info),
+ script_scope->ast_value_factory_);
+ if (scope_info->IsAsmFunction()) current_scope->asm_function_ = true;
+ if (scope_info->IsAsmModule()) current_scope->asm_module_ = true;
+ } else if (context->IsBlockContext()) {
+ ScopeInfo* scope_info = context->scope_info();
+ current_scope = new (zone)
+ Scope(zone, current_scope, BLOCK_SCOPE, Handle<ScopeInfo>(scope_info),
+ script_scope->ast_value_factory_);
+ } else {
+ DCHECK(context->IsCatchContext());
+ String* name = context->catch_name();
+ current_scope = new (zone) Scope(
+ zone, current_scope,
+ script_scope->ast_value_factory_->GetString(Handle<String>(name)),
+ script_scope->ast_value_factory_);
+ }
+ if (contains_with) current_scope->RecordWithStatement();
+ if (innermost_scope == NULL) innermost_scope = current_scope;
+
+ // Forget about a with when we move to a context for a different function.
+ if (context->previous()->closure() != context->closure()) {
+ contains_with = false;
+ }
+ context = context->previous();
+ }
+
+ script_scope->AddInnerScope(current_scope);
+ script_scope->PropagateScopeInfo(false);
+ return (innermost_scope == NULL) ? script_scope : innermost_scope;
+}
+
+
+bool Scope::Analyze(ParseInfo* info) {
+ DCHECK(info->literal() != NULL);
+ DCHECK(info->scope() == NULL);
+ Scope* scope = info->literal()->scope();
+ Scope* top = scope;
+
+ // Traverse the scope tree up to the first unresolved scope or the global
+ // scope and start scope resolution and variable allocation from that scope.
+ while (!top->is_script_scope() &&
+ !top->outer_scope()->already_resolved()) {
+ top = top->outer_scope();
+ }
+
+ // Allocate the variables.
+ {
+ AstNodeFactory ast_node_factory(info->ast_value_factory());
+ if (!top->AllocateVariables(info, &ast_node_factory)) {
+ DCHECK(top->pending_error_handler_.has_pending_error());
+ top->pending_error_handler_.ThrowPendingError(info->isolate(),
+ info->script());
+ return false;
+ }
+ }
+
+#ifdef DEBUG
+ if (info->script_is_native() ? FLAG_print_builtin_scopes
+ : FLAG_print_scopes) {
+ scope->Print();
+ }
+#endif
+
+ info->set_scope(scope);
+ return true;
+}
+
+
+void Scope::Initialize() {
+ DCHECK(!already_resolved());
+
+ // Add this scope as a new inner scope of the outer scope.
+ if (outer_scope_ != NULL) {
+ outer_scope_->inner_scopes_.Add(this, zone());
+ scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
+ } else {
+ scope_inside_with_ = is_with_scope();
+ }
+
+ // Declare convenience variables and the receiver.
+ if (is_declaration_scope() && has_this_declaration()) {
+ bool subclass_constructor = IsSubclassConstructor(function_kind_);
+ Variable* var = variables_.Declare(
+ this, ast_value_factory_->this_string(),
+ subclass_constructor ? CONST : VAR, Variable::THIS,
+ subclass_constructor ? kNeedsInitialization : kCreatedInitialized);
+ receiver_ = var;
+ }
+
+ if (is_function_scope() && !is_arrow_scope()) {
+ // Declare 'arguments' variable which exists in all non arrow functions.
+ // Note that it might never be accessed, in which case it won't be
+ // allocated during variable allocation.
+ variables_.Declare(this, ast_value_factory_->arguments_string(), VAR,
+ Variable::ARGUMENTS, kCreatedInitialized);
+
+ variables_.Declare(this, ast_value_factory_->new_target_string(), CONST,
+ Variable::NORMAL, kCreatedInitialized);
+
+ if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
+ IsAccessorFunction(function_kind_)) {
+ variables_.Declare(this, ast_value_factory_->this_function_string(),
+ CONST, Variable::NORMAL, kCreatedInitialized);
+ }
+ }
+}
+
+
+Scope* Scope::FinalizeBlockScope() {
+ DCHECK(is_block_scope());
+ DCHECK(temps_.is_empty());
+ DCHECK(params_.is_empty());
+
+ if (num_var_or_const() > 0 ||
+ (is_declaration_scope() && calls_sloppy_eval())) {
+ return this;
+ }
+
+ // Remove this scope from outer scope.
+ outer_scope()->RemoveInnerScope(this);
+
+ // Reparent inner scopes.
+ for (int i = 0; i < inner_scopes_.length(); i++) {
+ outer_scope()->AddInnerScope(inner_scopes_[i]);
+ }
+
+ // Move unresolved variables
+ for (int i = 0; i < unresolved_.length(); i++) {
+ outer_scope()->unresolved_.Add(unresolved_[i], zone());
+ }
+
+ PropagateUsageFlagsToScope(outer_scope_);
+
+ return NULL;
+}
+
+
+void Scope::ReplaceOuterScope(Scope* outer) {
+ DCHECK_NOT_NULL(outer);
+ DCHECK_NOT_NULL(outer_scope_);
+ DCHECK(!already_resolved());
+ DCHECK(!outer->already_resolved());
+ DCHECK(!outer_scope_->already_resolved());
+ outer_scope_->RemoveInnerScope(this);
+ outer->AddInnerScope(this);
+ outer_scope_ = outer;
+}
+
+
+void Scope::PropagateUsageFlagsToScope(Scope* other) {
+ DCHECK_NOT_NULL(other);
+ DCHECK(!already_resolved());
+ DCHECK(!other->already_resolved());
+ if (uses_arguments()) other->RecordArgumentsUsage();
+ if (uses_super_property()) other->RecordSuperPropertyUsage();
+ if (calls_eval()) other->RecordEvalCall();
+ if (scope_contains_with_) other->RecordWithStatement();
+}
+
+
+Variable* Scope::LookupLocal(const AstRawString* name) {
+ Variable* result = variables_.Lookup(name);
+ if (result != NULL || scope_info_.is_null()) {
+ return result;
+ }
+ Handle<String> name_handle = name->string();
+ // The Scope is backed up by ScopeInfo. This means it cannot operate in a
+ // heap-independent mode, and all strings must be internalized immediately. So
+ // it's ok to get the Handle<String> here.
+ // If we have a serialized scope info, we might find the variable there.
+ // There should be no local slot with the given name.
+ DCHECK(scope_info_->StackSlotIndex(*name_handle) < 0 || is_block_scope());
+
+ // Check context slot lookup.
