summaryrefslogtreecommitdiff
path: root/deps/node/deps/icu-small/source/common/dictbe.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'deps/node/deps/icu-small/source/common/dictbe.cpp')
-rw-r--r--deps/node/deps/icu-small/source/common/dictbe.cpp1391
1 files changed, 0 insertions, 1391 deletions
diff --git a/deps/node/deps/icu-small/source/common/dictbe.cpp b/deps/node/deps/icu-small/source/common/dictbe.cpp
deleted file mode 100644
index 0e4d0850..00000000
--- a/deps/node/deps/icu-small/source/common/dictbe.cpp
+++ /dev/null
@@ -1,1391 +0,0 @@
-// © 2016 and later: Unicode, Inc. and others.
-// License & terms of use: http://www.unicode.org/copyright.html
-/**
- *******************************************************************************
- * Copyright (C) 2006-2016, International Business Machines Corporation
- * and others. All Rights Reserved.
- *******************************************************************************
- */
-
-#include "unicode/utypes.h"
-
-#if !UCONFIG_NO_BREAK_ITERATION
-
-#include "brkeng.h"
-#include "dictbe.h"
-#include "unicode/uniset.h"
-#include "unicode/chariter.h"
-#include "unicode/ubrk.h"
-#include "uvectr32.h"
-#include "uvector.h"
-#include "uassert.h"
-#include "unicode/normlzr.h"
-#include "cmemory.h"
-#include "dictionarydata.h"
-
-U_NAMESPACE_BEGIN
-
-/*
- ******************************************************************
- */
-
-DictionaryBreakEngine::DictionaryBreakEngine() {
-}
-
-DictionaryBreakEngine::~DictionaryBreakEngine() {
-}
-
-UBool
-DictionaryBreakEngine::handles(UChar32 c) const {
- return fSet.contains(c);
-}
-
-int32_t
-DictionaryBreakEngine::findBreaks( UText *text,
- int32_t startPos,
- int32_t endPos,
- UVector32 &foundBreaks ) const {
- (void)startPos; // TODO: remove this param?
- int32_t result = 0;
-
- // Find the span of characters included in the set.
- // The span to break begins at the current position in the text, and
- // extends towards the start or end of the text, depending on 'reverse'.
-
- int32_t start = (int32_t)utext_getNativeIndex(text);
- int32_t current;
- int32_t rangeStart;
- int32_t rangeEnd;
- UChar32 c = utext_current32(text);
- while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
- utext_next32(text); // TODO: recast loop for postincrement
- c = utext_current32(text);
- }
- rangeStart = start;
- rangeEnd = current;
- result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks);
- utext_setNativeIndex(text, current);
-
- return result;
-}
-
-void
-DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
- fSet = set;
- // Compact for caching
- fSet.compact();
-}
-
-/*
- ******************************************************************
- * PossibleWord
- */
-
-// Helper class for improving readability of the Thai/Lao/Khmer word break
-// algorithm. The implementation is completely inline.
-
-// List size, limited by the maximum number of words in the dictionary
-// that form a nested sequence.
-static const int32_t POSSIBLE_WORD_LIST_MAX = 20;
-
-class PossibleWord {
-private:
- // list of word candidate lengths, in increasing length order
- // TODO: bytes would be sufficient for word lengths.
- int32_t count; // Count of candidates
- int32_t prefix; // The longest match with a dictionary word
- int32_t offset; // Offset in the text of these candidates
- int32_t mark; // The preferred candidate's offset
- int32_t current; // The candidate we're currently looking at
- int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units.
- int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points.
-
-public:
- PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {};
- ~PossibleWord() {};
-
- // Fill the list of candidates if needed, select the longest, and return the number found
- int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
-
- // Select the currently marked candidate, point after it in the text, and invalidate self
- int32_t acceptMarked( UText *text );
-
- // Back up from the current candidate to the next shorter one; return TRUE if that exists
- // and point the text after it
- UBool backUp( UText *text );
-
- // Return the longest prefix this candidate location shares with a dictionary word
- // Return value is in code points.
- int32_t longestPrefix() { return prefix; };
-
- // Mark the current candidate as the one we like
- void markCurrent() { mark = current; };
-
- // Get length in code points of the marked word.
- int32_t markedCPLength() { return cpLengths[mark]; };
-};
-
-
-int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
- // TODO: If getIndex is too slow, use offset < 0 and add discardAll()
- int32_t start = (int32_t)utext_getNativeIndex(text);
- if (start != offset) {
- offset = start;
- count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix);
- // Dictionary leaves text after longest prefix, not longest word. Back up.
- if (count <= 0) {
- utext_setNativeIndex(text, start);
- }
- }
- if (count > 0) {
- utext_setNativeIndex(text, start+cuLengths[count-1]);
- }
- current = count-1;
- mark = current;
- return count;
-}
-
-int32_t
-PossibleWord::acceptMarked( UText *text ) {
- utext_setNativeIndex(text, offset + cuLengths[mark]);
- return cuLengths[mark];
-}
-
-
-UBool
-PossibleWord::backUp( UText *text ) {
- if (current > 0) {
- utext_setNativeIndex(text, offset + cuLengths[--current]);
- return TRUE;
- }
- return FALSE;
-}
-
-/*
- ******************************************************************
- * ThaiBreakEngine
- */
-
-// How many words in a row are "good enough"?
