aboutsummaryrefslogtreecommitdiff
path: root/packages/idb-bridge/src/tree
diff options
context:
space:
mode:
authorFlorian Dold <florian.dold@gmail.com>2019-06-15 22:44:54 +0200
committerFlorian Dold <florian.dold@gmail.com>2019-06-15 22:44:54 +0200
commit2ee9431f1ba5bf67546bbf85758a01991c40673f (patch)
tree4581c4f3c966d742c66ea7f4bae4f9a3f8e2f5ff /packages/idb-bridge/src/tree
parent65eb8b96f894491d406f91070df53ccbd43d19c9 (diff)
downloadwallet-core-2ee9431f1ba5bf67546bbf85758a01991c40673f.tar.gz
wallet-core-2ee9431f1ba5bf67546bbf85758a01991c40673f.tar.bz2
wallet-core-2ee9431f1ba5bf67546bbf85758a01991c40673f.zip
idb wip
Diffstat (limited to 'packages/idb-bridge/src/tree')
-rw-r--r--packages/idb-bridge/src/tree/b+tree.ts1351
-rw-r--r--packages/idb-bridge/src/tree/interfaces.ts329
2 files changed, 1680 insertions, 0 deletions
diff --git a/packages/idb-bridge/src/tree/b+tree.ts b/packages/idb-bridge/src/tree/b+tree.ts
new file mode 100644
index 000000000..01187cdc2
--- /dev/null
+++ b/packages/idb-bridge/src/tree/b+tree.ts
@@ -0,0 +1,1351 @@
+/*
+Copyright (c) 2018 David Piepgrass
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+SPDX-License-Identifier: MIT
+*/
+
+// Original repository: https://github.com/qwertie/btree-typescript
+
+
+import { ISortedMap, ISortedMapF } from './interfaces';
+export {
+ ISetSource, ISetSink, ISet, ISetF, ISortedSetSource, ISortedSet, ISortedSetF,
+ IMapSource, IMapSink, IMap, IMapF, ISortedMapSource, ISortedMap, ISortedMapF
+} from './interfaces';
+
+export type EditRangeResult<V,R=number> = {value?:V, break?:R, delete?:boolean};
+
+type index = number;
+
+// Informative microbenchmarks & stuff:
+// http://www.jayconrod.com/posts/52/a-tour-of-v8-object-representation (very educational)
+// https://blog.mozilla.org/luke/2012/10/02/optimizing-javascript-variable-access/ (local vars are faster than properties)
+// http://benediktmeurer.de/2017/12/13/an-introduction-to-speculative-optimization-in-v8/ (other stuff)
+// https://jsperf.com/js-in-operator-vs-alternatives (avoid 'in' operator; `.p!==undefined` faster than `hasOwnProperty('p')` in all browsers)
+// https://jsperf.com/instanceof-vs-typeof-vs-constructor-vs-member (speed of type tests varies wildly across browsers)
+// https://jsperf.com/detecting-arrays-new (a.constructor===Array is best across browsers, assuming a is an object)
+// https://jsperf.com/shallow-cloning-methods (a constructor is faster than Object.create; hand-written clone faster than Object.assign)
+// https://jsperf.com/ways-to-fill-an-array (slice-and-replace is fastest)
+// https://jsperf.com/math-min-max-vs-ternary-vs-if (Math.min/max is slow on Edge)
+// https://jsperf.com/array-vs-property-access-speed (v.x/v.y is faster than a[0]/a[1] in major browsers IF hidden class is constant)
+// https://jsperf.com/detect-not-null-or-undefined (`x==null` slightly slower than `x===null||x===undefined` on all browsers)
+// Overall, microbenchmarks suggest Firefox is the fastest browser for JavaScript and Edge is the slowest.
+// Lessons from https://v8project.blogspot.com/2017/09/elements-kinds-in-v8.html:
+// - Avoid holes in arrays. Avoid `new Array(N)`, it will be "holey" permanently.
+// - Don't read outside bounds of an array (it scans prototype chain).
+// - Small integer arrays are stored differently from doubles
+// - Adding non-numbers to an array deoptimizes it permanently into a general array
+// - Objects can be used like arrays (e.g. have length property) but are slower
+// - V8 source (NewElementsCapacity in src/objects.h): arrays grow by 50% + 16 elements
+
+/** Compares two numbers, strings, arrays of numbers/strings, Dates,
+ * or objects that have a valueOf() method returning a number or string.
+ * Optimized for numbers. Returns 1 if a>b, -1 if a<b, and 0 if a===b.
+ */
+export function defaultComparator(a: any, b: any) {
+ var c = a - b;
+ if (c === c) return c; // a & b are number
+ // General case (c is NaN): string / arrays / Date / incomparable things
+ if (a) a = a.valueOf();
+ if (b) b = b.valueOf();
+ return a < b ? -1 : a > b ? 1 : a == b ? 0 : c;
+};
+
+/**
+ * A reasonably fast collection of key-value pairs with a powerful API.
+ * Largely compatible with the standard Map. BTree is a B+ tree data structure,
+ * so the collection is sorted by key.
+ *
+ * B+ trees tend to use memory more efficiently than hashtables such as the
+ * standard Map, especially when the collection contains a large number of
+ * items. However, maintaining the sort order makes them modestly slower:
+ * O(log size) rather than O(1). This B+ tree implementation supports O(1)
+ * fast cloning. It also supports freeze(), which can be used to ensure that
+ * a BTree is not changed accidentally.
+ *
+ * Confusingly, the ES6 Map.forEach(c) method calls c(value,key) instead of
+ * c(key,value), in contrast to other methods such as set() and entries()
+ * which put the key first. I can only assume that the order was reversed on
+ * the theory that users would usually want to examine values and ignore keys.
+ * BTree's forEach() therefore works the same way, but a second method
+ * `.forEachPair((key,value)=>{...})` is provided which sends you the key
+ * first and the value second; this method is slightly faster because it is
+ * the "native" for-each method for this class.
+ *
+ * Out of the box, BTree supports keys that are numbers, strings, arrays of
+ * numbers/strings, Date, and objects that have a valueOf() method returning a
+ * number or string. Other data types, such as arrays of Date or custom
+ * objects, require a custom comparator, which you must pass as the second
+ * argument to the constructor (the first argument is an optional list of
+ * initial items). Symbols cannot be used as keys because they are unordered
+ * (one Symbol is never "greater" or "less" than another).
+ *
+ * @example
+ * Given a {name: string, age: number} object, you can create a tree sorted by
+ * name and then by age like this:
+ *
+ * var tree = new BTree(undefined, (a, b) => {
+ * if (a.name > b.name)
+ * return 1; // Return a number >0 when a > b
+ * else if (a.name < b.name)
+ * return -1; // Return a number <0 when a < b
+ * else // names are equal (or incomparable)
+ * return a.age - b.age; // Return >0 when a.age > b.age
+ * });
+ *
+ * tree.set({name:"Bill", age:17}, "happy");
+ * tree.set({name:"Fran", age:40}, "busy & stressed");
+ * tree.set({name:"Bill", age:55}, "recently laid off");
+ * tree.forEachPair((k, v) => {
+ * console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`);
+ * });
+ *
+ * @description
+ * The "range" methods (`forEach, forRange, editRange`) will return the number
+ * of elements that were scanned. In addition, the callback can return {break:R}
+ * to stop early and return R from the outer function.
+ *
+ * - TODO: Test performance of preallocating values array at max size
+ * - TODO: Add fast initialization when a sorted array is provided to constructor
+ *
+ * For more documentation see https://github.com/qwertie/btree-typescript
+ *
+ * Are you a C# developer? You might like the similar data structures I made for C#:
+ * BDictionary, BList, etc. See http://core.loyc.net/collections/
+ *
+ * @author David Piepgrass
+ */
+export default class BTree<K=any, V=any> implements ISortedMapF<K,V>, ISortedMap<K,V>
+{
+ private _root: BNode<K, V> = EmptyLeaf as BNode<K,V>;
+ _size: number = 0;
+ _maxNodeSize: number;
+ _compare: (a:K, b:K) => number;
+
+ /**
+ * Initializes an empty B+ tree.
+ * @param compare Custom function to compare pairs of elements in the tree.
+ * This is not required for numbers, strings and arrays of numbers/strings.
+ * @param entries A set of key-value pairs to initialize the tree
+ * @param maxNodeSize Branching factor (maximum items or children per node)
+ * Must be in range 4..256. If undefined or <4 then default is used; if >256 then 256.
+ */
+ public constructor(entries?: [K,V][], compare?: (a: K, b: K) => number, maxNodeSize?: number) {
+ this._maxNodeSize = maxNodeSize! >= 4 ? Math.min(maxNodeSize!, 256) : 32;
+ this._compare = compare || defaultComparator;
+ if (entries)
+ this.setPairs(entries);
+ }
+
+ // ES6 Map<K,V> methods ///////////////////////////////////////////////////
+
+ /** Gets the number of key-value pairs in the tree. */
+ get size() { return this._size; }
+ /** Gets the number of key-value pairs in the tree. */
+ get length() { return this._size; }
+ /** Returns true iff the tree contains no key-value pairs. */
+ get isEmpty() { return this._size === 0; }
+
+ /** Releases the tree so that its size is 0. */
+ clear() {
+ this._root = EmptyLeaf as BNode<K,V>;
+ this._size = 0;
+ }
+
+ forEach(callback: (v:V, k:K, tree:BTree<K,V>) => void, thisArg?: any): number;
+
+ /** Runs a function for each key-value pair, in order from smallest to
+ * largest key. For compatibility with ES6 Map, the argument order to
+ * the callback is backwards: value first, then key. Call forEachPair
+ * instead to receive the key as the first argument.
