marketing

Marketing materials (presentations, posters, flyers)
Log | Files | Refs

commit 310b8871d453281e3fd1f634624e44198e9d0a5a
parent d262d9cf1f563cc5e1604d25b226ea0364c53309
Author: Christian Grothoff <grothoff@gnunet.org>
Date:   Tue, 18 Nov 2025 17:06:20 +0100

restructure includes

Diffstat:
Mpresentations/comprehensive/main.tex | 1725+------------------------------------------------------------------------------
1 file changed, 4 insertions(+), 1721 deletions(-)

diff --git a/presentations/comprehensive/main.tex b/presentations/comprehensive/main.tex @@ -1164,828 +1164,10 @@ positives in fraud detection \end{frame} +\input protocol-basics.tex -\section{Protocol Basics} - -\begin{frame} - \vfill - \begin{center} - {\bf Protocol Basics} - \end{center} - \vfill -\end{frame} - -\begin{frame}[plain] - \begin{tikzpicture}[remember picture,overlay] - \node[anchor=south west, inner sep=0pt] at (current page.south west) {% - \movie[height = \paperheight, width = \paperwidth, poster, showcontrols] {BFH Bachelor's thesis video}{cs-movie.mp4}% - }; - \end{tikzpicture} -\end{frame} - -\begin{frame}{How does it work?} -We use a few ancient constructions: - \begin{itemize} - \item Cryptographic hash function (1989) - \item Blind signature (1983) - \item Schnorr signature (1989) - \item \sout{Diffie-Hellman key exchange (1976)} Deterministic signatures (1977) % 1977: RSA, 2008: EdDSA - \item Cut-and-choose zero-knowledge proof (1985) - \end{itemize} -But of course we use modern instantiations. -\end{frame} - - -\begin{frame}{Definition: Taxability} - We say Taler is taxable because: - \begin{itemize} - \item Merchant's income is visible from deposits. - \item Hash of contract is part of deposit data. - \item State can trace income and enforce taxation. - \end{itemize}\pause - Limitations: - \begin{itemize} - \item withdraw loophole - \item {\em sharing} coins among family and friends - \end{itemize} -\end{frame} - - -\begin{frame}{Exchange setup: Create a denomination key (RSA)} - \begin{minipage}{6cm} - \begin{enumerate} - \item Generate random primes $p,q$. - \item Compute $n := pq$, $\phi(n) = (p-1)(q-1)$ - \item Pick small $e < \phi(n)$ such that - $d := e^{-1} \mod \phi(n)$ exists. - \item Publish public key $(e,n)$. - \end{enumerate} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance=1em and 1em, inner sep=0em, outer sep=.3em]; - \node (origin) at (0,0) {\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (primes) [draw=none, below = of origin] at (0,0) {$(p, q)$}; - \node (seal) [def, draw=none, below left=of primes]{\includegraphics[width=0.15\textwidth]{seal.pdf}}; - \node (hammer) [def, draw=none, below right=of primes]{\includegraphics[width=0.15\textwidth]{hammer.pdf}}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (primes) -- (origin) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (seal) -- (primes) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (hammer) -- (primes) node [midway, above, sloped] (TextNode) {}; - \end{tikzpicture} -% \includegraphics[width=0.4\textwidth]{seal.pdf} - \end{minipage} -\end{frame} - - -\begin{frame}{Merchant: Create a signing key (EdDSA)} - \begin{minipage}{6cm} - \begin{itemize} - \item Generate random number $m \mod o$ as private key - \item Compute public key $M := mG$ - \end{itemize} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1em and 1em, inner sep=0em, outer sep=.3em]; - \node (origin) at (0,0) {\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (m) [draw=none, below = of origin] at (0,0) {$m$}; - \node (seal) [draw=none, below=of m]{M}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (m) -- (origin) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (seal) -- (primes) node [midway, above, sloped] (TextNode) {}; - \end{tikzpicture} - \end{minipage} - \parbox[t]{3cm}{{\bf Capability:} $m \Rightarrow$ } - \raisebox{\dimexpr-\height+\baselineskip}{\includegraphics[width=0.1\textwidth]{merchant-sign.pdf}} -\end{frame} - - -\begin{frame}{Customer: Create a planchet (EdDSA)} - \begin{minipage}{8cm} - \begin{itemize} - \item Generate random number $c \mod o$ as private key - \item Compute public key $C := cG$ - \end{itemize} - \end{minipage} - \begin{minipage}{4cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1em and 1em, inner sep=0em, outer sep=.3em]; - \node (origin) at (0,0) {\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (c) [draw=none, below = of origin] at (0,0) {$c$}; - \node (planchet) [draw=none, below=of c]{\includegraphics[width=0.4\textwidth]{planchet.pdf}}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (c) -- (origin) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (planchet) -- (c) node [midway, above, sloped] (TextNode) {}; - \end{tikzpicture} - \end{minipage} - \parbox[t]{3cm}{{\bf Capability:} $c \Rightarrow$ } - \raisebox{\dimexpr-\height+\baselineskip}{\includegraphics[width=0.1\textwidth]{planchet-sign.pdf}} -\end{frame} - - -\begin{frame}{Customer: Blind planchet (RSA)} - \begin{minipage}{6cm} - \begin{enumerate} - \item Obtain public key $(e,n)$ - \item Compute $f := FDH(C)$, $f < n$. - \item Generate random blinding factor $b \in \mathbb Z_n$ - \item Transmit $f' := f b^e \mod n$ - \end{enumerate} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 2em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (origin) at (0,0) {\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (b) [def, draw=none, below = of origin] at (0,-0.2) {$b$}; - \node (blinded) [def, draw=none, below right=of b]{\includegraphics[width=0.2\textwidth]{blinded.pdf}}; - \node (planchet) [def, draw=none, above right=of blinded]{\includegraphics[width=0.15\textwidth]{planchet.pdf}}; - \node (exchange) [node distance=4em and 0.5em, draw, below =of blinded]{Exchange}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (b) -- (origin) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (planchet) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (b) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (exchange) -- (blinded) node [midway, above, sloped] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} -\end{frame} - - -\begin{frame}{Exchange: Blind sign (RSA)} - \begin{minipage}{6cm} - \begin{enumerate} - \item Receive $f'$. - \item Compute $s' := f'^d \mod n$. - \item Send signature $s'$. - \end{enumerate} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 2em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (hammer) [def, draw=none] at (0,0) {\includegraphics[width=0.15\textwidth]{hammer.pdf}}; - \node (signed) [def, draw=none, below left=of hammer]{\includegraphics[width=0.2\textwidth]{sign.pdf}}; - \node (blinded) [def, draw=none, above left=of signed]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - \node (customer) [node distance=4em and 0.5em, draw, below =of signed]{Customer}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (signed) -- (hammer) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (signed) -- (blinded) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (customer) -- (signed) node [midway, above, sloped] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} -\end{frame} - - -\begin{frame}{Customer: Unblind coin (RSA)} - \begin{minipage}{6cm} - \begin{enumerate} - \item Receive $s'$. - \item Compute $s := s' b^{-1} \mod n$ % \\ - % ($(f')^d = (f b^e)^d = f^d b$). - \end{enumerate} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 2em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (b) [def, draw=none] at (0,0) {$b$}; - \node (coin) [def, draw=none, below left=of b]{\includegraphics[width=0.2\textwidth]{coin.pdf}}; - \node (signed) [def, draw=none, above left=of coin]{\includegraphics[width=0.15\textwidth]{sign.pdf}}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (coin) -- (b) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (coin) -- (signed) node [midway, above, sloped] (TextNode) {}; - \end{tikzpicture} - \end{minipage} -\end{frame} - -\begin{frame}{Withdrawing coins on the Web} - \begin{center} - \includegraphics[height=0.9\textheight]{figs/taler-withdraw.pdf} - \end{center} -\end{frame} - - -\begin{frame}{Customer: Build shopping cart} - \begin{center} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1em and 1em, inner sep=0em, outer sep=.3em]; - \node (origin) [draw=none] at (0,0) {\includegraphics[width=0.1\textwidth]{cart.pdf}}; - \node (merchant) [node distance=4em and 0.5em, draw, below =of origin]{\includegraphics[width=0.1\textwidth]{shop.pdf}}; - \tikzstyle{C} = [color=black, line width=1pt]; - \draw [<-, C] (merchant) -- (origin) node [midway, right] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{center} -\end{frame} - - -\begin{frame}{Merchant Integration: Contract} - % \begin{figure*}[t!] - {\tiny - \lstset{language=JavaScript} - \lstinputlisting{figs/taler-contract.json} -% \caption{Minimal Taler contract over a digital article with a value of \EUR{0.10}. The merchant will pay transaction fees up to \EUR{0.01}. The hash over the wire transfer information was truncated to make it fit to the page.