summaryrefslogtreecommitdiff
path: root/packages/idb-bridge/src/tree/b+tree.ts
blob: c51360d70d8f7932b740c7d9e151ffdf02093285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
// B+ tree by David Piepgrass. License: MIT
import { ISortedMap, ISortedMapF } from "./interfaces.js";

export type {
  IMap,
  IMapF,
  IMapSink,
  IMapSource,
  ISet,
  ISetF,
  ISetSink,
  ISetSource,
  ISortedMap,
  ISortedMapF,
  ISortedMapSource,
  ISortedSet,
  ISortedSetF,
  ISortedSetSource,
} from "./interfaces.js";

export type EditRangeResult<V, R = number> = {
  value?: V;
  break?: R;
  delete?: boolean;
};

type index = number;

// Informative microbenchmarks & stuff:
// http://www.jayconrod.com/posts/52/a-tour-of-v8-object-representation (very educational)
// https://blog.mozilla.org/luke/2012/10/02/optimizing-javascript-variable-access/ (local vars are faster than properties)
// http://benediktmeurer.de/2017/12/13/an-introduction-to-speculative-optimization-in-v8/ (other stuff)
// https://jsperf.com/js-in-operator-vs-alternatives (avoid 'in' operator; `.p!==undefined` faster than `hasOwnProperty('p')` in all browsers)
// https://jsperf.com/instanceof-vs-typeof-vs-constructor-vs-member (speed of type tests varies wildly across browsers)
// https://jsperf.com/detecting-arrays-new (a.constructor===Array is best across browsers, assuming a is an object)
// https://jsperf.com/shallow-cloning-methods (a constructor is faster than Object.create; hand-written clone faster than Object.assign)
// https://jsperf.com/ways-to-fill-an-array (slice-and-replace is fastest)
// https://jsperf.com/math-min-max-vs-ternary-vs-if (Math.min/max is slow on Edge)
// https://jsperf.com/array-vs-property-access-speed (v.x/v.y is faster than a[0]/a[1] in major browsers IF hidden class is constant)
// https://jsperf.com/detect-not-null-or-undefined (`x==null` slightly slower than `x===null||x===undefined` on all browsers)
// Overall, microbenchmarks suggest Firefox is the fastest browser for JavaScript and Edge is the slowest.
// Lessons from https://v8project.blogspot.com/2017/09/elements-kinds-in-v8.html:
//   - Avoid holes in arrays. Avoid `new Array(N)`, it will be "holey" permanently.
//   - Don't read outside bounds of an array (it scans prototype chain).
//   - Small integer arrays are stored differently from doubles
//   - Adding non-numbers to an array deoptimizes it permanently into a general array
//   - Objects can be used like arrays (e.g. have length property) but are slower
//   - V8 source (NewElementsCapacity in src/objects.h): arrays grow by 50% + 16 elements

/**
 * Types that BTree supports by default
 */
export type DefaultComparable =
  | number
  | string
  | Date
  | boolean
  | null
  | undefined
  | (number | string)[]
  | {
      valueOf: () =>
        | number
        | string
        | Date
        | boolean
        | null
        | undefined
        | (number | string)[];
    };

/**
 * Compares DefaultComparables to form a strict partial ordering.
 *
 * Handles +/-0 and NaN like Map: NaN is equal to NaN, and -0 is equal to +0.
 *
 * Arrays are compared using '<' and '>', which may cause unexpected equality:
 * for example [1] will be considered equal to ['1'].
 *
 * Two objects with equal valueOf compare the same, but compare unequal to
 * primitives that have the same value.
 */
export function defaultComparator(
  a: DefaultComparable,
  b: DefaultComparable,
): number {
  // Special case finite numbers first for performance.
  // Note that the trick of using 'a - b' and checking for NaN to detect non-numbers
  // does not work if the strings are numeric (ex: "5"). This would leading most
  // comparison functions using that approach to fail to have transitivity.
  if (Number.isFinite(a as any) && Number.isFinite(b as any)) {
    return (a as number) - (b as number);
  }

  // The default < and > operators are not totally ordered. To allow types to be mixed
  // in a single collection, compare types and order values of different types by type.
  let ta = typeof a;
  let tb = typeof b;
  if (ta !== tb) {
    return ta < tb ? -1 : 1;
  }

  if (ta === "object") {
    // standardized JavaScript bug: null is not an object, but typeof says it is
    if (a === null) return b === null ? 0 : -1;
    else if (b === null) return 1;

    a = a!.valueOf() as DefaultComparable;
    b = b!.valueOf() as DefaultComparable;
    ta = typeof a;
    tb = typeof b;
    // Deal with the two valueOf()s producing different types
    if (ta !== tb) {
      return ta < tb ? -1 : 1;
    }
  }

  // a and b are now the same type, and will be a number, string or array
  // (which we assume holds numbers or strings), or something unsupported.
  if (a! < b!) return -1;
  if (a! > b!) return 1;
  if (a === b) return 0;

  // Order NaN less than other numbers
  if (Number.isNaN(a as any)) return Number.isNaN(b as any) ? 0 : -1;
  else if (Number.isNaN(b as any)) return 1;
  // This could be two objects (e.g. [7] and ['7']) that aren't ordered
  return Array.isArray(a) ? 0 : Number.NaN;
}

/**
 * Compares items using the < and > operators. This function is probably slightly
 * faster than the defaultComparator for Dates and strings, but has not been benchmarked.
 * Unlike defaultComparator, this comparator doesn't support mixed types correctly,
 * i.e. use it with `BTree<string>` or `BTree<number>` but not `BTree<string|number>`.
 *
 * NaN is not supported.
 *
 * Note: null is treated like 0 when compared with numbers or Date, but in general
 *   null is not ordered with respect to strings (neither greater nor less), and
 *   undefined is not ordered with other types.
 */
export function simpleComparator(a: string, b: string): number;
export function simpleComparator(a: number | null, b: number | null): number;
export function simpleComparator(a: Date | null, b: Date | null): number;
export function simpleComparator(
  a: (number | string)[],
  b: (number | string)[],
): number;
export function simpleComparator(a: any, b: any): number {
  return a > b ? 1 : a < b ? -1 : 0;
}

/**
 * A reasonably fast collection of key-value pairs with a powerful API.
 * Largely compatible with the standard Map. BTree is a B+ tree data structure,
 * so the collection is sorted by key.
 *
 * B+ trees tend to use memory more efficiently than hashtables such as the
 * standard Map, especially when the collection contains a large number of
 * items. However, maintaining the sort order makes them modestly slower:
 * O(log size) rather than O(1). This B+ tree implementation supports O(1)
 * fast cloning. It also supports freeze(), which can be used to ensure that
 * a BTree is not changed accidentally.
 *
 * Confusingly, the ES6 Map.forEach(c) method calls c(value,key) instead of
 * c(key,value), in contrast to other methods such as set() and entries()
 * which put the key first. I can only assume that the order was reversed on
 * the theory that users would usually want to examine values and ignore keys.
 * BTree's forEach() therefore works the same way, but a second method
 * `.forEachPair((key,value)=>{...})` is provided which sends you the key
 * first and the value second; this method is slightly faster because it is
 * the "native" for-each method for this class.
 *
 * Out of the box, BTree supports keys that are numbers, strings, arrays of
 * numbers/strings, Date, and objects that have a valueOf() method returning a
 * number or string. Other data types, such as arrays of Date or custom
 * objects, require a custom comparator, which you must pass as the second
 * argument to the constructor (the first argument is an optional list of
 * initial items). Symbols cannot be used as keys because they are unordered
 * (one Symbol is never "greater" or "less" than another).
 *
 * @example
 * Given a {name: string, age: number} object, you can create a tree sorted by
 * name and then by age like this:
 *
 *     var tree = new BTree(undefined, (a, b) => {
 *       if (a.name > b.name)
 *         return 1; // Return a number >0 when a > b
 *       else if (a.name < b.name)
 *         return -1; // Return a number <0 when a < b
 *       else // names are equal (or incomparable)
 *         return a.age - b.age; // Return >0 when a.age > b.age
 *     });
 *
 *     tree.set({name:"Bill", age:17}, "happy");
 *     tree.set({name:"Fran", age:40}, "busy & stressed");
 *     tree.set({name:"Bill", age:55}, "recently laid off");
 *     tree.forEachPair((k, v) => {
 *       console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`);
 *     });
 *
 * @description
 * The "range" methods (`forEach, forRange, editRange`) will return the number
 * of elements that were scanned. In addition, the callback can return {break:R}
 * to stop early and return R from the outer function.
 *
 * - TODO: Test performance of preallocating values array at max size
 * - TODO: Add fast initialization when a sorted array is provided to constructor
 *
 * For more documentation see https://github.com/qwertie/btree-typescript
 *
 * Are you a C# developer? You might like the similar data structures I made for C#:
 * BDictionary, BList, etc. See http://core.loyc.net/collections/
 *
 * @author David Piepgrass
 */
export default class BTree<K = any, V = any>
  implements ISortedMapF<K, V>, ISortedMap<K, V>
{
  private _root: BNode<K, V> = EmptyLeaf as BNode<K, V>;
  _size: number = 0;
  _maxNodeSize: number;

  /**
   * provides a total order over keys (and a strict partial order over the type K)
   * @returns a negative value if a < b, 0 if a === b and a positive value if a > b
   */
  _compare: (a: K, b: K) => number;

  /**
   * Initializes an empty B+ tree.
   * @param compare Custom function to compare pairs of elements in the tree.
   *   If not specified, defaultComparator will be used which is valid as long as K extends DefaultComparable.
   * @param entries A set of key-value pairs to initialize the tree
   * @param maxNodeSize Branching factor (maximum items or children per node)
   *   Must be in range 4..256. If undefined or <4 then default is used; if >256 then 256.
   */
  public constructor(
    entries?: [K, V][],
    compare?: (a: K, b: K) => number,
    maxNodeSize?: number,
  ) {
    this._maxNodeSize = maxNodeSize! >= 4 ? Math.min(maxNodeSize!, 256) : 32;
    this._compare =
      compare || (defaultComparator as any as (a: K, b: K) => number);
    if (entries) this.setPairs(entries);
  }