+ VariableMode mode;
+ VariableLocation location = VariableLocation::CONTEXT;
+ InitializationFlag init_flag;
+ MaybeAssignedFlag maybe_assigned_flag;
+ int index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
+ &init_flag, &maybe_assigned_flag);
+ if (index < 0) {
+ location = VariableLocation::GLOBAL;
+ index = ScopeInfo::ContextGlobalSlotIndex(scope_info_, name_handle, &mode,
+ &init_flag, &maybe_assigned_flag);
+ }
+ if (index < 0) {
+ // Check parameters.
+ index = scope_info_->ParameterIndex(*name_handle);
+ if (index < 0) return NULL;
+
+ mode = DYNAMIC;
+ location = VariableLocation::LOOKUP;
+ init_flag = kCreatedInitialized;
+ // Be conservative and flag parameters as maybe assigned. Better information
+ // would require ScopeInfo to serialize the maybe_assigned bit also for
+ // parameters.
+ maybe_assigned_flag = kMaybeAssigned;
+ } else {
+ DCHECK(location != VariableLocation::GLOBAL ||
+ (is_script_scope() && IsDeclaredVariableMode(mode) &&
+ !IsLexicalVariableMode(mode)));
+ }
+
+ Variable::Kind kind = Variable::NORMAL;
+ if (location == VariableLocation::CONTEXT &&
+ index == scope_info_->ReceiverContextSlotIndex()) {
+ kind = Variable::THIS;
+ }
+ // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and
+ // ARGUMENTS bindings as their corresponding Variable::Kind.
+
+ Variable* var = variables_.Declare(this, name, mode, kind, init_flag,
+ maybe_assigned_flag);
+ var->AllocateTo(location, index);
+ return var;
+}
+
+
+Variable* Scope::LookupFunctionVar(const AstRawString* name,
+ AstNodeFactory* factory) {
+ if (function_ != NULL && function_->proxy()->raw_name() == name) {
+ return function_->proxy()->var();
+ } else if (!scope_info_.is_null()) {
+ // If we are backed by a scope info, try to lookup the variable there.
+ VariableMode mode;
+ int index = scope_info_->FunctionContextSlotIndex(*(name->string()), &mode);
+ if (index < 0) return NULL;
+ Variable* var = new (zone())
+ Variable(this, name, mode, Variable::NORMAL, kCreatedInitialized);
+ VariableProxy* proxy = factory->NewVariableProxy(var);
+ VariableDeclaration* declaration = factory->NewVariableDeclaration(
+ proxy, mode, this, RelocInfo::kNoPosition);
+ DeclareFunctionVar(declaration);
+ var->AllocateTo(VariableLocation::CONTEXT, index);
+ return var;
+ } else {
+ return NULL;
+ }
+}
+
+
+Variable* Scope::Lookup(const AstRawString* name) {
+ for (Scope* scope = this;
+ scope != NULL;
+ scope = scope->outer_scope()) {
+ Variable* var = scope->LookupLocal(name);
+ if (var != NULL) return var;
+ }
+ return NULL;
+}
+
+
+Variable* Scope::DeclareParameter(
+ const AstRawString* name, VariableMode mode,
+ bool is_optional, bool is_rest, bool* is_duplicate) {
+ DCHECK(!already_resolved());
+ DCHECK(is_function_scope());
+ DCHECK(!is_optional || !is_rest);
+ Variable* var;
+ if (mode == TEMPORARY) {
+ var = NewTemporary(name);
+ } else {
+ var = variables_.Declare(this, name, mode, Variable::NORMAL,
+ kCreatedInitialized);
+ // TODO(wingo): Avoid O(n^2) check.
+ *is_duplicate = IsDeclaredParameter(name);
+ }
+ if (!is_optional && !is_rest && arity_ == params_.length()) {
+ ++arity_;
+ }
+ if (is_rest) {
+ DCHECK_NULL(rest_parameter_);
+ rest_parameter_ = var;
+ rest_index_ = num_parameters();
+ }
+ params_.Add(var, zone());
+ return var;
+}
+
+
+Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
+ InitializationFlag init_flag, Variable::Kind kind,
+ MaybeAssignedFlag maybe_assigned_flag,
+ int declaration_group_start) {
+ DCHECK(!already_resolved());
+ // This function handles VAR, LET, and CONST modes. DYNAMIC variables are
+ // introduces during variable allocation, and TEMPORARY variables are
+ // allocated via NewTemporary().
+ DCHECK(IsDeclaredVariableMode(mode));
+ ++num_var_or_const_;
+ return variables_.Declare(this, name, mode, kind, init_flag,
+ maybe_assigned_flag, declaration_group_start);
+}
+
+
+Variable* Scope::DeclareDynamicGlobal(const AstRawString* name) {
+ DCHECK(is_script_scope());
+ return variables_.Declare(this,
+ name,
+ DYNAMIC_GLOBAL,
+ Variable::NORMAL,
+ kCreatedInitialized);
+}
+
+
+bool Scope::RemoveUnresolved(VariableProxy* var) {
+ // Most likely (always?) any variable we want to remove
+ // was just added before, so we search backwards.
+ for (int i = unresolved_.length(); i-- > 0;) {
+ if (unresolved_[i] == var) {
+ unresolved_.Remove(i);
+ return true;
+ }
+ }
+ return false;
+}
+
+
+Variable* Scope::NewTemporary(const AstRawString* name) {
+ DCHECK(!already_resolved());
+ Scope* scope = this->ClosureScope();
+ Variable* var = new(zone()) Variable(scope,
+ name,
+ TEMPORARY,
+ Variable::NORMAL,
+ kCreatedInitialized);
+ scope->AddTemporary(var);
+ return var;
+}
+
+
+bool Scope::RemoveTemporary(Variable* var) {
+ // Most likely (always?) any temporary variable we want to remove
+ // was just added before, so we search backwards.
+ for (int i = temps_.length(); i-- > 0;) {
+ if (temps_[i] == var) {
+ temps_.Remove(i);
+ return true;
+ }
+ }
+ return false;
+}
+
+
+void Scope::AddDeclaration(Declaration* declaration) {
+ decls_.Add(declaration, zone());
+}
+
+
+void Scope::SetIllegalRedeclaration(Expression* expression) {
+ // Record only the first illegal redeclaration.