} -% \label{listing:json-contract} - % \end{figure*} - } -\end{frame} - - -\begin{frame}{Merchant Integration: Payment Request} -% \begin{figure}[p!] - \lstset{language=HTML5} - \lstinputlisting{figs/taler-402.html} -% \caption{Sample HTTP response to prompt the wallet to show an offer.} -% \label{listing:http-contract} -% \end{figure} - -% \begin{figure*}[p!] -% \lstset{language=HTML5} -% \lstinputlisting{figs/taler-contract.html} -% \caption{Sample JavaScript code to prompt the wallet to show an offer. -% Here, the contract is fetched on-demand from the server. -% The {\tt taler\_pay()} function needs to be invoked -% when the user triggers the checkout.} -% \label{listing:contract} -% \end{figure*} -\end{frame} - - - -\begin{frame}{Merchant: Propose contract (EdDSA)} - \begin{minipage}{6cm} - \begin{enumerate} - \item Complete proposal $D$. - \item Send $D$, $EdDSA_m(D)$ - \end{enumerate} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance=2em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (cart) [def, draw=none] at (0,0) {\includegraphics[width=0.15\textwidth]{cart.pdf}}; - \node (proposal) [def, draw=none, below right=of cart]{\includegraphics[width=0.3\textwidth]{merchant_propose.pdf}}; - \node (customer) [node distance=4em and 0.5em, draw, below =of proposal]{Customer}; - \tikzstyle{C} = [color=black, line width=1pt]; - \node (sign) [def, draw=none, above right=of proposal] {$m$}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (proposal) -- (sign) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (proposal) -- (cart) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (customer) -- (proposal) node [midway, right] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} -\end{frame} - - -\begin{frame}{Customer: Spend coin (EdDSA)} - \begin{minipage}{6cm} - \begin{enumerate} - \item Receive proposal $D$, $EdDSA_m(D)$. - \item Send $s$, $C$, $EdDSA_c(D)$ - \end{enumerate} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance=1.5em and 0.4em, inner sep=0em, outer sep=.3em]; - \node (proposal) [def, draw=none] at (0,0) {\includegraphics[width=0.15\textwidth]{merchant_propose.pdf}}; - \node (contract) [def, draw=none, below right=of cart]{\includegraphics[width=0.3\textwidth]{contract.pdf}}; - \node (c) [def, draw=none, above=of contract] {$c$}; - \node (merchant) [node distance=4em and 0.5em, draw, below=of contract]{Merchant}; - \node (coin) [def, draw=none, right=of contract]{\includegraphics[width=0.2\textwidth]{coin.pdf}}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (contract) -- (c) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (contract) -- (proposal) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (merchant) -- (contract) node [midway, above, sloped] (TextNode) {{\small transmit}}; - \draw [<-, C] (merchant) -- (coin) node [midway, right] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} -\end{frame} - - -\begin{frame}{Merchant and Exchange: Verify coin (RSA)} - \begin{minipage}{6cm} - \begin{equation*} - s^e \stackrel{?}{\equiv} FDH(C) \mod n - \end{equation*} - \end{minipage} - \begin{minipage}{6cm} - \begin{minipage}{0.2\textwidth} - \includegraphics[width=\textwidth]{coin.pdf} - \end{minipage} - $\stackrel{?}{\Leftrightarrow}$ - \begin{minipage}{0.2\textwidth} - \includegraphics[width=\textwidth]{seal.pdf} - \end{minipage} - \end{minipage} - \vfill - The exchange does not only verify the signature, but also - checks that the coin was not double-spent. - \vfill - \pause - \begin{center} - {\bf Taler is an online payment system.} - \end{center} - \vfill -\end{frame} - - -\begin{frame}{Payment processing with Taler} - \begin{center} - \includegraphics[height=0.9\textheight]{figs/taler-pay.pdf} - \end{center} -\end{frame} - - -\begin{frame}{Giving change} - It would be inefficient to pay EUR 100 with 1 cent coins! - \begin{itemize} - \item Denomination key represents value of a coin. - \item Exchange may offer various denominations for coins. - \item Wallet may not have exact change! - \item Usability requires ability to pay given sufficient total funds. - \end{itemize}\pause - Key goals: - \begin{itemize} - \item maintain unlinkability - \item maintain taxability of transactions - \end{itemize}\pause - Method: - \begin{itemize} - \item Contract can specify to only pay {\em partial value} of a coin. - \item Exchange allows wallet to obtain {\em unlinkable change} - for remaining coin value. - \end{itemize} -\end{frame} - - -\begin{frame}{Deterministic Signatures} - \vfill - \begin{minipage}{8cm} - \begin{itemize} - \item Some public key operations depend on a nonce or ``random'' value - \begin{itemize} - \item Example: ElGamal (encryption), DSA/ECDSA (signing) - \item[+] same plaintext, different ciphertext - \item[-] security may break on nonce-reuse - \end{itemize} - \item Generating the nonce deterministically by hashing all inputs - (see also: Fiat-Shamir transformation) can make these algorithms - {\bf deterministic} - \begin{itemize} - \item Example: EdDSA - \end{itemize} - \end{itemize} - \end{minipage} - \begin{minipage}{5cm} - Deterministic signatures: - \begin{center} - \includegraphics[width=0.6\textwidth]{ecollect.jpeg} - - $=$ - - \includegraphics[width=0.6\textwidth]{detsig.pdf} - \end{center} - \end{minipage} - \vfill - \note[item]{Before we can introduce the change protocol, we need to consider that - not all cryptographic signatures are deterministic.} - \note[item]{Following modern approach to e-collecting, we will use the image on - the right to illustrate {\bf deterministic} signatures.} - \note[item]{Replacing random inputs or nonces with hashes is a common trick to - make signature algorithms deterministic.} -\end{frame} - -\begin{frame}{Strawman solution} - \begin{minipage}{8cm} - Given partially spent private coin key $c_{old}$: - \begin{enumerate} -% \item Let $C_{old} := c_{old}G$ (as before) - \item Generate random $c_{new} \mod o$ as private key - \item Compute public key $C_{new} = c_{new}G$ - \item Generate random $b_{new}$ - \item Compute $f_{new} := FDH(C_{new})$, $m < n$. - \item Transmit $f'_{new} := f_{new} b_{new}^e \mod n$ - \end{enumerate} - ... and sign request for change with $c_{old}$. - \end{minipage} - \begin{minipage}{4cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1.5em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (blinded) [def, draw=none]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - \node (planchet) [def, draw=none, above left= of blinded] {\includegraphics[width=0.15\textwidth]{planchet.pdf}}; - \node (cnew) [def, draw=none, above= of planchet] {$c_{new}$}; - \node (bnew) [def, draw=none, above right= of blinded] {$b_{new}$}; - \node (dice1) [def, draw=none, above = of cnew]{\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (dice2) [def, draw=none, above = of bnew]{\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (exchange) [node distance=4em and 0.5em, draw, below =of blinded]{Exchange}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (cnew) -- (dice1) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (planchet) -- (cnew) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (bnew) -- (dice2) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (planchet) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (bnew) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (exchange) -- (blinded) node [midway, right] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} -\end{frame} - - -\begin{frame}{Problem} -\vfill -\begin{center} - Owner of $c_{new}$ may differ from owner of $c_{old}$! -\end{center} -\vfill -\end{frame} - - -\begin{frame}{Customer: Transfer setup (DETSIG)} - \begin{minipage}{10cm} - Given partially spent private coin key $c_{old}$: - \begin{enumerate} - \item Let $C_{old} := c_{old}G$ (as before) - \item Create random nonce $t$ - \item Compute deterministic signature $X := DETSIG_{c_{old}}(t)$ - \item Derive $c_{new}$ and $b_{new}$ from $X$ using HKDF - \item Compute $C_{new} := c_{new}G$ - \item Compute $f_{new} := FDH(C_{new})$ - \item Transmit $f_{new}' := f_{new} b_{new}^e$ - \end{enumerate} - \end{minipage} - \begin{minipage}{3cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1.5em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (t) [def, draw=none] at (0,0) {$t$}; - \node (dice) [def, draw=none, above = of t]{\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (X) [def, draw=none, below left=of t]{\includegraphics[width=0.2\textwidth]{detsig.pdf}}; - \node (d) [def, draw=none, above left= of X] {$c_{old}$}; - \node (cp) [def, draw=none, below left= of X] {$c_{new}$}; - \node (bp) [def, draw=none, below right= of X] {$b_{new}$}; - \node (blinded) [def, draw=none, below right=of cp]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - \node (exchange) [def, draw, below =of blinded]{Exchange}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (X) -- (d) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (X) -- (t) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (t) -- (dice) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (cp) -- (X) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (bp) -- (X) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (cp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (bp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (exchange) -- (blinded) node [midway, right] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} - \note[item]{In this construction, we {\em derive} the blinding factor $b_{new}$ and - the private key of the new coin $c_{new}$ from the DH of the $c_{old}$ and a newly - created transfer key $t$. Note that it is a bit unusual but perfectly find that - we here have {\bf both} private keys to compute the DH.} - \note[item]{The resulting blinded public key of the new coin - (public key derivation and blinding are elided to keep the diagram concise) is - then signed with $c_{old}$ to request change.} - \note[item]{This approach has an obvious problem: from the perspective of the - Exchange, we cannot even tell that the user followed this procedure as the - resulting request with the blinded coin is indistinguishable from the previous - construction.} -\end{frame} - - -\begin{frame}{Cut-and-Choose} - \begin{minipage}{3cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1.5em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (t) [def, draw=none] at (0,0) {$t_1$}; - \node (dice) [def, draw=none, above = of t]{\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (dh) [def, draw=none, below left=of t]{\includegraphics[width=0.2\textwidth]{detsig.pdf} ($X_1$)}; - \node (d) [def, draw=none, above left= of dh] {$c_{old}$}; - \node (cp) [def, draw=none, below left= of dh] {$c_{new,1}$}; - \node (bp) [def, draw=none, below right= of dh] {$b_{new,1}$}; - \node (blinded) [def, draw=none, below right=of cp]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - \node (exchange) [def, draw, below =of blinded]{Exchange}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (t) -- (dice) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (d) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (t) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (cp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (bp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (cp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (bp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (exchange) -- (blinded) node [midway, right] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} - \hfill - \begin{minipage}{3cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1.5em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (t) [def, draw=none] at (0,0) {$t_2$}; - \node (dice) [def, draw=none, above = of t]{\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (dh) [def, draw=none, below left=of t]{\includegraphics[width=0.2\textwidth]{detsig.pdf} ($X_2$)}; - \node (d) [def, draw=none, above left= of dh] {$c_{old}$}; - \node (cp) [def, draw=none, below left= of dh] {$c_{new,2}$}; - \node (bp) [def, draw=none, below right= of dh] {$b_{new,2}$}; - \node (blinded) [def, draw=none, below right=of cp]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - \node (exchange) [def, draw, below =of blinded]{Exchange}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (t) -- (dice) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (d) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (t) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (cp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (bp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (cp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (bp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (exchange) -- (blinded) node [midway, right] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} - \hfill - \begin{minipage}{3cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1.5em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (t) [def, draw=none] at (0,0) {$t_3$}; - \node (dice) [def, draw=none, above = of t]{\includegraphics[width=0.2\textwidth]{dice.pdf}}; - \node (dh) [def, draw=none, below left=of t]{\includegraphics[width=0.2\textwidth]{detsig.pdf} ($X_3$)}; - \node (d) [def, draw=none, above left= of dh] {$c_{old}$}; - \node (cp) [def, draw=none, below left= of dh] {$c_{new,3}$}; - \node (bp) [def, draw=none, below right= of dh] {$b_{new,3}$}; - \node (blinded) [def, draw=none, below right=of cp]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - \node (exchange) [def, draw, below =of blinded]{Exchange}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (t) -- (dice) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (d) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (t) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (cp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (bp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (cp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (bp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (exchange) -- (blinded) node [midway, right] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} - \note[item]{This DH-construction thus obviously does not work, so in the usual - approach of an insane person, we don't just do it once, but three times - using three different transfer keys $t_1$, $t_2$, and $t_3$ instead of just $t$.} - \note[item]{Now, before you decide that we have just gone mad, this is actually - a well-known technique called {\bf cut-and-choose}. Here, we do a protocol - step multiple times to basically be able to {\bf burn} some of these iterations - to {\bf prove} our honesty.} - \note[item]{There are also {\bf non-interactive} cut-and-choose protocols, but - this one is a simple interactive one.} -\end{frame} - - -\begin{frame}{Exchange: Choose!} - \begin{center} - \item Exchange sends back random $\gamma \in \{ 1, 2, 3 \}$ to the customer. - \end{center} -\end{frame} - - -\begin{frame}{Customer: Reveal} - \vfill - \begin{enumerate} - \item If $\gamma = 1$, send $\langle t_2, X_2 \rangle$, $\langle t_3, X_3 \rangle$ to exchange - \item If $\gamma = 2$, send $\langle t_1, X_1 \rangle$, $\langle t_3, X_3 \rangle$ to exchange - \item If $\gamma = 3$, send $\langle t_1, X_1 \rangle$, $\langle t_2, X_2 \rangle$ to exchange - \end{enumerate} - \vfill - \note[item]{So given the $\gamma$ challenge value, the wallet - has to send back the $t_i$ values for $i\not=\gamma$.