summaryrefslogtreecommitdiff
path: root/deps/icu-small/source/common/dictbe.cpp
diff options
context:
space:
mode:
authorSteven R. Loomis <srloomis@us.ibm.com>2016-04-08 19:03:16 -0700
committerSteven R. Loomis <srloomis@us.ibm.com>2016-05-04 16:02:45 -0700
commit2bbd1cd6004b3e1467e30d860385a85dad01fe24 (patch)
treeb812046e89e46e0de09bc858e0b128787cbc0632 /deps/icu-small/source/common/dictbe.cpp
parentcd752e8463fad7c4805951d9ba47cd2f39691f2d (diff)
downloadandroid-node-v8-2bbd1cd6004b3e1467e30d860385a85dad01fe24.tar.gz
android-node-v8-2bbd1cd6004b3e1467e30d860385a85dad01fe24.tar.bz2
android-node-v8-2bbd1cd6004b3e1467e30d860385a85dad01fe24.zip
deps: Intl: Check in "small-icu" 57.1
* this commit has "small" ICU 57.1. See other related commit for tools to generate this commit. Fixes: https://github.com/nodejs/node/issues/3476 PR-URL: https://github.com/nodejs/node/pull/6088 Reviewed-By: James M Snell <jasnell@gmail.com>
Diffstat (limited to 'deps/icu-small/source/common/dictbe.cpp')
-rw-r--r--deps/icu-small/source/common/dictbe.cpp1402
1 files changed, 1402 insertions, 0 deletions
diff --git a/deps/icu-small/source/common/dictbe.cpp b/deps/icu-small/source/common/dictbe.cpp
new file mode 100644
index 0000000000..00847aa9f2
--- /dev/null
+++ b/deps/icu-small/source/common/dictbe.cpp
@@ -0,0 +1,1402 @@
+/**
+ *******************************************************************************
+ * Copyright (C) 2006-2016, International Business Machines Corporation
+ * and others. All Rights Reserved.
+ *******************************************************************************
+ */
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_BREAK_ITERATION
+
+#include "brkeng.h"
+#include "dictbe.h"
+#include "unicode/uniset.h"
+#include "unicode/chariter.h"
+#include "unicode/ubrk.h"
+#include "uvectr32.h"
+#include "uvector.h"
+#include "uassert.h"
+#include "unicode/normlzr.h"
+#include "cmemory.h"
+#include "dictionarydata.h"
+
+U_NAMESPACE_BEGIN
+
+/*
+ ******************************************************************
+ */
+
+DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) {
+ fTypes = breakTypes;
+}
+
+DictionaryBreakEngine::~DictionaryBreakEngine() {
+}
+
+UBool
+DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const {
+ return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)
+ && fSet.contains(c));
+}
+
+int32_t
+DictionaryBreakEngine::findBreaks( UText *text,
+ int32_t startPos,
+ int32_t endPos,
+ UBool reverse,
+ int32_t breakType,
+ UStack &foundBreaks ) const {
+ int32_t result = 0;
+
+ // Find the span of characters included in the set.
+ // The span to break begins at the current position in the text, and
+ // extends towards the start or end of the text, depending on 'reverse'.
+
+ int32_t start = (int32_t)utext_getNativeIndex(text);
+ int32_t current;
+ int32_t rangeStart;
+ int32_t rangeEnd;
+ UChar32 c = utext_current32(text);
+ if (reverse) {
+ UBool isDict = fSet.contains(c);
+ while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) {
+ c = utext_previous32(text);
+ isDict = fSet.contains(c);
+ }
+ if (current < startPos) {
+ rangeStart = startPos;
+ } else {
+ rangeStart = current;
+ if (!isDict) {
+ utext_next32(text);
+ rangeStart = (int32_t)utext_getNativeIndex(text);
+ }
+ }
+ // rangeEnd = start + 1;
+ utext_setNativeIndex(text, start);
+ utext_next32(text);
+ rangeEnd = (int32_t)utext_getNativeIndex(text);
+ }
+ else {
+ while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
+ utext_next32(text); // TODO: recast loop for postincrement
+ c = utext_current32(text);
+ }
+ rangeStart = start;
+ rangeEnd = current;
+ }
+ if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) {
+ result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks);
+ utext_setNativeIndex(text, current);
+ }
+
+ return result;
+}
+
+void
+DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
+ fSet = set;
+ // Compact for caching
+ fSet.compact();
+}
+
+/*
+ ******************************************************************
+ * PossibleWord
+ */
+
+// Helper class for improving readability of the Thai/Lao/Khmer word break
+// algorithm. The implementation is completely inline.
+
+// List size, limited by the maximum number of words in the dictionary
+// that form a nested sequence.
+static const int32_t POSSIBLE_WORD_LIST_MAX = 20;
+
+class PossibleWord {
+private:
+ // list of word candidate lengths, in increasing length order
+ // TODO: bytes would be sufficient for word lengths.
+ int32_t count; // Count of candidates
+ int32_t prefix; // The longest match with a dictionary word
+ int32_t offset; // Offset in the text of these candidates
+ int32_t mark; // The preferred candidate's offset
+ int32_t current; // The candidate we're currently looking at
+ int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units.