+ * @param thisArg If provided, this parameter is assigned as the `this`
+ * value for each callback.
+ * @returns the number of values that were sent to the callback,
+ * or the R value if the callback returned {break:R}. */
+ forEach<R=number>(callback: (v:V, k:K, tree:BTree<K,V>) => {break?:R}|void, thisArg?: any): R|number {
+ if (thisArg !== undefined)
+ callback = callback.bind(thisArg);
+ return this.forEachPair((k, v) => callback(v, k, this));
+ }
+
+ /** Runs a function for each key-value pair, in order from smallest to
+ * largest key. The callback can return {break:R} (where R is any value
+ * except undefined) to stop immediately and return R from forEachPair.
+ * @param onFound A function that is called for each key-value pair. This
+ * function can return {break:R} to stop early with result R.
+ * The reason that you must return {break:R} instead of simply R
+ * itself is for consistency with editRange(), which allows
+ * multiple actions, not just breaking.
+ * @param initialCounter This is the value of the third argument of
+ * `onFound` the first time it is called. The counter increases
+ * by one each time `onFound` is called. Default value: 0
+ * @returns the number of pairs sent to the callback (plus initialCounter,
+ * if you provided one). If the callback returned {break:R} then
+ * the R value is returned instead. */
+ forEachPair<R=number>(callback: (k:K, v:V, counter:number) => {break?:R}|void, initialCounter?: number): R|number {
+ var low = this.minKey(), high = this.maxKey();
+ return this.forRange(low!, high!, true, callback, initialCounter);
+ }
+
+ /**
+ * Finds a pair in the tree and returns the associated value.
+ * @param defaultValue a value to return if the key was not found.
+ * @returns the value, or defaultValue if the key was not found.
+ * @description Computational complexity: O(log size)
+ */
+ get(key: K, defaultValue?: V): V | undefined {
+ return this._root.get(key, defaultValue, this);
+ }
+
+ /**
+ * Adds or overwrites a key-value pair in the B+ tree.
+ * @param key the key is used to determine the sort order of
+ * data in the tree.
+ * @param value data to associate with the key (optional)
+ * @param overwrite Whether to overwrite an existing key-value pair
+ * (default: true). If this is false and there is an existing
+ * key-value pair then this method has no effect.
+ * @returns true if a new key-value pair was added.
+ * @description Computational complexity: O(log size)
+ * Note: when overwriting a previous entry, the key is updated
+ * as well as the value. This has no effect unless the new key
+ * has data that does not affect its sort order.
+ */
+ set(key: K, value: V, overwrite?: boolean): boolean {
+ if (this._root.isShared)
+ this._root = this._root.clone();
+ var result = this._root.set(key, value, overwrite, this);
+ if (result === true || result === false)
+ return result;
+ // Root node has split, so create a new root node.
+ this._root = new BNodeInternal<K,V>([this._root, result]);
+ return true;
+ }
+
+ /**
+ * Returns true if the key exists in the B+ tree, false if not.
+ * Use get() for best performance; use has() if you need to
+ * distinguish between "undefined value" and "key not present".
+ * @param key Key to detect
+ * @description Computational complexity: O(log size)
+ */
+ has(key: K): boolean {
+ return this.forRange(key, key, true, undefined) !== 0;
+ }
+
+ /**
+ * Removes a single key-value pair from the B+ tree.
+ * @param key Key to find
+ * @returns true if a pair was found and removed, false otherwise.
+ * @description Computational complexity: O(log size)
+ */
+ delete(key: K): boolean {
+ return this.editRange(key, key, true, DeleteRange) !== 0;
+ }
+
+ // Clone-mutators /////////////////////////////////////////////////////////
+
+ /** Returns a copy of the tree with the specified key set (the value is undefined). */
+ with(key: K): BTree<K,V|undefined>;
+ /** Returns a copy of the tree with the specified key-value pair set. */
+ with<V2>(key: K, value: V2, overwrite?: boolean): BTree<K,V|V2>;
+ with<V2>(key: K, value?: V2, overwrite?: boolean): BTree<K,V|V2|undefined> {
+ let nu = this.clone() as BTree<K,V|V2|undefined>;
+ return nu.set(key, value, overwrite) || overwrite ? nu : this;
+ }
+
+ /** Returns a copy of the tree with the specified key-value pairs set. */
+ withPairs<V2>(pairs: [K,V|V2][], overwrite: boolean): BTree<K,V|V2> {
+ let nu = this.clone() as BTree<K,V|V2>;
+ return nu.setPairs(pairs, overwrite) !== 0 || overwrite ? nu : this;
+ }
+
+ /** Returns a copy of the tree with the specified keys present.
+ * @param keys The keys to add. If a key is already present in the tree,
+ * neither the existing key nor the existing value is modified.
+ * @param returnThisIfUnchanged if true, returns this if all keys already
+ * existed. Performance note: due to the architecture of this class, all
+ * node(s) leading to existing keys are cloned even if the collection is
+ * ultimately unchanged.
+ */
+ withKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K,V|undefined> {
+ let nu = this.clone() as BTree<K,V|undefined>, changed = false;
+ for (var i = 0; i < keys.length; i++)
+ changed = nu.set(keys[i], undefined, false) || changed;
+ return returnThisIfUnchanged && !changed ? this : nu;
+ }
+
+ /** Returns a copy of the tree with the specified key removed.
+ * @param returnThisIfUnchanged if true, returns this if the key didn't exist.
+ * Performance note: due to the architecture of this class, node(s) leading
+ * to where the key would have been stored are cloned even when the key
+ * turns out not to exist and the collection is unchanged.
+ */
+ without(key: K, returnThisIfUnchanged?: boolean): BTree<K,V> {
+ return this.withoutRange(key, key, true, returnThisIfUnchanged);
+ }
+
+ /** Returns a copy of the tree with the specified keys removed.
+ * @param returnThisIfUnchanged if true, returns this if none of the keys
+ * existed. Performance note: due to the architecture of this class,
+ * node(s) leading to where the key would have been stored are cloned
+ * even when the key turns out not to exist.
+ */
+ withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K,V> {
+ let nu = this.clone();
+ return nu.deleteKeys(keys) || !returnThisIfUnchanged ? nu : this;
+ }
+
+ /** Returns a copy of the tree with the specified range of keys removed. */
+ withoutRange(low: K, high: K, includeHigh: boolean, returnThisIfUnchanged?: boolean): BTree<K,V> {
+ let nu = this.clone();
+ if (nu.deleteRange(low, high, includeHigh) === 0 && returnThisIfUnchanged)
+ return this;
+ return nu;
+ }
+
+ /** Returns a copy of the tree with pairs removed whenever the callback
+ * function returns false. `where()` is a synonym for this method. */
+ filter(callback: (k:K,v:V,counter:number) => boolean, returnThisIfUnchanged?: boolean): BTree<K,V> {
+ var nu = this.greedyClone();
+ var del: any;
+ nu.editAll((k,v,i) => {
+ if (!callback(k, v, i)) return del = Delete;
+ });
+ if (!del && returnThisIfUnchanged)
+ return this;
+ return nu;
+ }
+
+ /** Returns a copy of the tree with all values altered by a callback function. */
+ mapValues<R>(callback: (v:V,k:K,counter:number) => R): BTree<K,R> {
+ var tmp = {} as {value:R};
+ var nu = this.greedyClone();
+ nu.editAll((k,v,i) => {
+ return tmp.value = callback(v, k, i), tmp as any;
+ });
+ return nu as any as BTree<K,R>;
+ }
+
+ /** Performs a reduce operation like the `reduce` method of `Array`.
+ * It is used to combine all pairs into a single value, or perform
+ * conversions. `reduce` is best understood by example. For example,
+ * `tree.reduce((P, pair) => P * pair[0], 1)` multiplies all keys
+ * together. It means "start with P=1, and for each pair multiply
+ * it by the key in pair[0]". Another example would be converting
+ * the tree to a Map (in this example, note that M.set returns M):
+ *
+ * var M = tree.reduce((M, pair) => M.set(pair[0],pair[1]), new Map())
+ *
+ * **Note**: the same array is sent to the callback on every iteration.
+ */
+ reduce<R>(callback: (previous:R,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R, initialValue: R): R;
+ reduce<R>(callback: (previous:R|undefined,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R): R|undefined;
+ reduce<R>(callback: (previous:R|undefined,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R, initialValue?: R): R|undefined {
+ let i = 0, p = initialValue;
+ var it = this.entries(this.minKey(), ReusedArray), next;
+ while (!(next = it.next()).done)
+ p = callback(p, next.value, i++, this);
+ return p;
+ }
+
+ // Iterator methods ///////////////////////////////////////////////////////
+
+ /** Returns an iterator that provides items in order (ascending order if
+ * the collection's comparator uses ascending order, as is the default.)
+ * @param lowestKey First key to be iterated, or undefined to start at
+ * minKey(). If the specified key doesn't exist then iteration
+ * starts at the next higher key (according to the comparator).
+ * @param reusedArray Optional array used repeatedly to store key-value
+ * pairs, to avoid creating a new array on every iteration.