} -\end{frame} - - -\begin{frame}{Exchange: Verify ($\gamma = 2$)} - \begin{minipage}{3cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1.5em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (h) [def, draw=none] at (0,0) {$t_1$}; - \node (dh) [def, draw=none, below left=of h]{\includegraphics[width=0.2\textwidth]{detverify.pdf}}; - \node (d) [def, draw=none, above left= of dh] {$C_{old}$}; - \node (cp) [def, draw=none, below left= of dh] {$c_{new,1}$}; - \node (bp) [def, draw=none, below right= of dh] {$b_{new,1}$}; - \node (blinded) [def, draw=none, below right=of cp]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (dh) -- (d) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (h) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (cp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (bp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (cp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (bp) node [midway, above, sloped] (TextNode) {}; - \end{tikzpicture} - \end{minipage} - \hfill - \begin{minipage}{3cm} - \ - \end{minipage} - \hfill - \begin{minipage}{3cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 1.5em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (h) [def, draw=none] at (0,0) {$t_3$}; - \node (dh) [def, draw=none, below left=of h]{\includegraphics[width=0.2\textwidth]{detverify.pdf}}; - \node (d) [def, draw=none, above left= of dh] {$C_{old}$}; - \node (cp) [def, draw=none, below left= of dh] {$c_{new,3}$}; - \node (bp) [def, draw=none, below right= of dh] {$b_{new,3}$}; - \node (blinded) [def, draw=none, below right=of cp]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (dh) -- (d) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (h) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (cp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (bp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (cp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (blinded) -- (bp) node [midway, above, sloped] (TextNode) {}; - \end{tikzpicture} - \end{minipage} - \note[item]{Given those two values the exchange can {\bf validate} the - construction as it can compute the DH from the {\bf transfer private keys} $t_i$ - and the {\bf coin public key} $C_{old}$.} - \note[item]{If the result matches with the original request from the wallet, - the exchange has established that with $\frac{2}{3}$ probability the wallet - made an honest request for change following the prescribed construction.} - \note[item]{If the wallet is unable (or unwilling) to produce the required - $t_i$ values, or if the resulting blinded values do not match, the entire - change is forfeit, and the customer looses their money.} - \note[item]{Thus, trying to cheat on income-transparency is punished with - what amounts to a {\bf 66.67\% tax}. Thus, a security level of $\kappa$ - is sufficient as long as the {\em effective} income tax (after deductions, - on the full income) is below $\frac{\kappa - 1}{\kappa}$. - Taler always uses $\kappa=3$.} -\end{frame} - - -\begin{frame}{Exchange: Blind sign change (RSA)} - \begin{minipage}{6cm} - \begin{enumerate} - \item Take $f_{new,\gamma}'$. - \item Compute $s' := f_{new,\gamma}'^d \mod n$. - \item Send signature $s'$. - \end{enumerate} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 2em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (hammer) [def, draw=none] at (0,0) {\includegraphics[width=0.15\textwidth]{hammer.pdf}}; - \node (signed) [def, draw=none, below left=of hammer]{\includegraphics[width=0.2\textwidth]{sign.pdf}}; - \node (blinded) [def, draw=none, above left=of signed]{\includegraphics[width=0.15\textwidth]{blinded.pdf}}; - \node (customer) [node distance=4em and 0.5em, draw, below =of signed]{Customer}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (signed) -- (hammer) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (signed) -- (blinded) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (customer) -- (signed) node [midway, above, sloped] (TextNode) {{\small transmit}}; - \end{tikzpicture} - \end{minipage} -\end{frame} - - -\begin{frame}{Customer: Unblind change (RSA)} - \begin{minipage}{6cm} - \begin{enumerate} - \item Receive $s'$. - \item Compute $s := s' b_{new,\gamma}^{-1} \mod n$. - \end{enumerate} - \end{minipage} - \begin{minipage}{6cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 2em and 0.5em, inner sep=0em, outer sep=.3em]; - \node (b) [def, draw=none] at (0,0) {$b_{new,\gamma}$}; - \node (coin) [def, draw=none, below left=of b]{\includegraphics[width=0.2\textwidth]{coin.pdf}}; - \node (signed) [def, draw=none, above left=of coin]{\includegraphics[width=0.15\textwidth]{sign.pdf}}; - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (coin) -- (b) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (coin) -- (signed) node [midway, above, sloped] (TextNode) {}; - \end{tikzpicture} - \end{minipage} -\end{frame} - - -\begin{frame}{Exchange: Allow linking change} - \begin{minipage}{5cm} - \begin{center} - Given $C_{old}$ - - \vspace{1cm} - - return $t_\gamma$ and - \begin{equation*} - s := s' b_{new,\gamma}^{-1} \mod n. - \end{equation*} - \end{center} - \end{minipage} - \begin{minipage}{5cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 3em and 0.5em, inner sep=0.5em, outer sep=.3em]; - \node (co) [def, draw=none] at (0,0) {$C_{old}$}; - \node (T) [def, draw=none, below left=of co]{$t_\gamma$}; - \node (sign) [def, draw=none, below right=of co]{\includegraphics[width=0.15\textwidth]{sign.pdf}}; - \node (customer) [def, draw, below right=of T] {Customer}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (T) -- (co) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (sign) -- (co) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (customer) -- (T) node [midway, above, sloped] (TextNode) {link}; - \draw [<-, C] (customer) -- (sign) node [midway, above, sloped] (TextNode) {link}; - \end{tikzpicture} - \end{minipage} - \note[item]{But, how does this address the issue that $c_{old}$ may have a different - owner from $c_{new,\gamma}$? Well, so far it does not! In principle, the envelope can - easily be constructed by someone who was not the original owner of $c_{old}$.} - \note[item]{So how does this help? Well, the exchange has one more sub-protocol, - which is the {\bf link} protocol. Given the old coin's public key, $C_{old}$, - it returns $t_\gamma$, the {\bf public transfer key}, and the blind signature - over the new coin that was rendered as change.} - \note[item]{Note that this is a request that the owner of $c_{old}$ can always - trivially make, as they know $C_{old}$.} - \note[item]{So how does that help?} -\end{frame} - - -\begin{frame}{Customer: Link (threat!)} - \begin{minipage}{6.5cm} - \begin{enumerate} - \item Have $c_{old}$. - \item Obtain $T_\gamma$, $s$ from exchange - \item Compute $X_\gamma = DETSIG_{c_{old}}(t_\gamma)$ - \item Derive $c_{new,\gamma}$ and $b_{new,\gamma}$ from $X_\gamma$ - \item Unblind $s := s' b_{new,\gamma}^{-1} \mod n$ - \end{enumerate} - \end{minipage} - \begin{minipage}{6.5cm} - \begin{tikzpicture} - \tikzstyle{def} = [node distance= 0.75em and 1em, inner sep=0em, outer sep=.3em]; - \node (T) [def, draw=none] at (0,0) {$t_\gamma$}; - \node (exchange) [def, inner sep=0.5em, draw, above left=of T] {Exchange}; - \node (signed) [def, draw=none, below left=of T]{\includegraphics[width=0.15\textwidth]{sign.pdf}}; - \node (dh) [def, draw=none, below right=of T]{\includegraphics[width=0.2\textwidth]{detsig.pdf} ($X_\gamma$)}; - \node (bp) [def, draw=none, below left= of dh] {$b_{new,\gamma}$}; - \node (co) [def, draw=none, above right= of dh] {$c_{old}$}; - \node (cp) [def, draw=none, below right= of dh] {$c_{new,\gamma}$}; - \node (coin) [def, draw=none, below left = of bp]{\includegraphics[width=0.2\textwidth]{coin.pdf}}; - \node (psign) [def, node distance=1.5em and 0em, draw=none, below = of cp]{\includegraphics[width=0.2\textwidth]{planchet-sign.pdf}}; - - \tikzstyle{C} = [color=black, line width=1pt] - - \draw [<-, C] (dh) -- (co) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (dh) -- (T) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (cp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (bp) -- (dh) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (coin) -- (signed) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (coin) -- (bp) node [midway, above, sloped] (TextNode) {}; - \draw [<-, C] (T) -- (exchange) node [midway, above, sloped] (TextNode) {link}; - \draw [<-, C] (signed) -- (exchange) node [midway, below, sloped] (TextNode) {link}; - \draw [<-, C, double] (psign) -- (cp) node [midway, below, sloped] (TextNode) {}; - \end{tikzpicture} - \end{minipage} - \note[item]{Well, given these two values, the owner of the original $c_{old}$ can - {\bf again} compute the DETSIG (from $c_{old}$ and $t_\gamma$), and then - also derive $c_{new,\gamma}$ and also unblind the exchange's signature using $b_{new,\gamma}$.