+ int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points.
+
+public:
+ PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {};
+ ~PossibleWord() {};
+
+ // Fill the list of candidates if needed, select the longest, and return the number found
+ int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
+
+ // Select the currently marked candidate, point after it in the text, and invalidate self
+ int32_t acceptMarked( UText *text );
+
+ // Back up from the current candidate to the next shorter one; return TRUE if that exists
+ // and point the text after it
+ UBool backUp( UText *text );
+
+ // Return the longest prefix this candidate location shares with a dictionary word
+ // Return value is in code points.
+ int32_t longestPrefix() { return prefix; };
+
+ // Mark the current candidate as the one we like
+ void markCurrent() { mark = current; };
+
+ // Get length in code points of the marked word.
+ int32_t markedCPLength() { return cpLengths[mark]; };
+};
+
+
+int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
+ // TODO: If getIndex is too slow, use offset < 0 and add discardAll()
+ int32_t start = (int32_t)utext_getNativeIndex(text);
+ if (start != offset) {
+ offset = start;
+ count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix);
+ // Dictionary leaves text after longest prefix, not longest word. Back up.
+ if (count <= 0) {
+ utext_setNativeIndex(text, start);
+ }
+ }
+ if (count > 0) {
+ utext_setNativeIndex(text, start+cuLengths[count-1]);
+ }
+ current = count-1;
+ mark = current;
+ return count;
+}
+
+int32_t
+PossibleWord::acceptMarked( UText *text ) {
+ utext_setNativeIndex(text, offset + cuLengths[mark]);
+ return cuLengths[mark];
+}
+
+
+UBool
+PossibleWord::backUp( UText *text ) {
+ if (current > 0) {
+ utext_setNativeIndex(text, offset + cuLengths[--current]);
+ return TRUE;
+ }
+ return FALSE;
+}
+
+/*
+ ******************************************************************
+ * ThaiBreakEngine
+ */
+
+// How many words in a row are "good enough"?
+static const int32_t THAI_LOOKAHEAD = 3;
+
+// Will not combine a non-word with a preceding dictionary word longer than this
+static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;
+
+// Will not combine a non-word that shares at least this much prefix with a
+// dictionary word, with a preceding word
+static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;
+
+// Ellision character
+static const int32_t THAI_PAIYANNOI = 0x0E2F;
+
+// Repeat character
+static const int32_t THAI_MAIYAMOK = 0x0E46;
+
+// Minimum word size
+static const int32_t THAI_MIN_WORD = 2;
+
+// Minimum number of characters for two words
+static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;
+
+ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
+ : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
+ fDictionary(adoptDictionary)
+{
+ fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status);
+ if (U_SUCCESS(status)) {
+ setCharacters(fThaiWordSet);
+ }
+ fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
+ fMarkSet.add(0x0020);
+ fEndWordSet = fThaiWordSet;
+ fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
+ fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
+ fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
+ fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
+ fSuffixSet.add(THAI_PAIYANNOI);
+ fSuffixSet.add(THAI_MAIYAMOK);
+
+ // Compact for caching.
+ fMarkSet.compact();
+ fEndWordSet.compact();
+ fBeginWordSet.compact();
+ fSuffixSet.compact();
+}
+
+ThaiBreakEngine::~ThaiBreakEngine() {
+ delete fDictionary;
+}
+
+int32_t
+ThaiBreakEngine::divideUpDictionaryRange( UText *text,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ utext_setNativeIndex(text, rangeStart);
+ utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
+ if (utext_getNativeIndex(text) >= rangeEnd) {
+ return 0; // Not enough characters for two words
+ }
+ utext_setNativeIndex(text, rangeStart);
+
+
+ uint32_t wordsFound = 0;
+ int32_t cpWordLength = 0; // Word Length in Code Points.
+ int32_t cuWordLength = 0; // Word length in code units (UText native indexing)
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ PossibleWord words[THAI_LOOKAHEAD];
+
+ utext_setNativeIndex(text, rangeStart);
+
+ while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
+ cpWordLength = 0;
+ cuWordLength = 0;
+
+ // Look for candidate words at the current position
+ int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+
+ // If we found exactly one, use that
+ if (candidates == 1) {
+ cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+ // If there was more than one, see which one can take us forward the most words
+ else if (candidates > 1) {
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+ do {
+ int32_t wordsMatched = 1;
+ if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
+ if (wordsMatched < 2) {
+ // Followed by another dictionary word; mark first word as a good candidate
+ words[wordsFound%THAI_LOOKAHEAD].markCurrent();
+ wordsMatched = 2;
+ }
+
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+
+ // See if any of the possible second words is followed by a third word
+ do {
+ // If we find a third word, stop right away
+ if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
+ words[wordsFound % THAI_LOOKAHEAD].markCurrent();
+ goto foundBest;
+ }
+ }
+ while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
+ }
+ }
+ while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
+foundBest:
+ // Set UText position to after the accepted word.
+ cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+
+ // We come here after having either found a word or not. We look ahead to the
+ // next word. If it's not a dictionary word, we will combine it with the word we
+ // just found (if there is one), but only if the preceding word does not exceed
+ // the threshold.
+ // The text iterator should now be positioned at the end of the word we found.