+ if (!HasIllegalRedeclaration()) {
+ illegal_redecl_ = expression;
+ }
+ DCHECK(HasIllegalRedeclaration());
+}
+
+
+Expression* Scope::GetIllegalRedeclaration() {
+ DCHECK(HasIllegalRedeclaration());
+ return illegal_redecl_;
+}
+
+
+Declaration* Scope::CheckConflictingVarDeclarations() {
+ int length = decls_.length();
+ for (int i = 0; i < length; i++) {
+ Declaration* decl = decls_[i];
+ // We don't create a separate scope to hold the function name of a function
+ // expression, so we have to make sure not to consider it when checking for
+ // conflicts (since it's conceptually "outside" the declaration scope).
+ if (is_function_scope() && decl == function()) continue;
+ if (IsLexicalVariableMode(decl->mode()) && !is_block_scope()) continue;
+ const AstRawString* name = decl->proxy()->raw_name();
+
+ // Iterate through all scopes until and including the declaration scope.
+ Scope* previous = NULL;
+ Scope* current = decl->scope();
+ // Lexical vs lexical conflicts within the same scope have already been
+ // captured in Parser::Declare. The only conflicts we still need to check
+ // are lexical vs VAR, or any declarations within a declaration block scope
+ // vs lexical declarations in its surrounding (function) scope.
+ if (IsLexicalVariableMode(decl->mode())) current = current->outer_scope_;
+ do {
+ // There is a conflict if there exists a non-VAR binding.
+ Variable* other_var = current->variables_.Lookup(name);
+ if (other_var != NULL && IsLexicalVariableMode(other_var->mode())) {
+ return decl;
+ }
+ previous = current;
+ current = current->outer_scope_;
+ } while (!previous->is_declaration_scope());
+ }
+ return NULL;
+}
+
+
+class VarAndOrder {
+ public:
+ VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
+ Variable* var() const { return var_; }
+ int order() const { return order_; }
+ static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
+ return a->order_ - b->order_;
+ }
+
+ private:
+ Variable* var_;
+ int order_;
+};
+
+
+void Scope::CollectStackAndContextLocals(
+ ZoneList<Variable*>* stack_locals, ZoneList<Variable*>* context_locals,
+ ZoneList<Variable*>* context_globals,
+ ZoneList<Variable*>* strong_mode_free_variables) {
+ DCHECK(stack_locals != NULL);
+ DCHECK(context_locals != NULL);
+ DCHECK(context_globals != NULL);
+
+ // Collect temporaries which are always allocated on the stack, unless the
+ // context as a whole has forced context allocation.
+ for (int i = 0; i < temps_.length(); i++) {
+ Variable* var = temps_[i];
+ if (var->is_used()) {
+ if (var->IsContextSlot()) {
+ DCHECK(has_forced_context_allocation());
+ context_locals->Add(var, zone());
+ } else if (var->IsStackLocal()) {
+ stack_locals->Add(var, zone());
+ } else {
+ DCHECK(var->IsParameter());
+ }
+ }
+ }
+
+ // Collect declared local variables.
+ ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
+ for (VariableMap::Entry* p = variables_.Start();
+ p != NULL;
+ p = variables_.Next(p)) {
+ Variable* var = reinterpret_cast<Variable*>(p->value);
+ if (strong_mode_free_variables && var->has_strong_mode_reference() &&
+ var->mode() == DYNAMIC_GLOBAL) {
+ strong_mode_free_variables->Add(var, zone());
+ }
+
+ if (var->is_used()) {
+ vars.Add(VarAndOrder(var, p->order), zone());
+ }
+ }
+ vars.Sort(VarAndOrder::Compare);
+ int var_count = vars.length();
+ for (int i = 0; i < var_count; i++) {
+ Variable* var = vars[i].var();
+ if (var->IsStackLocal()) {
+ stack_locals->Add(var, zone());
+ } else if (var->IsContextSlot()) {
+ context_locals->Add(var, zone());
+ } else if (var->IsGlobalSlot()) {
+ context_globals->Add(var, zone());
+ }
+ }
+}
+
+
+bool Scope::AllocateVariables(ParseInfo* info, AstNodeFactory* factory) {
+ // 1) Propagate scope information.
+ bool outer_scope_calls_sloppy_eval = false;
+ if (outer_scope_ != NULL) {
+ outer_scope_calls_sloppy_eval =
+ outer_scope_->outer_scope_calls_sloppy_eval() |
+ outer_scope_->calls_sloppy_eval();
+ }
+ PropagateScopeInfo(outer_scope_calls_sloppy_eval);
+
+ // 2) Resolve variables.
+ if (!ResolveVariablesRecursively(info, factory)) return false;
+
+ // 3) Allocate variables.
+ AllocateVariablesRecursively(info->isolate());
+
+ return true;
+}
+
+
+bool Scope::HasTrivialContext() const {
+ // A function scope has a trivial context if it always is the global
+ // context. We iteratively scan out the context chain to see if
+ // there is anything that makes this scope non-trivial; otherwise we
+ // return true.
+ for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
+ if (scope->is_eval_scope()) return false;
+ if (scope->scope_inside_with_) return false;
+ if (scope->ContextLocalCount() > 0) return false;
+ if (scope->ContextGlobalCount() > 0) return false;
+ }
+ return true;
+}
+
+
+bool Scope::HasTrivialOuterContext() const {
+ Scope* outer = outer_scope_;
+ if (outer == NULL) return true;
+ // Note that the outer context may be trivial in general, but the current
+ // scope may be inside a 'with' statement in which case the outer context
+ // for this scope is not trivial.
+ return !scope_inside_with_ && outer->HasTrivialContext();
+}
+
+
+bool Scope::AllowsLazyParsing() const {
+ // If we are inside a block scope, we must parse eagerly to find out how
+ // to allocate variables on the block scope. At this point, declarations may
+ // not have yet been parsed.