} - \note[item]{As a result, the owner of the old coin can always compute the change, - and thus is effectively {\bf also} always an owner of the change rendered!} - \note[item]{Thus, we have {\bf reduced} the possibility of abusing the change - protocol for a transaction that would result in a {\bf mutually exclusive transfer - of ownership} to the case where the ownership of the change is {\bf shared}.} - \note[item]{But, we previously explained that {\bf sharing} is not something we can - or would care to prevent, so the change protocol does not weaken income transparency.} -\end{frame} - - -\begin{frame}{Refresh protocol summary} - \begin{itemize} - \item Customer asks exchange to convert old coin to new coin - \item Protocol ensures new coins can be recovered from old coin - \item[$\Rightarrow$] New coins are owned by the same entity! - \end{itemize} - Thus, the refresh protocol allows: - \begin{itemize} - \item To give unlinkable change. - \item To give refunds to an anonymous customer. - \item To expire old keys and migrate coins to new ones. - \item To handle protocol aborts. - \end{itemize} - \noindent - \begin{center} - \bf - Transactions via refresh are equivalent to {\em sharing} a wallet. -\end{center} -\end{frame} - +\input refresh.tex \section{Attacks \& Defenses} @@ -2255,908 +1437,9 @@ General notions: \end{frame} +\input offline.tex - -\section{Offline payments} - -\begin{frame} - \vfill - \begin{center} - {\bf Offline payments} - \end{center} - \vfill -\end{frame} - - -\begin{frame}{Requirements: Online vs. Offline Digital Currencies} -\framesubtitle{\url{https://taler.net/papers/euro-bearer-online-2021.pdf}} -\begin{itemize} - \item Offline capabilities are sometimes cited as a requirement for digital payment solutions - \item All implementations must either use restrictive hardware elements and/or introduce - counterparty risk. - \item[$\Rightarrow$] Permanent offline features weaken a digital payment solution (privacy, security) - \item[$\Rightarrow$] Introduces unwarranted competition for physical cash (endangers emergency-preparedness). - \end{itemize} - We recommend a tiered approach: - \begin{enumerate} - \item Online-first, bearer-based digital currency with Taler - \item (Optional:) Limited offline mode for network outages - \item Physical cash for emergencies (power outage, catastrophic cyber incidents) - \end{enumerate} -\end{frame} - - -\begin{frame}{Fully Offline Payments} -\framesubtitle{\url{https://docs.taler.net/design-documents/030-offline-payments.html}} -Many central banks today demand offline capabilities for digital payment solutions. -\vfill -\noindent -Three possible approaches: -\begin{enumerate} - \item Trust-based offline payments (has counterparty and/or privacy risks) - \item Full HSM Taler wallet (has hardware costs) - \item Light-weight HSM balance register -\end{enumerate} -\vfill -\end{frame} - - -\begin{frame}{A Scenario} -{God is offline, but customer pays online} -\begin{center} - \includegraphics[height=0.4\textwidth]{shrine.jpg} -\end{center} -\end{frame} - -\begin{frame}{Typical Payment Process}{All equivalent: Twint, PayPal, AliPay, PayTM} -\begin{center} - \movie[%scale=0.6, - autostart, - poster] - { - \includegraphics[height=0.3\textwidth,width=0.4\textwidth]{white.png} - } - {twint.mkv} - - {\tiny (C) Twint, 2023} -\end{center} -\end{frame} - - -\begin{frame}{Secure Payment ...}{Everything green?} -\begin{center} - \includegraphics[height=0.3\textwidth]{paymentTwint-screen_25.png} -\end{center} -\end{frame} - -\begin{frame}{Exploit ``Code''}{Programming optional} -\begin{center} - \includegraphics[height=0.3\textwidth]{paymentTwint-screen.png} -\end{center} -\end{frame} - -\begin{frame}{``Customers'' {\em love} Twint ...}{Daily non-business for shops} -\begin{center} - \includegraphics[height=0.3\textwidth]{paymentTwint-screen_50.png} -\end{center} -\end{frame} - - -\begin{frame}{Partially Offline Payments with GNU Taler\footnote{Joint work with Emmanuel Benoist, Priscilla Huang and Sebastian Marchano}} - -\begin{center} -\resizebox{8cm}{6cm}{ -\begin{sequencediagram} - \newinst{pos}{\shortstack{PoS \\ - \\ \begin{tikzpicture} - \node [fill=gray!20,draw=black,thick ,align=center] {PoS key \\ PoS ID}; - \end{tikzpicture} - }} - \newinst[2]{customer}{\shortstack{Customer \\ - \\ \begin{tikzpicture} - \node [fill=gray!20,draw=black,thick ,align=center] {Digital \\ Wallet}; - \end{tikzpicture} - }} - \newinst[2]{backend}{\shortstack{Merchant Backend \\ - \\ \begin{tikzpicture}[shape aspect=.5] - \tikzset{every node/.style={cylinder, shape border rotate=90, draw,fill=gray!25}} - \node at (1.5,0) {\shortstack{{\tiny PoS key} \\ {\tiny PoS ID}}}; - \end{tikzpicture} - }} - \postlevel - \mess[0]{pos}{PoS ID}{customer} - \begin{sdblock}{optional}{} - \begin{callself}{customer}{Amount}{} - \end{callself} - \end{sdblock} - \prelevel - \prelevel - \prelevel - \prelevel - \prelevel - \begin{sdblock}{optional}{} - \begin{callself}{pos}{Amount}{} - \end{callself} - \end{sdblock} - \postlevel - \mess[0]{customer}{PoS ID, [Amount]?}{backend} - \mess[0]{backend}{Contract}{customer} - \postlevel - \mess[0]{customer}{Payment}{backend} - \begin{callself}{pos}{OTP(PoS key)}{} - \end{callself} - \prelevel - \prelevel - \begin{callself}{backend}{OTP(PoS key)}{} - \end{callself} - \mess[0]{backend}{OTP code}{customer} - \postlevel - \mess[0]{customer}{OTP code}{pos} -\end{sequencediagram} -} -\end{center} -\end{frame} - - - -\section{Programmable money: Age restrictions} - -\begin{frame} - \vfill - \begin{center} - {\bf Programmable money: Age restrictions} - \end{center} - \vfill -\end{frame} - - -\begin{frame}{Age restriction in E-commerce} - - \begin{description} - \item[Problem:]~\\[1em] - Verification of minimum age requirements in e-commerce.\\[2em] - - \item[Common solutions:] - -\begin{tabular}{l<{\onslide<2->}c<{\onslide<3->}cr<{\onslide}} - & \blue{Privacy} & \tikzmark{topau} \blue{Ext. authority}& \\[\medskipamount] - 1. ID Verification & bad & required & \\[\medskipamount] - 2. Restricted Accounts & bad & required & \\[\medskipamount] - 3. Attribute-based & good & required &\tikzmark{bottomau} \\[\medskipamount] -\end{tabular} - \end{description} - -\uncover<4->{ - \begin{tikzpicture}[overlay,remember picture] - \draw[orange,thick,rounded corners] - ($(pic cs:topau) +(0,0.5)$) rectangle ($(pic cs:bottomau) -(0.3, 0.2)$); - \end{tikzpicture} - \begin{center} - \bf Principle of Subsidiarity is violated - \end{center} -} -\end{frame} - - -\begin{frame}{Principle of Subsidiarity} -\begin{center} \Large - Functions of government---such as granting and restricting - rights---should be performed\\ - {\it at the lowest level of authority possible},\\ - as long as they can be performed {\it adequately}. -\end{center} -\vfill -\uncover<2->{ - For age-restriction, the lowest level of authority is:\\ - \begin{center}\Large - Parents, guardians and caretakers - \end{center} -} -\end{frame} - - -\begin{frame}{Age restriction design for GNU Taler} -Design and implementation of an age restriction scheme\\ -with the following goals: - -\begin{enumerate} -\item It ties age restriction to the \textbf{ability to pay} (not to ID's) -\item maintains \textbf{anonymity of buyers} -\item maintains \textbf{unlinkability of transactions} -\item aligns with \textbf{principle of subsidiartiy} -\item is \textbf{practical and efficient} -\end{enumerate} - -\end{frame} - - -\begin{frame}{Age restriction} - \framesubtitle{Assumptions and scenario} - - \begin{columns} - \column{7.5cm} - \begin{itemize} - \item<1-> Assumption: Checking accounts are under control of eligible adults/guardians. - \item<2-> \textit{Guardians} \textbf{commit} to an maximum age - \item<3-> \textit{Minors} \textbf{attest} their adequate age - \item<4-> \textit{Merchants} \textbf{verify} the attestations - \item<5-> Minors \textbf{derive} age commitments from existing ones - \item<6-> \textit{Exchanges} \textbf{compare} the derived age commitments - \end{itemize} - \column{5cm} - \uncover<7-> - { - \begin{center} - \fontsize{7pt}{7pt}\selectfont - \begin{tikzpicture}[scale=.5] - \node[circle,minimum size=15pt,fill=black!15] at ( 60:4) (Exchange) {$\Exchange$}; - \node[circle,minimum size=15pt,fill=black!15] at ( 0:0) (Client) {$\Child$}; - \node[circle,minimum size=15pt,fill=black!15] at ( 0:4) (Merchant) {$\Merchant$}; - \node[circle,minimum size=15pt,fill=blue!15] at (140:3) (Guardian) {$\Guardian$}; - - \draw[->] (Guardian) to [out=50,in=130, loop] node[above] - {$\Commit$} (Guardian); - \draw[->,blue] (Client) to [out=-125,in=-190, loop] node[below,left] - {\blue{$\Attest$}} (Client); - \draw[->,blue] (Merchant) to [out=50,in=130, loop] node[above] - {\blue{$\Verify$}} (Merchant); - \draw[->,orange] (Client) to [out=-35,in=-100, loop] node[below] - {\orange{$\Derive$}} (Client); - \draw[->,orange] (Exchange) to [out=50,in=130, loop] node[above] - {\orange{$\Compare$}} (Exchange); - - \draw[orange,|->] (Client) to node[sloped,above,align=left] - {\orange{\scriptsize }} (Exchange); - \draw[blue,|->] (Client) to node[sloped, above] - {\blue{\scriptsize }} (Merchant); - \draw[,|->] (Guardian) to node[above,sloped,align=left] - {{\scriptsize }} (Client); - \end{tikzpicture} - \end{center} - } - \end{columns} - \vfill - \uncover<7->{Note: Scheme is independent of payment service protocol.} -\end{frame} - - -\begin{frame}{Formal Function Signatures} -\small -Searching for functions \uncover<2->{with the following signatures} -\begin{align*} - &\bf \Commit\uncover<2->{: - &(\age, \omega) &\mapsto (\commitment, \pruf) - &\scriptstyle \N_\Age \times \Omega &\scriptstyle \to \Commitments\times\Proofs, - } - \\ - &\bf \Attest\uncover<3->{: - &(\minage, \commitment, \pruf) &\mapsto \attest - &\scriptstyle \N_\Age\times\Commitments\times\Proofs &\scriptstyle \to \Attests \cup \{\Nil\}, - } - \\ - &\bf \Verify\uncover<4->{: - &(\minage, \commitment, \attest) &\mapsto b - &\scriptstyle \N_\Age\times\Commitments\times\Attests &\scriptstyle \to \Z_2, - } - \\ - &\bf \Derive\uncover<5->{: - &(\commitment, \pruf, \omega) &\mapsto (\commitment', \pruf', \blinding) - &\scriptstyle \Commitments\times\Proofs\times\Omega &\scriptstyle \to \Commitments\times\Proofs\times\Blindings, - } - \\ - &\bf \Compare\uncover<6->{: - &(\commitment, \commitment', \blinding) &\mapsto b - &\scriptstyle \Commitments\times\Commitments\times\Blindings &\scriptstyle \to \Z_2, - } -\end{align*} - \uncover<7->{ - with $\Omega, \Proofs, \Commitments, \Attests, \Blindings$ - sufficiently large sets.\\[1em] - Basic and security requirements are defined later.\\[2em] - } - - \scriptsize - \uncover<2->{ - Mnemonics:\\ - $\Commitments=$ \textit{c$\Commitments$mmitments}, - $\commitment=$ \textit{Q-mitment} (commitment), - $\Proofs=$ \textit{$\Proofs$roofs}, - } - \uncover<3->{ - $\pruf=$ \textit{$\pruf$roof},\\ - $\Attests=$ \textit{a$\Attests$testations}, - $\attest=$ \textit{a$\attest$testation}, - } - \uncover<5->{ - $\Blindings=$ \textit{$\Blindings$lindings}, - $\blinding=$ \textit{$\blinding$linding}. - } -\end{frame} - -\begin{frame}{Age restriction} - \framesubtitle{Naïve scheme} - \begin{center} - \begin{tikzpicture}[scale=.85] - \node[circle,minimum size=20pt,fill=black!15] at ( 60:4) (Exchange) {$\Exchange$}; - \node[circle,minimum size=20pt,fill=black!15] at ( 0:0) (Client) {$\Child$}; - \node[circle,minimum size=20pt,fill=black!15] at ( 0:4) (Merchant) {$\Merchant$}; - \node[circle,minimum size=20pt,fill=blue!15] at (140:3) (Guardian) {$\Guardian$}; - - \draw[->] (Guardian) to [out=50,in=130, loop] node[above] - {$\Commit$} (Guardian); - \draw[->,blue] (Client) to [out=-125,in=-190, loop] node[below,left] - {\blue{$\Attest$}} (Client); - \draw[->,blue] (Merchant) to [out=50,in=130, loop] node[above] - {\blue{$\Verify$}} (Merchant); - \draw[->,orange] (Client) to [out=-35,in=-100, loop] node[below] - {\orange{$\Derive$}} (Client); - \draw[->,orange] (Exchange) to [out=50,in=130, loop] node[above] - {\orange{$\Compare$}} (Exchange); - - \draw[orange,|->] (Client) to node[sloped,above,align=left] - {\orange{\scriptsize }} (Exchange); - \draw[blue,|->] (Client) to node[sloped, above] - {\blue{\scriptsize }} (Merchant); - \draw[,|->] (Guardian) to node[above,sloped,align=left] - {{\scriptsize }} (Client); - \end{tikzpicture} - \end{center} -\end{frame} - -\begin{frame}{Achieving Unlinkability} - \begin{columns} - \column{3cm} - \begin{center} - \fontsize{8pt}{9pt}\selectfont - \begin{tikzpicture}[scale=.65] - \node[circle,minimum size=20pt,fill=black!15] at ( 60:4) (Exchange) {$\Exchange$}; - \node[circle,minimum size=20pt,fill=black!15] at ( 0:0) (Client) {$\Child$}; - - \draw[->,orange] (Client) to [out=-35,in=-100, loop] node[below] - {\orange{$\footnotesize \Derive()$}} (Client); - \draw[->,orange] (Exchange) to [out=50,in=130, loop] node[above] - {\orange{$\footnotesize \Compare()$}} (Exchange); - - \draw[orange,|->] (Client) to node[sloped,above,align=left] - {\orange{\tiny \uncover<2->{$(\commitment_i,\commitment_{i+1})$}}} (Exchange); - \end{tikzpicture} - \end{center} - - \column{9cm} - Simple use of $\Derive()$ and $\Compare()$ is problematic. - - \begin{itemize} - \item<2-> Calling $\Derive()$ iteratively generates sequence - $(\commitment_0, \commitment_1, \dots)$ of commitments. - \item<2-> Exchange calls $\Compare(\commitment_i, \commitment_{i+1}, .)$ - \item[$\implies$]\uncover<3->{\bf Exchange identifies sequence} - \item[$\implies$]\uncover<3->{\bf Unlinkability broken} - \end{itemize} - \end{columns} -\end{frame} - -\begin{frame}{Achieving Unlinkability} - Define cut\&choose protocol \orange{$\DeriveCompare$}, - using $\Derive()$ and $\Compare()$.\\[0.5em] - \uncover<2->{ - Sketch: - \small - \begin{enumerate} - \item $\Child$ derives commitments $(\commitment_1,\dots,\commitment_\kappa)$ - from $\commitment_0$ \\ - by calling $\Derive()$ with blindings $(\beta_1,\dots,\beta_\kappa)$ - \item $\Child$ calculates $h_0:=H\left(H(\commitment_1, \beta_1)||\dots||H(\commitment_\kappa, \beta_\kappa)\right)$ - \item $\Child$ sends $\commitment_0$ and $h_0$ to $\Exchange$ - \item $\Exchange$ chooses $\gamma \in \{1,\dots,\kappa\}$ randomly - \item $\Child$ reveals $h_\gamma:=H(\commitment_\gamma, \beta_\gamma)$ and all $(\commitment_i, \beta_i)$, except $(\commitment_\gamma, \beta_\gamma)$ - \item $\Exchange$ compares $h_0$ and - $H\left(H(\commitment_1, \beta_1)||...||h_\gamma||...