  /////////////////////////////////////////////////////////////////////////////
  // ES6 Map<K,V> methods /////////////////////////////////////////////////////

  /** Gets the number of key-value pairs in the tree. */
  get size() {
    return this._size;
  }
  /** Gets the number of key-value pairs in the tree. */
  get length() {
    return this._size;
  }
  /** Returns true iff the tree contains no key-value pairs. */
  get isEmpty() {
    return this._size === 0;
  }

  /** Releases the tree so that its size is 0. */
  clear() {
    this._root = EmptyLeaf as BNode<K, V>;
    this._size = 0;
  }

  forEach(
    callback: (v: V, k: K, tree: BTree<K, V>) => void,
    thisArg?: any,
  ): number;

  /** Runs a function for each key-value pair, in order from smallest to
   *  largest key. For compatibility with ES6 Map, the argument order to
   *  the callback is backwards: value first, then key. Call forEachPair
   *  instead to receive the key as the first argument.
   * @param thisArg If provided, this parameter is assigned as the `this`
   *        value for each callback.
   * @returns the number of values that were sent to the callback,
   *        or the R value if the callback returned {break:R}. */
  forEach<R = number>(
    callback: (v: V, k: K, tree: BTree<K, V>) => { break?: R } | void,
    thisArg?: any,
  ): R | number {
    if (thisArg !== undefined) callback = callback.bind(thisArg);
    return this.forEachPair((k, v) => callback(v, k, this));
  }

  /** Runs a function for each key-value pair, in order from smallest to
   *  largest key. The callback can return {break:R} (where R is any value
   *  except undefined) to stop immediately and return R from forEachPair.
   * @param onFound A function that is called for each key-value pair. This
   *        function can return {break:R} to stop early with result R.
   *        The reason that you must return {break:R} instead of simply R
   *        itself is for consistency with editRange(), which allows
   *        multiple actions, not just breaking.
   * @param initialCounter This is the value of the third argument of
   *        `onFound` the first time it is called. The counter increases
   *        by one each time `onFound` is called. Default value: 0
   * @returns the number of pairs sent to the callback (plus initialCounter,
   *        if you provided one). If the callback returned {break:R} then
   *        the R value is returned instead. */
  forEachPair<R = number>(
    callback: (k: K, v: V, counter: number) => { break?: R } | void,
    initialCounter?: number,
  ): R | number {
    var low = this.minKey(),
      high = this.maxKey();
    return this.forRange(low!, high!, true, callback, initialCounter);
  }

  /**
   * Finds a pair in the tree and returns the associated value.
   * @param defaultValue a value to return if the key was not found.
   * @returns the value, or defaultValue if the key was not found.
   * @description Computational complexity: O(log size)
   */
  get(key: K, defaultValue?: V): V | undefined {
    return this._root.get(key, defaultValue, this);
  }

  /**
   * Adds or overwrites a key-value pair in the B+ tree.
   * @param key the key is used to determine the sort order of
   *        data in the tree.
   * @param value data to associate with the key (optional)
   * @param overwrite Whether to overwrite an existing key-value pair
   *        (default: true). If this is false and there is an existing
   *        key-value pair then this method has no effect.
   * @returns true if a new key-value pair was added.
   * @description Computational complexity: O(log size)
   * Note: when overwriting a previous entry, the key is updated
   * as well as the value. This has no effect unless the new key
   * has data that does not affect its sort order.
   */
  set(key: K, value: V, overwrite?: boolean): boolean {
    if (this._root.isShared) this._root = this._root.clone();
    var result = this._root.set(key, value, overwrite, this);
    if (result === true || result === false) return result;
    // Root node has split, so create a new root node.
    this._root = new BNodeInternal<K, V>([this._root, result]);
    return true;
  }

  /**
   * Returns true if the key exists in the B+ tree, false if not.
   * Use get() for best performance; use has() if you need to
   * distinguish between "undefined value" and "key not present".
   * @param key Key to detect
   * @description Computational complexity: O(log size)
   */
  has(key: K): boolean {
    return this.forRange(key, key, true, undefined) !== 0;
  }

  /**
   * Removes a single key-value pair from the B+ tree.
   * @param key Key to find
   * @returns true if a pair was found and removed, false otherwise.
   * @description Computational complexity: O(log size)
   */
  delete(key: K): boolean {
    return this.editRange(key, key, true, DeleteRange) !== 0;
  }

  /////////////////////////////////////////////////////////////////////////////
  // Clone-mutators ///////////////////////////////////////////////////////////

  /** Returns a copy of the tree with the specified key set (the value is undefined). */
  with(key: K): BTree<K, V | undefined>;
  /** Returns a copy of the tree with the specified key-value pair set. */
  with<V2>(key: K, value: V2, overwrite?: boolean): BTree<K, V | V2>;
  with<V2>(
    key: K,
    value?: V2,
    overwrite?: boolean,
  ): BTree<K, V | V2 | undefined> {
    let nu = this.clone() as BTree<K, V | V2 | undefined>;
    return nu.set(key, value, overwrite) || overwrite ? nu : this;
  }

  /** Returns a copy of the tree with the specified key-value pairs set. */
  withPairs<V2>(pairs: [K, V | V2][], overwrite: boolean): BTree<K, V | V2> {
    let nu = this.clone() as BTree<K, V | V2>;
    return nu.setPairs(pairs, overwrite) !== 0 || overwrite ? nu : this;
  }

  /** Returns a copy of the tree with the specified keys present.
   *  @param keys The keys to add. If a key is already present in the tree,
   *         neither the existing key nor the existing value is modified.
   *  @param returnThisIfUnchanged if true, returns this if all keys already
   *  existed. Performance note: due to the architecture of this class, all
   *  node(s) leading to existing keys are cloned even if the collection is
   *  ultimately unchanged.
   */
  withKeys(
    keys: K[],
    returnThisIfUnchanged?: boolean,
  ): BTree<K, V | undefined> {
    let nu = this.clone() as BTree<K, V | undefined>,
      changed = false;
    for (var i = 0; i < keys.length; i++)
      changed = nu.set(keys[i], undefined, false) || changed;
    return returnThisIfUnchanged && !changed ? this : nu;
  }

  /** Returns a copy of the tree with the specified key removed.
   * @param returnThisIfUnchanged if true, returns this if the key didn't exist.
   *  Performance note: due to the architecture of this class, node(s) leading
   *  to where the key would have been stored are cloned even when the key
   *  turns out not to exist and the collection is unchanged.
   */
  without(key: K, returnThisIfUnchanged?: boolean): BTree<K, V> {
    return this.withoutRange(key, key, true, returnThisIfUnchanged);
  }

  /** Returns a copy of the tree with the specified keys removed.
   * @param returnThisIfUnchanged if true, returns this if none of the keys
   *  existed. Performance note: due to the architecture of this class,
   *  node(s) leading to where the key would have been stored are cloned
   *  even when the key turns out not to exist.
   */
  withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K, V> {
    let nu = this.clone();
    return nu.deleteKeys(keys) || !returnThisIfUnchanged ? nu : this;
  }

  /** Returns a copy of the tree with the specified range of keys removed. */
  withoutRange(
    low: K,
    high: K,
    includeHigh: boolean,
    returnThisIfUnchanged?: boolean,
  ): BTree<K, V> {
    let nu = this.clone();
    if (nu.deleteRange(low, high, includeHigh) === 0 && returnThisIfUnchanged)
      return this;
    return nu;
  }

  /** Returns a copy of the tree with pairs removed whenever the callback
   *  function returns false. `where()` is a synonym for this method. */
  filter(
    callback: (k: K, v: V, counter: number) => boolean,
    returnThisIfUnchanged?: boolean,
  ): BTree<K, V> {
    var nu = this.greedyClone();
    var del: any;
    nu.editAll((k, v, i) => {
      if (!callback(k, v, i)) return (del = Delete);
    });
    if (!del && returnThisIfUnchanged) return this;
    return nu;
  }

  /** Returns a copy of the tree with all values altered by a callback function. */
  mapValues<R>(callback: (v: V, k: K, counter: number) => R): BTree<K, R> {
    var tmp = {} as { value: R };
    var nu = this.greedyClone();
    nu.editAll((k, v, i) => {
      return (tmp.value = callback(v, k, i)), tmp as any;
    });
    return nu as any as BTree<K, R>;
  }

  /** Performs a reduce operation like the `reduce` method of `Array`.
   *  It is used to combine all pairs into a single value, or perform
   *  conversions. `reduce` is best understood by example. For example,
   *  `tree.reduce((P, pair) => P * pair[0], 1)` multiplies all keys
   *  together. It means "start with P=1, and for each pair multiply
   *  it by the key in pair[0]". Another example would be converting
   *  the tree to a Map (in this example, note that M.set returns M):
   *
   *  var M = tree.reduce((M, pair) => M.set(pair[0],pair[1]), new Map())
   *
   *  **Note**: the same array is sent to the callback on every iteration.
   */
  reduce<R>(
    callback: (
      previous: R,
      currentPair: [K, V],
      counter: number,
      tree: BTree<K, V>,
    ) => R,
    initialValue: R,
  ): R;
  reduce<R>(
    callback: (
      previous: R | undefined,
      currentPair: [K, V],
      counter: number,
      tree: BTree<K, V>,
    ) => R,
  ): R | undefined;
  reduce<R>(
    callback: (
      previous: R | undefined,
      currentPair: [K, V],
      counter: number,
      tree: BTree<K, V>,
    ) => R,
    initialValue?: R,
  ): R | undefined {
    let i = 0,
      p = initialValue;
    var it = this.entries(this.minKey(), ReusedArray),
      next;
    while (!(next = it.next()).done) p = callback(p, next.value, i++, this);
    return p;
  }