-static const int32_t THAI_LOOKAHEAD = 3;
-
-// Will not combine a non-word with a preceding dictionary word longer than this
-static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;
-
-// Will not combine a non-word that shares at least this much prefix with a
-// dictionary word, with a preceding word
-static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;
-
-// Ellision character
-static const int32_t THAI_PAIYANNOI = 0x0E2F;
-
-// Repeat character
-static const int32_t THAI_MAIYAMOK = 0x0E46;
-
-// Minimum word size
-static const int32_t THAI_MIN_WORD = 2;
-
-// Minimum number of characters for two words
-static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;
-
-ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
- : DictionaryBreakEngine(),
- fDictionary(adoptDictionary)
-{
- fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status);
- if (U_SUCCESS(status)) {
- setCharacters(fThaiWordSet);
- }
- fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
- fMarkSet.add(0x0020);
- fEndWordSet = fThaiWordSet;
- fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
- fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
- fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
- fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
- fSuffixSet.add(THAI_PAIYANNOI);
- fSuffixSet.add(THAI_MAIYAMOK);
-
- // Compact for caching.
- fMarkSet.compact();
- fEndWordSet.compact();
- fBeginWordSet.compact();
- fSuffixSet.compact();
-}
-
-ThaiBreakEngine::~ThaiBreakEngine() {
- delete fDictionary;
-}
-
-int32_t
-ThaiBreakEngine::divideUpDictionaryRange( UText *text,
- int32_t rangeStart,
- int32_t rangeEnd,
- UVector32 &foundBreaks ) const {
- utext_setNativeIndex(text, rangeStart);
- utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
- if (utext_getNativeIndex(text) >= rangeEnd) {
- return 0; // Not enough characters for two words
- }
- utext_setNativeIndex(text, rangeStart);
-
-
- uint32_t wordsFound = 0;
- int32_t cpWordLength = 0; // Word Length in Code Points.
- int32_t cuWordLength = 0; // Word length in code units (UText native indexing)
- int32_t current;
- UErrorCode status = U_ZERO_ERROR;
- PossibleWord words[THAI_LOOKAHEAD];
-
- utext_setNativeIndex(text, rangeStart);
-
- while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
- cpWordLength = 0;
- cuWordLength = 0;
-
- // Look for candidate words at the current position
- int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
-
- // If we found exactly one, use that
- if (candidates == 1) {
- cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
- cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
- wordsFound += 1;
- }
- // If there was more than one, see which one can take us forward the most words
- else if (candidates > 1) {
- // If we're already at the end of the range, we're done
- if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
- goto foundBest;
- }
- do {
- int32_t wordsMatched = 1;
- if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
- if (wordsMatched < 2) {
- // Followed by another dictionary word; mark first word as a good candidate
- words[wordsFound%THAI_LOOKAHEAD].markCurrent();
- wordsMatched = 2;
- }
-
- // If we're already at the end of the range, we're done
- if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
- goto foundBest;
- }
-
- // See if any of the possible second words is followed by a third word
- do {
- // If we find a third word, stop right away
- if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
- words[wordsFound % THAI_LOOKAHEAD].markCurrent();
- goto foundBest;
- }
- }
- while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
- }
- }
- while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
-foundBest:
- // Set UText position to after the accepted word.
- cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
- cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
- wordsFound += 1;
- }
-
- // We come here after having either found a word or not. We look ahead to the
- // next word. If it's not a dictionary word, we will combine it with the word we
- // just found (if there is one), but only if the preceding word does not exceed
- // the threshold.
- // The text iterator should now be positioned at the end of the word we found.
-
- UChar32 uc = 0;
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
- // if it is a dictionary word, do nothing. If it isn't, then if there is
- // no preceding word, or the non-word shares less than the minimum threshold
- // of characters with a dictionary word, then scan to resynchronize
- if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
- && (cuWordLength == 0
- || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
- // Look for a plausible word boundary
- int32_t remaining = rangeEnd - (current+cuWordLength);
- UChar32 pc;
- int32_t chars = 0;
- for (;;) {
- int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
- pc = utext_next32(text);
- int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
- chars += pcSize;
- remaining -= pcSize;
- if (remaining <= 0) {
- break;
- }
- uc = utext_current32(text);
- if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
- // Maybe. See if it's in the dictionary.
- // NOTE: In the original Apple code, checked that the next
- // two characters after uc were not 0x0E4C THANTHAKHAT before
- // checking the dictionary. That is just a performance filter,
- // but it's not clear it's faster than checking the trie.
- int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
- utext_setNativeIndex(text, current + cuWordLength + chars);
- if (num_candidates > 0) {
- break;
- }
- }
- }
-
- // Bump the word count if there wasn't already one
- if (cuWordLength <= 0) {
- wordsFound += 1;
- }
-
- // Update the length with the passed-over characters
- cuWordLength += chars;
- }
- else {
- // Back up to where we were for next iteration
- utext_setNativeIndex(text, current+cuWordLength);
- }
- }
-
- // Never stop before a combining mark.