||H(\commitment_\kappa, \beta_\kappa)\right)$\\ - and evaluates $\Compare(\commitment_0, \commitment_i, \beta_i)$. - \end{enumerate} - \vfill - Note: Scheme is similar to the {\it refresh} protocol in GNU Taler. - } -\end{frame} - -\begin{frame}{Achieving Unlinkability} - With \orange{$\DeriveCompare$} - \begin{itemize} - \item $\Exchange$ learns nothing about $\commitment_\gamma$, - \item trusts outcome with $\frac{\kappa-1}{\kappa}$ certainty, - \item i.e. $\Child$ has $\frac{1}{\kappa}$ chance to cheat. - \end{itemize} - \vfill - Note: Still need Derive and Compare to be defined. -\end{frame} - -\begin{frame}{Refined scheme} - - \begin{tikzpicture}[scale=.8] - \node[circle,minimum size=25pt,fill=black!15] at ( 0:0) (Client) {$\Child$}; - \node[circle,minimum size=25pt,fill=black!15] at ( 60:5) (Exchange) {$\Exchange$}; - \node[circle,minimum size=25pt,fill=black!15] at ( 0:5) (Merchant) {$\Merchant$}; - \node[circle,minimum size=25pt,fill=blue!15] at (130:3) (Guardian) {$\Guardian$}; - - \draw[orange,<->] (Client) to node[sloped,below,align=center] - {\orange{$\DeriveCompare$}} (Exchange); - \draw[blue,->] (Client) to node[sloped, below] - {\blue{$(\attest_\minage, \commitment)$}} (Merchant); - - \draw[->] (Guardian) to [out=150,in=70, loop] node[above] - {$\Commit(\age)$} (Guardian); - \draw[->] (Guardian) to node[below,sloped] - {($\commitment$, $\pruf_\age$)} (Client); - \draw[->,blue] (Client) to [out=-50,in=-130, loop] node[below] - {\blue{$\Attest(\minage, \commitment, \pruf_{\age})$}} (Client); - \draw[->,blue] (Merchant) to [out=-50,in=-130, loop] node[below] - {\blue{$\Verify(\minage, \commitment, \attest_{\minage})$}} (Merchant); - \end{tikzpicture} -\end{frame} - - \begin{frame}{Achieving Unlinkability} - \scriptsize - $\DeriveCompare : \Commitments\times\Proofs\times\Omega \to \{0,1\}$\\ - \vfill - $\DeriveCompare(\commitment, \pruf, \omega) =$ - \begin{itemize} - \it - \itemsep0.5em - \item[$\Child$:] - \begin{enumerate} - \scriptsize - \itemsep0.3em - \item for all $i \in \{1,\dots,\kappa\}: - (\commitment_i,\pruf_i,\beta_i) \leftarrow \Derive(\commitment, \pruf, \omega + i)$ - \item $h \leftarrow \Hash\big(\Hash(\commitment_1,\beta_1)\parallel\dots\parallel\Hash(\commitment_\kappa,\beta_\kappa) \big)$ - \item send $(\commitment, h)$ to $\Exchange$ - \end{enumerate} - \item[$\Exchange$:] - \begin{enumerate} - \setcounter{enumi}{3} - \scriptsize - \itemsep0.3em - \item save $(\commitment, h)$ \label{st:hash} - \item $\gamma \drawfrom \{1,\dots ,\kappa\}$ - \item send $\gamma$ to $\Child$ - \end{enumerate} - \item[$\Child$:] - \begin{enumerate} - \setcounter{enumi}{6} - - \scriptsize - \itemsep0.3em - \item $h'_\gamma \leftarrow \Hash(\commitment_\gamma, \beta_\gamma)$ - \item $\mathbf{E}_\gamma \leftarrow \big[(\commitment_1,\beta_1),\dots, - (\commitment_{\gamma-1}, \beta_{\gamma-1}), - \Nil, - (\commitment_{\gamma+1}, \beta_{\gamma+1}), - \dots,(\commitment_\kappa, \beta_\kappa)\big]$ - \item send $(\mathbf{E}_\gamma, h'_\gamma)$ to $\Exchange$ - \end{enumerate} - \item[$\Exchange$:] - \begin{enumerate} - \setcounter{enumi}{9} - \scriptsize - \itemsep0.3em - \item for all $i \in \{1,\dots,\kappa\}\setminus\{\gamma\}: h_i \leftarrow \Hash(\mathbf{E}_\gamma[i])$ - \item if $h \stackrel{?}{\neq} \HashF(h_1\|\dots\|h_{\gamma-1}\|h'_\gamma\|h_{\gamma+1}\|\dots\|h_{\kappa-1})$ return 0 - \item for all $i \in \{1,\dots,\kappa\}\setminus\{\gamma\}$: - if $0 \stackrel{?}{=} \Compare(\commitment,\commitment_i, \beta_i)$ return $0$ - \item return 1 - \end{enumerate} - \end{itemize} - \end{frame} - -\begin{frame}{Basic Requirements} - - Candidate functions - \[ (\Commit, \Attest, \Verify, \Derive, \Compare) \] - must first meet \textit{basic} requirements: - - \begin{itemize} - \item Existence of attestations - \item Efficacy of attestations - \item Derivability of commitments and attestations - \end{itemize} -\end{frame} - -\begin{frame}{Basic Requirements} - \framesubtitle{Formal Details} - - \begin{description} - \item[Existence of attestations] - {\scriptsize - \begin{align*} - \Forall_{\age\in\N_\Age \atop \omega \in \Omega}: - \Commit(\age, \omega) =: (\commitment, \pruf) - \implies - \Attest(\minage, \commitment, \pruf) = - \begin{cases} - \attest \in \Attests, \text{ if } \minage \leq \age\\ - \Nil \text{ otherwise} - \end{cases} - \end{align*}} - \item[Efficacy of attestations] - {\scriptsize - \begin{align*} - \Verify(\minage, \commitment, \attest) = \ - \begin{cases} - 1, \text{if } \Exists_{\pruf \in \Proofs}: \Attest(\minage, \commitment, \pruf) = \attest\\ - 0 \text{ otherwise} - \end{cases} - \end{align*}} - - {\scriptsize - \begin{align*} - \forall_{n \leq \age}: \Verify\big(n, \commitment, \Attest(n, \commitment, \pruf)\big) = 1. - \end{align*}} - \item[etc.] - \end{description} -\end{frame} - -\begin{frame}{Requirements} - \framesubtitle{Details} - - \begin{description} - \item[Derivability of commitments and proofs:]~\\[0.1em] - {\scriptsize - Let \begin{align*} - \age & \in\N_\Age,\,\, \omega_0, \omega_1 \in\Omega\\ - (\commitment_0, \pruf_0) & \leftarrow \Commit(\age, \omega_0),\\ - (\commitment_1, \pruf_1, \blinding) & \leftarrow \Derive(\commitment_0, \pruf_0, \omega_1). - \end{align*} - We require - \begin{align*} - \Compare(\commitment_0, \commitment_1, \blinding) = 1 \label{req:comparity} - \end{align*} - and for all $n\leq\age$: - \begin{align*} - \Verify(n, \commitment_1, \Attest(n, \commitment_1, \pruf_1)) &% - = - \Verify(n, \commitment_0, \Attest(n, \commitment_0, \pruf_0)) - \end{align*}} - \end{description} -\end{frame} - -\begin{frame}{Security Requirements} - Candidate functions must also meet \textit{security} requirements. - Those are defined via security games: - \begin{itemize} - \item Game: Age disclosure by commitment or attestation - \item[$\leftrightarrow$] Requirement: Non-disclosure of age - \vfill - - \item Game: Forging attestation - \item[$\leftrightarrow$] Requirement: Unforgeability of - minimum age - \vfill - - \item Game: Distinguishing derived commitments and attestations - \item[$\leftrightarrow$] Requirement: Unlinkability of - commitments and attestations - - \end{itemize} - \vfill - - Meeting the security requirements means that adversaries can win - those games only with negligible advantage. - \vfill - Adversaries are arbitrary polynomial-time algorithms, acting on all - relevant input. -\end{frame} - -\begin{frame}{Security Requirements} - \framesubtitle{Simplified Example} - - \begin{description} - \item[Game $\Game{FA}(\lambda)$---Forging an attest:]~\\ - {\small - \begin{enumerate} - \item $ (\age, \omega) \drawfrom \N_{\Age-1}\times\Omega $ - \item $ (\commitment, \pruf) \leftarrow \Commit(\age, \omega) $ - \item $ (\minage, \attest) \leftarrow \Adv(\age, \commitment, \pruf)$ - \item Return 0 if $\minage \leq \age$ - \item Return $\Verify(\minage,\commitment,\attest)$ - \end{enumerate} - } - \vfill - \item[Requirement: Unforgeability of minimum age] - {\small - \begin{equation*} - \Forall_{\Adv\in\PPT(\N_\Age\times\Commitments\times\Proofs\to \N_\Age\times\Attests)}: - \Probability\Big[\Game{FA}(\lambda) = 1\Big] \le \negl(\lambda) - \end{equation*} - } - \end{description} -\end{frame} - - -\begin{frame}{Solution: Instantiation with ECDSA} -% \framesubtitle{Definition of Commit} - - \begin{description} - \item[To Commit to age (group) $\age \in \{1,\dots,\Age\}$]~\\ - \begin{enumerate} - \item<2-> Guardian generates ECDSA-keypairs, one per age (group): - \[\langle(q_1, p_1),\dots,(q_\Age,p_\Age)\rangle\] - \item<3-> Guardian then \textbf{drops} all private keys - $p_i$ for $i > \age$: - \[\Big \langle(q_1, p_1),\dots, - (q_\age, p_\age), - (q_{\age +1}, \red{\Nil}),\dots, - (q_\Age, \red{\Nil})\Big\rangle\] - - \begin{itemize} - \item $\Vcommitment := (q_1, \dots, q_\Age)$ is the \textit{Commitment}, - \item $\Vpruf_\age := (p_1, \dots, p_\age, \Nil,\dots,\Nil)$ is the \textit{Proof} - \end{itemize} - \vfill - \item<4-> Guardian gives child $\langle \Vcommitment, \Vpruf_\age \rangle$ - \vfill - \end{enumerate} - \end{description} -\end{frame} - -\begin{frame}{Instantiation with ECDSA} - \framesubtitle{Definitions of Attest and Verify} - - Child has - \begin{itemize} - \item ordered public-keys $\Vcommitment = (q_1, \dots, q_\Age) $, - \item (some) private-keys $\Vpruf = (p_1, \dots, p_\age, \Nil, \dots, \Nil)$. - \end{itemize} - \begin{description} - \item<2->[To \blue{Attest} a minimum age $\blue{\minage} \leq \age$:]~\\ - Sign a message with ECDSA using private key $p_\blue{\minage}$ - \end{description} - - \vfill - - \uncover<3->{ - Merchant gets - \begin{itemize} - \item ordered public-keys $\Vcommitment = (q_1, \dots, q_\Age) $ - \item Signature $\sigma$ - \end{itemize} - \begin{description} - \item<4->[To \blue{Verify} a minimum age $\minage$:]~\\ - Verify the ECDSA-Signature $\sigma$ with public key $q_\minage$. - \end{description} - } - \vfill -\end{frame} - -\begin{frame}{Instantiation with ECDSA} - \framesubtitle{Definitions of Derive and Compare} - Child has - $\Vcommitment = (q_1, \dots, q_\Age) $ and - $\Vpruf = (p_1, \dots, p_\age, \Nil, \dots, \Nil)$. - \begin{description} - \item<2->[To \blue{Derive} new $\Vcommitment'$ and $\Vpruf'$:] - Choose random $\beta\in\Z_g$ and calculate - \small - \begin{align*} - \Vcommitment' &:= \big(\beta * q_1,\ldots,\beta * q_\Age\big),\\ - \Vpruf' &:= \big(\beta p_1,\ldots,\beta p_\age,\Nil,\ldots,\Nil\big) - \end{align*} - Note: $ (\beta p_i)*G = \beta*(p_i*G) = \beta*q_i$\\ - \scriptsize $\beta*q_i$ is scalar multiplication on the elliptic curve. - \end{description} - - \vfill - \uncover<3->{ - Exchange gets $\Vcommitment = (q_1,\dots,q_\Age)$, $\Vcommitment' = (q_1', \dots, q_\Age')$ and $\beta$ - \begin{description} - \item[To \blue{Compare}, calculate:] - \small - $(\beta * q_1, \ldots , \beta * q_\Age) \stackrel{?