+
+ UChar32 uc = 0;
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
+ // if it is a dictionary word, do nothing. If it isn't, then if there is
+ // no preceding word, or the non-word shares less than the minimum threshold
+ // of characters with a dictionary word, then scan to resynchronize
+ if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && (cuWordLength == 0
+ || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
+ // Look for a plausible word boundary
+ int32_t remaining = rangeEnd - (current+cuWordLength);
+ UChar32 pc;
+ int32_t chars = 0;
+ for (;;) {
+ int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
+ pc = utext_next32(text);
+ int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
+ chars += pcSize;
+ remaining -= pcSize;
+ if (remaining <= 0) {
+ break;
+ }
+ uc = utext_current32(text);
+ if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
+ // Maybe. See if it's in the dictionary.
+ // NOTE: In the original Apple code, checked that the next
+ // two characters after uc were not 0x0E4C THANTHAKHAT before
+ // checking the dictionary. That is just a performance filter,
+ // but it's not clear it's faster than checking the trie.
+ int32_t candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current + cuWordLength + chars);
+ if (candidates > 0) {
+ break;
+ }
+ }
+ }
+
+ // Bump the word count if there wasn't already one
+ if (cuWordLength <= 0) {
+ wordsFound += 1;
+ }
+
+ // Update the length with the passed-over characters
+ cuWordLength += chars;
+ }
+ else {
+ // Back up to where we were for next iteration
+ utext_setNativeIndex(text, current+cuWordLength);
+ }
+ }
+
+ // Never stop before a combining mark.
+ int32_t currPos;
+ while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
+ utext_next32(text);
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ }
+
+ // Look ahead for possible suffixes if a dictionary word does not follow.
+ // We do this in code rather than using a rule so that the heuristic
+ // resynch continues to function. For example, one of the suffix characters
+ // could be a typo in the middle of a word.
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) {
+ if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && fSuffixSet.contains(uc = utext_current32(text))) {
+ if (uc == THAI_PAIYANNOI) {
+ if (!fSuffixSet.contains(utext_previous32(text))) {
+ // Skip over previous end and PAIYANNOI
+ utext_next32(text);
+ int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text);
+ utext_next32(text);
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word
+ uc = utext_current32(text); // Fetch next character
+ }
+ else {
+ // Restore prior position
+ utext_next32(text);
+ }
+ }
+ if (uc == THAI_MAIYAMOK) {
+ if (utext_previous32(text) != THAI_MAIYAMOK) {
+ // Skip over previous end and MAIYAMOK
+ utext_next32(text);
+ int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text);
+ utext_next32(text);
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word
+ }
+ else {
+ // Restore prior position
+ utext_next32(text);
+ }
+ }
+ }
+ else {
+ utext_setNativeIndex(text, current+cuWordLength);
+ }
+ }
+
+ // Did we find a word on this iteration? If so, push it on the break stack
+ if (cuWordLength > 0) {
+ foundBreaks.push((current+cuWordLength), status);
+ }
+ }
+
+ // Don't return a break for the end of the dictionary range if there is one there.
+ if (foundBreaks.peeki() >= rangeEnd) {
+ (void) foundBreaks.popi();
+ wordsFound -= 1;
+ }
+
+ return wordsFound;
+}
+
+/*
+ ******************************************************************
+ * LaoBreakEngine
+ */
+
+// How many words in a row are "good enough"?
+static const int32_t LAO_LOOKAHEAD = 3;
+
+// Will not combine a non-word with a preceding dictionary word longer than this
+static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;
+
+// Will not combine a non-word that shares at least this much prefix with a
+// dictionary word, with a preceding word
+static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;
+
+// Minimum word size
+static const int32_t LAO_MIN_WORD = 2;
+
+// Minimum number of characters for two words
+static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;
+
+LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
+ : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
+ fDictionary(adoptDictionary)
+{
+ fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status);
+ if (U_SUCCESS(status)) {
+ setCharacters(fLaoWordSet);
+ }
+ fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status);
+ fMarkSet.add(0x0020);
+ fEndWordSet = fLaoWordSet;
+ fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels
+ fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters)
+ fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent)
+ fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels
+
+ // Compact for caching.
+ fMarkSet.compact();
+ fEndWordSet.compact();
+ fBeginWordSet.compact();
+}
+
+LaoBreakEngine::~LaoBreakEngine() {
+ delete fDictionary;
+}
+
+int32_t
+LaoBreakEngine::divideUpDictionaryRange( UText *text,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) {
+ return 0; // Not enough characters for two words
+ }
+
+ uint32_t wordsFound = 0;
+ int32_t cpWordLength = 0;
+ int32_t cuWordLength = 0;
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ PossibleWord words[LAO_LOOKAHEAD];
+
+ utext_setNativeIndex(text, rangeStart);
+
+ while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
+ cuWordLength = 0;
+ cpWordLength = 0;
+
+ // Look for candidate words at the current position
+ int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+
+ // If we found exactly one, use that
+ if (candidates == 1) {
+ cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+ // If there was more than one, see which one can take us forward the most words
+ else if (candidates > 1) {
+ // If we're already at the end of the range, we're done
+ if (utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+ do {
+ int32_t wordsMatched = 1;
+ if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
+ if (wordsMatched < 2) {
+ // Followed by another dictionary word; mark first word as a good candidate
+ words[wordsFound%LAO_LOOKAHEAD].markCurrent();
+ wordsMatched = 2;
+ }
+
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+
+ // See if any of the possible second words is followed by a third word
+ do {
+ // If we find a third word, stop right away
+ if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
+ words[wordsFound % LAO_LOOKAHEAD].markCurrent();
+ goto foundBest;
+ }
+ }
+ while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text));
+ }
+ }
+ while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
+foundBest:
+ cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+
+ // We come here after having either found a word or not. We look ahead to the
+ // next word. If it's not a dictionary word, we will combine it withe the word we
+ // just found (if there is one), but only if the preceding word does not exceed
+ // the threshold.