- int32_t currPos;
- while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
- utext_next32(text);
- cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
- }
-
- // Look ahead for possible suffixes if a dictionary word does not follow.
- // We do this in code rather than using a rule so that the heuristic
- // resynch continues to function. For example, one of the suffix characters
- // could be a typo in the middle of a word.
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) {
- if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
- && fSuffixSet.contains(uc = utext_current32(text))) {
- if (uc == THAI_PAIYANNOI) {
- if (!fSuffixSet.contains(utext_previous32(text))) {
- // Skip over previous end and PAIYANNOI
- utext_next32(text);
- int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text);
- utext_next32(text);
- cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word
- uc = utext_current32(text); // Fetch next character
- }
- else {
- // Restore prior position
- utext_next32(text);
- }
- }
- if (uc == THAI_MAIYAMOK) {
- if (utext_previous32(text) != THAI_MAIYAMOK) {
- // Skip over previous end and MAIYAMOK
- utext_next32(text);
- int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text);
- utext_next32(text);
- cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word
- }
- else {
- // Restore prior position
- utext_next32(text);
- }
- }
- }
- else {
- utext_setNativeIndex(text, current+cuWordLength);
- }
- }
-
- // Did we find a word on this iteration? If so, push it on the break stack
- if (cuWordLength > 0) {
- foundBreaks.push((current+cuWordLength), status);
- }
- }
-
- // Don't return a break for the end of the dictionary range if there is one there.
- if (foundBreaks.peeki() >= rangeEnd) {
- (void) foundBreaks.popi();
- wordsFound -= 1;
- }
-
- return wordsFound;
-}
-
-/*
- ******************************************************************
- * LaoBreakEngine
- */
-
-// How many words in a row are "good enough"?
-static const int32_t LAO_LOOKAHEAD = 3;
-
-// Will not combine a non-word with a preceding dictionary word longer than this
-static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;
-
-// Will not combine a non-word that shares at least this much prefix with a
-// dictionary word, with a preceding word
-static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;
-
-// Minimum word size
-static const int32_t LAO_MIN_WORD = 2;
-
-// Minimum number of characters for two words
-static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;
-
-LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
- : DictionaryBreakEngine(),
- fDictionary(adoptDictionary)
-{
- fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status);
- if (U_SUCCESS(status)) {
- setCharacters(fLaoWordSet);
- }
- fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status);
- fMarkSet.add(0x0020);
- fEndWordSet = fLaoWordSet;
- fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels
- fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters)
- fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent)
- fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels
-
- // Compact for caching.
- fMarkSet.compact();
- fEndWordSet.compact();
- fBeginWordSet.compact();
-}
-
-LaoBreakEngine::~LaoBreakEngine() {
- delete fDictionary;
-}
-
-int32_t
-LaoBreakEngine::divideUpDictionaryRange( UText *text,
- int32_t rangeStart,
- int32_t rangeEnd,
- UVector32 &foundBreaks ) const {
- if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) {
- return 0; // Not enough characters for two words
- }
-
- uint32_t wordsFound = 0;
- int32_t cpWordLength = 0;
- int32_t cuWordLength = 0;
- int32_t current;
- UErrorCode status = U_ZERO_ERROR;
- PossibleWord words[LAO_LOOKAHEAD];
-
- utext_setNativeIndex(text, rangeStart);
-
- while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
- cuWordLength = 0;
- cpWordLength = 0;
-
- // Look for candidate words at the current position
- int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
-
- // If we found exactly one, use that
- if (candidates == 1) {
- cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
- cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
- wordsFound += 1;
- }
- // If there was more than one, see which one can take us forward the most words
- else if (candidates > 1) {
- // If we're already at the end of the range, we're done
- if (utext_getNativeIndex(text) >= rangeEnd) {
- goto foundBest;
- }
- do {
- int32_t wordsMatched = 1;
- if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
- if (wordsMatched < 2) {
- // Followed by another dictionary word; mark first word as a good candidate
- words[wordsFound%LAO_LOOKAHEAD].markCurrent();
- wordsMatched = 2;
- }
-
- // If we're already at the end of the range, we're done
- if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
- goto foundBest;
- }
-
- // See if any of the possible second words is followed by a third word
- do {
- // If we find a third word, stop right away
- if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
- words[wordsFound % LAO_LOOKAHEAD].markCurrent();
- goto foundBest;
- }
- }
- while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text));
- }
- }
- while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
-foundBest:
- cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
- cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
- wordsFound += 1;
- }
-
- // We come here after having either found a word or not. We look ahead to the
- // next word. If it's not a dictionary word, we will combine it withe the word we
- // just found (if there is one), but only if the preceding word does not exceed
- // the threshold.
- // The text iterator should now be positioned at the end of the word we found.