+ */
+ entries(lowestKey?: K, reusedArray?: (K|V)[]): IterableIterator<[K,V]> {
+ var info = this.findPath(lowestKey);
+ if (info === undefined) return iterator<[K,V]>();
+ var {nodequeue, nodeindex, leaf} = info;
+ var state = reusedArray !== undefined ? 1 : 0;
+ var i = (lowestKey === undefined ? -1 : leaf.indexOf(lowestKey, 0, this._compare) - 1);
+
+ return iterator<[K,V]>(() => {
+ jump: for (;;) {
+ switch(state) {
+ case 0:
+ if (++i < leaf.keys.length)
+ return {done: false, value: [leaf.keys[i], leaf.values[i]]};
+ state = 2;
+ continue;
+ case 1:
+ if (++i < leaf.keys.length) {
+ reusedArray![0] = leaf.keys[i], reusedArray![1] = leaf.values[i];
+ return {done: false, value: reusedArray as [K,V]};
+ }
+ state = 2;
+ case 2:
+ // Advance to the next leaf node
+ for (var level = -1;;) {
+ if (++level >= nodequeue.length) {
+ state = 3; continue jump;
+ }
+ if (++nodeindex[level] < nodequeue[level].length)
+ break;
+ }
+ for (; level > 0; level--) {
+ nodequeue[level-1] = (nodequeue[level][nodeindex[level]] as BNodeInternal<K,V>).children;
+ nodeindex[level-1] = 0;
+ }
+ leaf = nodequeue[0][nodeindex[0]];
+ i = -1;
+ state = reusedArray !== undefined ? 1 : 0;
+ continue;
+ case 3:
+ return {done: true, value: undefined};
+ }
+ }
+ });
+ }
+
+ /** Returns an iterator that provides items in reversed order.
+ * @param highestKey Key at which to start iterating, or undefined to
+ * start at minKey(). If the specified key doesn't exist then iteration
+ * starts at the next lower key (according to the comparator).
+ * @param reusedArray Optional array used repeatedly to store key-value
+ * pairs, to avoid creating a new array on every iteration.
+ * @param skipHighest Iff this flag is true and the highestKey exists in the
+ * collection, the pair matching highestKey is skipped, not iterated.
+ */
+ entriesReversed(highestKey?: K, reusedArray?: (K|V)[], skipHighest?: boolean): IterableIterator<[K,V]> {
+ if ((highestKey = highestKey || this.maxKey()) === undefined)
+ return iterator<[K,V]>(); // collection is empty
+ var {nodequeue,nodeindex,leaf} = this.findPath(highestKey) || this.findPath(this.maxKey())!;
+ check(!nodequeue[0] || leaf === nodequeue[0][nodeindex[0]], "wat!");
+ var i = leaf.indexOf(highestKey, 0, this._compare);
+ if (!(skipHighest || this._compare(leaf.keys[i], highestKey) > 0))
+ i++;
+ var state = reusedArray !== undefined ? 1 : 0;
+
+ return iterator<[K,V]>(() => {
+ jump: for (;;) {
+ switch(state) {
+ case 0:
+ if (--i >= 0)
+ return {done: false, value: [leaf.keys[i], leaf.values[i]]};
+ state = 2;
+ continue;
+ case 1:
+ if (--i >= 0) {
+ reusedArray![0] = leaf.keys[i], reusedArray![1] = leaf.values[i];
+ return {done: false, value: reusedArray as [K,V]};
+ }
+ state = 2;
+ case 2:
+ // Advance to the next leaf node
+ for (var level = -1;;) {
+ if (++level >= nodequeue.length) {
+ state = 3; continue jump;
+ }
+ if (--nodeindex[level] >= 0)
+ break;
+ }
+ for (; level > 0; level--) {
+ nodequeue[level-1] = (nodequeue[level][nodeindex[level]] as BNodeInternal<K,V>).children;
+ nodeindex[level-1] = nodequeue[level-1].length-1;
+ }
+ leaf = nodequeue[0][nodeindex[0]];
+ i = leaf.keys.length;
+ state = reusedArray !== undefined ? 1 : 0;
+ continue;
+ case 3:
+ return {done: true, value: undefined};
+ }
+ }
+ });
+ }
+
+ /* Used by entries() and entriesReversed() to prepare to start iterating.
+ * It develops a "node queue" for each non-leaf level of the tree.
+ * Levels are numbered "bottom-up" so that level 0 is a list of leaf
+ * nodes from a low-level non-leaf node. The queue at a given level L
+ * consists of nodequeue[L] which is the children of a BNodeInternal,
+ * and nodeindex[L], the current index within that child list, such
+ * such that nodequeue[L-1] === nodequeue[L][nodeindex[L]].children.
+ * (However inside this function the order is reversed.)
+ */
+ private findPath(key?: K): { nodequeue: BNode<K,V>[][], nodeindex: number[], leaf: BNode<K,V> } | undefined
+ {
+ var nextnode = this._root;
+ var nodequeue: BNode<K,V>[][], nodeindex: number[];
+
+ if (nextnode.isLeaf) {
+ nodequeue = EmptyArray, nodeindex = EmptyArray; // avoid allocations
+ } else {
+ nodequeue = [], nodeindex = [];
+ for (var d = 0; !nextnode.isLeaf; d++) {
+ nodequeue[d] = (nextnode as BNodeInternal<K,V>).children;
+ nodeindex[d] = key === undefined ? 0 : nextnode.indexOf(key, 0, this._compare);
+ if (nodeindex[d] >= nodequeue[d].length)
+ return; // first key > maxKey()
+ nextnode = nodequeue[d][nodeindex[d]];
+ }
+ nodequeue.reverse();
+ nodeindex.reverse();
+ }
+ return {nodequeue, nodeindex, leaf:nextnode};
+ }
+
+ /** Returns a new iterator for iterating the keys of each pair in ascending order.
+ * @param firstKey: Minimum key to include in the output. */
+ keys(firstKey?: K): IterableIterator<K> {
+ var it = this.entries(firstKey, ReusedArray);
+ return iterator<K>(() => {
+ var n: IteratorResult<any> = it.next();
+ if (n.value) n.value = n.value[0];
+ return n;
+ });
+ }
+
+ /** Returns a new iterator for iterating the values of each pair in order by key.
+ * @param firstKey: Minimum key whose associated value is included in the output. */
+ values(firstKey?: K): IterableIterator<V> {
+ var it = this.entries(firstKey, ReusedArray);
+ return iterator<V>(() => {
+ var n: IteratorResult<any> = it.next();
+ if (n.value) n.value = n.value[1];
+ return n;
+ });
+ }
+
+ // Additional methods /////////////////////////////////////////////////////
+
+ /** Returns the maximum number of children/values before nodes will split. */
+ get maxNodeSize() {
+ return this._maxNodeSize;
+ }
+
+ /** Gets the lowest key in the tree. Complexity: O(log size) */
+ minKey(): K | undefined { return this._root.minKey(); }
+
+ /** Gets the highest key in the tree. Complexity: O(1) */
+ maxKey(): K | undefined { return this._root.maxKey(); }
+
+ /** Quickly clones the tree by marking the root node as shared.
+ * Both copies remain editable. When you modify either copy, any
+ * nodes that are shared (or potentially shared) between the two
+ * copies are cloned so that the changes do not affect other copies.
+ * This is known as copy-on-write behavior, or "lazy copying". */
+ clone(): BTree<K,V> {
+ this._root.isShared = true;
+ var result = new BTree<K,V>(undefined, this._compare, this._maxNodeSize);
+ result._root = this._root;
+ result._size = this._size;
+ return result;
+ }
+
+ /** Performs a greedy clone, immediately duplicating any nodes that are
+ * not currently marked as shared, in order to avoid marking any nodes
+ * as shared.
+ * @param force Clone all nodes, even shared ones.
+ */
+ greedyClone(force?: boolean): BTree<K,V> {
+ var result = new BTree<K,V>(undefined, this._compare, this._maxNodeSize);
+ result._root = this._root.greedyClone(force);
+ result._size = this._size;
+ return result;
+ }
+
+ /** Gets an array filled with the contents of the tree, sorted by key */
+ toArray(maxLength: number = 0x7FFFFFFF): [K,V][] {
+ let min = this.minKey(), max = this.maxKey();
+ if (min !== undefined)
+ return this.getRange(min, max!, true, maxLength)
+ return [];
+ }
+
+ /** Gets an array of all keys, sorted */
+ keysArray() {
+ var results: K[] = [];
+ this._root.forRange(this.minKey()!, this.maxKey()!, true, false, this, 0,
+ (k,v) => { results.push(k); });
+ return results;
+ }
+
+ /** Gets an array of all values, sorted by key */
+ valuesArray() {
+ var results: V[] = [];
+ this._root.forRange(this.minKey()!, this.maxKey()!, true, false, this, 0,
+ (k,v) => { results.push(v); });
+ return results;
+ }
+
+ /** Gets a string representing the tree's data based on toArray(). */
+ toString() {
+ return this.toArray().toString();
+ }
+
+ /** Stores a key-value pair only if the key doesn't already exist in the tree.