+ // The text iterator should now be positioned at the end of the word we found.
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
+ // if it is a dictionary word, do nothing. If it isn't, then if there is
+ // no preceding word, or the non-word shares less than the minimum threshold
+ // of characters with a dictionary word, then scan to resynchronize
+ if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && (cuWordLength == 0
+ || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
+ // Look for a plausible word boundary
+ int32_t remaining = rangeEnd - (current + cuWordLength);
+ UChar32 pc;
+ UChar32 uc;
+ int32_t chars = 0;
+ for (;;) {
+ int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
+ pc = utext_next32(text);
+ int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
+ chars += pcSize;
+ remaining -= pcSize;
+ if (remaining <= 0) {
+ break;
+ }
+ uc = utext_current32(text);
+ if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
+ // Maybe. See if it's in the dictionary.
+ // TODO: this looks iffy; compare with old code.
+ int32_t candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current + cuWordLength + chars);
+ if (candidates > 0) {
+ break;
+ }
+ }
+ }
+
+ // Bump the word count if there wasn't already one
+ if (cuWordLength <= 0) {
+ wordsFound += 1;
+ }
+
+ // Update the length with the passed-over characters
+ cuWordLength += chars;
+ }
+ else {
+ // Back up to where we were for next iteration
+ utext_setNativeIndex(text, current + cuWordLength);
+ }
+ }
+
+ // Never stop before a combining mark.
+ int32_t currPos;
+ while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
+ utext_next32(text);
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ }
+
+ // Look ahead for possible suffixes if a dictionary word does not follow.
+ // We do this in code rather than using a rule so that the heuristic
+ // resynch continues to function. For example, one of the suffix characters
+ // could be a typo in the middle of a word.
+ // NOT CURRENTLY APPLICABLE TO LAO
+
+ // Did we find a word on this iteration? If so, push it on the break stack
+ if (cuWordLength > 0) {
+ foundBreaks.push((current+cuWordLength), status);
+ }
+ }
+
+ // Don't return a break for the end of the dictionary range if there is one there.
+ if (foundBreaks.peeki() >= rangeEnd) {
+ (void) foundBreaks.popi();
+ wordsFound -= 1;
+ }
+
+ return wordsFound;
+}
+
+/*
+ ******************************************************************
+ * BurmeseBreakEngine
+ */
+
+// How many words in a row are "good enough"?
+static const int32_t BURMESE_LOOKAHEAD = 3;
+
+// Will not combine a non-word with a preceding dictionary word longer than this
+static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3;
+
+// Will not combine a non-word that shares at least this much prefix with a
+// dictionary word, with a preceding word
+static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3;
+
+// Minimum word size
+static const int32_t BURMESE_MIN_WORD = 2;
+
+// Minimum number of characters for two words
+static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2;
+
+BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
+ : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
+ fDictionary(adoptDictionary)
+{
+ fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status);
+ if (U_SUCCESS(status)) {
+ setCharacters(fBurmeseWordSet);
+ }
+ fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status);
+ fMarkSet.add(0x0020);
+ fEndWordSet = fBurmeseWordSet;
+ fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels
+
+ // Compact for caching.
+ fMarkSet.compact();
+ fEndWordSet.compact();
+ fBeginWordSet.compact();
+}
+
+BurmeseBreakEngine::~BurmeseBreakEngine() {
+ delete fDictionary;
+}
+
+int32_t
+BurmeseBreakEngine::divideUpDictionaryRange( UText *text,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) {
+ return 0; // Not enough characters for two words
+ }
+
+ uint32_t wordsFound = 0;
+ int32_t cpWordLength = 0;
+ int32_t cuWordLength = 0;
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ PossibleWord words[BURMESE_LOOKAHEAD];
+
+ utext_setNativeIndex(text, rangeStart);
+
+ while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
+ cuWordLength = 0;
+ cpWordLength = 0;
+
+ // Look for candidate words at the current position
+ int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+
+ // If we found exactly one, use that
+ if (candidates == 1) {
+ cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+ // If there was more than one, see which one can take us forward the most words
+ else if (candidates > 1) {
+ // If we're already at the end of the range, we're done
+ if (utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+ do {
+ int32_t wordsMatched = 1;
+ if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
+ if (wordsMatched < 2) {
+ // Followed by another dictionary word; mark first word as a good candidate
+ words[wordsFound%BURMESE_LOOKAHEAD].markCurrent();
+ wordsMatched = 2;
+ }
+
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+
+ // See if any of the possible second words is followed by a third word
+ do {
+ // If we find a third word, stop right away
+ if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
+ words[wordsFound % BURMESE_LOOKAHEAD].markCurrent();
+ goto foundBest;
+ }
+ }
+ while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text));
+ }
+ }
+ while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text));
+foundBest:
+ cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+
+ // We come here after having either found a word or not. We look ahead to the
+ // next word. If it's not a dictionary word, we will combine it withe the word we
+ // just found (if there is one), but only if the preceding word does not exceed
+ // the threshold.