  /////////////////////////////////////////////////////////////////////////////
  // Iterator methods /////////////////////////////////////////////////////////

  /** Returns an iterator that provides items in order (ascending order if
   *  the collection's comparator uses ascending order, as is the default.)
   *  @param lowestKey First key to be iterated, or undefined to start at
   *         minKey(). If the specified key doesn't exist then iteration
   *         starts at the next higher key (according to the comparator).
   *  @param reusedArray Optional array used repeatedly to store key-value
   *         pairs, to avoid creating a new array on every iteration.
   */
  entries(lowestKey?: K, reusedArray?: (K | V)[]): IterableIterator<[K, V]> {
    var info = this.findPath(lowestKey);
    if (info === undefined) return iterator<[K, V]>();
    var { nodequeue, nodeindex, leaf } = info;
    var state = reusedArray !== undefined ? 1 : 0;
    var i =
      lowestKey === undefined
        ? -1
        : leaf.indexOf(lowestKey, 0, this._compare) - 1;

    return iterator<[K, V]>(() => {
      jump: for (;;) {
        switch (state) {
          case 0:
            if (++i < leaf.keys.length)
              return { done: false, value: [leaf.keys[i], leaf.values[i]] };
            state = 2;
            continue;
          case 1:
            if (++i < leaf.keys.length) {
              (reusedArray![0] = leaf.keys[i]),
                (reusedArray![1] = leaf.values[i]);
              return { done: false, value: reusedArray as [K, V] };
            }
            state = 2;
          case 2:
            // Advance to the next leaf node
            for (var level = -1; ; ) {
              if (++level >= nodequeue.length) {
                state = 3;
                continue jump;
              }
              if (++nodeindex[level] < nodequeue[level].length) break;
            }
            for (; level > 0; level--) {
              nodequeue[level - 1] = (
                nodequeue[level][nodeindex[level]] as BNodeInternal<K, V>
              ).children;
              nodeindex[level - 1] = 0;
            }
            leaf = nodequeue[0][nodeindex[0]];
            i = -1;
            state = reusedArray !== undefined ? 1 : 0;
            continue;
          case 3:
            return { done: true, value: undefined };
        }
      }
    });
  }

  /** Returns an iterator that provides items in reversed order.
   *  @param highestKey Key at which to start iterating, or undefined to
   *         start at maxKey(). If the specified key doesn't exist then iteration
   *         starts at the next lower key (according to the comparator).
   *  @param reusedArray Optional array used repeatedly to store key-value
   *         pairs, to avoid creating a new array on every iteration.
   *  @param skipHighest Iff this flag is true and the highestKey exists in the
   *         collection, the pair matching highestKey is skipped, not iterated.
   */
  entriesReversed(
    highestKey?: K,
    reusedArray?: (K | V)[],
    skipHighest?: boolean,
  ): IterableIterator<[K, V]> {
    if (highestKey === undefined) {
      highestKey = this.maxKey();
      skipHighest = undefined;
      if (highestKey === undefined) return iterator<[K, V]>(); // collection is empty
    }
    var { nodequeue, nodeindex, leaf } =
      this.findPath(highestKey) || this.findPath(this.maxKey())!;
    check(!nodequeue[0] || leaf === nodequeue[0][nodeindex[0]], "wat!");
    var i = leaf.indexOf(highestKey, 0, this._compare);
    if (
      !skipHighest &&
      i < leaf.keys.length &&
      this._compare(leaf.keys[i], highestKey) <= 0
    )
      i++;
    var state = reusedArray !== undefined ? 1 : 0;

    return iterator<[K, V]>(() => {
      jump: for (;;) {
        switch (state) {
          case 0:
            if (--i >= 0)
              return { done: false, value: [leaf.keys[i], leaf.values[i]] };
            state = 2;
            continue;
          case 1:
            if (--i >= 0) {
              (reusedArray![0] = leaf.keys[i]),
                (reusedArray![1] = leaf.values[i]);
              return { done: false, value: reusedArray as [K, V] };
            }
            state = 2;
          case 2:
            // Advance to the next leaf node
            for (var level = -1; ; ) {
              if (++level >= nodequeue.length) {
                state = 3;
                continue jump;
              }
              if (--nodeindex[level] >= 0) break;
            }
            for (; level > 0; level--) {
              nodequeue[level - 1] = (
                nodequeue[level][nodeindex[level]] as BNodeInternal<K, V>
              ).children;
              nodeindex[level - 1] = nodequeue[level - 1].length - 1;
            }
            leaf = nodequeue[0][nodeindex[0]];
            i = leaf.keys.length;
            state = reusedArray !== undefined ? 1 : 0;
            continue;
          case 3:
            return { done: true, value: undefined };
        }
      }
    });
  }

  /* Used by entries() and entriesReversed() to prepare to start iterating.
   * It develops a "node queue" for each non-leaf level of the tree.
   * Levels are numbered "bottom-up" so that level 0 is a list of leaf
   * nodes from a low-level non-leaf node. The queue at a given level L
   * consists of nodequeue[L] which is the children of a BNodeInternal,
   * and nodeindex[L], the current index within that child list, such
   * such that nodequeue[L-1] === nodequeue[L][nodeindex[L]].children.
   * (However inside this function the order is reversed.)
   */
  private findPath(
    key?: K,
  ):
    | { nodequeue: BNode<K, V>[][]; nodeindex: number[]; leaf: BNode<K, V> }
    | undefined {
    var nextnode = this._root;
    var nodequeue: BNode<K, V>[][], nodeindex: number[];

    if (nextnode.isLeaf) {
      (nodequeue = EmptyArray), (nodeindex = EmptyArray); // avoid allocations
    } else {
      (nodequeue = []), (nodeindex = []);
      for (var d = 0; !nextnode.isLeaf; d++) {
        nodequeue[d] = (nextnode as BNodeInternal<K, V>).children;
        nodeindex[d] =
          key === undefined ? 0 : nextnode.indexOf(key, 0, this._compare);
        if (nodeindex[d] >= nodequeue[d].length) return; // first key > maxKey()
        nextnode = nodequeue[d][nodeindex[d]];
      }
      nodequeue.reverse();
      nodeindex.reverse();
    }
    return { nodequeue, nodeindex, leaf: nextnode };
  }

  /**
   * Computes the differences between `this` and `other`.
   * For efficiency, the diff is returned via invocations of supplied handlers.
   * The computation is optimized for the case in which the two trees have large amounts
   * of shared data (obtained by calling the `clone` or `with` APIs) and will avoid
   * any iteration of shared state.
   * The handlers can cause computation to early exit by returning {break: R}.
   * Neither of the collections should be changed during the comparison process (in your callbacks), as this method assumes they will not be mutated.
   * @param other The tree to compute a diff against.
   * @param onlyThis Callback invoked for all keys only present in `this`.
   * @param onlyOther Callback invoked for all keys only present in `other`.
   * @param different Callback invoked for all keys with differing values.
   */
  diffAgainst<R>(
    other: BTree<K, V>,
    onlyThis?: (k: K, v: V) => { break?: R } | void,
    onlyOther?: (k: K, v: V) => { break?: R } | void,
    different?: (k: K, vThis: V, vOther: V) => { break?: R } | void,
  ): R | undefined {
    if (other._compare !== this._compare) {
      throw new Error("Tree comparators are not the same.");
    }

    if (this.isEmpty || other.isEmpty) {
      if (this.isEmpty && other.isEmpty) return undefined;
      // If one tree is empty, everything will be an onlyThis/onlyOther.
      if (this.isEmpty)
        return onlyOther === undefined
          ? undefined
          : BTree.stepToEnd(BTree.makeDiffCursor(other), onlyOther);
      return onlyThis === undefined
        ? undefined
        : BTree.stepToEnd(BTree.makeDiffCursor(this), onlyThis);
    }