+ for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
+ if (scope->is_block_scope()) return false;
+ }
+ return AllowsLazyCompilation();
+}
+
+
+bool Scope::AllowsLazyCompilation() const { return !force_eager_compilation_; }
+
+
+bool Scope::AllowsLazyCompilationWithoutContext() const {
+ return !force_eager_compilation_ && HasTrivialOuterContext();
+}
+
+
+int Scope::ContextChainLength(Scope* scope) {
+ int n = 0;
+ for (Scope* s = this; s != scope; s = s->outer_scope_) {
+ DCHECK(s != NULL); // scope must be in the scope chain
+ if (s->NeedsContext()) n++;
+ }
+ return n;
+}
+
+
+int Scope::MaxNestedContextChainLength() {
+ int max_context_chain_length = 0;
+ for (int i = 0; i < inner_scopes_.length(); i++) {
+ Scope* scope = inner_scopes_[i];
+ max_context_chain_length = std::max(scope->MaxNestedContextChainLength(),
+ max_context_chain_length);
+ }
+ if (NeedsContext()) {
+ max_context_chain_length += 1;
+ }
+ return max_context_chain_length;
+}
+
+
+Scope* Scope::DeclarationScope() {
+ Scope* scope = this;
+ while (!scope->is_declaration_scope()) {
+ scope = scope->outer_scope();
+ }
+ return scope;
+}
+
+
+Scope* Scope::ClosureScope() {
+ Scope* scope = this;
+ while (!scope->is_declaration_scope() || scope->is_block_scope()) {
+ scope = scope->outer_scope();
+ }
+ return scope;
+}
+
+
+Scope* Scope::ReceiverScope() {
+ Scope* scope = this;
+ while (!scope->is_script_scope() &&
+ (!scope->is_function_scope() || scope->is_arrow_scope())) {
+ scope = scope->outer_scope();
+ }
+ return scope;
+}
+
+
+
+Handle<ScopeInfo> Scope::GetScopeInfo(Isolate* isolate) {
+ if (scope_info_.is_null()) {
+ scope_info_ = ScopeInfo::Create(isolate, zone(), this);
+ }
+ return scope_info_;
+}
+
+
+void Scope::GetNestedScopeChain(Isolate* isolate,
+ List<Handle<ScopeInfo> >* chain, int position) {
+ if (!is_eval_scope()) chain->Add(Handle<ScopeInfo>(GetScopeInfo(isolate)));
+
+ for (int i = 0; i < inner_scopes_.length(); i++) {
+ Scope* scope = inner_scopes_[i];
+ int beg_pos = scope->start_position();
+ int end_pos = scope->end_position();
+ DCHECK(beg_pos >= 0 && end_pos >= 0);
+ if (beg_pos <= position && position < end_pos) {
+ scope->GetNestedScopeChain(isolate, chain, position);
+ return;
+ }
+ }
+}
+
+
+void Scope::CollectNonLocals(HashMap* non_locals) {
+ // Collect non-local variables referenced in the scope.
+ // TODO(yangguo): store non-local variables explicitly if we can no longer
+ // rely on unresolved_ to find them.
+ for (int i = 0; i < unresolved_.length(); i++) {
+ VariableProxy* proxy = unresolved_[i];
+ if (proxy->is_resolved() && proxy->var()->IsStackAllocated()) continue;
+ Handle<String> name = proxy->name();
+ void* key = reinterpret_cast<void*>(name.location());
+ HashMap::Entry* entry = non_locals->LookupOrInsert(key, name->Hash());
+ entry->value = key;
+ }
+ for (int i = 0; i < inner_scopes_.length(); i++) {
+ inner_scopes_[i]->CollectNonLocals(non_locals);
+ }
+}
+
+
+void Scope::ReportMessage(int start_position, int end_position,
+ MessageTemplate::Template message,
+ const AstRawString* arg) {
+ // Propagate the error to the topmost scope targeted by this scope analysis
+ // phase.
+ Scope* top = this;
+ while (!top->is_script_scope() && !top->outer_scope()->already_resolved()) {
+ top = top->outer_scope();
+ }
+
+ top->pending_error_handler_.ReportMessageAt(start_position, end_position,
+ message, arg, kReferenceError);
+}
+
+
+#ifdef DEBUG
+static const char* Header(ScopeType scope_type, FunctionKind function_kind,
+ bool is_declaration_scope) {
+ switch (scope_type) {
+ case EVAL_SCOPE: return "eval";
+ // TODO(adamk): Should we print concise method scopes specially?
+ case FUNCTION_SCOPE:
+ return IsArrowFunction(function_kind) ? "arrow" : "function";
+ case MODULE_SCOPE: return "module";
+ case SCRIPT_SCOPE: return "global";
+ case CATCH_SCOPE: return "catch";
+ case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
+ case WITH_SCOPE: return "with";
+ }
+ UNREACHABLE();
+ return NULL;
+}
+
+
+static void Indent(int n, const char* str) {
+ PrintF("%*s%s", n, "", str);
+}
+
+
+static void PrintName(const AstRawString* name) {
+ PrintF("%.*s", name->length(), name->raw_data());
+}
+
+
+static void PrintLocation(Variable* var) {
+ switch (var->location()) {
+ case VariableLocation::UNALLOCATED:
+ break;
+ case VariableLocation::PARAMETER:
+ PrintF("parameter[%d]", var->index());
+ break;
+ case VariableLocation::LOCAL:
+ PrintF("local[%d]", var->index());
+ break;
+ case VariableLocation::CONTEXT:
+ PrintF("context[%d]", var->index());
+ break;
+ case VariableLocation::GLOBAL:
+ PrintF("global[%d]", var->index());
+ break;
+ case VariableLocation::LOOKUP:
+ PrintF("lookup");
+ break;
+ }
+}
+
+
+static void PrintVar(int indent, Variable* var) {
+ if (var->is_used() || !var->IsUnallocated()) {
+ Indent(indent, Variable::Mode2String(var->mode()));
+ PrintF(" ");
+ if (var->raw_name()->IsEmpty())
+ PrintF(".%p", reinterpret_cast<void*>(var));
+ else
+ PrintName(var->raw_name());
+ PrintF("; // ");
+ PrintLocation(var);
+ bool comma = !var->IsUnallocated();
+ if (var->has_forced_context_allocation()) {
+ if (comma) PrintF(", ");
+ PrintF("forced context allocation");
+ comma = true;
+ }
+ if (var->maybe_assigned() == kMaybeAssigned) {
+ if (comma) PrintF(", ");
+ PrintF("maybe assigned");
+ }
+ PrintF("\n");
+ }
+}
+
+
+static void PrintMap(int indent, VariableMap* map) {
+ for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
+ Variable* var = reinterpret_cast<Variable*>(p->value);
+ if (var == NULL) {
+ Indent(indent, "<?>\n");
+ } else {
+ PrintVar(indent, var);
+ }
+ }
+}
+
+
+void Scope::Print(int n) {
+ int n0 = (n > 0 ? n : 0);
+ int n1 = n0 + 2; // indentation
+
+ // Print header.
+ Indent(n0, Header(scope_type_, function_kind_, is_declaration_scope()));
+ if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
+ PrintF(" ");
+ PrintName(scope_name_);
+ }
+
+ // Print parameters, if any.