+ // The text iterator should now be positioned at the end of the word we found.
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) {
+ // if it is a dictionary word, do nothing. If it isn't, then if there is
+ // no preceding word, or the non-word shares less than the minimum threshold
+ // of characters with a dictionary word, then scan to resynchronize
+ if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && (cuWordLength == 0
+ || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) {
+ // Look for a plausible word boundary
+ int32_t remaining = rangeEnd - (current + cuWordLength);
+ UChar32 pc;
+ UChar32 uc;
+ int32_t chars = 0;
+ for (;;) {
+ int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
+ pc = utext_next32(text);
+ int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
+ chars += pcSize;
+ remaining -= pcSize;
+ if (remaining <= 0) {
+ break;
+ }
+ uc = utext_current32(text);
+ if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
+ // Maybe. See if it's in the dictionary.
+ // TODO: this looks iffy; compare with old code.
+ int32_t candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current + cuWordLength + chars);
+ if (candidates > 0) {
+ break;
+ }
+ }
+ }
+
+ // Bump the word count if there wasn't already one
+ if (cuWordLength <= 0) {
+ wordsFound += 1;
+ }
+
+ // Update the length with the passed-over characters
+ cuWordLength += chars;
+ }
+ else {
+ // Back up to where we were for next iteration
+ utext_setNativeIndex(text, current + cuWordLength);
+ }
+ }
+
+ // Never stop before a combining mark.
+ int32_t currPos;
+ while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
+ utext_next32(text);
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ }
+
+ // Look ahead for possible suffixes if a dictionary word does not follow.
+ // We do this in code rather than using a rule so that the heuristic
+ // resynch continues to function. For example, one of the suffix characters
+ // could be a typo in the middle of a word.
+ // NOT CURRENTLY APPLICABLE TO BURMESE
+
+ // Did we find a word on this iteration? If so, push it on the break stack
+ if (cuWordLength > 0) {
+ foundBreaks.push((current+cuWordLength), status);
+ }
+ }
+
+ // Don't return a break for the end of the dictionary range if there is one there.
+ if (foundBreaks.peeki() >= rangeEnd) {
+ (void) foundBreaks.popi();
+ wordsFound -= 1;
+ }
+
+ return wordsFound;
+}
+
+/*
+ ******************************************************************
+ * KhmerBreakEngine
+ */
+
+// How many words in a row are "good enough"?
+static const int32_t KHMER_LOOKAHEAD = 3;
+
+// Will not combine a non-word with a preceding dictionary word longer than this
+static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;
+
+// Will not combine a non-word that shares at least this much prefix with a
+// dictionary word, with a preceding word
+static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;
+
+// Minimum word size
+static const int32_t KHMER_MIN_WORD = 2;
+
+// Minimum number of characters for two words
+static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;
+
+KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
+ : DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)),
+ fDictionary(adoptDictionary)
+{
+ fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status);
+ if (U_SUCCESS(status)) {
+ setCharacters(fKhmerWordSet);
+ }
+ fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
+ fMarkSet.add(0x0020);
+ fEndWordSet = fKhmerWordSet;
+ fBeginWordSet.add(0x1780, 0x17B3);
+ //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels
+ //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word
+ //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word
+ fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters
+ //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels
+// fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
+// fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
+// fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
+// fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
+// fSuffixSet.add(THAI_PAIYANNOI);
+// fSuffixSet.add(THAI_MAIYAMOK);
+
+ // Compact for caching.
+ fMarkSet.compact();
+ fEndWordSet.compact();
+ fBeginWordSet.compact();
+// fSuffixSet.compact();
+}
+
+KhmerBreakEngine::~KhmerBreakEngine() {
+ delete fDictionary;
+}
+
+int32_t
+KhmerBreakEngine::divideUpDictionaryRange( UText *text,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
+ return 0; // Not enough characters for two words
+ }
+
+ uint32_t wordsFound = 0;
+ int32_t cpWordLength = 0;
+ int32_t cuWordLength = 0;
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ PossibleWord words[KHMER_LOOKAHEAD];
+
+ utext_setNativeIndex(text, rangeStart);
+
+ while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
+ cuWordLength = 0;
+ cpWordLength = 0;
+
+ // Look for candidate words at the current position
+ int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+
+ // If we found exactly one, use that
+ if (candidates == 1) {
+ cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+
+ // If there was more than one, see which one can take us forward the most words
+ else if (candidates > 1) {
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+ do {
+ int32_t wordsMatched = 1;
+ if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
+ if (wordsMatched < 2) {
+ // Followed by another dictionary word; mark first word as a good candidate
+ words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
+ wordsMatched = 2;
+ }
+
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+
+ // See if any of the possible second words is followed by a third word
+ do {
+ // If we find a third word, stop right away
+ if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
+ words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
+ goto foundBest;
+ }
+ }
+ while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
+ }
+ }
+ while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
+foundBest:
+ cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+
+ // We come here after having either found a word or not. We look ahead to the
+ // next word. If it's not a dictionary word, we will combine it with the word we
+ // just found (if there is one), but only if the preceding word does not exceed
+ // the threshold.