    // Cursor-based diff algorithm is as follows:
    // - Until neither cursor has navigated to the end of the tree, do the following:
    //  - If the `this` cursor is "behind" the `other` cursor (strictly <, via compare), advance it.
    //  - Otherwise, advance the `other` cursor.
    //  - Any time a cursor is stepped, perform the following:
    //    - If either cursor points to a key/value pair:
    //      - If thisCursor === otherCursor and the values differ, it is a Different.
    //      - If thisCursor > otherCursor and otherCursor is at a key/value pair, it is an OnlyOther.
    //      - If thisCursor < otherCursor and thisCursor is at a key/value pair, it is an OnlyThis as long as the most recent
    //        cursor step was *not* otherCursor advancing from a tie. The extra condition avoids erroneous OnlyOther calls
    //        that would occur due to otherCursor being the "leader".
    //    - Otherwise, if both cursors point to nodes, compare them. If they are equal by reference (shared), skip
    //      both cursors to the next node in the walk.
    // - Once one cursor has finished stepping, any remaining steps (if any) are taken and key/value pairs are logged
    //   as OnlyOther (if otherCursor is stepping) or OnlyThis (if thisCursor is stepping).
    // This algorithm gives the critical guarantee that all locations (both nodes and key/value pairs) in both trees that
    // are identical by value (and possibly by reference) will be visited *at the same time* by the cursors.
    // This removes the possibility of emitting incorrect diffs, as well as allowing for skipping shared nodes.
    const { _compare } = this;
    const thisCursor = BTree.makeDiffCursor(this);
    const otherCursor = BTree.makeDiffCursor(other);
    // It doesn't matter how thisSteppedLast is initialized.
    // Step order is only used when either cursor is at a leaf, and cursors always start at a node.
    let thisSuccess = true,
      otherSuccess = true,
      prevCursorOrder = BTree.compare(thisCursor, otherCursor, _compare);
    while (thisSuccess && otherSuccess) {
      const cursorOrder = BTree.compare(thisCursor, otherCursor, _compare);
      const {
        leaf: thisLeaf,
        internalSpine: thisInternalSpine,
        levelIndices: thisLevelIndices,
      } = thisCursor;
      const {
        leaf: otherLeaf,
        internalSpine: otherInternalSpine,
        levelIndices: otherLevelIndices,
      } = otherCursor;
      if (thisLeaf || otherLeaf) {
        // If the cursors were at the same location last step, then there is no work to be done.
        if (prevCursorOrder !== 0) {
          if (cursorOrder === 0) {
            if (thisLeaf && otherLeaf && different) {
              // Equal keys, check for modifications
              const valThis =
                thisLeaf.values[thisLevelIndices[thisLevelIndices.length - 1]];
              const valOther =
                otherLeaf.values[
                  otherLevelIndices[otherLevelIndices.length - 1]
                ];
              if (!Object.is(valThis, valOther)) {
                const result = different(
                  thisCursor.currentKey,
                  valThis,
                  valOther,
                );
                if (result && result.break) return result.break;
              }
            }
          } else if (cursorOrder > 0) {
            // If this is the case, we know that either:
            // 1. otherCursor stepped last from a starting position that trailed thisCursor, and is still behind, or
            // 2. thisCursor stepped last and leapfrogged otherCursor
            // Either of these cases is an "only other"
            if (otherLeaf && onlyOther) {
              const otherVal =
                otherLeaf.values[
                  otherLevelIndices[otherLevelIndices.length - 1]
                ];
              const result = onlyOther(otherCursor.currentKey, otherVal);
              if (result && result.break) return result.break;
            }
          } else if (onlyThis) {
            if (thisLeaf && prevCursorOrder !== 0) {
              const valThis =
                thisLeaf.values[thisLevelIndices[thisLevelIndices.length - 1]];
              const result = onlyThis(thisCursor.currentKey, valThis);
              if (result && result.break) return result.break;
            }
          }
        }
      } else if (!thisLeaf && !otherLeaf && cursorOrder === 0) {
        const lastThis = thisInternalSpine.length - 1;
        const lastOther = otherInternalSpine.length - 1;
        const nodeThis =
          thisInternalSpine[lastThis][thisLevelIndices[lastThis]];
        const nodeOther =
          otherInternalSpine[lastOther][otherLevelIndices[lastOther]];
        if (nodeOther === nodeThis) {
          prevCursorOrder = 0;
          thisSuccess = BTree.step(thisCursor, true);
          otherSuccess = BTree.step(otherCursor, true);
          continue;
        }
      }
      prevCursorOrder = cursorOrder;
      if (cursorOrder < 0) {
        thisSuccess = BTree.step(thisCursor);
      } else {
        otherSuccess = BTree.step(otherCursor);
      }
    }

    if (thisSuccess && onlyThis)
      return BTree.finishCursorWalk(
        thisCursor,
        otherCursor,
        _compare,
        onlyThis,
      );
    if (otherSuccess && onlyOther)
      return BTree.finishCursorWalk(
        otherCursor,
        thisCursor,
        _compare,
        onlyOther,
      );
  }

  ///////////////////////////////////////////////////////////////////////////
  // Helper methods for diffAgainst /////////////////////////////////////////

  private static finishCursorWalk<K, V, R>(
    cursor: DiffCursor<K, V>,
    cursorFinished: DiffCursor<K, V>,
    compareKeys: (a: K, b: K) => number,
    callback: (k: K, v: V) => { break?: R } | void,
  ): R | undefined {
    const compared = BTree.compare(cursor, cursorFinished, compareKeys);
    if (compared === 0) {
      if (!BTree.step(cursor)) return undefined;
    } else if (compared < 0) {
      check(false, "cursor walk terminated early");
    }
    return BTree.stepToEnd(cursor, callback);
  }

  private static stepToEnd<K, V, R>(
    cursor: DiffCursor<K, V>,
    callback: (k: K, v: V) => { break?: R } | void,
  ): R | undefined {
    let canStep: boolean = true;
    while (canStep) {
      const { leaf, levelIndices, currentKey } = cursor;
      if (leaf) {
        const value = leaf.values[levelIndices[levelIndices.length - 1]];
        const result = callback(currentKey, value);
        if (result && result.break) return result.break;
      }
      canStep = BTree.step(cursor);
    }
    return undefined;
  }

  private static makeDiffCursor<K, V>(tree: BTree<K, V>): DiffCursor<K, V> {
    const { _root, height } = tree;
    return {
      height: height,
      internalSpine: [[_root]],
      levelIndices: [0],
      leaf: undefined,
      currentKey: _root.maxKey(),
    };
  }

  /**
   * Advances the cursor to the next step in the walk of its tree.
   * Cursors are walked backwards in sort order, as this allows them to leverage maxKey() in order to be compared in O(1).
   * @param cursor The cursor to step
   * @param stepToNode If true, the cursor will be advanced to the next node (skipping values)
   * @returns true if the step was completed and false if the step would have caused the cursor to move beyond the end of the tree.
   */
  private static step<K, V>(
    cursor: DiffCursor<K, V>,
    stepToNode?: boolean,
  ): boolean {
    const { internalSpine, levelIndices, leaf } = cursor;
    if (stepToNode === true || leaf) {
      const levelsLength = levelIndices.length;
      // Step to the next node only if:
      // - We are explicitly directed to via stepToNode, or
      // - There are no key/value pairs left to step to in this leaf
      if (stepToNode === true || levelIndices[levelsLength - 1] === 0) {
        const spineLength = internalSpine.length;
        // Root is leaf
        if (spineLength === 0) return false;
        // Walk back up the tree until we find a new subtree to descend into
        const nodeLevelIndex = spineLength - 1;
        let levelIndexWalkBack = nodeLevelIndex;
        while (levelIndexWalkBack >= 0) {
          if (levelIndices[levelIndexWalkBack] > 0) {
            if (levelIndexWalkBack < levelsLength - 1) {
              // Remove leaf state from cursor
              cursor.leaf = undefined;
              levelIndices.pop();
            }
            // If we walked upwards past any internal node, slice them out
            if (levelIndexWalkBack < nodeLevelIndex)
              cursor.internalSpine = internalSpine.slice(
                0,
                levelIndexWalkBack + 1,
              );
            // Move to new internal node
            cursor.currentKey =
              internalSpine[levelIndexWalkBack][
                --levelIndices[levelIndexWalkBack]
              ].maxKey();
            return true;
          }
          levelIndexWalkBack--;
        }
        // Cursor is in the far left leaf of the tree, no more nodes to enumerate
        return false;
      } else {
        // Move to new leaf value
        const valueIndex = --levelIndices[levelsLength - 1];
        cursor.currentKey = (leaf as unknown as BNode<K, V>).keys[valueIndex];
        return true;
      }
    } else {
      // Cursor does not point to a value in a leaf, so move downwards
      const nextLevel = internalSpine.length;
      const currentLevel = nextLevel - 1;
      const node = internalSpine[currentLevel][levelIndices[currentLevel]];
      if (node.isLeaf) {
        // Entering into a leaf. Set the cursor to point at the last key/value pair.
        cursor.leaf = node;
        const valueIndex = (levelIndices[nextLevel] = node.values.length - 1);
        cursor.currentKey = node.keys[valueIndex];
      } else {
        const children = (node as BNodeInternal<K, V>).children;
        internalSpine[nextLevel] = children;
        const childIndex = children.length - 1;
        levelIndices[nextLevel] = childIndex;
        cursor.currentKey = children[childIndex].maxKey();
      }
      return true;
    }
  }

  /**
   * Compares the two cursors. Returns a value indicating which cursor is ahead in a walk.
   * Note that cursors are advanced in reverse sorting order.
   */
  private static compare<K, V>(
    cursorA: DiffCursor<K, V>,
    cursorB: DiffCursor<K, V>,
    compareKeys: (a: K, b: K) => number,
  ): number {
    const {
      height: heightA,
      currentKey: currentKeyA,
      levelIndices: levelIndicesA,
    } = cursorA;
    const {
      height: heightB,
      currentKey: currentKeyB,
      levelIndices: levelIndicesB,
    } = cursorB;
    // Reverse the comparison order, as cursors are advanced in reverse sorting order
    const keyComparison = compareKeys(currentKeyB, currentKeyA);
    if (keyComparison !== 0) {
      return keyComparison;
    }

    // Normalize depth values relative to the shortest tree.
    // This ensures that concurrent cursor walks of trees of differing heights can reliably land on shared nodes at the same time.
    // To accomplish this, a cursor that is on an internal node at depth D1 with maxKey X is considered "behind" a cursor on an
    // internal node at depth D2 with maxKey Y, when D1 < D2. Thus, always walking the cursor that is "behind" will allow the cursor
    // at shallower depth (but equal maxKey) to "catch up" and land on shared nodes.
    const heightMin = heightA < heightB ? heightA : heightB;
    const depthANormalized = levelIndicesA.length - (heightA - heightMin);
    const depthBNormalized = levelIndicesB.length - (heightB - heightMin);
    return depthANormalized - depthBNormalized;
  }

  // End of helper methods for diffAgainst //////////////////////////////////
  ///////////////////////////////////////////////////////////////////////////

  /** Returns a new iterator for iterating the keys of each pair in ascending order.
   *  @param firstKey: Minimum key to include in the output. */
  keys(firstKey?: K): IterableIterator<K> {
    var it = this.entries(firstKey, ReusedArray);
    return iterator<K>(() => {
      var n: IteratorResult<any> = it.next();
      if (n.value) n.value = n.value[0];
      return n;
    });
  }

