exchange

Base system with REST service to issue digital coins, run by the payment service provider
Log | Files | Refs | Submodules | README | LICENSE

commit 9f7e3bb2bd494860c31aa534942de85636cb91a8
parent b21705882156f73c6623f76b719fcaadc3d26555
Author: Jeffrey Burdges <burdges@gnunet.org>
Date:   Fri,  2 Jun 2017 15:55:49 +0200

More on RSA-KTI

Diffstat:
Mdoc/paper/taler.bib | 2+-
Mdoc/paper/taler.tex | 12++++++++++--
2 files changed, 11 insertions(+), 3 deletions(-)

diff --git a/doc/paper/taler.bib b/doc/paper/taler.bib @@ -368,7 +368,7 @@ } -@inbook{RSA-HDF-KTIvCTI, +@inbook{RSA-FDH-KTIvCTI, author="Bellare, Mihir and Namprempre, Chanathip and Pointcheval, David and Semanko, Michael", editor="Syverson, Paul", chapter="The Power of RSA Inversion Oracles and the Security of Chaum's RSA-Based Blind Signature Scheme", diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex @@ -509,7 +509,7 @@ financial reserve. In addition, Taler includes an \emph{auditor} who assures customers and merchants that the exchange operates correctly. %\vspace{-0.3cm} -\subsection{Security considerations} +\subsection{Security considerations}\label{subsec:security_rough} %\vspace{-0.3cm} As a payment system, Taler naturally needs to make sure that coins are @@ -559,7 +559,7 @@ limiting the exchange's financial liability. On the cryptographic side, a Taler exchange demands that coins use a full domain hash (FDH) to make so-called ``one-more forgery'' attacks provably hard, assuming the RSA known-target inversion problem is -hard~\cite[Theorem 12]{RSA-HDF-KTIvCTI}. For a withdrawn coin, +hard~\cite[Theorem 12]{RSA-FDH-KTIvCTI}. For a withdrawn coin, violating the customers anonymity cryptographically requires recognizing a random blinding factor from a random element of the group of integers modulo the denomination key's RSA modulus, which appears @@ -1466,6 +1466,14 @@ protocol is never used. \subsection{Exculpability arguments} +In \S\ref{subsec:security_rough}, +we quoted \cite[Theorem 12]{RSA-FDH-KTIvCTI} that RSA-FDH blind +signatures are secure against ``one-more forgery'' attacks, assuming + the RSA known-target inversion problem is hard. +We note as well that ``one-more forgery'' attacks cover both the +refresh operation as well as the withdrawal operarion + \cite[Definition 12]{RSA-FDH-KTIvCTI,OneMoreInversion}. + \begin{lemma}\label{lemma:double-spending} The exchange can detect, prevent, and prove double-spending. \end{lemma}