+ // The text iterator should now be positioned at the end of the word we found.
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
+ // if it is a dictionary word, do nothing. If it isn't, then if there is
+ // no preceding word, or the non-word shares less than the minimum threshold
+ // of characters with a dictionary word, then scan to resynchronize
+ if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && (cuWordLength == 0
+ || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
+ // Look for a plausible word boundary
+ int32_t remaining = rangeEnd - (current+cuWordLength);
+ UChar32 pc;
+ UChar32 uc;
+ int32_t chars = 0;
+ for (;;) {
+ int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
+ pc = utext_next32(text);
+ int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
+ chars += pcSize;
+ remaining -= pcSize;
+ if (remaining <= 0) {
+ break;
+ }
+ uc = utext_current32(text);
+ if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
+ // Maybe. See if it's in the dictionary.
+ int32_t candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current+cuWordLength+chars);
+ if (candidates > 0) {
+ break;
+ }
+ }
+ }
+
+ // Bump the word count if there wasn't already one
+ if (cuWordLength <= 0) {
+ wordsFound += 1;
+ }
+
+ // Update the length with the passed-over characters
+ cuWordLength += chars;
+ }
+ else {
+ // Back up to where we were for next iteration
+ utext_setNativeIndex(text, current+cuWordLength);
+ }
+ }
+
+ // Never stop before a combining mark.
+ int32_t currPos;
+ while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
+ utext_next32(text);
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ }
+
+ // Look ahead for possible suffixes if a dictionary word does not follow.
+ // We do this in code rather than using a rule so that the heuristic
+ // resynch continues to function. For example, one of the suffix characters
+ // could be a typo in the middle of a word.
+// if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
+// if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+// && fSuffixSet.contains(uc = utext_current32(text))) {
+// if (uc == KHMER_PAIYANNOI) {
+// if (!fSuffixSet.contains(utext_previous32(text))) {
+// // Skip over previous end and PAIYANNOI
+// utext_next32(text);
+// utext_next32(text);
+// wordLength += 1; // Add PAIYANNOI to word
+// uc = utext_current32(text); // Fetch next character
+// }
+// else {
+// // Restore prior position
+// utext_next32(text);
+// }
+// }
+// if (uc == KHMER_MAIYAMOK) {
+// if (utext_previous32(text) != KHMER_MAIYAMOK) {
+// // Skip over previous end and MAIYAMOK
+// utext_next32(text);
+// utext_next32(text);
+// wordLength += 1; // Add MAIYAMOK to word
+// }
+// else {
+// // Restore prior position
+// utext_next32(text);
+// }
+// }
+// }
+// else {
+// utext_setNativeIndex(text, current+wordLength);
+// }
+// }
+
+ // Did we find a word on this iteration? If so, push it on the break stack
+ if (cuWordLength > 0) {
+ foundBreaks.push((current+cuWordLength), status);
+ }
+ }
+
+ // Don't return a break for the end of the dictionary range if there is one there.
+ if (foundBreaks.peeki() >= rangeEnd) {
+ (void) foundBreaks.popi();
+ wordsFound -= 1;
+ }
+
+ return wordsFound;
+}
+
+#if !UCONFIG_NO_NORMALIZATION
+/*
+ ******************************************************************
+ * CjkBreakEngine
+ */
+static const uint32_t kuint32max = 0xFFFFFFFF;
+CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
+: DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) {
+ // Korean dictionary only includes Hangul syllables
+ fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status);
+ fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status);
+ fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status);
+ fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status);
+ nfkcNorm2 = Normalizer2::getNFKCInstance(status);
+
+ if (U_SUCCESS(status)) {
+ // handle Korean and Japanese/Chinese using different dictionaries
+ if (type == kKorean) {
+ setCharacters(fHangulWordSet);
+ } else { //Chinese and Japanese
+ UnicodeSet cjSet;
+ cjSet.addAll(fHanWordSet);
+ cjSet.addAll(fKatakanaWordSet);
+ cjSet.addAll(fHiraganaWordSet);
+ cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK
+ cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK
+ setCharacters(cjSet);
+ }
+ }
+}
+
+CjkBreakEngine::~CjkBreakEngine(){
+ delete fDictionary;
+}
+
+// The katakanaCost values below are based on the length frequencies of all
+// katakana phrases in the dictionary
+static const int32_t kMaxKatakanaLength = 8;
+static const int32_t kMaxKatakanaGroupLength = 20;
+static const uint32_t maxSnlp = 255;
+
+static inline uint32_t getKatakanaCost(int32_t wordLength){
+ //TODO: fill array with actual values from dictionary!