+ if (is_function_scope()) {
+ PrintF(" (");
+ for (int i = 0; i < params_.length(); i++) {
+ if (i > 0) PrintF(", ");
+ const AstRawString* name = params_[i]->raw_name();
+ if (name->IsEmpty())
+ PrintF(".%p", reinterpret_cast<void*>(params_[i]));
+ else
+ PrintName(name);
+ }
+ PrintF(")");
+ }
+
+ PrintF(" { // (%d, %d)\n", start_position(), end_position());
+
+ // Function name, if any (named function literals, only).
+ if (function_ != NULL) {
+ Indent(n1, "// (local) function name: ");
+ PrintName(function_->proxy()->raw_name());
+ PrintF("\n");
+ }
+
+ // Scope info.
+ if (HasTrivialOuterContext()) {
+ Indent(n1, "// scope has trivial outer context\n");
+ }
+ if (is_strong(language_mode())) {
+ Indent(n1, "// strong mode scope\n");
+ } else if (is_strict(language_mode())) {
+ Indent(n1, "// strict mode scope\n");
+ }
+ if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
+ if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
+ if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
+ if (scope_uses_arguments_) Indent(n1, "// scope uses 'arguments'\n");
+ if (scope_uses_super_property_)
+ Indent(n1, "// scope uses 'super' property\n");
+ if (outer_scope_calls_sloppy_eval_) {
+ Indent(n1, "// outer scope calls 'eval' in sloppy context\n");
+ }
+ if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
+ if (num_stack_slots_ > 0) {
+ Indent(n1, "// ");
+ PrintF("%d stack slots\n", num_stack_slots_);
+ }
+ if (num_heap_slots_ > 0) {
+ Indent(n1, "// ");
+ PrintF("%d heap slots (including %d global slots)\n", num_heap_slots_,
+ num_global_slots_);
+ }
+
+ // Print locals.
+ if (function_ != NULL) {
+ Indent(n1, "// function var:\n");
+ PrintVar(n1, function_->proxy()->var());
+ }
+
+ if (temps_.length() > 0) {
+ Indent(n1, "// temporary vars:\n");
+ for (int i = 0; i < temps_.length(); i++) {
+ PrintVar(n1, temps_[i]);
+ }
+ }
+
+ if (variables_.Start() != NULL) {
+ Indent(n1, "// local vars:\n");
+ PrintMap(n1, &variables_);
+ }
+
+ if (dynamics_ != NULL) {
+ Indent(n1, "// dynamic vars:\n");
+ PrintMap(n1, dynamics_->GetMap(DYNAMIC));
+ PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
+ PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
+ }
+
+ // Print inner scopes (disable by providing negative n).
+ if (n >= 0) {
+ for (int i = 0; i < inner_scopes_.length(); i++) {
+ PrintF("\n");
+ inner_scopes_[i]->Print(n1);
+ }
+ }
+
+ Indent(n0, "}\n");
+}
+#endif // DEBUG
+
+
+Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
+ if (dynamics_ == NULL) dynamics_ = new (zone()) DynamicScopePart(zone());
+ VariableMap* map = dynamics_->GetMap(mode);
+ Variable* var = map->Lookup(name);
+ if (var == NULL) {
+ // Declare a new non-local.
+ InitializationFlag init_flag = (mode == VAR)
+ ? kCreatedInitialized : kNeedsInitialization;
+ var = map->Declare(NULL,
+ name,
+ mode,
+ Variable::NORMAL,
+ init_flag);
+ // Allocate it by giving it a dynamic lookup.
+ var->AllocateTo(VariableLocation::LOOKUP, -1);
+ }
+ return var;
+}
+
+
+Variable* Scope::LookupRecursive(VariableProxy* proxy,
+ BindingKind* binding_kind,
+ AstNodeFactory* factory) {
+ DCHECK(binding_kind != NULL);
+ if (already_resolved() && is_with_scope()) {
+ // Short-cut: if the scope is deserialized from a scope info, variable
+ // allocation is already fixed. We can simply return with dynamic lookup.
+ *binding_kind = DYNAMIC_LOOKUP;
+ return NULL;
+ }
+
+ // Try to find the variable in this scope.
+ Variable* var = LookupLocal(proxy->raw_name());
+
+ // We found a variable and we are done. (Even if there is an 'eval' in
+ // this scope which introduces the same variable again, the resulting
+ // variable remains the same.)
+ if (var != NULL) {
+ *binding_kind = BOUND;
+ return var;
+ }
+
+ // We did not find a variable locally. Check against the function variable,
+ // if any. We can do this for all scopes, since the function variable is
+ // only present - if at all - for function scopes.
+ *binding_kind = UNBOUND;
+ var = LookupFunctionVar(proxy->raw_name(), factory);
+ if (var != NULL) {
+ *binding_kind = BOUND;
+ } else if (outer_scope_ != NULL) {
+ var = outer_scope_->LookupRecursive(proxy, binding_kind, factory);
+ if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
+ var->ForceContextAllocation();
+ }
+ } else {
+ DCHECK(is_script_scope());
+ }
+
+ // "this" can't be shadowed by "eval"-introduced bindings or by "with" scopes.
+ // TODO(wingo): There are other variables in this category; add them.
+ bool name_can_be_shadowed = var == nullptr || !var->is_this();
+
+ if (is_with_scope() && name_can_be_shadowed) {
+ DCHECK(!already_resolved());
+ // The current scope is a with scope, so the variable binding can not be
+ // statically resolved. However, note that it was necessary to do a lookup
+ // in the outer scope anyway, because if a binding exists in an outer scope,
+ // the associated variable has to be marked as potentially being accessed
+ // from inside of an inner with scope (the property may not be in the 'with'
+ // object).
+ if (var != NULL && proxy->is_assigned()) var->set_maybe_assigned();
+ *binding_kind = DYNAMIC_LOOKUP;
+ return NULL;
+ } else if (calls_sloppy_eval() && !is_script_scope() &&
+ name_can_be_shadowed) {
+ // A variable binding may have been found in an outer scope, but the current
+ // scope makes a sloppy 'eval' call, so the found variable may not be
+ // the correct one (the 'eval' may introduce a binding with the same name).
+ // In that case, change the lookup result to reflect this situation.
+ if (*binding_kind == BOUND) {
+ *binding_kind = BOUND_EVAL_SHADOWED;
+ } else if (*binding_kind == UNBOUND) {
+ *binding_kind = UNBOUND_EVAL_SHADOWED;
+ }
+ }
+ return var;
+}
+
+
+bool Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy,
+ AstNodeFactory* factory) {
+ DCHECK(info->script_scope()->is_script_scope());
+
+ // If the proxy is already resolved there's nothing to do
+ // (functions and consts may be resolved by the parser).
+ if (proxy->is_resolved()) return true;
+
+ // Otherwise, try to resolve the variable.