+ * @returns true if a new key was added
+ */
+ setIfNotPresent(key: K, value: V): boolean {
+ return this.set(key, value, false);
+ }
+
+ /** Returns the next pair whose key is larger than the specified key (or undefined if there is none) */
+ nextHigherPair(key: K): [K,V]|undefined {
+ var it = this.entries(key, ReusedArray);
+ var r = it.next();
+ if (!r.done && this._compare(r.value[0], key) <= 0)
+ r = it.next();
+ return r.value;
+ }
+
+ /** Returns the next key larger than the specified key (or undefined if there is none) */
+ nextHigherKey(key: K): K|undefined {
+ var p = this.nextHigherPair(key);
+ return p ? p[0] : p;
+ }
+
+ /** Returns the next pair whose key is smaller than the specified key (or undefined if there is none) */
+ nextLowerPair(key: K): [K,V]|undefined {
+ var it = this.entriesReversed(key, ReusedArray, true);
+ return it.next().value;
+ }
+
+ /** Returns the next key smaller than the specified key (or undefined if there is none) */
+ nextLowerKey(key: K): K|undefined {
+ var p = this.nextLowerPair(key);
+ return p ? p[0] : p;
+ }
+
+ /** Edits the value associated with a key in the tree, if it already exists.
+ * @returns true if the key existed, false if not.
+ */
+ changeIfPresent(key: K, value: V): boolean {
+ return this.editRange(key, key, true, (k,v) => ({value})) !== 0;
+ }
+
+ /**
+ * Builds an array of pairs from the specified range of keys, sorted by key.
+ * Each returned pair is also an array: pair[0] is the key, pair[1] is the value.
+ * @param low The first key in the array will be greater than or equal to `low`.
+ * @param high This method returns when a key larger than this is reached.
+ * @param includeHigh If the `high` key is present, its pair will be included
+ * in the output if and only if this parameter is true. Note: if the
+ * `low` key is present, it is always included in the output.
+ * @param maxLength Length limit. getRange will stop scanning the tree when
+ * the array reaches this size.
+ * @description Computational complexity: O(result.length + log size)
+ */
+ getRange(low: K, high: K, includeHigh?: boolean, maxLength: number = 0x3FFFFFF): [K,V][] {
+ var results: [K,V][] = [];
+ this._root.forRange(low, high, includeHigh, false, this, 0, (k,v) => {
+ results.push([k,v])
+ return results.length > maxLength ? Break : undefined;
+ });
+ return results;
+ }
+
+ /** Adds all pairs from a list of key-value pairs.
+ * @param pairs Pairs to add to this tree. If there are duplicate keys,
+ * later pairs currently overwrite earlier ones (e.g. [[0,1],[0,7]]
+ * associates 0 with 7.)
+ * @param overwrite Whether to overwrite pairs that already exist (if false,
+ * pairs[i] is ignored when the key pairs[i][0] already exists.)
+ * @returns The number of pairs added to the collection.
+ * @description Computational complexity: O(pairs.length * log(size + pairs.length))
+ */
+ setPairs(pairs: [K,V][], overwrite?: boolean): number {
+ var added = 0;
+ for (var i = 0; i < pairs.length; i++)
+ if (this.set(pairs[i][0], pairs[i][1], overwrite))
+ added++;
+ return added;
+ }
+
+ forRange(low: K, high: K, includeHigh: boolean, onFound?: (k:K,v:V,counter:number) => void, initialCounter?: number): number;
+
+ /**
+ * Scans the specified range of keys, in ascending order by key.
+ * Note: the callback `onFound` must not insert or remove items in the
+ * collection. Doing so may cause incorrect data to be sent to the
+ * callback afterward.
+ * @param low The first key scanned will be greater than or equal to `low`.
+ * @param high Scanning stops when a key larger than this is reached.
+ * @param includeHigh If the `high` key is present, `onFound` is called for
+ * that final pair if and only if this parameter is true.
+ * @param onFound A function that is called for each key-value pair. This
+ * function can return {break:R} to stop early with result R.
+ * @param initialCounter Initial third argument of onFound. This value
+ * increases by one each time `onFound` is called. Default: 0
+ * @returns The number of values found, or R if the callback returned
+ * `{break:R}` to stop early.
+ * @description Computational complexity: O(number of items scanned + log size)
+ */
+ forRange<R=number>(low: K, high: K, includeHigh: boolean, onFound?: (k:K,v:V,counter:number) => {break?:R}|void, initialCounter?: number): R|number {
+ var r = this._root.forRange(low, high, includeHigh, false, this, initialCounter || 0, onFound);
+ return typeof r === "number" ? r : r.break!;
+ }
+
+ /**
+ * Scans and potentially modifies values for a subsequence of keys.
+ * Note: the callback `onFound` should ideally be a pure function.
+ * Specfically, it must not insert items, call clone(), or change
+ * the collection except via return value; out-of-band editing may
+ * cause an exception or may cause incorrect data to be sent to
+ * the callback (duplicate or missed items). It must not cause a
+ * clone() of the collection, otherwise the clone could be modified
+ * by changes requested by the callback.
+ * @param low The first key scanned will be greater than or equal to `low`.
+ * @param high Scanning stops when a key larger than this is reached.
+ * @param includeHigh If the `high` key is present, `onFound` is called for
+ * that final pair if and only if this parameter is true.
+ * @param onFound A function that is called for each key-value pair. This
+ * function can return `{value:v}` to change the value associated
+ * with the current key, `{delete:true}` to delete the current pair,
+ * `{break:R}` to stop early with result R, or it can return nothing
+ * (undefined or {}) to cause no effect and continue iterating.
+ * `{break:R}` can be combined with one of the other two commands.
+ * The third argument `counter` is the number of items iterated
+ * previously; it equals 0 when `onFound` is called the first time.
+ * @returns The number of values scanned, or R if the callback returned
+ * `{break:R}` to stop early.
+ * @description
+ * Computational complexity: O(number of items scanned + log size)
+ * Note: if the tree has been cloned with clone(), any shared
+ * nodes are copied before `onFound` is called. This takes O(n) time
+ * where n is proportional to the amount of shared data scanned.
+ */
+ editRange<R=V>(low: K, high: K, includeHigh: boolean, onFound: (k:K,v:V,counter:number) => EditRangeResult<V,R>|void, initialCounter?: number): R|number {
+ var root = this._root;
+ if (root.isShared)
+ this._root = root = root.clone();
+ try {
+ var r = root.forRange(low, high, includeHigh, true, this, initialCounter || 0, onFound);
+ return typeof r === "number" ? r : r.break!;
+ } finally {
+ while (root.keys.length <= 1 && !root.isLeaf)
+ this._root = root = root.keys.length === 0 ? EmptyLeaf :
+ (root as any as BNodeInternal<K,V>).children[0];
+ }
+ }
+
+ /** Same as `editRange` except that the callback is called for all pairs. */
+ editAll<R=V>(onFound: (k:K,v:V,counter:number) => EditRangeResult<V,R>|void, initialCounter?: number): R|number {
+ return this.editRange(this.minKey()!, this.maxKey()!, true, onFound, initialCounter);
+ }
+
+ /**
+ * Removes a range of key-value pairs from the B+ tree.
+ * @param low The first key scanned will be greater than or equal to `low`.
+ * @param high Scanning stops when a key larger than this is reached.
+ * @param includeHigh Specifies whether the `high` key, if present, is deleted.
+ * @returns The number of key-value pairs that were deleted.
+ * @description Computational complexity: O(log size + number of items deleted)
+ */
+ deleteRange(low: K, high: K, includeHigh: boolean): number {
+ return this.editRange(low, high, includeHigh, DeleteRange);
+ }
+
+ /** Deletes a series of keys from the collection. */
+ deleteKeys(keys: K[]): number {
+ for (var i = 0, r = 0; i < keys.length; i++)
+ if (this.delete(keys[i]))
+ r++;
+ return r;
+ }
+
+ /** Gets the height of the tree: the number of internal nodes between the
+ * BTree object and its leaf nodes (zero if there are no internal nodes). */
+ get height(): number {
+ for (var node = this._root, h = -1; node != null; h++)
+ node = (node as any).children;
+ return h;
+ }
+
+ /** Makes the object read-only to ensure it is not accidentally modified.
+ * Freezing does not have to be permanent; unfreeze() reverses the effect.
+ * This is accomplished by replacing mutator functions with a function
+ * that throws an Error. Compared to using a property (e.g. this.isFrozen)
+ * this implementation gives better performance in non-frozen BTrees.
+ */
+ freeze() {
+ var t = this as any;
+ // Note: all other mutators ultimately call set() or editRange()
+ // so we don't need to override those others.
+ t.clear = t.set = t.editRange = function() {
+ throw new Error("Attempted to modify a frozen BTree");
+ };
+ }
+
+ /** Ensures mutations are allowed, reversing the effect of freeze(). */
+ unfreeze() {
+ delete this.clear;
+ delete this.set;
+ delete this.editRange;
+ }
+
+ /** Returns true if the tree appears to be frozen. */
+ get isFrozen() {
+ return this.hasOwnProperty('editRange');
+ }
+
+ /** Scans the tree for signs of serious bugs (e.g. this.size doesn't match
+ * number of elements, internal nodes not caching max element properly...)