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
- // if it is a dictionary word, do nothing. If it isn't, then if there is
- // no preceding word, or the non-word shares less than the minimum threshold
- // of characters with a dictionary word, then scan to resynchronize
- if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
- && (cuWordLength == 0
- || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
- // Look for a plausible word boundary
- int32_t remaining = rangeEnd - (current + cuWordLength);
- UChar32 pc;
- UChar32 uc;
- int32_t chars = 0;
- for (;;) {
- int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
- pc = utext_next32(text);
- int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
- chars += pcSize;
- remaining -= pcSize;
- if (remaining <= 0) {
- break;
- }
- uc = utext_current32(text);
- if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
- // Maybe. See if it's in the dictionary.
- // TODO: this looks iffy; compare with old code.
- int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
- utext_setNativeIndex(text, current + cuWordLength + chars);
- if (num_candidates > 0) {
- break;
- }
- }
- }
-
- // Bump the word count if there wasn't already one
- if (cuWordLength <= 0) {
- wordsFound += 1;
- }
-
- // Update the length with the passed-over characters
- cuWordLength += chars;
- }
- else {
- // Back up to where we were for next iteration
- utext_setNativeIndex(text, current + cuWordLength);
- }
- }
-
- // Never stop before a combining mark.
- int32_t currPos;
- while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
- utext_next32(text);
- cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
- }
-
- // Look ahead for possible suffixes if a dictionary word does not follow.
- // We do this in code rather than using a rule so that the heuristic
- // resynch continues to function. For example, one of the suffix characters
- // could be a typo in the middle of a word.
- // NOT CURRENTLY APPLICABLE TO LAO
-
- // Did we find a word on this iteration? If so, push it on the break stack
- if (cuWordLength > 0) {
- foundBreaks.push((current+cuWordLength), status);
- }
- }
-
- // Don't return a break for the end of the dictionary range if there is one there.
- if (foundBreaks.peeki() >= rangeEnd) {
- (void) foundBreaks.popi();
- wordsFound -= 1;
- }
-
- return wordsFound;
-}
-
-/*
- ******************************************************************
- * BurmeseBreakEngine
- */
-
-// How many words in a row are "good enough"?
-static const int32_t BURMESE_LOOKAHEAD = 3;
-
-// Will not combine a non-word with a preceding dictionary word longer than this
-static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3;
-
-// Will not combine a non-word that shares at least this much prefix with a
-// dictionary word, with a preceding word
-static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3;
-
-// Minimum word size
-static const int32_t BURMESE_MIN_WORD = 2;
-
-// Minimum number of characters for two words
-static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2;
-
-BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
- : DictionaryBreakEngine(),
- fDictionary(adoptDictionary)
-{
- fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status);
- if (U_SUCCESS(status)) {
- setCharacters(fBurmeseWordSet);
- }
- fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status);
- fMarkSet.add(0x0020);
- fEndWordSet = fBurmeseWordSet;
- fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels
-
- // Compact for caching.
- fMarkSet.compact();
- fEndWordSet.compact();
- fBeginWordSet.compact();
-}
-
-BurmeseBreakEngine::~BurmeseBreakEngine() {
- delete fDictionary;
-}
-
-int32_t
-BurmeseBreakEngine::divideUpDictionaryRange( UText *text,
- int32_t rangeStart,
- int32_t rangeEnd,
- UVector32 &foundBreaks ) const {
- if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) {
- return 0; // Not enough characters for two words
- }
-
- uint32_t wordsFound = 0;
- int32_t cpWordLength = 0;
- int32_t cuWordLength = 0;
- int32_t current;
- UErrorCode status = U_ZERO_ERROR;
- PossibleWord words[BURMESE_LOOKAHEAD];
-
- utext_setNativeIndex(text, rangeStart);
-
- while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
- cuWordLength = 0;
- cpWordLength = 0;
-
- // Look for candidate words at the current position
- int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
-
- // If we found exactly one, use that
- if (candidates == 1) {
- cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
- cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
- wordsFound += 1;
- }
- // If there was more than one, see which one can take us forward the most words
- else if (candidates > 1) {
- // If we're already at the end of the range, we're done
- if (utext_getNativeIndex(text) >= rangeEnd) {
- goto foundBest;
- }
- do {
- int32_t wordsMatched = 1;
- if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
- if (wordsMatched < 2) {
- // Followed by another dictionary word; mark first word as a good candidate
- words[wordsFound%BURMESE_LOOKAHEAD].markCurrent();
- wordsMatched = 2;
- }
-
- // If we're already at the end of the range, we're done
- if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
- goto foundBest;
- }
-
- // See if any of the possible second words is followed by a third word
- do {
- // If we find a third word, stop right away
- if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
- words[wordsFound % BURMESE_LOOKAHEAD].markCurrent();
- goto foundBest;
- }
- }
- while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text));
- }
- }
- while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text));
-foundBest:
- cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
- cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
- wordsFound += 1;
- }
-
- // We come here after having either found a word or not. We look ahead to the
- // next word. If it's not a dictionary word, we will combine it withe the word we
- // just found (if there is one), but only if the preceding word does not exceed
- // the threshold.
- // The text iterator should now be positioned at the end of the word we found.
