marketing

Marketing materials (presentations, posters, flyers)
Log | Files | Refs

commit 8729a6c9df3a569650d5657e671f04775b8586bf
parent 268831f8d067da89b372a75dd328c05a49e1756f
Author: Christian Grothoff <christian@grothoff.org>
Date:   Thu, 28 Mar 2024 22:48:16 +0100

improve details in presentation

Diffstat:
Mpresentations/comprehensive/main.tex | 24++++++++++++------------
1 file changed, 12 insertions(+), 12 deletions(-)

diff --git a/presentations/comprehensive/main.tex b/presentations/comprehensive/main.tex @@ -1207,7 +1207,7 @@ But of course we use modern instantiations. \begin{frame}{Exchange setup: Create a denomination key (RSA)} \begin{minipage}{6cm} \begin{enumerate} - \item Pick random primes $p,q$. + \item Generate random primes $p,q$. \item Compute $n := pq$, $\phi(n) = (p-1)(q-1)$ \item Pick small $e < \phi(n)$ such that $d := e^{-1} \mod \phi(n)$ exists. @@ -1236,8 +1236,8 @@ But of course we use modern instantiations. \begin{frame}{Merchant: Create a signing key (EdDSA)} \begin{minipage}{6cm} \begin{itemize} - \item pick random $m \mod o$ as private key - \item $M = mG$ public key + \item Generate random number $m \mod o$ as private key + \item Compute public key $M := mG$ \end{itemize} \end{minipage} \begin{minipage}{6cm} @@ -1260,8 +1260,8 @@ But of course we use modern instantiations. \begin{frame}{Customer: Create a planchet (EdDSA)} \begin{minipage}{8cm} \begin{itemize} - \item Pick random $c \mod o$ private key - \item $C = cG$ public key + \item Generate random number $c \mod o$ as private key + \item Compute public key $C := cG$ \end{itemize} \end{minipage} \begin{minipage}{4cm} @@ -1286,7 +1286,7 @@ But of course we use modern instantiations. \begin{enumerate} \item Obtain public key $(e,n)$ \item Compute $f := FDH(C)$, $f < n$. - \item Pick blinding factor $b \in \mathbb Z_n$ + \item Generate random blinding factor $b \in \mathbb Z_n$ \item Transmit $f' := f b^e \mod n$ \end{enumerate} \end{minipage} @@ -1520,8 +1520,8 @@ But of course we use modern instantiations. \begin{minipage}{8cm} \begin{enumerate} \item Create private keys $c,t \mod o$ - \item Define $C = cG$ - \item Define $T = tG$ + \item Compute $C := cG$ + \item Compute $T := tG$ \item Compute DH \\ $cT = c(tG) = t(cG) = tC$ \end{enumerate} \end{minipage} @@ -1545,9 +1545,9 @@ But of course we use modern instantiations. Given partially spent private coin key $c_{old}$: \begin{enumerate} % \item Let $C_{old} := c_{old}G$ (as before) - \item Pick random $c_{new} \mod o$ private key - \item $C_{new} = c_{new}G$ public key - \item Pick random $b_{new}$ + \item Generate random $c_{new} \mod o$ as private key + \item Compute public key $C_{new} = c_{new}G$ + \item Generate random $b_{new}$ \item Compute $f_{new} := FDH(C_{new})$, $m < n$. \item Transmit $f'_{new} := f_{new} b_{new}^e \mod n$ \end{enumerate} @@ -1585,7 +1585,7 @@ But of course we use modern instantiations. Given partially spent private coin key $c_{old}$: \begin{enumerate} \item Let $C_{old} := c_{old}G$ (as before) - \item Create random private transfer key $t \mod o$ + \item Generate random private transfer key $t \mod o$ \item Compute $T := tG$ \item Compute $X := c_{old}(tG) = t(c_{old}G) = tC_{old}$ \item Derive $c_{new}$ and $b_{new}$ from $X$