+ BindingKind binding_kind;
+ Variable* var = LookupRecursive(proxy, &binding_kind, factory);
+
+#ifdef DEBUG
+ if (info->script_is_native()) {
+ // To avoid polluting the global object in native scripts
+ // - Variables must not be allocated to the global scope.
+ CHECK_NOT_NULL(outer_scope());
+ // - Variables must be bound locally or unallocated.
+ if (BOUND != binding_kind) {
+ // The following variable name may be minified. If so, disable
+ // minification in js2c.py for better output.
+ Handle<String> name = proxy->raw_name()->string();
+ V8_Fatal(__FILE__, __LINE__, "Unbound variable: '%s' in native script.",
+ name->ToCString().get());
+ }
+ VariableLocation location = var->location();
+ CHECK(location == VariableLocation::LOCAL ||
+ location == VariableLocation::CONTEXT ||
+ location == VariableLocation::PARAMETER ||
+ location == VariableLocation::UNALLOCATED);
+ }
+#endif
+
+ switch (binding_kind) {
+ case BOUND:
+ // We found a variable binding.
+ if (is_strong(language_mode())) {
+ if (!CheckStrongModeDeclaration(proxy, var)) return false;
+ }
+ break;
+
+ case BOUND_EVAL_SHADOWED:
+ // We either found a variable binding that might be shadowed by eval or
+ // gave up on it (e.g. by encountering a local with the same in the outer
+ // scope which was not promoted to a context, this can happen if we use
+ // debugger to evaluate arbitrary expressions at a break point).
+ if (var->IsGlobalObjectProperty()) {
+ var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
+ } else if (var->is_dynamic()) {
+ var = NonLocal(proxy->raw_name(), DYNAMIC);
+ } else {
+ Variable* invalidated = var;
+ var = NonLocal(proxy->raw_name(), DYNAMIC_LOCAL);
+ var->set_local_if_not_shadowed(invalidated);
+ }
+ break;
+
+ case UNBOUND:
+ // No binding has been found. Declare a variable on the global object.
+ var = info->script_scope()->DeclareDynamicGlobal(proxy->raw_name());
+ break;
+
+ case UNBOUND_EVAL_SHADOWED:
+ // No binding has been found. But some scope makes a sloppy 'eval' call.
+ var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
+ break;
+
+ case DYNAMIC_LOOKUP:
+ // The variable could not be resolved statically.
+ var = NonLocal(proxy->raw_name(), DYNAMIC);
+ break;
+ }
+
+ DCHECK(var != NULL);
+ if (proxy->is_assigned()) var->set_maybe_assigned();
+
+ if (is_strong(language_mode())) {
+ // Record that the variable is referred to from strong mode. Also, record
+ // the position.
+ var->RecordStrongModeReference(proxy->position(), proxy->end_position());
+ }
+
+ proxy->BindTo(var);
+
+ return true;
+}
+
+
+bool Scope::CheckStrongModeDeclaration(VariableProxy* proxy, Variable* var) {
+ // Check for declaration-after use (for variables) in strong mode. Note that
+ // we can only do this in the case where we have seen the declaration. And we
+ // always allow referencing functions (for now).
+
+ // This might happen during lazy compilation; we don't keep track of
+ // initializer positions for variables stored in ScopeInfo, so we cannot check
+ // bindings against them. TODO(marja, rossberg): remove this hack.
+ if (var->initializer_position() == RelocInfo::kNoPosition) return true;
+
+ // Allow referencing the class name from methods of that class, even though
+ // the initializer position for class names is only after the body.
+ Scope* scope = this;
+ while (scope) {
+ if (scope->ClassVariableForMethod() == var) return true;
+ scope = scope->outer_scope();
+ }
+
+ // Allow references from methods to classes declared later, if we detect no
+ // problematic dependency cycles. Note that we can be inside multiple methods
+ // at the same time, and it's enough if we find one where the reference is
+ // allowed.
+ if (var->is_class() &&
+ var->AsClassVariable()->declaration_group_start() >= 0) {
+ for (scope = this; scope && scope != var->scope();
+ scope = scope->outer_scope()) {
+ ClassVariable* class_var = scope->ClassVariableForMethod();
+ // A method is referring to some other class, possibly declared
+ // later. Referring to a class declared earlier is always OK and covered
+ // by the code outside this if. Here we only need to allow special cases
+ // for referring to a class which is declared later.
+
+ // Referring to a class C declared later is OK under the following
+ // circumstances:
+
+ // 1. The class declarations are in a consecutive group with no other
+ // declarations or statements in between, and
+
+ // 2. There is no dependency cycle where the first edge is an
+ // initialization time dependency (computed property name or extends
+ // clause) from C to something that depends on this class directly or
+ // transitively.
+ if (class_var &&
+ class_var->declaration_group_start() ==
+ var->AsClassVariable()->declaration_group_start()) {
+ return true;
+ }
+
+ // TODO(marja,rossberg): implement the dependency cycle detection. Here we
+ // undershoot the target and allow referring to any class in the same
+ // consectuive declaration group.
+
+ // The cycle detection can work roughly like this: 1) detect init-time
+ // references here (they are free variables which are inside the class
+ // scope but not inside a method scope - no parser changes needed to
+ // detect them) 2) if we encounter an init-time reference here, allow it,
+ // but record it for a later dependency cycle check 3) also record
+ // non-init-time references here 4) after scope analysis is done, analyse
+ // the dependency cycles: an illegal cycle is one starting with an
+ // init-time reference and leading back to the starting point with either
+ // non-init-time and init-time references.
+ }
+ }
+
+ // If both the use and the declaration are inside an eval scope (possibly
+ // indirectly), or one of them is, we need to check whether they are inside
+ // the same eval scope or different ones.
+
+ // TODO(marja,rossberg): Detect errors across different evals (depends on the
+ // future of eval in strong mode).
+ const Scope* eval_for_use = NearestOuterEvalScope();
+ const Scope* eval_for_declaration = var->scope()->NearestOuterEvalScope();
+
+ if (proxy->position() != RelocInfo::kNoPosition &&
+ proxy->position() < var->initializer_position() && !var->is_function() &&
+ eval_for_use == eval_for_declaration) {
+ DCHECK(proxy->end_position() != RelocInfo::kNoPosition);
+ ReportMessage(proxy->position(), proxy->end_position(),
+ MessageTemplate::kStrongUseBeforeDeclaration,
+ proxy->raw_name());
+ return false;
+ }
+ return true;
+}
+
+
+ClassVariable* Scope::ClassVariableForMethod() const {
+ // TODO(marja, rossberg): This fails to find a class variable in the following
+ // cases:
+ // let A = class { ... }
+ // It needs to be investigated whether this causes any practical problems.