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) {
- // if it is a dictionary word, do nothing. If it isn't, then if there is
- // no preceding word, or the non-word shares less than the minimum threshold
- // of characters with a dictionary word, then scan to resynchronize
- if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
- && (cuWordLength == 0
- || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) {
- // Look for a plausible word boundary
- int32_t remaining = rangeEnd - (current + cuWordLength);
- UChar32 pc;
- UChar32 uc;
- int32_t chars = 0;
- for (;;) {
- int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
- pc = utext_next32(text);
- int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
- chars += pcSize;
- remaining -= pcSize;
- if (remaining <= 0) {
- break;
- }
- uc = utext_current32(text);
- if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
- // Maybe. See if it's in the dictionary.
- // TODO: this looks iffy; compare with old code.
- int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
- utext_setNativeIndex(text, current + cuWordLength + chars);
- if (num_candidates > 0) {
- break;
- }
- }
- }
-
- // Bump the word count if there wasn't already one
- if (cuWordLength <= 0) {
- wordsFound += 1;
- }
-
- // Update the length with the passed-over characters
- cuWordLength += chars;
- }
- else {
- // Back up to where we were for next iteration
- utext_setNativeIndex(text, current + cuWordLength);
- }
- }
-
- // Never stop before a combining mark.
- int32_t currPos;
- while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
- utext_next32(text);
- cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
- }
-
- // Look ahead for possible suffixes if a dictionary word does not follow.
- // We do this in code rather than using a rule so that the heuristic
- // resynch continues to function. For example, one of the suffix characters
- // could be a typo in the middle of a word.
- // NOT CURRENTLY APPLICABLE TO BURMESE
-
- // Did we find a word on this iteration? If so, push it on the break stack
- if (cuWordLength > 0) {
- foundBreaks.push((current+cuWordLength), status);
- }
- }
-
- // Don't return a break for the end of the dictionary range if there is one there.
- if (foundBreaks.peeki() >= rangeEnd) {
- (void) foundBreaks.popi();
- wordsFound -= 1;
- }
-
- return wordsFound;
-}
-
-/*
- ******************************************************************
- * KhmerBreakEngine
- */
-
-// How many words in a row are "good enough"?
-static const int32_t KHMER_LOOKAHEAD = 3;
-
-// Will not combine a non-word with a preceding dictionary word longer than this
-static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;
-
-// Will not combine a non-word that shares at least this much prefix with a
-// dictionary word, with a preceding word
-static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;
-
-// Minimum word size
-static const int32_t KHMER_MIN_WORD = 2;
-
-// Minimum number of characters for two words
-static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;
-
-KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
- : DictionaryBreakEngine(),
- fDictionary(adoptDictionary)
-{
- fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status);
- if (U_SUCCESS(status)) {
- setCharacters(fKhmerWordSet);
- }
- fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
- fMarkSet.add(0x0020);
- fEndWordSet = fKhmerWordSet;
- fBeginWordSet.add(0x1780, 0x17B3);
- //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels
- //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word
- //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word
- fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters
- //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels
-// fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
-// fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
-// fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
-// fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
-// fSuffixSet.add(THAI_PAIYANNOI);
-// fSuffixSet.add(THAI_MAIYAMOK);
-
- // Compact for caching.
- fMarkSet.compact();
- fEndWordSet.compact();
- fBeginWordSet.compact();
-// fSuffixSet.compact();
-}
-
-KhmerBreakEngine::~KhmerBreakEngine() {
- delete fDictionary;
-}
-
-int32_t
-KhmerBreakEngine::divideUpDictionaryRange( UText *text,
- int32_t rangeStart,
- int32_t rangeEnd,
- UVector32 &foundBreaks ) const {
- if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
- return 0; // Not enough characters for two words
- }
-
- uint32_t wordsFound = 0;
- int32_t cpWordLength = 0;
- int32_t cuWordLength = 0;
- int32_t current;
- UErrorCode status = U_ZERO_ERROR;
- PossibleWord words[KHMER_LOOKAHEAD];
-
- utext_setNativeIndex(text, rangeStart);
-
- while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
- cuWordLength = 0;
- cpWordLength = 0;
-
- // Look for candidate words at the current position
- int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
-
- // If we found exactly one, use that
- if (candidates == 1) {
- cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
- cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
- wordsFound += 1;
- }
-
- // If there was more than one, see which one can take us forward the most words
- else if (candidates > 1) {
- // If we're already at the end of the range, we're done
- if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
- goto foundBest;
- }
- do {
- int32_t wordsMatched = 1;
- if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
- if (wordsMatched < 2) {
- // Followed by another dictionary word; mark first word as a good candidate
- words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
- wordsMatched = 2;
- }
-
- // If we're already at the end of the range, we're done
- if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
- goto foundBest;
- }
-
- // See if any of the possible second words is followed by a third word
- do {
- // If we find a third word, stop right away
- if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
- words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
- goto foundBest;
- }
- }
- while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
- }
- }
- while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
-foundBest:
- cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
- cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
- wordsFound += 1;
- }
-
- // We come here after having either found a word or not. We look ahead to the
- // next word. If it's not a dictionary word, we will combine it with the word we
- // just found (if there is one), but only if the preceding word does not exceed
- // the threshold.