  /** Returns a new iterator for iterating the values of each pair in order by key.
   *  @param firstKey: Minimum key whose associated value is included in the output. */
  values(firstKey?: K): IterableIterator<V> {
    var it = this.entries(firstKey, ReusedArray);
    return iterator<V>(() => {
      var n: IteratorResult<any> = it.next();
      if (n.value) n.value = n.value[1];
      return n;
    });
  }

  /////////////////////////////////////////////////////////////////////////////
  // Additional methods ///////////////////////////////////////////////////////

  /** Returns the maximum number of children/values before nodes will split. */
  get maxNodeSize() {
    return this._maxNodeSize;
  }

  /** Gets the lowest key in the tree. Complexity: O(log size) */
  minKey(): K | undefined {
    return this._root.minKey();
  }

  /** Gets the highest key in the tree. Complexity: O(1) */
  maxKey(): K | undefined {
    return this._root.maxKey();
  }

  /** Quickly clones the tree by marking the root node as shared.
   *  Both copies remain editable. When you modify either copy, any
   *  nodes that are shared (or potentially shared) between the two
   *  copies are cloned so that the changes do not affect other copies.
   *  This is known as copy-on-write behavior, or "lazy copying". */
  clone(): BTree<K, V> {
    this._root.isShared = true;
    var result = new BTree<K, V>(undefined, this._compare, this._maxNodeSize);
    result._root = this._root;
    result._size = this._size;
    return result;
  }

  /** Performs a greedy clone, immediately duplicating any nodes that are
   *  not currently marked as shared, in order to avoid marking any nodes
   *  as shared.
   *  @param force Clone all nodes, even shared ones.
   */
  greedyClone(force?: boolean): BTree<K, V> {
    var result = new BTree<K, V>(undefined, this._compare, this._maxNodeSize);
    result._root = this._root.greedyClone(force);
    result._size = this._size;
    return result;
  }

  /** Gets an array filled with the contents of the tree, sorted by key */
  toArray(maxLength: number = 0x7fffffff): [K, V][] {
    let min = this.minKey(),
      max = this.maxKey();
    if (min !== undefined) return this.getRange(min, max!, true, maxLength);
    return [];
  }

  /** Gets an array of all keys, sorted */
  keysArray() {
    var results: K[] = [];
    this._root.forRange(
      this.minKey()!,
      this.maxKey()!,
      true,
      false,
      this,
      0,
      (k, v) => {
        results.push(k);
      },
    );
    return results;
  }

  /** Gets an array of all values, sorted by key */
  valuesArray() {
    var results: V[] = [];
    this._root.forRange(
      this.minKey()!,
      this.maxKey()!,
      true,
      false,
      this,
      0,
      (k, v) => {
        results.push(v);
      },
    );
    return results;
  }

  /** Gets a string representing the tree's data based on toArray(). */
  toString() {
    return this.toArray().toString();
  }

  /** Stores a key-value pair only if the key doesn't already exist in the tree.
   * @returns true if a new key was added
   */
  setIfNotPresent(key: K, value: V): boolean {
    return this.set(key, value, false);
  }

  /** Returns the next pair whose key is larger than the specified key (or undefined if there is none).
   * If key === undefined, this function returns the lowest pair.
   * @param key The key to search for.
   * @param reusedArray Optional array used repeatedly to store key-value pairs, to
   * avoid creating a new array on every iteration.
   */
  nextHigherPair(key: K | undefined, reusedArray?: [K, V]): [K, V] | undefined {
    reusedArray = reusedArray || ([] as unknown as [K, V]);
    if (key === undefined) {
      return this._root.minPair(reusedArray);
    }
    return this._root.getPairOrNextHigher(
      key,
      this._compare,
      false,
      reusedArray,
    );
  }

  /** Returns the next key larger than the specified key, or undefined if there is none.
   *  Also, nextHigherKey(undefined) returns the lowest key.
   */
  nextHigherKey(key: K | undefined): K | undefined {
    var p = this.nextHigherPair(key, ReusedArray as [K, V]);
    return p && p[0];
  }

  /** Returns the next pair whose key is smaller than the specified key (or undefined if there is none).
   *  If key === undefined, this function returns the highest pair.
   * @param key The key to search for.
   * @param reusedArray Optional array used repeatedly to store key-value pairs, to
   *        avoid creating a new array each time you call this method.
   */
  nextLowerPair(key: K | undefined, reusedArray?: [K, V]): [K, V] | undefined {
    reusedArray = reusedArray || ([] as unknown as [K, V]);
    if (key === undefined) {
      return this._root.maxPair(reusedArray);
    }
    return this._root.getPairOrNextLower(
      key,
      this._compare,
      false,
      reusedArray,
    );
  }

  /** Returns the next key smaller than the specified key, or undefined if there is none.
   *  Also, nextLowerKey(undefined) returns the highest key.
   */
  nextLowerKey(key: K | undefined): K | undefined {
    var p = this.nextLowerPair(key, ReusedArray as [K, V]);
    return p && p[0];
  }

  /** Returns the key-value pair associated with the supplied key if it exists
   *  or the pair associated with the next lower pair otherwise. If there is no
   *  next lower pair, undefined is returned.
   * @param key The key to search for.
   * @param reusedArray Optional array used repeatedly to store key-value pairs, to
   *        avoid creating a new array each time you call this method.
   * */
  getPairOrNextLower(key: K, reusedArray?: [K, V]): [K, V] | undefined {
    return this._root.getPairOrNextLower(
      key,
      this._compare,
      true,
      reusedArray || ([] as unknown as [K, V]),
    );
  }

  /** Returns the key-value pair associated with the supplied key if it exists
   *  or the pair associated with the next lower pair otherwise. If there is no
   *  next lower pair, undefined is returned.
   * @param key The key to search for.
   * @param reusedArray Optional array used repeatedly to store key-value pairs, to
   *        avoid creating a new array each time you call this method.
   * */
  getPairOrNextHigher(key: K, reusedArray?: [K, V]): [K, V] | undefined {
    return this._root.getPairOrNextHigher(
      key,
      this._compare,
      true,
      reusedArray || ([] as unknown as [K, V]),
    );
  }

  /** Edits the value associated with a key in the tree, if it already exists.
   * @returns true if the key existed, false if not.
   */
  changeIfPresent(key: K, value: V): boolean {
    return this.editRange(key, key, true, (k, v) => ({ value })) !== 0;
  }

  /**
   * Builds an array of pairs from the specified range of keys, sorted by key.
   * Each returned pair is also an array: pair[0] is the key, pair[1] is the value.
   * @param low The first key in the array will be greater than or equal to `low`.
   * @param high This method returns when a key larger than this is reached.
   * @param includeHigh If the `high` key is present, its pair will be included
   *        in the output if and only if this parameter is true. Note: if the
   *        `low` key is present, it is always included in the output.
   * @param maxLength Length limit. getRange will stop scanning the tree when
   *                  the array reaches this size.
   * @description Computational complexity: O(result.length + log size)
   */
  getRange(
    low: K,
    high: K,
    includeHigh?: boolean,
    maxLength: number = 0x3ffffff,
  ): [K, V][] {
    var results: [K, V][] = [];
    this._root.forRange(low, high, includeHigh, false, this, 0, (k, v) => {
      results.push([k, v]);
      return results.length > maxLength ? Break : undefined;
    });
    return results;
  }

  /** Adds all pairs from a list of key-value pairs.
   * @param pairs Pairs to add to this tree. If there are duplicate keys,
   *        later pairs currently overwrite earlier ones (e.g. [[0,1],[0,7]]
   *        associates 0 with 7.)
   * @param overwrite Whether to overwrite pairs that already exist (if false,
   *        pairs[i] is ignored when the key pairs[i][0] already exists.)
   * @returns The number of pairs added to the collection.
   * @description Computational complexity: O(pairs.length * log(size + pairs.length))
   */
  setPairs(pairs: [K, V][], overwrite?: boolean): number {
    var added = 0;
    for (var i = 0; i < pairs.length; i++)
      if (this.set(pairs[i][0], pairs[i][1], overwrite)) added++;
    return added;
  }

  forRange(
    low: K,
    high: K,
    includeHigh: boolean,
    onFound?: (k: K, v: V, counter: number) => void,
    initialCounter?: number,
  ): number;

  /**
   * Scans the specified range of keys, in ascending order by key.
   * Note: the callback `onFound` must not insert or remove items in the
   * collection. Doing so may cause incorrect data to be sent to the
   * callback afterward.
   * @param low The first key scanned will be greater than or equal to `low`.
   * @param high Scanning stops when a key larger than this is reached.
   * @param includeHigh If the `high` key is present, `onFound` is called for
   *        that final pair if and only if this parameter is true.
   * @param onFound A function that is called for each key-value pair. This
   *        function can return {break:R} to stop early with result R.
   * @param initialCounter Initial third argument of onFound. This value
   *        increases by one each time `onFound` is called. Default: 0
   * @returns The number of values found, or R if the callback returned
   *        `{break:R}` to stop early.
   * @description Computational complexity: O(number of items scanned + log size)
   */
  forRange<R = number>(
    low: K,
    high: K,
    includeHigh: boolean,
    onFound?: (k: K, v: V, counter: number) => { break?: R } | void,
    initialCounter?: number,
  ): R | number {
    var r = this._root.forRange(
      low,
      high,
      includeHigh,
      false,
      this,
      initialCounter || 0,
      onFound,
    );
    return typeof r === "number" ? r : r.break!;
  }