}{=} (q'_1,\ldots, q'_\Age)$ - \end{description} - \vfill - } -\end{frame} - -\begin{frame}{Instantiation with ECDSA} - - Functions - (Commit, Attest, Verify, Derive, Compare)\\ - as defined in the instantiation with ECDSA\\[0.5em] - \begin{itemize} - \item meet the basic requirements,\\[0.5em] - \item also meet all security requirements.\\ - Proofs by security reduction, details are in the paper. - \end{itemize} - -\end{frame} - - -\begin{frame}{Instantiation with ECDSA} - \framesubtitle{Full definitions} - \scriptsize - - \begin{align*} - \Commit_{E,\FDHg{\cdot}}(\age, \omega) &:= \Big\langle - \overbrace{(q_1,\ldots,q_\Age)}^{= \Vcommitment},\; - \overbrace{(p_1,\ldots,p_\age, \Nil,\ldots,\Nil)}^{= \Vpruf \text{, length }\Age} - \Big\rangle\\ - \Attest_{E,\HashF}(\bage, \Vcommitment, \Vpruf) &:= - \begin{cases} - \attest_\bage := \Sign_{E,\HashF}\big(\bage,\Vpruf[\bage]\big) & \text{if } \Vpruf[\bage] \stackrel{?}{\neq} \Nil\\ - \Nil & \text{otherwise} - \end{cases}\\ - % - \Verify_{E,\HashF}(\bage, \Vcommitment, \attest) &:= \Ver_{E,\HashF}(\bage, \Vcommitment[\bage], \attest)\\ - % - \Derive_{E, \FDHg{\cdot}}(\Vcommitment, \Vpruf, \omega) &:= - \Big\langle(\beta * q_1,\ldots,\beta * q_\Age), - (\beta p_1,\ldots,\beta p_\age,\Nil,\ldots,\Nil), \beta \Big\rangle \\ - & \text{ with } \beta := \FDHg{\omega} \text{ and multiplication } \beta p_i \text{ modulo } g \nonumber\\ - % - \Compare_E(\Vcommitment, \Vcommitment', \beta) &:= - \begin{cases} - 1 & \text{if } (\beta * q_1, \ldots , \beta * q_\Age) \stackrel{?}{=} (q'_1,\ldots, q'_\Age)\\ - 0 & \text{otherwise} - \end{cases} - \end{align*} -\end{frame} - - -\begin{frame}{Reminder: GNU Taler Fundamentals} - \begin{center} - \begin{tikzpicture}[scale=.55] - \node[circle,fill=black!10] at (3, 4) (Exchange) {$\Exchange$}; - \node[circle,fill=black!10] at (0, 0) (Customer) {$\Customer$}; - \node[circle,fill=black!10] at (6, 0) (Merchant) {$\Merchant$}; - - \draw[<->] (Customer) to [out=65,in=220] node[sloped,above] {\sf withdraw} (Exchange); - \draw[<->] (Customer) to [out=45,in=240] node[sloped,below] {\sf refresh} (Exchange); - \draw[<->] (Customer) to node[sloped, below] {\sf purchase} (Merchant); - \draw[<->] (Merchant) to node[sloped, above] {\sf deposit} (Exchange); - \end{tikzpicture} - \end{center} - - \vfill - \begin{itemize} - \item Coins are public-/private key-pairs $(C_p, c_s)$. - \item Exchange blindly signs $\FDH(C_p)$ with denomination key $d_p$ - \item Verification: - \begin{eqnarray*} - 1 &\stackrel{?}{=}& - \mathsf{SigCheck}\big(\FDH(C_p), D_p, \sigma_p\big) - \end{eqnarray*} - \scriptsize($D_p$ = public key of denomination and $\sigma_p$ = signature) - - \end{itemize} -\end{frame} - -\begin{frame}{Integration with GNU Taler} - \framesubtitle{Binding age restriction to coins} - - To bind an age commitment $\commitment$ to a coin $C_p$, instead of - signing $\FDH(C_p)$, $\Exchange$ now blindly signs - \begin{center} - $\FDH(C_p, \orange{H(\commitment)})$ - \end{center} - - \vfill - Verfication of a coin now requires $H(\commitment)$, too: - \begin{center} - $1 \stackrel{?}{=} - \mathsf{SigCheck}\big(\FDH(C_p, \orange{H(\commitment)}), D_p, \sigma_p\big)$ - \end{center} - \vfill -\end{frame} - -\begin{frame}{Integration with GNU Taler} - \framesubtitle{Integrated schemes} - \fontsize{8pt}{9pt}\selectfont - \begin{tikzpicture}[scale=.9] - \node[circle,minimum size=25pt,fill=black!15] at ( 0:0) (Client) {$\Child$}; - \node[circle,minimum size=25pt,fill=black!15] at ( 60:5) (Exchange) {$\Exchange$}; - \node[circle,minimum size=25pt,fill=black!15] at ( 0:5) (Merchant) {$\Merchant$}; - \node[circle,minimum size=25pt,fill=blue!15] at (130:3) (Guardian) {$\Guardian$}; - - \draw[<->] (Guardian) to node[sloped,above,align=center] - {{\sf withdraw}\orange{, using}\\ $\FDH(C_p\orange{, H(\commitment)})$} (Exchange); - \draw[<->] (Client) to node[sloped,below,align=center] - {{\sf refresh} \orange{ + }\\ \orange{$\DeriveCompare$}} (Exchange); - \draw[<->] (Client) to node[sloped, below] - {{\sf purchase} \blue{+ $(\attest_\minage, \commitment)$}} (Merchant); - \draw[<->] (Merchant) to node[sloped, above] - {{\sf deposit} \orange{+ $H(\commitment)$}} (Exchange); - - \draw[->] (Guardian) to [out=70,in=150, loop] node[above] - {$\Commit(\age)$} (Guardian); - \draw[->] (Guardian) to node[below,sloped] - {($\commitment$, $\pruf_\age$)} (Client); - \draw[->,blue] (Client) to [out=-50,in=-130, loop] node[below] - {\blue{$\Attest(\minage, \commitment, \pruf_{\age})$}} (Client); - \draw[->,blue] (Merchant) to [out=-50,in=-130, loop] node[below] - {\blue{$\Verify(\minage, \commitment, \attest_{\minage})$}} (Merchant); - \end{tikzpicture} -\end{frame} - -\begin{frame}{Instantiation with Edx25519} - Paper also formally defines another signature scheme: Edx25519.\\[1em] - - \begin{itemize} - \item Scheme already in use in GNUnet, - \item based on EdDSA (Bernstein et al.), - \item generates compatible signatures and - \item allows for key derivation from both, private and public keys, independently. - \end{itemize}~\\[1em] - - Current implementation of age restriction in GNU Taler uses Edx25519. -\end{frame} - - -\begin{frame}{Age Restrictions based on KYC} - Subsidiarity requires bank accounts being owned by adults. - \begin{itemize} - \item Scheme can be adapted to case where minors have bank accounts - \begin{itemize} - \item Assumption: banks provide minimum age - information during bank - transactions. - \item Child and Exchange execute a variant of - the cut\&choose protocol. - \end{itemize} - \end{itemize} -\end{frame} - -\begin{frame}{Discussion} - \begin{itemize} - \item Our solution can in principle be used with any token-based payment scheme - \item GNU Taler best aligned with our design goals (security, privacy and efficiency) - \item Subsidiarity requires bank accounts being owned by adults - \begin{itemize} - \item Scheme can be adapted to case where minors have bank accounts - \begin{itemize} - \item Assumption: banks provide minimum age - information during bank - transactions. - \item Child and Exchange execute a variant of - the cut\&choose protocol. - \end{itemize} - \end{itemize} - \item Our scheme offers an alternative to identity management systems (IMS) - \end{itemize} -\end{frame} -\begin{frame}{Related Work} - \begin{itemize} - \item Current privacy-perserving systems all based on attribute-based credentials (Koning et al., Schanzenbach et al., Camenisch et al., Au et al.) - \item Attribute-based approach lacks support: - \begin{itemize} - \item Complex for consumers and retailers - \item Requires trusted third authority - \end{itemize} - \vfill - \item Other approaches tie age-restriction to ability to pay ("debit cards for kids") - \begin{itemize} - \item Advantage: mandatory to payment process - \item Not privacy friendly - \end{itemize} - \end{itemize} -\end{frame} - -\begin{frame}{Conclusion} - Age restriction is a technical, ethical and legal challenge. - - Existing solutions are - \begin{itemize} - \item without strong protection of privacy or - \item based on identity management systems (IMS) - \end{itemize} - \vfill - - Our scheme offers a solution that is - \begin{itemize} - \item based on subsidiarity - \item privacy preserving - \item efficient - \item an alternative to IMS - \end{itemize} -\end{frame} - +\input age.tex \section{Software development \& deployment}