- // The text iterator should now be positioned at the end of the word we found.
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
- // if it is a dictionary word, do nothing. If it isn't, then if there is
- // no preceding word, or the non-word shares less than the minimum threshold
- // of characters with a dictionary word, then scan to resynchronize
- if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
- && (cuWordLength == 0
- || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
- // Look for a plausible word boundary
- int32_t remaining = rangeEnd - (current+cuWordLength);
- UChar32 pc;
- UChar32 uc;
- int32_t chars = 0;
- for (;;) {
- int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
- pc = utext_next32(text);
- int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
- chars += pcSize;
- remaining -= pcSize;
- if (remaining <= 0) {
- break;
- }
- uc = utext_current32(text);
- if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
- // Maybe. See if it's in the dictionary.
- int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
- utext_setNativeIndex(text, current+cuWordLength+chars);
- if (num_candidates > 0) {
- break;
- }
- }
- }
-
- // Bump the word count if there wasn't already one
- if (cuWordLength <= 0) {
- wordsFound += 1;
- }
-
- // Update the length with the passed-over characters
- cuWordLength += chars;
- }
- else {
- // Back up to where we were for next iteration
- utext_setNativeIndex(text, current+cuWordLength);
- }
- }
-
- // Never stop before a combining mark.
- int32_t currPos;
- while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
- utext_next32(text);
- cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
- }
-
- // Look ahead for possible suffixes if a dictionary word does not follow.
- // We do this in code rather than using a rule so that the heuristic
- // resynch continues to function. For example, one of the suffix characters
- // could be a typo in the middle of a word.
-// if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
-// if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
-// && fSuffixSet.contains(uc = utext_current32(text))) {
-// if (uc == KHMER_PAIYANNOI) {
-// if (!fSuffixSet.contains(utext_previous32(text))) {
-// // Skip over previous end and PAIYANNOI
-// utext_next32(text);
-// utext_next32(text);
-// wordLength += 1; // Add PAIYANNOI to word
-// uc = utext_current32(text); // Fetch next character
-// }
-// else {
-// // Restore prior position
-// utext_next32(text);
-// }
-// }
-// if (uc == KHMER_MAIYAMOK) {
-// if (utext_previous32(text) != KHMER_MAIYAMOK) {
-// // Skip over previous end and MAIYAMOK
-// utext_next32(text);
-// utext_next32(text);
-// wordLength += 1; // Add MAIYAMOK to word
-// }
-// else {
-// // Restore prior position
-// utext_next32(text);
-// }
-// }
-// }
-// else {
-// utext_setNativeIndex(text, current+wordLength);
-// }
-// }
-
- // Did we find a word on this iteration? If so, push it on the break stack
- if (cuWordLength > 0) {
- foundBreaks.push((current+cuWordLength), status);
- }
- }
-
- // Don't return a break for the end of the dictionary range if there is one there.
- if (foundBreaks.peeki() >= rangeEnd) {
- (void) foundBreaks.popi();
- wordsFound -= 1;
- }
-
- return wordsFound;
-}
-
-#if !UCONFIG_NO_NORMALIZATION
-/*
- ******************************************************************
- * CjkBreakEngine
- */
-static const uint32_t kuint32max = 0xFFFFFFFF;
-CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
-: DictionaryBreakEngine(), fDictionary(adoptDictionary) {
- // Korean dictionary only includes Hangul syllables
- fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status);
- fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status);
- fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status);
- fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status);
- nfkcNorm2 = Normalizer2::getNFKCInstance(status);
-
- if (U_SUCCESS(status)) {
- // handle Korean and Japanese/Chinese using different dictionaries
- if (type == kKorean) {
- setCharacters(fHangulWordSet);
- } else { //Chinese and Japanese
- UnicodeSet cjSet;
- cjSet.addAll(fHanWordSet);
- cjSet.addAll(fKatakanaWordSet);
- cjSet.addAll(fHiraganaWordSet);
- cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK
- cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK
- setCharacters(cjSet);
- }
- }
-}
-
-CjkBreakEngine::~CjkBreakEngine(){
- delete fDictionary;
-}
-
-// The katakanaCost values below are based on the length frequencies of all
-// katakana phrases in the dictionary
-static const int32_t kMaxKatakanaLength = 8;
-static const int32_t kMaxKatakanaGroupLength = 20;
-static const uint32_t maxSnlp = 255;
-
-static inline uint32_t getKatakanaCost(int32_t wordLength){
- //TODO: fill array with actual values from dictionary!
- static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
- = {8192, 984, 408, 240, 204, 252, 300, 372, 480};
- return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
-}
-
-static inline bool isKatakana(UChar32 value) {
- return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) ||
- (value >= 0xFF66 && value <= 0xFF9f);
-}
-
-
-// Function for accessing internal utext flags.
-// Replicates an internal UText function.