  /**
   * Scans and potentially modifies values for a subsequence of keys.
   * Note: the callback `onFound` should ideally be a pure function.
   *   Specifically, it must not insert items, call clone(), or change
   *   the collection except via return value; out-of-band editing may
   *   cause an exception or may cause incorrect data to be sent to
   *   the callback (duplicate or missed items). It must not cause a
   *   clone() of the collection, otherwise the clone could be modified
   *   by changes requested by the callback.
   * @param low The first key scanned will be greater than or equal to `low`.
   * @param high Scanning stops when a key larger than this is reached.
   * @param includeHigh If the `high` key is present, `onFound` is called for
   *        that final pair if and only if this parameter is true.
   * @param onFound A function that is called for each key-value pair. This
   *        function can return `{value:v}` to change the value associated
   *        with the current key, `{delete:true}` to delete the current pair,
   *        `{break:R}` to stop early with result R, or it can return nothing
   *        (undefined or {}) to cause no effect and continue iterating.
   *        `{break:R}` can be combined with one of the other two commands.
   *        The third argument `counter` is the number of items iterated
   *        previously; it equals 0 when `onFound` is called the first time.
   * @returns The number of values scanned, or R if the callback returned
   *        `{break:R}` to stop early.
   * @description
   *   Computational complexity: O(number of items scanned + log size)
   *   Note: if the tree has been cloned with clone(), any shared
   *   nodes are copied before `onFound` is called. This takes O(n) time
   *   where n is proportional to the amount of shared data scanned.
   */
  editRange<R = V>(
    low: K,
    high: K,
    includeHigh: boolean,
    onFound: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,
    initialCounter?: number,
  ): R | number {
    var root = this._root;
    if (root.isShared) this._root = root = root.clone();
    try {
      var r = root.forRange(
        low,
        high,
        includeHigh,
        true,
        this,
        initialCounter || 0,
        onFound,
      );
      return typeof r === "number" ? r : r.break!;
    } finally {
      while (root.keys.length <= 1 && !root.isLeaf)
        this._root = root =
          root.keys.length === 0
            ? EmptyLeaf
            : (root as any as BNodeInternal<K, V>).children[0];
    }
  }

  /** Same as `editRange` except that the callback is called for all pairs. */
  editAll<R = V>(
    onFound: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,
    initialCounter?: number,
  ): R | number {
    return this.editRange(
      this.minKey()!,
      this.maxKey()!,
      true,
      onFound,
      initialCounter,
    );
  }

  /**
   * Removes a range of key-value pairs from the B+ tree.
   * @param low The first key scanned will be greater than or equal to `low`.
   * @param high Scanning stops when a key larger than this is reached.
   * @param includeHigh Specifies whether the `high` key, if present, is deleted.
   * @returns The number of key-value pairs that were deleted.
   * @description Computational complexity: O(log size + number of items deleted)
   */
  deleteRange(low: K, high: K, includeHigh: boolean): number {
    return this.editRange(low, high, includeHigh, DeleteRange);
  }

  /** Deletes a series of keys from the collection. */
  deleteKeys(keys: K[]): number {
    for (var i = 0, r = 0; i < keys.length; i++) if (this.delete(keys[i])) r++;
    return r;
  }

  /** Gets the height of the tree: the number of internal nodes between the
   *  BTree object and its leaf nodes (zero if there are no internal nodes). */
  get height(): number {
    let node: BNode<K, V> | undefined = this._root;
    let height = -1;
    while (node) {
      height++;
      node = node.isLeaf
        ? undefined
        : (node as unknown as BNodeInternal<K, V>).children[0];
    }
    return height;
  }

  /** Makes the object read-only to ensure it is not accidentally modified.
   *  Freezing does not have to be permanent; unfreeze() reverses the effect.
   *  This is accomplished by replacing mutator functions with a function
   *  that throws an Error. Compared to using a property (e.g. this.isFrozen)
   *  this implementation gives better performance in non-frozen BTrees.
   */
  freeze() {
    var t = this as any;
    // Note: all other mutators ultimately call set() or editRange()
    //       so we don't need to override those others.
    t.clear =
      t.set =
      t.editRange =
        function () {
          throw new Error("Attempted to modify a frozen BTree");
        };
  }

  /** Ensures mutations are allowed, reversing the effect of freeze(). */
  unfreeze() {
    // @ts-ignore "The operand of a 'delete' operator must be optional."
    //            (wrong: delete does not affect the prototype.)
    delete this.clear;
    // @ts-ignore
    delete this.set;
    // @ts-ignore
    delete this.editRange;
  }

  /** Returns true if the tree appears to be frozen. */
  get isFrozen() {
    return this.hasOwnProperty("editRange");
  }

  /** Scans the tree for signs of serious bugs (e.g. this.size doesn't match
   *  number of elements, internal nodes not caching max element properly...)
   *  Computational complexity: O(number of nodes), i.e. O(size). This method
   *  skips the most expensive test - whether all keys are sorted - but it
   *  does check that maxKey() of the children of internal nodes are sorted. */
  checkValid() {
    var size = this._root.checkValid(0, this, 0);
    check(
      size === this.size,
      "size mismatch: counted ",
      size,
      "but stored",
      this.size,
    );
  }
}

declare const Symbol: any;
if (Symbol && Symbol.iterator)
  // iterator is equivalent to entries()
  (BTree as any).prototype[Symbol.iterator] = BTree.prototype.entries;
(BTree as any).prototype.where = BTree.prototype.filter;
(BTree as any).prototype.setRange = BTree.prototype.setPairs;
(BTree as any).prototype.add = BTree.prototype.set;

function iterator<T>(
  next: () => IteratorResult<T> = () => ({ done: true, value: undefined }),
): IterableIterator<T> {
  var result: any = { next };
  if (Symbol && Symbol.iterator)
    result[Symbol.iterator] = function () {
      return this;
    };
  return result;
}

/** Leaf node / base class. **************************************************/
class BNode<K, V> {
  // If this is an internal node, _keys[i] is the highest key in children[i].
  keys: K[];
  values: V[];
  isShared: true | undefined;
  get isLeaf() {
    return (this as any).children === undefined;
  }

  constructor(keys: K[] = [], values?: V[]) {
    this.keys = keys;
    this.values = values || (undefVals as any[]);
    this.isShared = undefined;
  }

  ///////////////////////////////////////////////////////////////////////////
  // Shared methods /////////////////////////////////////////////////////////

  maxKey() {
    return this.keys[this.keys.length - 1];
  }

  // If key not found, returns i^failXor where i is the insertion index.
  // Callers that don't care whether there was a match will set failXor=0.
  indexOf(key: K, failXor: number, cmp: (a: K, b: K) => number): index {
    const keys = this.keys;
    var lo = 0,
      hi = keys.length,
      mid = hi >> 1;
    while (lo < hi) {
      var c = cmp(keys[mid], key);
      if (c < 0) lo = mid + 1;
      else if (c > 0)
        // key < keys[mid]
        hi = mid;
      else if (c === 0) return mid;
      else {
        // c is NaN or otherwise invalid
        if (key === key)
          // at least the search key is not NaN
          return keys.length;
        else throw new Error("BTree: NaN was used as a key");
      }
      mid = (lo + hi) >> 1;
    }
    return mid ^ failXor;

    // Unrolled version: benchmarks show same speed, not worth using
    /*var i = 1, c: number = 0, sum = 0;
    if (keys.length >= 4) {
      i = 3;
      if (keys.length >= 8) {
        i = 7;
        if (keys.length >= 16) {
          i = 15;
          if (keys.length >= 32) {
            i = 31;
            if (keys.length >= 64) {
              i = 127;
              i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 64 : -64;
              sum += c;
              i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 32 : -32;
              sum += c;
            }
            i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 16 : -16;
            sum += c;
          }
          i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 8 : -8;
          sum += c;
        }
        i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 4 : -4;
        sum += c;
      }
      i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 2 : -2;
      sum += c;
    }
    i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 1 : -1;
    c = i < keys.length ? cmp(keys[i], key) : 1;
    sum += c;
    if (c < 0) {
      ++i;
      c = i < keys.length ? cmp(keys[i], key) : 1;
      sum += c;
    }
    if (sum !== sum) {
      if (key === key) // at least the search key is not NaN
        return keys.length ^ failXor;
      else
        throw new Error("BTree: NaN was used as a key");
    }
    return c === 0 ? i : i ^ failXor;*/
  }

  /////////////////////////////////////////////////////////////////////////////
  // Leaf Node: misc //////////////////////////////////////////////////////////

  minKey(): K | undefined {
    return this.keys[0];
  }

  minPair(reusedArray: [K, V]): [K, V] | undefined {
    if (this.keys.length === 0) return undefined;
    reusedArray[0] = this.keys[0];
    reusedArray[1] = this.values[0];
    return reusedArray;
  }

  maxPair(reusedArray: [K, V]): [K, V] | undefined {
    if (this.keys.length === 0) return undefined;
    const lastIndex = this.keys.length - 1;
    reusedArray[0] = this.keys[lastIndex];
    reusedArray[1] = this.values[lastIndex];
    return reusedArray;
  }

  clone(): BNode<K, V> {
    var v = this.values;
    return new BNode<K, V>(
      this.keys.slice(0),
      v === undefVals ? v : v.slice(0),
    );
  }

  greedyClone(force?: boolean): BNode<K, V> {
    return this.isShared && !force ? this : this.clone();
  }

  get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined {
    var i = this.indexOf(key, -1, tree._compare);
    return i < 0 ? defaultValue : this.values[i];
  }

  getPairOrNextLower(
    key: K,
    compare: (a: K, b: K) => number,
    inclusive: boolean,
    reusedArray: [K, V],
  ): [K, V] | undefined {
    var i = this.indexOf(key, -1, compare);
    const indexOrLower = i < 0 ? ~i - 1 : inclusive ? i : i - 1;
    if (indexOrLower >= 0) {
      reusedArray[0] = this.keys[indexOrLower];
      reusedArray[1] = this.values[indexOrLower];
      return reusedArray;
    }
    return undefined;
  }

  getPairOrNextHigher(
    key: K,
    compare: (a: K, b: K) => number,
    inclusive: boolean,
    reusedArray: [K, V],
  ): [K, V] | undefined {
    var i = this.indexOf(key, -1, compare);
    const indexOrLower = i < 0 ? ~i : inclusive ? i : i + 1;
    const keys = this.keys;
    if (indexOrLower < keys.length) {
      reusedArray[0] = keys[indexOrLower];
      reusedArray[1] = this.values[indexOrLower];
      return reusedArray;
    }
    return undefined;
  }

  checkValid(depth: number, tree: BTree<K, V>, baseIndex: number): number {
    var kL = this.keys.length,
      vL = this.values.length;
    check(
      this.values === undefVals ? kL <= vL : kL === vL,
      "keys/values length mismatch: depth",
      depth,
      "with lengths",
      kL,
      vL,
      "and baseIndex",
      baseIndex,
    );
    // Note: we don't check for "node too small" because sometimes a node
    // can legitimately have size 1. This occurs if there is a batch
    // deletion, leaving a node of size 1, and the siblings are full so
    // it can't be merged with adjacent nodes. However, the parent will
    // verify that the average node size is at least half of the maximum.
    check(
      depth == 0 || kL > 0,
      "empty leaf at depth",
      depth,
      "and baseIndex",
      baseIndex,
    );
    return kL;
  }