+ static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
+ = {8192, 984, 408, 240, 204, 252, 300, 372, 480};
+ return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
+}
+
+static inline bool isKatakana(uint16_t value) {
+ return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) ||
+ (value >= 0xFF66u && value <= 0xFF9fu);
+}
+
+
+// Function for accessing internal utext flags.
+// Replicates an internal UText function.
+
+static inline int32_t utext_i32_flag(int32_t bitIndex) {
+ return (int32_t)1 << bitIndex;
+}
+
+
+/*
+ * @param text A UText representing the text
+ * @param rangeStart The start of the range of dictionary characters
+ * @param rangeEnd The end of the range of dictionary characters
+ * @param foundBreaks Output of C array of int32_t break positions, or 0
+ * @return The number of breaks found
+ */
+int32_t
+CjkBreakEngine::divideUpDictionaryRange( UText *inText,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ if (rangeStart >= rangeEnd) {
+ return 0;
+ }
+
+ // UnicodeString version of input UText, NFKC normalized if necessary.
+ UnicodeString inString;
+
+ // inputMap[inStringIndex] = corresponding native index from UText inText.
+ // If NULL then mapping is 1:1
+ LocalPointer<UVector32> inputMap;
+
+ UErrorCode status = U_ZERO_ERROR;
+
+
+ // if UText has the input string as one contiguous UTF-16 chunk
+ if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
+ inText->chunkNativeStart <= rangeStart &&
+ inText->chunkNativeLimit >= rangeEnd &&
+ inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {
+
+ // Input UText is in one contiguous UTF-16 chunk.
+ // Use Read-only aliasing UnicodeString.
+ inString.setTo(FALSE,
+ inText->chunkContents + rangeStart - inText->chunkNativeStart,
+ rangeEnd - rangeStart);
+ } else {
+ // Copy the text from the original inText (UText) to inString (UnicodeString).
+ // Create a map from UnicodeString indices -> UText offsets.
+ utext_setNativeIndex(inText, rangeStart);
+ int32_t limit = rangeEnd;
+ U_ASSERT(limit <= utext_nativeLength(inText));
+ if (limit > utext_nativeLength(inText)) {
+ limit = (int32_t)utext_nativeLength(inText);
+ }
+ inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+ while (utext_getNativeIndex(inText) < limit) {
+ int32_t nativePosition = (int32_t)utext_getNativeIndex(inText);
+ UChar32 c = utext_next32(inText);
+ U_ASSERT(c != U_SENTINEL);
+ inString.append(c);
+ while (inputMap->size() < inString.length()) {
+ inputMap->addElement(nativePosition, status);
+ }
+ }
+ inputMap->addElement(limit, status);
+ }
+
+
+ if (!nfkcNorm2->isNormalized(inString, status)) {
+ UnicodeString normalizedInput;
+ // normalizedMap[normalizedInput position] == original UText position.
+ LocalPointer<UVector32> normalizedMap(new UVector32(status), status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ UnicodeString fragment;
+ UnicodeString normalizedFragment;
+ for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk
+ fragment.remove();
+ int32_t fragmentStartI = srcI;
+ UChar32 c = inString.char32At(srcI);
+ for (;;) {
+ fragment.append(c);
+ srcI = inString.moveIndex32(srcI, 1);
+ if (srcI == inString.length()) {
+ break;
+ }
+ c = inString.char32At(srcI);
+ if (nfkcNorm2->hasBoundaryBefore(c)) {
+ break;
+ }
+ }
+ nfkcNorm2->normalize(fragment, normalizedFragment, status);
+ normalizedInput.append(normalizedFragment);
+
+ // Map every position in the normalized chunk to the start of the chunk
+ // in the original input.
+ int32_t fragmentOriginalStart = inputMap.isValid() ?
+ inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
+ while (normalizedMap->size() < normalizedInput.length()) {
+ normalizedMap->addElement(fragmentOriginalStart, status);
+ if (U_FAILURE(status)) {
+ break;
+ }
+ }
+ }
+ U_ASSERT(normalizedMap->size() == normalizedInput.length());
+ int32_t nativeEnd = inputMap.isValid() ?
+ inputMap->elementAti(inString.length()) : inString.length()+rangeStart;
+ normalizedMap->addElement(nativeEnd, status);
+
+ inputMap.moveFrom(normalizedMap);
+ inString.moveFrom(normalizedInput);
+ }
+
+ int32_t numCodePts = inString.countChar32();
+ if (numCodePts != inString.length()) {
+ // There are supplementary characters in the input.
+ // The dictionary will produce boundary positions in terms of code point indexes,
+ // not in terms of code unit string indexes.
+ // Use the inputMap mechanism to take care of this in addition to indexing differences
+ // from normalization and/or UTF-8 input.
+ UBool hadExistingMap = inputMap.isValid();
+ if (!hadExistingMap) {
+ inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+ }
+ int32_t cpIdx = 0;
+ for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) {
+ U_ASSERT(cuIdx >= cpIdx);
+ if (hadExistingMap) {
+ inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
+ } else {
+ inputMap->addElement(cuIdx+rangeStart, status);
+ }
+ cpIdx++;
+ if (cuIdx == inString.length()) {
+ break;
+ }
+ }
+ }
+
+ // bestSnlp[i] is the snlp of the best segmentation of the first i
+ // code points in the range to be matched.