-
-static inline int32_t utext_i32_flag(int32_t bitIndex) {
- return (int32_t)1 << bitIndex;
-}
-
-
-/*
- * @param text A UText representing the text
- * @param rangeStart The start of the range of dictionary characters
- * @param rangeEnd The end of the range of dictionary characters
- * @param foundBreaks vector<int32> to receive the break positions
- * @return The number of breaks found
- */
-int32_t
-CjkBreakEngine::divideUpDictionaryRange( UText *inText,
- int32_t rangeStart,
- int32_t rangeEnd,
- UVector32 &foundBreaks ) const {
- if (rangeStart >= rangeEnd) {
- return 0;
- }
-
- // UnicodeString version of input UText, NFKC normalized if necessary.
- UnicodeString inString;
-
- // inputMap[inStringIndex] = corresponding native index from UText inText.
- // If NULL then mapping is 1:1
- LocalPointer<UVector32> inputMap;
-
- UErrorCode status = U_ZERO_ERROR;
-
-
- // if UText has the input string as one contiguous UTF-16 chunk
- if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
- inText->chunkNativeStart <= rangeStart &&
- inText->chunkNativeLimit >= rangeEnd &&
- inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {
-
- // Input UText is in one contiguous UTF-16 chunk.
- // Use Read-only aliasing UnicodeString.
- inString.setTo(FALSE,
- inText->chunkContents + rangeStart - inText->chunkNativeStart,
- rangeEnd - rangeStart);
- } else {
- // Copy the text from the original inText (UText) to inString (UnicodeString).
- // Create a map from UnicodeString indices -> UText offsets.
- utext_setNativeIndex(inText, rangeStart);
- int32_t limit = rangeEnd;
- U_ASSERT(limit <= utext_nativeLength(inText));
- if (limit > utext_nativeLength(inText)) {
- limit = (int32_t)utext_nativeLength(inText);
- }
- inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
- if (U_FAILURE(status)) {
- return 0;
- }
- while (utext_getNativeIndex(inText) < limit) {
- int32_t nativePosition = (int32_t)utext_getNativeIndex(inText);
- UChar32 c = utext_next32(inText);
- U_ASSERT(c != U_SENTINEL);
- inString.append(c);
- while (inputMap->size() < inString.length()) {
- inputMap->addElement(nativePosition, status);
- }
- }
- inputMap->addElement(limit, status);
- }
-
-
- if (!nfkcNorm2->isNormalized(inString, status)) {
- UnicodeString normalizedInput;
- // normalizedMap[normalizedInput position] == original UText position.
- LocalPointer<UVector32> normalizedMap(new UVector32(status), status);
- if (U_FAILURE(status)) {
- return 0;
- }
-
- UnicodeString fragment;
- UnicodeString normalizedFragment;
- for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk
- fragment.remove();
- int32_t fragmentStartI = srcI;
- UChar32 c = inString.char32At(srcI);
- for (;;) {
- fragment.append(c);
- srcI = inString.moveIndex32(srcI, 1);
- if (srcI == inString.length()) {
- break;
- }
- c = inString.char32At(srcI);
- if (nfkcNorm2->hasBoundaryBefore(c)) {
- break;
- }
- }
- nfkcNorm2->normalize(fragment, normalizedFragment, status);
- normalizedInput.append(normalizedFragment);
-
- // Map every position in the normalized chunk to the start of the chunk
- // in the original input.
- int32_t fragmentOriginalStart = inputMap.isValid() ?
- inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
- while (normalizedMap->size() < normalizedInput.length()) {
- normalizedMap->addElement(fragmentOriginalStart, status);
- if (U_FAILURE(status)) {
- break;
- }
- }
- }
- U_ASSERT(normalizedMap->size() == normalizedInput.length());
- int32_t nativeEnd = inputMap.isValid() ?
- inputMap->elementAti(inString.length()) : inString.length()+rangeStart;
- normalizedMap->addElement(nativeEnd, status);
-
- inputMap.moveFrom(normalizedMap);
- inString.moveFrom(normalizedInput);
- }
-
- int32_t numCodePts = inString.countChar32();
- if (numCodePts != inString.length()) {
- // There are supplementary characters in the input.
- // The dictionary will produce boundary positions in terms of code point indexes,
- // not in terms of code unit string indexes.
- // Use the inputMap mechanism to take care of this in addition to indexing differences
- // from normalization and/or UTF-8 input.
- UBool hadExistingMap = inputMap.isValid();
- if (!hadExistingMap) {
- inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
- if (U_FAILURE(status)) {
- return 0;
- }
- }
- int32_t cpIdx = 0;
- for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) {
- U_ASSERT(cuIdx >= cpIdx);
- if (hadExistingMap) {
- inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
- } else {
- inputMap->addElement(cuIdx+rangeStart, status);
- }
- cpIdx++;
- if (cuIdx == inString.length()) {
- break;
- }
- }
- }
-
- // bestSnlp[i] is the snlp of the best segmentation of the first i
- // code points in the range to be matched.