  /////////////////////////////////////////////////////////////////////////////
  // Leaf Node: set & node splitting //////////////////////////////////////////

  set(
    key: K,
    value: V,
    overwrite: boolean | undefined,
    tree: BTree<K, V>,
  ): boolean | BNode<K, V> {
    var i = this.indexOf(key, -1, tree._compare);
    if (i < 0) {
      // key does not exist yet
      i = ~i;
      tree._size++;

      if (this.keys.length < tree._maxNodeSize) {
        return this.insertInLeaf(i, key, value, tree);
      } else {
        // This leaf node is full and must split
        var newRightSibling = this.splitOffRightSide(),
          target: BNode<K, V> = this;
        if (i > this.keys.length) {
          i -= this.keys.length;
          target = newRightSibling;
        }
        target.insertInLeaf(i, key, value, tree);
        return newRightSibling;
      }
    } else {
      // Key already exists
      if (overwrite !== false) {
        if (value !== undefined) this.reifyValues();
        // usually this is a no-op, but some users may wish to edit the key
        this.keys[i] = key;
        this.values[i] = value;
      }
      return false;
    }
  }

  reifyValues() {
    if (this.values === undefVals)
      return (this.values = this.values.slice(0, this.keys.length));
    return this.values;
  }

  insertInLeaf(i: index, key: K, value: V, tree: BTree<K, V>) {
    this.keys.splice(i, 0, key);
    if (this.values === undefVals) {
      while (undefVals.length < tree._maxNodeSize) undefVals.push(undefined);
      if (value === undefined) {
        return true;
      } else {
        this.values = undefVals.slice(0, this.keys.length - 1);
      }
    }
    this.values.splice(i, 0, value);
    return true;
  }

  takeFromRight(rhs: BNode<K, V>) {
    // Reminder: parent node must update its copy of key for this node
    // assert: neither node is shared
    // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
    var v = this.values;
    if (rhs.values === undefVals) {
      if (v !== undefVals) v.push(undefined as any);
    } else {
      v = this.reifyValues();
      v.push(rhs.values.shift()!);
    }
    this.keys.push(rhs.keys.shift()!);
  }

  takeFromLeft(lhs: BNode<K, V>) {
    // Reminder: parent node must update its copy of key for this node
    // assert: neither node is shared
    // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
    var v = this.values;
    if (lhs.values === undefVals) {
      if (v !== undefVals) v.unshift(undefined as any);
    } else {
      v = this.reifyValues();
      v.unshift(lhs.values.pop()!);
    }
    this.keys.unshift(lhs.keys.pop()!);
  }

  splitOffRightSide(): BNode<K, V> {
    // Reminder: parent node must update its copy of key for this node
    var half = this.keys.length >> 1,
      keys = this.keys.splice(half);
    var values =
      this.values === undefVals ? undefVals : this.values.splice(half);
    return new BNode<K, V>(keys, values);
  }

  /////////////////////////////////////////////////////////////////////////////
  // Leaf Node: scanning & deletions //////////////////////////////////////////

  forRange<R>(
    low: K,
    high: K,
    includeHigh: boolean | undefined,
    editMode: boolean,
    tree: BTree<K, V>,
    count: number,
    onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,
  ): EditRangeResult<V, R> | number {
    var cmp = tree._compare;
    var iLow, iHigh;
    if (high === low) {
      if (!includeHigh) return count;
      iHigh = (iLow = this.indexOf(low, -1, cmp)) + 1;
      if (iLow < 0) return count;
    } else {
      iLow = this.indexOf(low, 0, cmp);
      iHigh = this.indexOf(high, -1, cmp);
      if (iHigh < 0) iHigh = ~iHigh;
      else if (includeHigh === true) iHigh++;
    }
    var keys = this.keys,
      values = this.values;
    if (onFound !== undefined) {
      for (var i = iLow; i < iHigh; i++) {
        var key = keys[i];
        var result = onFound(key, values[i], count++);
        if (result !== undefined) {
          if (editMode === true) {
            if (key !== keys[i] || this.isShared === true)
              throw new Error("BTree illegally changed or cloned in editRange");
            if (result.delete) {
              this.keys.splice(i, 1);
              if (this.values !== undefVals) this.values.splice(i, 1);
              tree._size--;
              i--;
              iHigh--;
            } else if (result.hasOwnProperty("value")) {
              values![i] = result.value!;
            }
          }
          if (result.break !== undefined) return result;
        }
      }
    } else count += iHigh - iLow;
    return count;
  }

  /** Adds entire contents of right-hand sibling (rhs is left unchanged) */
  mergeSibling(rhs: BNode<K, V>, _: number) {
    this.keys.push.apply(this.keys, rhs.keys);
    if (this.values === undefVals) {
      if (rhs.values === undefVals) return;
      this.values = this.values.slice(0, this.keys.length);
    }
    this.values.push.apply(this.values, rhs.reifyValues());
  }
}

/** Internal node (non-leaf node) ********************************************/
class BNodeInternal<K, V> extends BNode<K, V> {
  // Note: conventionally B+ trees have one fewer key than the number of
  // children, but I find it easier to keep the array lengths equal: each
  // keys[i] caches the value of children[i].maxKey().
  children: BNode<K, V>[];

  constructor(children: BNode<K, V>[], keys?: K[]) {
    if (!keys) {
      keys = [];
      for (var i = 0; i < children.length; i++) keys[i] = children[i].maxKey();
    }
    super(keys);
    this.children = children;
  }

  clone(): BNode<K, V> {
    var children = this.children.slice(0);
    for (var i = 0; i < children.length; i++) children[i].isShared = true;
    return new BNodeInternal<K, V>(children, this.keys.slice(0));
  }

  greedyClone(force?: boolean): BNode<K, V> {
    if (this.isShared && !force) return this;
    var nu = new BNodeInternal<K, V>(
      this.children.slice(0),
      this.keys.slice(0),
    );
    for (var i = 0; i < nu.children.length; i++)
      nu.children[i] = nu.children[i].greedyClone();
    return nu;
  }

  minKey() {
    return this.children[0].minKey();
  }

  minPair(reusedArray: [K, V]): [K, V] | undefined {
    return this.children[0].minPair(reusedArray);
  }

  maxPair(reusedArray: [K, V]): [K, V] | undefined {
    return this.children[this.children.length - 1].maxPair(reusedArray);
  }

  get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined {
    var i = this.indexOf(key, 0, tree._compare),
      children = this.children;
    return i < children.length
      ? children[i].get(key, defaultValue, tree)
      : undefined;
  }

  getPairOrNextLower(
    key: K,
    compare: (a: K, b: K) => number,
    inclusive: boolean,
    reusedArray: [K, V],
  ): [K, V] | undefined {
    var i = this.indexOf(key, 0, compare),
      children = this.children;
    if (i >= children.length) return this.maxPair(reusedArray);
    const result = children[i].getPairOrNextLower(
      key,
      compare,
      inclusive,
      reusedArray,
    );
    if (result === undefined && i > 0) {
      return children[i - 1].maxPair(reusedArray);
    }
    return result;
  }

  getPairOrNextHigher(
    key: K,
    compare: (a: K, b: K) => number,
    inclusive: boolean,
    reusedArray: [K, V],
  ): [K, V] | undefined {
    var i = this.indexOf(key, 0, compare),
      children = this.children,
      length = children.length;
    if (i >= length) return undefined;
    const result = children[i].getPairOrNextHigher(
      key,
      compare,
      inclusive,
      reusedArray,
    );
    if (result === undefined && i < length - 1) {
      return children[i + 1].minPair(reusedArray);
    }
    return result;
  }

  checkValid(depth: number, tree: BTree<K, V>, baseIndex: number): number {
    let kL = this.keys.length,
      cL = this.children.length;
    check(
      kL === cL,
      "keys/children length mismatch: depth",
      depth,
      "lengths",
      kL,
      cL,
      "baseIndex",
      baseIndex,
    );
    check(
      kL > 1 || depth > 0,
      "internal node has length",
      kL,
      "at depth",
      depth,
      "baseIndex",
      baseIndex,
    );
    let size = 0,
      c = this.children,
      k = this.keys,
      childSize = 0;
    for (var i = 0; i < cL; i++) {
      size += c[i].checkValid(depth + 1, tree, baseIndex + size);
      childSize += c[i].keys.length;
      check(size >= childSize, "wtf", baseIndex); // no way this will ever fail
      check(
        i === 0 || c[i - 1].constructor === c[i].constructor,
        "type mismatch, baseIndex:",
        baseIndex,
      );
      if (c[i].maxKey() != k[i])
        check(
          false,
          "keys[",
          i,
          "] =",
          k[i],
          "is wrong, should be ",
          c[i].maxKey(),
          "at depth",
          depth,
          "baseIndex",
          baseIndex,
        );
      if (!(i === 0 || tree._compare(k[i - 1], k[i]) < 0))
        check(
          false,
          "sort violation at depth",
          depth,
          "index",
          i,
          "keys",
          k[i - 1],
          k[i],
        );
    }
    // 2020/08: BTree doesn't always avoid grossly undersized nodes,
    // but AFAIK such nodes are pretty harmless, so accept them.
    let toofew = childSize === 0; // childSize < (tree.maxNodeSize >> 1)*cL;
    if (toofew || childSize > tree.maxNodeSize * cL)
      check(
        false,
        toofew ? "too few" : "too many",
        "children (",
        childSize,
        size,
        ") at depth",
        depth,
        "maxNodeSize:",
        tree.maxNodeSize,
        "children.length:",
        cL,
        "baseIndex:",
        baseIndex,
      );
    return size;
  }