+ UVector32 bestSnlp(numCodePts + 1, status);
+ bestSnlp.addElement(0, status);
+ for(int32_t i = 1; i <= numCodePts; i++) {
+ bestSnlp.addElement(kuint32max, status);
+ }
+
+
+ // prev[i] is the index of the last CJK code point in the previous word in
+ // the best segmentation of the first i characters.
+ UVector32 prev(numCodePts + 1, status);
+ for(int32_t i = 0; i <= numCodePts; i++){
+ prev.addElement(-1, status);
+ }
+
+ const int32_t maxWordSize = 20;
+ UVector32 values(numCodePts, status);
+ values.setSize(numCodePts);
+ UVector32 lengths(numCodePts, status);
+ lengths.setSize(numCodePts);
+
+ UText fu = UTEXT_INITIALIZER;
+ utext_openUnicodeString(&fu, &inString, &status);
+
+ // Dynamic programming to find the best segmentation.
+
+ // In outer loop, i is the code point index,
+ // ix is the corresponding string (code unit) index.
+ // They differ when the string contains supplementary characters.
+ int32_t ix = 0;
+ for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) {
+ if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) {
+ continue;
+ }
+
+ int32_t count;
+ utext_setNativeIndex(&fu, ix);
+ count = fDictionary->matches(&fu, maxWordSize, numCodePts,
+ NULL, lengths.getBuffer(), values.getBuffer(), NULL);
+ // Note: lengths is filled with code point lengths
+ // The NULL parameter is the ignored code unit lengths.
+
+ // if there are no single character matches found in the dictionary
+ // starting with this charcter, treat character as a 1-character word
+ // with the highest value possible, i.e. the least likely to occur.
+ // Exclude Korean characters from this treatment, as they should be left
+ // together by default.
+ if ((count == 0 || lengths.elementAti(0) != 1) &&
+ !fHangulWordSet.contains(inString.char32At(ix))) {
+ values.setElementAt(maxSnlp, count); // 255
+ lengths.setElementAt(1, count++);
+ }
+
+ for (int32_t j = 0; j < count; j++) {
+ uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j);
+ int32_t ln_j_i = lengths.elementAti(j) + i;
+ if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) {
+ bestSnlp.setElementAt(newSnlp, ln_j_i);
+ prev.setElementAt(i, ln_j_i);
+ }
+ }
+
+ // In Japanese,
+ // Katakana word in single character is pretty rare. So we apply
+ // the following heuristic to Katakana: any continuous run of Katakana
+ // characters is considered a candidate word with a default cost
+ // specified in the katakanaCost table according to its length.
+
+ bool is_prev_katakana = false;
+ bool is_katakana = isKatakana(inString.char32At(ix));
+ int32_t katakanaRunLength = 1;
+ if (!is_prev_katakana && is_katakana) {
+ int32_t j = inString.moveIndex32(ix, 1);
+ // Find the end of the continuous run of Katakana characters
+ while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength &&
+ isKatakana(inString.char32At(j))) {
+ j = inString.moveIndex32(j, 1);
+ katakanaRunLength++;
+ }
+ if (katakanaRunLength < kMaxKatakanaGroupLength) {
+ uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
+ if (newSnlp < (uint32_t)bestSnlp.elementAti(j)) {
+ bestSnlp.setElementAt(newSnlp, j);
+ prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i;
+ }
+ }
+ }
+ is_prev_katakana = is_katakana;
+ }
+ utext_close(&fu);
+
+ // Start pushing the optimal offset index into t_boundary (t for tentative).
+ // prev[numCodePts] is guaranteed to be meaningful.
+ // We'll first push in the reverse order, i.e.,
+ // t_boundary[0] = numCodePts, and afterwards do a swap.
+ UVector32 t_boundary(numCodePts+1, status);
+
+ int32_t numBreaks = 0;
+ // No segmentation found, set boundary to end of range
+ if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) {
+ t_boundary.addElement(numCodePts, status);
+ numBreaks++;
+ } else {
+ for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
+ t_boundary.addElement(i, status);
+ numBreaks++;
+ }
+ U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
+ }
+
+ // Add a break for the start of the dictionary range if there is not one
+ // there already.
+ if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
+ t_boundary.addElement(0, status);
+ numBreaks++;
+ }
+
+ // Now that we're done, convert positions in t_boundary[] (indices in
+ // the normalized input string) back to indices in the original input UText
+ // while reversing t_boundary and pushing values to foundBreaks.
+ for (int32_t i = numBreaks-1; i >= 0; i--) {
+ int32_t cpPos = t_boundary.elementAti(i);
+ int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
+ // Boundaries are added to foundBreaks output in ascending order.
+ U_ASSERT(foundBreaks.size() == 0 ||foundBreaks.peeki() < utextPos);
+ foundBreaks.push(utextPos, status);
+ }
+
+ // inString goes out of scope
+ // inputMap goes out of scope
+ return numBreaks;
+}
+#endif
+
+U_NAMESPACE_END
+
+#endif /* #if !UCONFIG_NO_BREAK_ITERATION */