- UVector32 bestSnlp(numCodePts + 1, status);
- bestSnlp.addElement(0, status);
- for(int32_t i = 1; i <= numCodePts; i++) {
- bestSnlp.addElement(kuint32max, status);
- }
-
-
- // prev[i] is the index of the last CJK code point in the previous word in
- // the best segmentation of the first i characters.
- UVector32 prev(numCodePts + 1, status);
- for(int32_t i = 0; i <= numCodePts; i++){
- prev.addElement(-1, status);
- }
-
- const int32_t maxWordSize = 20;
- UVector32 values(numCodePts, status);
- values.setSize(numCodePts);
- UVector32 lengths(numCodePts, status);
- lengths.setSize(numCodePts);
-
- UText fu = UTEXT_INITIALIZER;
- utext_openUnicodeString(&fu, &inString, &status);
-
- // Dynamic programming to find the best segmentation.
-
- // In outer loop, i is the code point index,
- // ix is the corresponding string (code unit) index.
- // They differ when the string contains supplementary characters.
- int32_t ix = 0;
- bool is_prev_katakana = false;
- for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) {
- if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) {
- continue;
- }
-
- int32_t count;
- utext_setNativeIndex(&fu, ix);
- count = fDictionary->matches(&fu, maxWordSize, numCodePts,
- NULL, lengths.getBuffer(), values.getBuffer(), NULL);
- // Note: lengths is filled with code point lengths
- // The NULL parameter is the ignored code unit lengths.
-
- // if there are no single character matches found in the dictionary
- // starting with this character, treat character as a 1-character word
- // with the highest value possible, i.e. the least likely to occur.
- // Exclude Korean characters from this treatment, as they should be left
- // together by default.
- if ((count == 0 || lengths.elementAti(0) != 1) &&
- !fHangulWordSet.contains(inString.char32At(ix))) {
- values.setElementAt(maxSnlp, count); // 255
- lengths.setElementAt(1, count++);
- }
-
- for (int32_t j = 0; j < count; j++) {
- uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j);
- int32_t ln_j_i = lengths.elementAti(j) + i;
- if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) {
- bestSnlp.setElementAt(newSnlp, ln_j_i);
- prev.setElementAt(i, ln_j_i);
- }
- }
-
- // In Japanese,
- // Katakana word in single character is pretty rare. So we apply
- // the following heuristic to Katakana: any continuous run of Katakana
- // characters is considered a candidate word with a default cost
- // specified in the katakanaCost table according to its length.
-
- bool is_katakana = isKatakana(inString.char32At(ix));
- int32_t katakanaRunLength = 1;
- if (!is_prev_katakana && is_katakana) {
- int32_t j = inString.moveIndex32(ix, 1);
- // Find the end of the continuous run of Katakana characters
- while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength &&
- isKatakana(inString.char32At(j))) {
- j = inString.moveIndex32(j, 1);
- katakanaRunLength++;
- }
- if (katakanaRunLength < kMaxKatakanaGroupLength) {
- uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
- if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) {
- bestSnlp.setElementAt(newSnlp, i+katakanaRunLength);
- prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i;
- }
- }
- }
- is_prev_katakana = is_katakana;
- }
- utext_close(&fu);
-
- // Start pushing the optimal offset index into t_boundary (t for tentative).
- // prev[numCodePts] is guaranteed to be meaningful.
- // We'll first push in the reverse order, i.e.,
- // t_boundary[0] = numCodePts, and afterwards do a swap.
- UVector32 t_boundary(numCodePts+1, status);
-
- int32_t numBreaks = 0;
- // No segmentation found, set boundary to end of range
- if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) {
- t_boundary.addElement(numCodePts, status);
- numBreaks++;
- } else {
- for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
- t_boundary.addElement(i, status);
- numBreaks++;
- }
- U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
- }
-
- // Add a break for the start of the dictionary range if there is not one
- // there already.
- if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
- t_boundary.addElement(0, status);
- numBreaks++;
- }
-
- // Now that we're done, convert positions in t_boundary[] (indices in
- // the normalized input string) back to indices in the original input UText
- // while reversing t_boundary and pushing values to foundBreaks.
- int32_t prevCPPos = -1;
- int32_t prevUTextPos = -1;
- for (int32_t i = numBreaks-1; i >= 0; i--) {
- int32_t cpPos = t_boundary.elementAti(i);
- U_ASSERT(cpPos > prevCPPos);
- int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
- U_ASSERT(utextPos >= prevUTextPos);
- if (utextPos > prevUTextPos) {
- // Boundaries are added to foundBreaks output in ascending order.
- U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos);
- foundBreaks.push(utextPos, status);
- } else {
- // Normalization expanded the input text, the dictionary found a boundary
- // within the expansion, giving two boundaries with the same index in the
- // original text. Ignore the second. See ticket #12918.
- --numBreaks;
- }
- prevCPPos = cpPos;
- prevUTextPos = utextPos;
- }
- (void)prevCPPos; // suppress compiler warnings about unused variable
-
- // inString goes out of scope
- // inputMap goes out of scope
- return numBreaks;
-}
-#endif
-
-U_NAMESPACE_END
-
-#endif /* #if !UCONFIG_NO_BREAK_ITERATION */