+ * Computational complexity: O(number of nodes), i.e. O(size). This method
+ * skips the most expensive test - whether all keys are sorted - but it
+ * does check that maxKey() of the children of internal nodes are sorted. */
+ checkValid() {
+ var size = this._root.checkValid(0, this);
+ check(size === this.size, "size mismatch: counted ", size, "but stored", this.size);
+ }
+}
+
+declare const Symbol: any;
+if (Symbol && Symbol.iterator) // iterator is equivalent to entries()
+ (BTree as any).prototype[Symbol.iterator] = BTree.prototype.entries;
+(BTree as any).prototype.where = BTree.prototype.filter;
+(BTree as any).prototype.setRange = BTree.prototype.setPairs;
+(BTree as any).prototype.add = BTree.prototype.set;
+
+function iterator<T>(next: () => {done:boolean,value?:T} = (() => ({ done:true, value:undefined }))): IterableIterator<T> {
+ var result: any = { next };
+ if (Symbol && Symbol.iterator)
+ result[Symbol.iterator] = function() { return this; };
+ return result;
+}
+
+
+/** Leaf node / base class. **************************************************/
+class BNode<K,V> {
+ // If this is an internal node, _keys[i] is the highest key in children[i].
+ keys: K[];
+ values: V[];
+ isShared: true | undefined;
+ get isLeaf() { return (this as any).children === undefined; }
+
+ constructor(keys: K[] = [], values?: V[]) {
+ this.keys = keys;
+ this.values = values || undefVals as any[];
+ this.isShared = undefined;
+ }
+
+ // Shared methods /////////////////////////////////////////////////////////
+
+ maxKey() {
+ return this.keys[this.keys.length-1];
+ }
+
+ // If key not found, returns i^failXor where i is the insertion index.
+ // Callers that don't care whether there was a match will set failXor=0.
+ indexOf(key: K, failXor: number, cmp: (a:K, b:K) => number): index {
+ // TODO: benchmark multiple search strategies
+ const keys = this.keys;
+ var lo = 0, hi = keys.length, mid = hi >> 1;
+ while(lo < hi) {
+ var c = cmp(keys[mid], key);
+ if (c < 0)
+ lo = mid + 1;
+ else if (c > 0) // key < keys[mid]
+ hi = mid;
+ else if (c === 0)
+ return mid;
+ else {
+ // c is NaN or otherwise invalid
+ if (key === key) // at least the search key is not NaN
+ return keys.length;
+ else
+ throw new Error("BTree: NaN was used as a key");
+ }
+ mid = (lo + hi) >> 1;
+ }
+ return mid ^ failXor;
+
+ // Unrolled version: benchmarks show same speed, not worth using
+ /*var i = 1, c: number = 0, sum = 0;
+ if (keys.length >= 4) {
+ i = 3;
+ if (keys.length >= 8) {
+ i = 7;
+ if (keys.length >= 16) {
+ i = 15;
+ if (keys.length >= 32) {
+ i = 31;
+ if (keys.length >= 64) {
+ i = 127;
+ i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 64 : -64;
+ sum += c;
+ i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 32 : -32;
+ sum += c;
+ }
+ i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 16 : -16;
+ sum += c;
+ }
+ i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 8 : -8;
+ sum += c;
+ }
+ i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 4 : -4;
+ sum += c;
+ }
+ i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 2 : -2;
+ sum += c;
+ }
+ i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 1 : -1;
+ c = i < keys.length ? cmp(keys[i], key) : 1;
+ sum += c;
+ if (c < 0) {
+ ++i;
+ c = i < keys.length ? cmp(keys[i], key) : 1;
+ sum += c;
+ }
+ if (sum !== sum) {
+ if (key === key) // at least the search key is not NaN
+ return keys.length ^ failXor;
+ else
+ throw new Error("BTree: NaN was used as a key");
+ }
+ return c === 0 ? i : i ^ failXor;*/
+ }
+
+ // Leaf Node: misc //////////////////////////////////////////////////////////
+
+ minKey() {
+ return this.keys[0];
+ }
+
+ clone(): BNode<K,V> {
+ var v = this.values;
+ return new BNode<K,V>(this.keys.slice(0), v === undefVals ? v : v.slice(0));
+ }
+
+ greedyClone(force?: boolean): BNode<K,V> {
+ return this.isShared && !force ? this : this.clone();
+ }
+
+ get(key: K, defaultValue: V|undefined, tree: BTree<K,V>): V|undefined {
+ var i = this.indexOf(key, -1, tree._compare);
+ return i < 0 ? defaultValue : this.values[i];
+ }
+
+ checkValid(depth: number, tree: BTree<K,V>): number {
+ var kL = this.keys.length, vL = this.values.length;
+ check(this.values === undefVals ? kL <= vL : kL === vL,
+ "keys/values length mismatch: depth", depth, "with lengths", kL, vL);
+ // Note: we don't check for "node too small" because sometimes a node
+ // can legitimately have size 1. This occurs if there is a batch
+ // deletion, leaving a node of size 1, and the siblings are full so
+ // it can't be merged with adjacent nodes. However, the parent will
+ // verify that the average node size is at least half of the maximum.
+ check(depth == 0 || kL > 0, "empty leaf at depth", depth);
+ return kL;
+ }
+
+ // Leaf Node: set & node splitting //////////////////////////////////////////
+
+ set(key: K, value: V, overwrite: boolean|undefined, tree: BTree<K,V>): boolean|BNode<K,V> {
+ var i = this.indexOf(key, -1, tree._compare);
+ if (i < 0) {
+ // key does not exist yet
+ i = ~i;
+ tree._size++;
+
+ if (this.keys.length < tree._maxNodeSize) {
+ return this.insertInLeaf(i, key, value, tree);
+ } else {
+ // This leaf node is full and must split
+ var newRightSibling = this.splitOffRightSide(), target: BNode<K,V> = this;
+ if (i > this.keys.length) {
+ i -= this.keys.length;
+ target = newRightSibling;
+ }
+ target.insertInLeaf(i, key, value, tree);
+ return newRightSibling;
+ }
+ } else {
+ // Key already exists
+ if (overwrite !== false) {
+ if (value !== undefined)
+ this.reifyValues();
+ // usually this is a no-op, but some users may wish to edit the key
+ this.keys[i] = key;
+ this.values[i] = value;
+ }
+ return false;
+ }
+ }
+
+ reifyValues() {
+ if (this.values === undefVals)
+ return this.values = this.values.slice(0, this.keys.length);
+ return this.values;
+ }
+
+ insertInLeaf(i: index, key: K, value: V, tree: BTree<K,V>) {
+ this.keys.splice(i, 0, key);
+ if (this.values === undefVals) {
+ while (undefVals.length < tree._maxNodeSize)
+ undefVals.push(undefined);
+ if (value === undefined) {
+ return true;
+ } else {
+ this.values = undefVals.slice(0, this.keys.length - 1);
+ }
+ }
+ this.values.splice(i, 0, value);
+ return true;
+ }
+
+ takeFromRight(rhs: BNode<K,V>) {
+ // Reminder: parent node must update its copy of key for this node
+ // assert: neither node is shared
+ // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
+ var v = this.values;
+ if (rhs.values === undefVals) {
+ if (v !== undefVals)
+ v.push(undefined as any);
+ } else {
+ v = this.reifyValues();
+ v.push(rhs.values.shift()!);
+ }
+ this.keys.push(rhs.keys.shift()!);
+ }
+
+ takeFromLeft(lhs: BNode<K,V>) {
+ // Reminder: parent node must update its copy of key for this node
+ // assert: neither node is shared
+ // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
+ var v = this.values;
+ if (lhs.values === undefVals) {
+ if (v !== undefVals)
+ v.unshift(undefined as any);
+ } else {
+ v = this.reifyValues();
+ v.unshift(lhs.values.pop()!);
+ }
+ this.keys.unshift(lhs.keys.pop()!);
+ }
+
+ splitOffRightSide(): BNode<K,V> {
+ // Reminder: parent node must update its copy of key for this node
+ var half = this.keys.length >> 1, keys = this.keys.splice(half);
+ var values = this.values === undefVals ? undefVals : this.values.splice(half);
+ return new BNode<K,V>(keys, values);
+ }
+
+ // Leaf Node: scanning & deletions //////////////////////////////////////////
+
+ forRange<R>(low: K, high: K, includeHigh: boolean|undefined, editMode: boolean, tree: BTree<K,V>, count: number,
+ onFound?: (k:K, v:V, counter:number) => EditRangeResult<V,R>|void): EditRangeResult<V,R>|number {
+ var cmp = tree._compare;
+ var iLow, iHigh;
+ if (high === low) {
+ if (!includeHigh)
+ return count;
+ iHigh = (iLow = this.indexOf(low, -1, cmp)) + 1;
+ if (iLow < 0)
+ return count;
+ } else {
+ iLow = this.indexOf(low, 0, cmp);
+ iHigh = this.indexOf(high, -1, cmp);
+ if (iHigh < 0)
+ iHigh = ~iHigh;
+ else if (includeHigh === true)
+ iHigh++;
+ }
+ var keys = this.keys, values = this.values;
+ if (onFound !== undefined) {
+ for(var i = iLow; i < iHigh; i++) {
+ var key = keys[i];
+ var result = onFound(key, values[i], count++);
+ if (result !== undefined) {
+ if (editMode === true) {
+ if (key !== keys[i] || this.isShared === true)
+ throw new Error("BTree illegally changed or cloned in editRange");
+ if (result.delete) {
+ this.keys.splice(i, 1);
+ if (this.values !== undefVals)
+ this.values.splice(i, 1);
+ tree._size--;
+ i--;
+ iHigh--;
+ } else if (result.hasOwnProperty('value')) {
+ values![i] = result.value!;
+ }
+ }
+ if (result.break !== undefined)
+ return result;
+ }
+ }
+ } else
+ count += iHigh - iLow;
+ return count;
+ }
+
+ /** Adds entire contents of right-hand sibling (rhs is left unchanged) */
+ mergeSibling(rhs: BNode<K,V>, _: number) {
+ this.keys.push.apply(this.keys, rhs.keys);
+ if (this.values === undefVals) {
+ if (rhs.values === undefVals)
+ return;
+ this.values = this.values.slice(0, this.keys.length);
+ }
+ this.values.push.apply(this.values, rhs.reifyValues());
+ }
+}
+
+/** Internal node (non-leaf node) ********************************************/
+class BNodeInternal<K,V> extends BNode<K,V> {
+ // Note: conventionally B+ trees have one fewer key than the number of
+ // children, but I find it easier to keep the array lengths equal: each
+ // keys[i] caches the value of children[i].maxKey().