+ if (!is_function_scope()) return nullptr;
+ if (IsInObjectLiteral(function_kind_)) return nullptr;
+ if (!IsConciseMethod(function_kind_) && !IsClassConstructor(function_kind_) &&
+ !IsAccessorFunction(function_kind_)) {
+ return nullptr;
+ }
+ DCHECK_NOT_NULL(outer_scope_);
+ // The class scope contains at most one variable, the class name.
+ DCHECK(outer_scope_->variables_.occupancy() <= 1);
+ if (outer_scope_->variables_.occupancy() == 0) return nullptr;
+ VariableMap::Entry* p = outer_scope_->variables_.Start();
+ Variable* var = reinterpret_cast<Variable*>(p->value);
+ if (!var->is_class()) return nullptr;
+ return var->AsClassVariable();
+}
+
+
+bool Scope::ResolveVariablesRecursively(ParseInfo* info,
+ AstNodeFactory* factory) {
+ DCHECK(info->script_scope()->is_script_scope());
+
+ // Resolve unresolved variables for this scope.
+ for (int i = 0; i < unresolved_.length(); i++) {
+ if (!ResolveVariable(info, unresolved_[i], factory)) return false;
+ }
+
+ // Resolve unresolved variables for inner scopes.
+ for (int i = 0; i < inner_scopes_.length(); i++) {
+ if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
+ return false;
+ }
+
+ return true;
+}
+
+
+void Scope::PropagateScopeInfo(bool outer_scope_calls_sloppy_eval ) {
+ if (outer_scope_calls_sloppy_eval) {
+ outer_scope_calls_sloppy_eval_ = true;
+ }
+
+ bool calls_sloppy_eval =
+ this->calls_sloppy_eval() || outer_scope_calls_sloppy_eval_;
+ for (int i = 0; i < inner_scopes_.length(); i++) {
+ Scope* inner = inner_scopes_[i];
+ inner->PropagateScopeInfo(calls_sloppy_eval);
+ if (inner->scope_calls_eval_ || inner->inner_scope_calls_eval_) {
+ inner_scope_calls_eval_ = true;
+ }
+ if (inner->force_eager_compilation_) {
+ force_eager_compilation_ = true;
+ }
+ if (asm_module_ && inner->scope_type() == FUNCTION_SCOPE) {
+ inner->asm_function_ = true;
+ }
+ }
+}
+
+
+bool Scope::MustAllocate(Variable* var) {
+ // Give var a read/write use if there is a chance it might be accessed
+ // via an eval() call. This is only possible if the variable has a
+ // visible name.
+ if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
+ (var->has_forced_context_allocation() || scope_calls_eval_ ||
+ inner_scope_calls_eval_ || scope_contains_with_ || is_catch_scope() ||
+ is_block_scope() || is_module_scope() || is_script_scope())) {
+ var->set_is_used();
+ if (scope_calls_eval_ || inner_scope_calls_eval_) var->set_maybe_assigned();
+ }
+ // Global variables do not need to be allocated.
+ return !var->IsGlobalObjectProperty() && var->is_used();
+}
+
+
+bool Scope::MustAllocateInContext(Variable* var) {
+ // If var is accessed from an inner scope, or if there is a possibility
+ // that it might be accessed from the current or an inner scope (through
+ // an eval() call or a runtime with lookup), it must be allocated in the
+ // context.
+ //
+ // Exceptions: If the scope as a whole has forced context allocation, all
+ // variables will have context allocation, even temporaries. Otherwise
+ // temporary variables are always stack-allocated. Catch-bound variables are
+ // always context-allocated.
+ if (has_forced_context_allocation()) return true;
+ if (var->mode() == TEMPORARY) return false;
+ if (is_catch_scope() || is_module_scope()) return true;
+ if (is_script_scope() && IsLexicalVariableMode(var->mode())) return true;
+ return var->has_forced_context_allocation() ||
+ scope_calls_eval_ ||
+ inner_scope_calls_eval_ ||
+ scope_contains_with_;
+}
+
+
+bool Scope::HasArgumentsParameter(Isolate* isolate) {
+ for (int i = 0; i < params_.length(); i++) {
+ if (params_[i]->name().is_identical_to(
+ isolate->factory()->arguments_string())) {
+ return true;
+ }
+ }
+ return false;
+}
+
+
+void Scope::AllocateStackSlot(Variable* var) {
+ if (is_block_scope()) {
+ outer_scope()->DeclarationScope()->AllocateStackSlot(var);
+ } else {
+ var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
+ }
+}
+
+
+void Scope::AllocateHeapSlot(Variable* var) {
+ var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
+}
+
+
+void Scope::AllocateParameterLocals(Isolate* isolate) {
+ DCHECK(is_function_scope());
+ Variable* arguments = LookupLocal(ast_value_factory_->arguments_string());
+ // Functions have 'arguments' declared implicitly in all non arrow functions.
+ DCHECK(arguments != nullptr || is_arrow_scope());
+
+ bool uses_sloppy_arguments = false;
+
+ if (arguments != nullptr && MustAllocate(arguments) &&
+ !HasArgumentsParameter(isolate)) {
+ // 'arguments' is used. Unless there is also a parameter called
+ // 'arguments', we must be conservative and allocate all parameters to
+ // the context assuming they will be captured by the arguments object.
+ // If we have a parameter named 'arguments', a (new) value is always
+ // assigned to it via the function invocation. Then 'arguments' denotes
+ // that specific parameter value and cannot be used to access the
+ // parameters, which is why we don't need to allocate an arguments
+ // object in that case.
+
+ // We are using 'arguments'. Tell the code generator that is needs to
+ // allocate the arguments object by setting 'arguments_'.
+ arguments_ = arguments;
+
+ // In strict mode 'arguments' does not alias formal parameters.
+ // Therefore in strict mode we allocate parameters as if 'arguments'
+ // were not used.
+ // If the parameter list is not simple, arguments isn't sloppy either.
+ uses_sloppy_arguments =
+ is_sloppy(language_mode()) && has_simple_parameters();
+ }
+
+ if (rest_parameter_ && !MustAllocate(rest_parameter_)) {
+ rest_parameter_ = NULL;
+ }
+
+ // The same parameter may occur multiple times in the parameters_ list.
+ // If it does, and if it is not copied into the context object, it must
+ // receive the highest parameter index for that parameter; thus iteration
+ // order is relevant!