  /////////////////////////////////////////////////////////////////////////////
  // Internal Node: set & node splitting //////////////////////////////////////

  set(
    key: K,
    value: V,
    overwrite: boolean | undefined,
    tree: BTree<K, V>,
  ): boolean | BNodeInternal<K, V> {
    var c = this.children,
      max = tree._maxNodeSize,
      cmp = tree._compare;
    var i = Math.min(this.indexOf(key, 0, cmp), c.length - 1),
      child = c[i];

    if (child.isShared) c[i] = child = child.clone();
    if (child.keys.length >= max) {
      // child is full; inserting anything else will cause a split.
      // Shifting an item to the left or right sibling may avoid a split.
      // We can do a shift if the adjacent node is not full and if the
      // current key can still be placed in the same node after the shift.
      var other: BNode<K, V>;
      if (
        i > 0 &&
        (other = c[i - 1]).keys.length < max &&
        cmp(child.keys[0], key) < 0
      ) {
        if (other.isShared) c[i - 1] = other = other.clone();
        other.takeFromRight(child);
        this.keys[i - 1] = other.maxKey();
      } else if (
        (other = c[i + 1]) !== undefined &&
        other.keys.length < max &&
        cmp(child.maxKey(), key) < 0
      ) {
        if (other.isShared) c[i + 1] = other = other.clone();
        other.takeFromLeft(child);
        this.keys[i] = c[i].maxKey();
      }
    }

    var result = child.set(key, value, overwrite, tree);
    if (result === false) return false;
    this.keys[i] = child.maxKey();
    if (result === true) return true;

    // The child has split and `result` is a new right child... does it fit?
    if (this.keys.length < max) {
      // yes
      this.insert(i + 1, result);
      return true;
    } else {
      // no, we must split also
      var newRightSibling = this.splitOffRightSide(),
        target: BNodeInternal<K, V> = this;
      if (cmp(result.maxKey(), this.maxKey()) > 0) {
        target = newRightSibling;
        i -= this.keys.length;
      }
      target.insert(i + 1, result);
      return newRightSibling;
    }
  }

  insert(i: index, child: BNode<K, V>) {
    this.children.splice(i, 0, child);
    this.keys.splice(i, 0, child.maxKey());
  }

  splitOffRightSide() {
    var half = this.children.length >> 1;
    return new BNodeInternal<K, V>(
      this.children.splice(half),
      this.keys.splice(half),
    );
  }

  takeFromRight(rhs: BNode<K, V>) {
    // Reminder: parent node must update its copy of key for this node
    // assert: neither node is shared
    // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
    this.keys.push(rhs.keys.shift()!);
    this.children.push((rhs as BNodeInternal<K, V>).children.shift()!);
  }

  takeFromLeft(lhs: BNode<K, V>) {
    // Reminder: parent node must update its copy of key for this node
    // assert: neither node is shared
    // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
    this.keys.unshift(lhs.keys.pop()!);
    this.children.unshift((lhs as BNodeInternal<K, V>).children.pop()!);
  }

  /////////////////////////////////////////////////////////////////////////////
  // Internal Node: scanning & deletions //////////////////////////////////////

  // Note: `count` is the next value of the third argument to `onFound`.
  //       A leaf node's `forRange` function returns a new value for this counter,
  //       unless the operation is to stop early.
  forRange<R>(
    low: K,
    high: K,
    includeHigh: boolean | undefined,
    editMode: boolean,
    tree: BTree<K, V>,
    count: number,
    onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,
  ): EditRangeResult<V, R> | number {
    var cmp = tree._compare;
    var keys = this.keys,
      children = this.children;
    var iLow = this.indexOf(low, 0, cmp),
      i = iLow;
    var iHigh = Math.min(
      high === low ? iLow : this.indexOf(high, 0, cmp),
      keys.length - 1,
    );
    if (!editMode) {
      // Simple case
      for (; i <= iHigh; i++) {
        var result = children[i].forRange(
          low,
          high,
          includeHigh,
          editMode,
          tree,
          count,
          onFound,
        );
        if (typeof result !== "number") return result;
        count = result;
      }
    } else if (i <= iHigh) {
      try {
        for (; i <= iHigh; i++) {
          if (children[i].isShared) children[i] = children[i].clone();
          var result = children[i].forRange(
            low,
            high,
            includeHigh,
            editMode,
            tree,
            count,
            onFound,
          );
          // Note: if children[i] is empty then keys[i]=undefined.
          //       This is an invalid state, but it is fixed below.
          keys[i] = children[i].maxKey();
          if (typeof result !== "number") return result;
          count = result;
        }
      } finally {
        // Deletions may have occurred, so look for opportunities to merge nodes.
        var half = tree._maxNodeSize >> 1;
        if (iLow > 0) iLow--;
        for (i = iHigh; i >= iLow; i--) {
          if (children[i].keys.length <= half) {
            if (children[i].keys.length !== 0) {
              this.tryMerge(i, tree._maxNodeSize);
            } else {
              // child is empty! delete it!
              keys.splice(i, 1);
              children.splice(i, 1);
            }
          }
        }
        if (children.length !== 0 && children[0].keys.length === 0)
          check(false, "emptiness bug");
      }
    }
    return count;
  }

  /** Merges child i with child i+1 if their combined size is not too large */
  tryMerge(i: index, maxSize: number): boolean {
    var children = this.children;
    if (i >= 0 && i + 1 < children.length) {
      if (children[i].keys.length + children[i + 1].keys.length <= maxSize) {
        if (children[i].isShared)
          // cloned already UNLESS i is outside scan range
          children[i] = children[i].clone();
        children[i].mergeSibling(children[i + 1], maxSize);
        children.splice(i + 1, 1);
        this.keys.splice(i + 1, 1);
        this.keys[i] = children[i].maxKey();
        return true;
      }
    }
    return false;
  }

  mergeSibling(rhs: BNode<K, V>, maxNodeSize: number) {
    // assert !this.isShared;
    var oldLength = this.keys.length;
    this.keys.push.apply(this.keys, rhs.keys);
    this.children.push.apply(
      this.children,
      (rhs as any as BNodeInternal<K, V>).children,
    );
    // If our children are themselves almost empty due to a mass-delete,
    // they may need to be merged too (but only the oldLength-1 and its
    // right sibling should need this).
    this.tryMerge(oldLength - 1, maxNodeSize);
  }
}

/**
 * A walkable pointer into a BTree for computing efficient diffs between trees with shared data.
 * - A cursor points to either a key/value pair (KVP) or a node (which can be either a leaf or an internal node).
 *    As a consequence, a cursor cannot be created for an empty tree.
 * - A cursor can be walked forwards using `step`. A cursor can be compared to another cursor to
 *    determine which is ahead in advancement.
 * - A cursor is valid only for the tree it was created from, and only until the first edit made to
 *    that tree since the cursor's creation.
 * - A cursor contains a key for the current location, which is the maxKey when the cursor points to a node
 *    and a key corresponding to a value when pointing to a leaf.
 * - Leaf is only populated if the cursor points to a KVP. If this is the case, levelIndices.length === internalSpine.length + 1
 *    and levelIndices[levelIndices.length - 1] is the index of the value.
 */
type DiffCursor<K, V> = {
  height: number;
  internalSpine: BNode<K, V>[][];
  levelIndices: number[];
  leaf: BNode<K, V> | undefined;
  currentKey: K;
};

// Optimization: this array of `undefined`s is used instead of a normal
// array of values in nodes where `undefined` is the only value.
// Its length is extended to max node size on first use; since it can
// be shared between trees with different maximums, its length can only
// increase, never decrease. Its type should be undefined[] but strangely
// TypeScript won't allow the comparison V[] === undefined[]. To prevent
// users from making this array too large, BTree has a maximum node size.
//
// FAQ: undefVals[i] is already undefined, so why increase the array size?
// Reading outside the bounds of an array is relatively slow because it
// has the side effect of scanning the prototype chain.
var undefVals: any[] = [];

const Delete = { delete: true },
  DeleteRange = () => Delete;
const Break = { break: true };
const EmptyLeaf = (function () {
  var n = new BNode<any, any>();
  n.isShared = true;
  return n;
})();
const EmptyArray: any[] = [];
const ReusedArray: any[] = []; // assumed thread-local

function check(fact: boolean, ...args: any[]) {
  if (!fact) {
    args.unshift("B+ tree"); // at beginning of message
    throw new Error(args.join(" "));
  }
}

/** A BTree frozen in the empty state. */
export const EmptyBTree = (() => {
  let t = new BTree();
  t.freeze();
  return t;
})();