+ children: BNode<K,V>[];
+
+ constructor(children: BNode<K,V>[], keys?: K[]) {
+ if (!keys) {
+ keys = [];
+ for (var i = 0; i < children.length; i++)
+ keys[i] = children[i].maxKey();
+ }
+ super(keys);
+ this.children = children;
+ }
+
+ clone(): BNode<K,V> {
+ var children = this.children.slice(0);
+ for (var i = 0; i < children.length; i++)
+ children[i].isShared = true;
+ return new BNodeInternal<K,V>(children, this.keys.slice(0));
+ }
+
+ greedyClone(force?: boolean): BNode<K,V> {
+ if (this.isShared && !force)
+ return this;
+ var nu = new BNodeInternal<K,V>(this.children.slice(0), this.keys.slice(0));
+ for (var i = 0; i < nu.children.length; i++)
+ nu.children[i] = nu.children[i].greedyClone();
+ return nu;
+ }
+
+ minKey() {
+ return this.children[0].minKey();
+ }
+
+ get(key: K, defaultValue: V|undefined, tree: BTree<K,V>): V|undefined {
+ var i = this.indexOf(key, 0, tree._compare), children = this.children;
+ return i < children.length ? children[i].get(key, defaultValue, tree) : undefined;
+ }
+
+ checkValid(depth: number, tree: BTree<K,V>) : number {
+ var kL = this.keys.length, cL = this.children.length;
+ check(kL === cL, "keys/children length mismatch: depth", depth, "lengths", kL, cL);
+ check(kL > 1, "internal node has length", kL, "at depth", depth);
+ var size = 0, c = this.children, k = this.keys, childSize = 0;
+ for (var i = 0; i < cL; i++) {
+ size += c[i].checkValid(depth + 1, tree);
+ childSize += c[i].keys.length;
+ check(size >= childSize, "wtf"); // no way this will ever fail
+ check(i === 0 || c[i-1].constructor === c[i].constructor, "type mismatch");
+ if (c[i].maxKey() != k[i])
+ check(false, "keys[", i, "] =", k[i], "is wrong, should be ", c[i].maxKey(), "at depth", depth);
+ if (!(i === 0 || tree._compare(k[i-1], k[i]) < 0))
+ check(false, "sort violation at depth", depth, "index", i, "keys", k[i-1], k[i]);
+ }
+ var toofew = childSize < (tree.maxNodeSize >> 1)*cL;
+ if (toofew || childSize > tree.maxNodeSize*cL)
+ check(false, toofew ? "too few" : "too many", "children (", childSize, size, ") at depth", depth, ", maxNodeSize:", tree.maxNodeSize, "children.length:", cL);
+ return size;
+ }
+
+ // Internal Node: set & node splitting //////////////////////////////////////
+
+ set(key: K, value: V, overwrite: boolean|undefined, tree: BTree<K,V>): boolean|BNodeInternal<K,V> {
+ var c = this.children, max = tree._maxNodeSize, cmp = tree._compare;
+ var i = Math.min(this.indexOf(key, 0, cmp), c.length - 1), child = c[i];
+
+ if (child.isShared)
+ c[i] = child = child.clone();
+ if (child.keys.length >= max) {
+ // child is full; inserting anything else will cause a split.
+ // Shifting an item to the left or right sibling may avoid a split.
+ // We can do a shift if the adjacent node is not full and if the
+ // current key can still be placed in the same node after the shift.
+ var other: BNode<K,V>;
+ if (i > 0 && (other = c[i-1]).keys.length < max && cmp(child.keys[0], key) < 0) {
+ if (other.isShared)
+ c[i-1] = other = other.clone();
+ other.takeFromRight(child);
+ this.keys[i-1] = other.maxKey();
+ } else if ((other = c[i+1]) !== undefined && other.keys.length < max && cmp(child.maxKey(), key) < 0) {
+ if (other.isShared)
+ c[i+1] = other = other.clone();
+ other.takeFromLeft(child);
+ this.keys[i] = c[i].maxKey();
+ }
+ }
+
+ var result = child.set(key, value, overwrite, tree);
+ if (result === false)
+ return false;
+ this.keys[i] = child.maxKey();
+ if (result === true)
+ return true;
+
+ // The child has split and `result` is a new right child... does it fit?
+ if (this.keys.length < max) { // yes
+ this.insert(i+1, result);
+ return true;
+ } else { // no, we must split also
+ var newRightSibling = this.splitOffRightSide(), target: BNodeInternal<K,V> = this;
+ if (cmp(result.maxKey(), this.maxKey()) > 0) {
+ target = newRightSibling;
+ i -= this.keys.length;
+ }
+ target.insert(i+1, result);
+ return newRightSibling;
+ }
+ }
+
+ insert(i: index, child: BNode<K,V>) {
+ this.children.splice(i, 0, child);
+ this.keys.splice(i, 0, child.maxKey());
+ }
+
+ splitOffRightSide() {
+ var half = this.children.length >> 1;
+ return new BNodeInternal<K,V>(this.children.splice(half), this.keys.splice(half));
+ }
+
+ takeFromRight(rhs: BNode<K,V>) {
+ // Reminder: parent node must update its copy of key for this node
+ // assert: neither node is shared
+ // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
+ this.keys.push(rhs.keys.shift()!);
+ this.children.push((rhs as BNodeInternal<K,V>).children.shift()!);
+ }
+
+ takeFromLeft(lhs: BNode<K,V>) {
+ // Reminder: parent node must update its copy of key for this node
+ // assert: neither node is shared
+ // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
+ this.keys.unshift(lhs.keys.pop()!);
+ this.children.unshift((lhs as BNodeInternal<K,V>).children.pop()!);
+ }
+
+ // Internal Node: scanning & deletions //////////////////////////////////////
+
+ forRange<R>(low: K, high: K, includeHigh: boolean|undefined, editMode: boolean, tree: BTree<K,V>, count: number,
+ onFound?: (k:K, v:V, counter:number) => EditRangeResult<V,R>|void): EditRangeResult<V,R>|number
+ {
+ var cmp = tree._compare;
+ var iLow = this.indexOf(low, 0, cmp), i = iLow;
+ var iHigh = Math.min(high === low ? iLow : this.indexOf(high, 0, cmp), this.keys.length-1);
+ var keys = this.keys, children = this.children;
+ if (!editMode) {
+ // Simple case
+ for(; i <= iHigh; i++) {
+ var result = children[i].forRange(low, high, includeHigh, editMode, tree, count, onFound);
+ if (typeof result !== 'number')
+ return result;
+ count = result;
+ }
+ } else if (i <= iHigh) {
+ try {
+ for(; i <= iHigh; i++) {
+ if (children[i].isShared)
+ children[i] = children[i].clone();
+ var result = children[i].forRange(low, high, includeHigh, editMode, tree, count, onFound);
+ keys[i] = children[i].maxKey();
+ if (typeof result !== 'number')
+ return result;
+ count = result;
+ }
+ } finally {
+ // Deletions may have occurred, so look for opportunities to merge nodes.
+ var half = tree._maxNodeSize >> 1;
+ if (iLow > 0)
+ iLow--;
+ for(i = iHigh; i >= iLow; i--) {
+ if (children[i].keys.length <= half)
+ this.tryMerge(i, tree._maxNodeSize);
+ }
+ // Are we completely empty?
+ if (children[0].keys.length === 0) {
+ check(children.length === 1 && keys.length === 1, "emptiness bug");
+ children.shift();
+ keys.shift();
+ }
+ }
+ }
+ return count;
+ }
+
+ /** Merges child i with child i+1 if their combined size is not too large */
+ tryMerge(i: index, maxSize: number): boolean {
+ var children = this.children;
+ if (i >= 0 && i + 1 < children.length) {
+ if (children[i].keys.length + children[i+1].keys.length <= maxSize) {
+ if (children[i].isShared) // cloned already UNLESS i is outside scan range
+ children[i] = children[i].clone();
+ children[i].mergeSibling(children[i+1], maxSize);
+ children.splice(i + 1, 1);
+ this.keys.splice(i + 1, 1);
+ this.keys[i] = children[i].maxKey();
+ return true;
+ }
+ }
+ return false;
+ }
+
+ mergeSibling(rhs: BNode<K,V>, maxNodeSize: number) {
+ // assert !this.isShared;
+ var oldLength = this.keys.length;
+ this.keys.push.apply(this.keys, rhs.keys);
+ this.children.push.apply(this.children, (rhs as any as BNodeInternal<K,V>).children);
+ // If our children are themselves almost empty due to a mass-delete,
+ // they may need to be merged too (but only the oldLength-1 and its
+ // right sibling should need this).