+ for (int i = params_.length() - 1; i >= 0; --i) {
+ Variable* var = params_[i];
+ if (var == rest_parameter_) continue;
+
+ DCHECK(var->scope() == this);
+ if (uses_sloppy_arguments || has_forced_context_allocation()) {
+ // Force context allocation of the parameter.
+ var->ForceContextAllocation();
+ }
+ AllocateParameter(var, i);
+ }
+}
+
+
+void Scope::AllocateParameter(Variable* var, int index) {
+ if (MustAllocate(var)) {
+ if (MustAllocateInContext(var)) {
+ DCHECK(var->IsUnallocated() || var->IsContextSlot());
+ if (var->IsUnallocated()) {
+ AllocateHeapSlot(var);
+ }
+ } else {
+ DCHECK(var->IsUnallocated() || var->IsParameter());
+ if (var->IsUnallocated()) {
+ var->AllocateTo(VariableLocation::PARAMETER, index);
+ }
+ }
+ } else {
+ DCHECK(!var->IsGlobalSlot());
+ }
+}
+
+
+void Scope::AllocateReceiver() {
+ DCHECK_NOT_NULL(receiver());
+ DCHECK_EQ(receiver()->scope(), this);
+
+ if (has_forced_context_allocation()) {
+ // Force context allocation of the receiver.
+ receiver()->ForceContextAllocation();
+ }
+ AllocateParameter(receiver(), -1);
+}
+
+
+void Scope::AllocateNonParameterLocal(Isolate* isolate, Variable* var) {
+ DCHECK(var->scope() == this);
+ DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
+ !var->IsStackLocal());
+ if (var->IsUnallocated() && MustAllocate(var)) {
+ if (MustAllocateInContext(var)) {
+ AllocateHeapSlot(var);
+ } else {
+ AllocateStackSlot(var);
+ }
+ }
+}
+
+
+void Scope::AllocateDeclaredGlobal(Isolate* isolate, Variable* var) {
+ DCHECK(var->scope() == this);
+ DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
+ !var->IsStackLocal());
+ if (var->IsUnallocated()) {
+ if (var->IsStaticGlobalObjectProperty()) {
+ DCHECK_EQ(-1, var->index());
+ DCHECK(var->name()->IsString());
+ var->AllocateTo(VariableLocation::GLOBAL, num_heap_slots_++);
+ num_global_slots_++;
+ } else {
+ // There must be only DYNAMIC_GLOBAL in the script scope.
+ DCHECK(!is_script_scope() || DYNAMIC_GLOBAL == var->mode());
+ }
+ }
+}
+
+
+void Scope::AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate) {
+ // All variables that have no rewrite yet are non-parameter locals.
+ for (int i = 0; i < temps_.length(); i++) {
+ AllocateNonParameterLocal(isolate, temps_[i]);
+ }
+
+ ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
+ for (VariableMap::Entry* p = variables_.Start();
+ p != NULL;
+ p = variables_.Next(p)) {
+ Variable* var = reinterpret_cast<Variable*>(p->value);
+ vars.Add(VarAndOrder(var, p->order), zone());
+ }
+ vars.Sort(VarAndOrder::Compare);
+ int var_count = vars.length();
+ for (int i = 0; i < var_count; i++) {
+ AllocateNonParameterLocal(isolate, vars[i].var());
+ }
+
+ if (FLAG_global_var_shortcuts) {
+ for (int i = 0; i < var_count; i++) {
+ AllocateDeclaredGlobal(isolate, vars[i].var());
+ }
+ }
+
+ // For now, function_ must be allocated at the very end. If it gets
+ // allocated in the context, it must be the last slot in the context,
+ // because of the current ScopeInfo implementation (see
+ // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
+ if (function_ != nullptr) {
+ AllocateNonParameterLocal(isolate, function_->proxy()->var());
+ }
+
+ if (rest_parameter_ != nullptr) {
+ AllocateNonParameterLocal(isolate, rest_parameter_);
+ }
+
+ Variable* new_target_var =
+ LookupLocal(ast_value_factory_->new_target_string());
+ if (new_target_var != nullptr && MustAllocate(new_target_var)) {
+ new_target_ = new_target_var;
+ }
+
+ Variable* this_function_var =
+ LookupLocal(ast_value_factory_->this_function_string());
+ if (this_function_var != nullptr && MustAllocate(this_function_var)) {
+ this_function_ = this_function_var;
+ }
+}
+
+
+void Scope::AllocateVariablesRecursively(Isolate* isolate) {
+ if (!already_resolved()) {
+ num_stack_slots_ = 0;
+ }
+ // Allocate variables for inner scopes.
+ for (int i = 0; i < inner_scopes_.length(); i++) {
+ inner_scopes_[i]->AllocateVariablesRecursively(isolate);
+ }
+
+ // If scope is already resolved, we still need to allocate
+ // variables in inner scopes which might not had been resolved yet.
+ if (already_resolved()) return;
+ // The number of slots required for variables.
+ num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
+
+ // Allocate variables for this scope.
+ // Parameters must be allocated first, if any.
+ if (is_function_scope()) AllocateParameterLocals(isolate);
+ if (has_this_declaration()) AllocateReceiver();
+ AllocateNonParameterLocalsAndDeclaredGlobals(isolate);
+
+ // Force allocation of a context for this scope if necessary. For a 'with'
+ // scope and for a function scope that makes an 'eval' call we need a context,
+ // even if no local variables were statically allocated in the scope.
+ // Likewise for modules.
+ bool must_have_context =
+ is_with_scope() || is_module_scope() ||
+ (is_function_scope() && calls_sloppy_eval()) ||
+ (is_block_scope() && is_declaration_scope() && calls_sloppy_eval());
+
+ // If we didn't allocate any locals in the local context, then we only
+ // need the minimal number of slots if we must have a context.
+ if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
+ num_heap_slots_ = 0;
+ }
+
+ // Allocation done.
+ DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
+}
+
+
+int Scope::StackLocalCount() const {
+ return num_stack_slots() -
+ (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
+}
+
+
+int Scope::ContextLocalCount() const {
+ if (num_heap_slots() == 0) return 0;
+ bool is_function_var_in_context =
+ function_ != NULL && function_->proxy()->var()->IsContextSlot();
+ return num_heap_slots() - Context::MIN_CONTEXT_SLOTS - num_global_slots() -
+ (is_function_var_in_context ? 1 : 0);
+}
+
+
+int Scope::ContextGlobalCount() const { return num_global_slots(); }
+
+} // namespace internal
+} // namespace v8