summaryrefslogtreecommitdiff
path: root/deps/icu-small/source/i18n/double-conversion-bignum-dtoa.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'deps/icu-small/source/i18n/double-conversion-bignum-dtoa.cpp')
-rw-r--r--deps/icu-small/source/i18n/double-conversion-bignum-dtoa.cpp40
1 files changed, 20 insertions, 20 deletions
diff --git a/deps/icu-small/source/i18n/double-conversion-bignum-dtoa.cpp b/deps/icu-small/source/i18n/double-conversion-bignum-dtoa.cpp
index 2add399f87..a95910df04 100644
--- a/deps/icu-small/source/i18n/double-conversion-bignum-dtoa.cpp
+++ b/deps/icu-small/source/i18n/double-conversion-bignum-dtoa.cpp
@@ -49,7 +49,7 @@ U_NAMESPACE_BEGIN
namespace double_conversion {
static int NormalizedExponent(uint64_t significand, int exponent) {
- ASSERT(significand != 0);
+ DOUBLE_CONVERSION_ASSERT(significand != 0);
while ((significand & Double::kHiddenBit) == 0) {
significand = significand << 1;
exponent = exponent - 1;
@@ -90,26 +90,26 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
// Generates 'requested_digits' after the decimal point.
static void BignumToFixed(int requested_digits, int* decimal_point,
Bignum* numerator, Bignum* denominator,
- Vector<char>(buffer), int* length);
+ Vector<char> buffer, int* length);
// Generates 'count' digits of numerator/denominator.
// Once 'count' digits have been produced rounds the result depending on the
// remainder (remainders of exactly .5 round upwards). Might update the
// decimal_point when rounding up (for example for 0.9999).
static void GenerateCountedDigits(int count, int* decimal_point,
Bignum* numerator, Bignum* denominator,
- Vector<char>(buffer), int* length);
+ Vector<char> buffer, int* length);
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
Vector<char> buffer, int* length, int* decimal_point) {
- ASSERT(v > 0);
- ASSERT(!Double(v).IsSpecial());
+ DOUBLE_CONVERSION_ASSERT(v > 0);
+ DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial());
uint64_t significand;
int exponent;
bool lower_boundary_is_closer;
if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
float f = static_cast<float>(v);
- ASSERT(f == v);
+ DOUBLE_CONVERSION_ASSERT(f == v);
significand = Single(f).Significand();
exponent = Single(f).Exponent();
lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
@@ -148,7 +148,7 @@ void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
// 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
// The maximum double is 1.7976931348623157e308 which needs fewer than
// 308*4 binary digits.
- ASSERT(Bignum::kMaxSignificantBits >= 324*4);
+ DOUBLE_CONVERSION_ASSERT(Bignum::kMaxSignificantBits >= 324*4);
InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
estimated_power, need_boundary_deltas,
&numerator, &denominator,
@@ -177,7 +177,7 @@ void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
buffer, length);
break;
default:
- UNREACHABLE();
+ DOUBLE_CONVERSION_UNREACHABLE();
}
buffer[*length] = '\0';
}
@@ -209,7 +209,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
for (;;) {
uint16_t digit;
digit = numerator->DivideModuloIntBignum(*denominator);
- ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
+ DOUBLE_CONVERSION_ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
// digit = numerator / denominator (integer division).
// numerator = numerator % denominator.
buffer[(*length)++] = static_cast<char>(digit + '0');
@@ -255,7 +255,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
// loop would have stopped earlier.
// We still have an assert here in case the preconditions were not
// satisfied.
- ASSERT(buffer[(*length) - 1] != '9');
+ DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');
buffer[(*length) - 1]++;
} else {
// Halfway case.
@@ -266,7 +266,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
if ((buffer[(*length) - 1] - '0') % 2 == 0) {
// Round down => Do nothing.
} else {
- ASSERT(buffer[(*length) - 1] != '9');
+ DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');
buffer[(*length) - 1]++;
}
}
@@ -278,9 +278,9 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
// Round up.
// Note again that the last digit could not be '9' since this would have
// stopped the loop earlier.
- // We still have an ASSERT here, in case the preconditions were not
+ // We still have an DOUBLE_CONVERSION_ASSERT here, in case the preconditions were not
// satisfied.
- ASSERT(buffer[(*length) -1] != '9');
+ DOUBLE_CONVERSION_ASSERT(buffer[(*length) -1] != '9');
buffer[(*length) - 1]++;
return;
}
@@ -297,11 +297,11 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
static void GenerateCountedDigits(int count, int* decimal_point,
Bignum* numerator, Bignum* denominator,
Vector<char> buffer, int* length) {
- ASSERT(count >= 0);
+ DOUBLE_CONVERSION_ASSERT(count >= 0);
for (int i = 0; i < count - 1; ++i) {
uint16_t digit;
digit = numerator->DivideModuloIntBignum(*denominator);
- ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
+ DOUBLE_CONVERSION_ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
// digit = numerator / denominator (integer division).
// numerator = numerator % denominator.
buffer[i] = static_cast<char>(digit + '0');
@@ -314,7 +314,7 @@ static void GenerateCountedDigits(int count, int* decimal_point,
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
digit++;
}
- ASSERT(digit <= 10);
+ DOUBLE_CONVERSION_ASSERT(digit <= 10);
buffer[count - 1] = static_cast<char>(digit + '0');
// Correct bad digits (in case we had a sequence of '9's). Propagate the
// carry until we hat a non-'9' or til we reach the first digit.
@@ -339,7 +339,7 @@ static void GenerateCountedDigits(int count, int* decimal_point,
// Input verifies: 1 <= (numerator + delta) / denominator < 10.
static void BignumToFixed(int requested_digits, int* decimal_point,
Bignum* numerator, Bignum* denominator,
- Vector<char>(buffer), int* length) {
+ Vector<char> buffer, int* length) {
// Note that we have to look at more than just the requested_digits, since
// a number could be rounded up. Example: v=0.5 with requested_digits=0.
// Even though the power of v equals 0 we can't just stop here.
@@ -355,7 +355,7 @@ static void BignumToFixed(int requested_digits, int* decimal_point,
} else if (-(*decimal_point) == requested_digits) {
// We only need to verify if the number rounds down or up.
// Ex: 0.04 and 0.06 with requested_digits == 1.
- ASSERT(*decimal_point == -requested_digits);
+ DOUBLE_CONVERSION_ASSERT(*decimal_point == -requested_digits);
// Initially the fraction lies in range (1, 10]. Multiply the denominator
// by 10 so that we can compare more easily.
denominator->Times10();
@@ -434,7 +434,7 @@ static void InitialScaledStartValuesPositiveExponent(
Bignum* numerator, Bignum* denominator,
Bignum* delta_minus, Bignum* delta_plus) {
// A positive exponent implies a positive power.
- ASSERT(estimated_power >= 0);
+ DOUBLE_CONVERSION_ASSERT(estimated_power >= 0);
// Since the estimated_power is positive we simply multiply the denominator
// by 10^estimated_power.
@@ -520,7 +520,7 @@ static void InitialScaledStartValuesNegativeExponentNegativePower(
// numerator = v * 10^-estimated_power * 2 * 2^-exponent.
// Remember: numerator has been abused as power_ten. So no need to assign it
// to itself.
- ASSERT(numerator == power_ten);
+ DOUBLE_CONVERSION_ASSERT(numerator == power_ten);
numerator->MultiplyByUInt64(significand);
// denominator = 2 * 2^-exponent with exponent < 0.