+ this.tryMerge(oldLength-1, maxNodeSize);
+ }
+}
+
+// Optimization: this array of `undefined`s is used instead of a normal
+// array of values in nodes where `undefined` is the only value.
+// Its length is extended to max node size on first use; since it can
+// be shared between trees with different maximums, its length can only
+// increase, never decrease. Its type should be undefined[] but strangely
+// TypeScript won't allow the comparison V[] === undefined[]. To prevent
+// users from making this array too large, BTree has a maximum node size.
+var undefVals: any[] = [];
+
+const Delete = {delete: true}, DeleteRange = () => Delete;
+const Break = {break: true};
+const EmptyLeaf = (function() {
+ var n = new BNode<any,any>(); n.isShared = true; return n;
+})();
+const EmptyArray: any[] = [];
+const ReusedArray: any[] = []; // assumed thread-local
+
+function check(fact: boolean, ...args: any[]) {
+ if (!fact) {
+ args.unshift('B+ tree '); // at beginning of message
+ throw new Error(args.join(' '));
+ }
+}
+
+/** A BTree frozen in the empty state. */
+export const EmptyBTree = (() => { let t = new BTree(); t.freeze(); return t; })(); \ No newline at end of file
diff --git a/packages/idb-bridge/src/tree/interfaces.ts b/packages/idb-bridge/src/tree/interfaces.ts
new file mode 100644
index 000000000..c708c20b5
--- /dev/null
+++ b/packages/idb-bridge/src/tree/interfaces.ts
@@ -0,0 +1,329 @@
+/*
+Copyright (c) 2018 David Piepgrass
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+SPDX-License-Identifier: MIT
+*/
+
+// Original repository: https://github.com/qwertie/btree-typescript
+
+
+/** Read-only set interface (subinterface of IMapSource<K,any>).
+ * The word "set" usually means that each item in the collection is unique
+ * (appears only once, based on a definition of equality used by the
+ * collection.) Objects conforming to this interface aren't guaranteed not
+ * to contain duplicates, but as an example, BTree<K,V> implements this
+ * interface and does not allow duplicates. */
+export interface ISetSource<K=any>
+{
+ /** Returns the number of key/value pairs in the map object. */
+ size: number;
+ /** Returns a boolean asserting whether the key exists in the map object or not. */
+ has(key: K): boolean;
+ /** Returns a new iterator for iterating the items in the set (the order is implementation-dependent). */
+ keys(): IterableIterator<K>;
+}
+
+/** Read-only map interface (i.e. a source of key-value pairs). */
+export interface IMapSource<K=any, V=any> extends ISetSource<K>
+{
+ /** Returns the number of key/value pairs in the map object. */
+ size: number;
+ /** Returns the value associated to the key, or undefined if there is none. */
+ get(key: K): V|undefined;
+ /** Returns a boolean asserting whether the key exists in the map object or not. */
+ has(key: K): boolean;
+ /** Calls callbackFn once for each key-value pair present in the map object.
+ * The ES6 Map class sends the value to the callback before the key, so
+ * this interface must do likewise. */
+ forEach(callbackFn: (v:V, k:K, map:IMapSource<K,V>) => void, thisArg: any): void;
+
+ /** Returns an iterator that provides all key-value pairs from the collection (as arrays of length 2). */
+ entries(): IterableIterator<[K,V]>;
+ /** Returns a new iterator for iterating the keys of each pair. */
+ keys(): IterableIterator<K>;
+ /** Returns a new iterator for iterating the values of each pair. */
+ values(): IterableIterator<V>;
+ // TypeScript compiler decided Symbol.iterator has type 'any'
+ //[Symbol.iterator](): IterableIterator<[K,V]>;
+}
+
+/** Write-only set interface (the set cannot be queried, but items can be added to it.)
+ * @description Note: BTree<K,V> does not officially implement this interface,
+ * but BTree<K> can be used as an instance of ISetSink<K>. */
+export interface ISetSink<K=any>
+{
+ /** Adds the specified item to the set, if it was not in the set already. */
+ add(key: K): any;
+ /** Returns true if an element in the map object existed and has been
+ * removed, or false if the element did not exist. */
+ delete(key: K): boolean;
+ /** Removes everything so that the set is empty. */
+ clear(): void;
+}
+
+/** Write-only map interface (i.e. a drain into which key-value pairs can be "sunk") */
+export interface IMapSink<K=any, V=any>
+{
+ /** Returns true if an element in the map object existed and has been
+ * removed, or false if the element did not exist. */
+ delete(key: K): boolean;
+ /** Sets the value for the key in the map object (the return value is
+ * boolean in BTree but Map returns the Map itself.) */
+ set(key: K, value: V): any;
+ /** Removes all key/value pairs from the IMap object. */
+ clear(): void;
+}
+
+/** Set interface.
+ * @description Note: BTree<K,V> does not officially implement this interface,
+ * but BTree<K> can be used as an instance of ISet<K>. */
+export interface ISet<K=any> extends ISetSource<K>, ISetSink<K> { }
+
+/** An interface compatible with ES6 Map and BTree. This interface does not
+ * describe the complete interface of either class, but merely the common
+ * interface shared by both. */
+export interface IMap<K=any, V=any> extends IMapSource<K, V>, IMapSink<K, V> { }
+
+/** An data source that provides read-only access to a set of items called
+ * "keys" in sorted order. This is a subinterface of ISortedMapSource. */
+export interface ISortedSetSource<K=any> extends ISetSource<K>
+{
+ /** Gets the lowest key in the collection. */
+ minKey(): K | undefined;
+ /** Gets the highest key in the collection. */
+ maxKey(): K | undefined;
+ /** Returns the next key larger than the specified key (or undefined if there is none) */
+ nextHigherKey(key: K): K|undefined;
+ /** Returns the next key smaller than the specified key (or undefined if there is none) */
+ nextLowerKey(key: K): K|undefined;
+ /** Calls `callback` on the specified range of keys, in ascending order by key.
+ * @param low The first key scanned will be greater than or equal to `low`.
+ * @param high Scanning stops when a key larger than this is reached.
+ * @param includeHigh If the `high` key is present in the map, `onFound` is called
+ * for that final pair if and only if this parameter is true.
+ * @param onFound A function that is called for each key pair. Because this
+ * is a subinterface of ISortedMapSource, if there is a value
+ * associated with the key, it is passed as the second parameter.
+ * @param initialCounter Initial third argument of `onFound`. This value
+ * increases by one each time `onFound` is called. Default: 0
+ * @returns Number of pairs found and the number of times `onFound` was called.
+ */
+ forRange(low: K, high: K, includeHigh: boolean, onFound?: (k:K,v:any,counter:number) => void, initialCounter?: number): number;
+ /** Returns a new iterator for iterating the keys of each pair in ascending order.
+ * @param firstKey: Minimum key to include in the output. */
+ keys(firstKey?: K): IterableIterator<K>;
+}
+
+/** An data source that provides read-only access to items in sorted order. */
+export interface ISortedMapSource<K=any, V=any> extends IMapSource<K, V>, ISortedSetSource<K>
+{
+ /** Returns the next pair whose key is larger than the specified key (or undefined if there is none) */
+ nextHigherPair(key: K): [K,V]|undefined;
+ /** Returns the next pair whose key is smaller than the specified key (or undefined if there is none) */
+ nextLowerPair(key: K): [K,V]|undefined;
+ /** Builds an array of pairs from the specified range of keys, sorted by key.
+ * Each returned pair is also an array: pair[0] is the key, pair[1] is the value.
+ * @param low The first key in the array will be greater than or equal to `low`.
+ * @param high This method returns when a key larger than this is reached.
+ * @param includeHigh If the `high` key is present in the map, its pair will be
+ * included in the output if and only if this parameter is true. Note:
+ * if the `low` key is present, it is always included in the output.
+ * @param maxLength Maximum length of the returned array (default: unlimited)
+ * @description Computational complexity: O(result.length + log size)
+ */
+ getRange(low: K, high: K, includeHigh?: boolean, maxLength?: number): [K,V][];
+ /** Calls `callback` on the specified range of keys, in ascending order by key.
+ * @param low The first key scanned will be greater than or equal to `low`.
+ * @param high Scanning stops when a key larger than this is reached.
+ * @param includeHigh If the `high` key is present in the map, `onFound` is called
+ * for that final pair if and only if this parameter is true.
+ * @param onFound A function that is called for each key-value pair.
+ * @param initialCounter Initial third argument of onFound. This value
+ * increases by one each time `onFound` is called. Default: 0
+ * @returns Number of pairs found and the number of times `callback` was called.
+ */
+ forRange(low: K, high: K, includeHigh: boolean, onFound?: (k:K,v:V,counter:number) => void, initialCounter?: number): number;
+ /** Returns an iterator that provides items in order by key.
+ * @param firstKey: Minimum key to include in the output. */
+ entries(firstKey?: K): IterableIterator<[K,V]>;
+ /** Returns a new iterator for iterating the keys of each pair in ascending order.
+ * @param firstKey: Minimum key to include in the output. */
+ keys(firstKey?: K): IterableIterator<K>;
+ /** Returns a new iterator for iterating the values of each pair in order by key.
+ * @param firstKey: Minimum key whose associated value is included in the output. */
+ values(firstKey?: K): IterableIterator<V>;
+
+ // This method should logically be in IMapSource but is not supported by ES6 Map
+ /** Performs a reduce operation like the `reduce` method of `Array`.
+ * It is used to combine all pairs into a single value, or perform conversions. */
+ reduce<R>(callback: (previous:R,currentPair:[K,V],counter:number,tree:IMapF<K,V>) => R, initialValue: R): R;
+ /** Performs a reduce operation like the `reduce` method of `Array`.
+ * It is used to combine all pairs into a single value, or perform conversions. */
+ reduce<R>(callback: (previous:R|undefined,currentPair:[K,V],counter:number,tree:IMapF<K,V>) => R): R|undefined;
+}
+
+/** An interface for a set of keys (the combination of ISortedSetSource<K> and ISetSink<K>) */
+export interface ISortedSet<K=any> extends ISortedSetSource<K>, ISetSink<K> { }
+
+/** An interface for a sorted map (dictionary),
+ * not including functional/persistent methods. */
+export interface ISortedMap<K=any, V=any> extends IMap<K,V>, ISortedMapSource<K, V>
+{
+ // All of the following methods should be in IMap but are left out of IMap
+ // so that IMap is compatible with ES6 Map.
+
+ /** Adds or overwrites a key-value pair in the sorted map.
+ * @param key the key is used to determine the sort order of data in the tree.
+ * @param value data to associate with the key
+ * @param overwrite Whether to overwrite an existing key-value pair
+ * (default: true). If this is false and there is an existing
+ * key-value pair then the call to this method has no effect.
+ * @returns true if a new key-value pair was added, false if the key
+ * already existed. */
+ set(key: K, value: V, overwrite?: boolean): boolean;
+ /** Adds all pairs from a list of key-value pairs.
+ * @param pairs Pairs to add to this tree. If there are duplicate keys,
+ * later pairs currently overwrite earlier ones (e.g. [[0,1],[0,7]]
+ * associates 0 with 7.)
+ * @param overwrite Whether to overwrite pairs that already exist (if false,
+ * pairs[i] is ignored when the key pairs[i][0] already exists.)
+ * @returns The number of pairs added to the collection.
+ */
+ setPairs(pairs: [K,V][], overwrite?: boolean): number;
+ /** Deletes a series of keys from the collection. */
+ deleteKeys(keys: K[]): number;
+ /** Removes a range of key-value pairs from the B+ tree.
+ * @param low The first key deleted will be greater than or equal to `low`.
+ * @param high Deleting stops when a key larger than this is reached.
+ * @param includeHigh Specifies whether the `high` key, if present, is deleted.
+ * @returns The number of key-value pairs that were deleted. */
+ deleteRange(low: K, high: K, includeHigh: boolean): number;
+
+ // TypeScript requires these methods of ISortedMapSource to be repeated
+ entries(firstKey?: K): IterableIterator<[K,V]>;
+ keys(firstKey?: K): IterableIterator<K>;
+ values(firstKey?: K): IterableIterator<V>;
+}
+
+/** An interface for a functional set, in which the set object could be read-only
+ * but new versions of the set can be created by calling "with" or "without"
+ * methods to add or remove keys. This is a subinterface of IMapF<K,V>,
+ * so the items in the set may be referred to as "keys". */
+export interface ISetF<K=any> extends ISetSource<K> {
+ /** Returns a copy of the set with the specified key included.
+ * @description You might wonder why this method accepts only one key
+ * instead of `...keys: K[]`. The reason is that the derived interface
+ * IMapF expects the second parameter to be a value. Therefore
+ * withKeys() is provided to set multiple keys at once. */
+ with(key: K): ISetF<K>;
+ /** Returns a copy of the set with the specified key removed. */
+ without(key: K): ISetF<K>;
+ /** Returns a copy of the tree with all the keys in the specified array present.
+ * @param keys The keys to add.
+ * @param returnThisIfUnchanged If true, the method returns `this` when
+ * all of the keys are already present in the collection. The
+ * default value may be true or false depending on the concrete
+ * implementation of the interface (in BTree, the default is false.) */
+ withKeys(keys: K[], returnThisIfUnchanged?: boolean): ISetF<K>;
+ /** Returns a copy of the tree with all the keys in the specified array removed. */
+ withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): ISetF<K>;
+ /** Returns a copy of the tree with items removed whenever the callback
+ * function returns false.
+ * @param callback A function to call for each item in the set.
+ * The second parameter to `callback` exists because ISetF
+ * is a subinterface of IMapF. If the object is a map, v
+ * is the value associated with the key, otherwise v could be
+ * undefined or another copy of the third parameter (counter). */
+ filter(callback: (k:K,v:any,counter:number) => boolean, returnThisIfUnchanged?: boolean): ISetF<K>;
+}
+
+/** An interface for a functional map, in which the map object could be read-only
+ * but new versions of the map can be created by calling "with" or "without"
+ * methods to add or remove keys or key-value pairs.
+ */
+export interface IMapF<K=any, V=any> extends IMapSource<K, V>, ISetF<K> {
+ /** Returns a copy of the tree with the specified key set (the value is undefined). */
+ with(key: K): IMapF<K,V|undefined>;
+ /** Returns a copy of the tree with the specified key-value pair set. */
+ with<V2>(key: K, value: V2, overwrite?: boolean): IMapF<K,V|V2>;
+ /** Returns a copy of the tree with the specified key-value pairs set. */
+ withPairs<V2>(pairs: [K,V|V2][], overwrite: boolean): IMapF<K,V|V2>;
+ /** Returns a copy of the tree with all the keys in the specified array present.
+ * @param keys The keys to add. If a key is already present in the tree,
+ * neither the existing key nor the existing value is modified.
+ * @param returnThisIfUnchanged If true, the method returns `this` when
+ * all of the keys are already present in the collection. The
+ * default value may be true or false depending on the concrete
+ * implementation of the interface (in BTree, the default is false.) */
+ withKeys(keys: K[], returnThisIfUnchanged?: boolean): IMapF<K,V|undefined>;
+ /** Returns a copy of the tree with all values altered by a callback function. */
+ mapValues<R>(callback: (v:V,k:K,counter:number) => R): IMapF<K,R>;
+ /** Performs a reduce operation like the `reduce` method of `Array`.
+ * It is used to combine all pairs into a single value, or perform conversions. */
+ reduce<R>(callback: (previous:R,currentPair:[K,V],counter:number,tree:IMapF<K,V>) => R, initialValue: R): R;
+ /** Performs a reduce operation like the `reduce` method of `Array`.
+ * It is used to combine all pairs into a single value, or perform conversions. */
+ reduce<R>(callback: (previous:R|undefined,currentPair:[K,V],counter:number,tree:IMapF<K,V>) => R): R|undefined;
+
+ // Update return types in ISetF
+ without(key: K): IMapF<K,V>;
+ withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): IMapF<K,V>;
+ /** Returns a copy of the tree with pairs removed whenever the callback
+ * function returns false. */
+ filter(callback: (k:K,v:V,counter:number) => boolean, returnThisIfUnchanged?: boolean): IMapF<K,V>;
+}
+
+/** An interface for a functional sorted set: a functional set in which the
+ * keys (items) are sorted. This is a subinterface of ISortedMapF. */
+export interface ISortedSetF<K=any> extends ISetF<K>, ISortedSetSource<K>
+{
+ // TypeScript requires this method of ISortedSetSource to be repeated
+ keys(firstKey?: K): IterableIterator<K>;
+}
+
+export interface ISortedMapF<K=any,V=any> extends ISortedSetF<K>, IMapF<K,V>, ISortedMapSource<K,V>
+{
+ /** Returns a copy of the tree with the specified range of keys removed. */
+ withoutRange(low: K, high: K, includeHigh: boolean, returnThisIfUnchanged?: boolean): ISortedMapF<K,V>;
+
+ // TypeScript requires these methods of ISortedSetF and ISortedMapSource to be repeated
+ entries(firstKey?: K): IterableIterator<[K,V]>;
+ keys(firstKey?: K): IterableIterator<K>;
+ values(firstKey?: K): IterableIterator<V>;
+ forRange(low: K, high: K, includeHigh: boolean, onFound?: (k:K,v:V,counter:number) => void, initialCounter?: number): number;
+
+ // Update the return value of methods from base interfaces
+ with(key: K): ISortedMapF<K,V|undefined>;
+ with<V2>(key: K, value: V2, overwrite?: boolean): ISortedMapF<K,V|V2>;
+ withKeys(keys: K[], returnThisIfUnchanged?: boolean): ISortedMapF<K,V|undefined>;
+ withPairs<V2>(pairs: [K,V|V2][], overwrite: boolean): ISortedMapF<K,V|V2>;
+ mapValues<R>(callback: (v:V,k:K,counter:number) => R): ISortedMapF<K,R>;
+ without(key: K): ISortedMapF<K,V>;
+ withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): ISortedMapF<K,V>;
+ filter(callback: (k:K,v:any,counter:number) => boolean, returnThisIfUnchanged?: boolean): ISortedMapF<K,V>;
+}
+
+export interface ISortedMapConstructor<K,V> {
+ new (entries?: [K,V][], compare?: (a: K, b: K) => number): ISortedMap<K,V>;
+}
+export interface ISortedMapFConstructor<K,V> {
+ new (entries?: [K,V][], compare?: (a: K, b: K) => number): ISortedMapF<K,V>;
+} \ No newline at end of file