commit 3b3af8a077f4ea67db47a516c9bae15564896f6b
parent 41126e6d2423ef4ca945d6b080a289fae94efda2
Author: Christian Grothoff <christian@grothoff.org>
Date: Mon, 5 Oct 2015 00:35:02 +0200
avoid triplicating 'randomly computes'
Diffstat:
1 file changed, 7 insertions(+), 7 deletions(-)
diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex
@@ -808,15 +808,15 @@ protocol, $\kappa \ge 3$ is a security parameter and $G$ is the
generator of the elliptic curve.
\begin{enumerate}
- \item For each $i = 1,\ldots,\kappa$, the customer
+ \item For each $i = 1,\ldots,\kappa$, the customer randomly generates
\begin{itemize}
- \item randomly generates transfer key $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$ where $T^{(i)}_p := t^{(i)}_s G$,
- \item randomly generates coin key pair \\ $C^{(i)} := \left(c_s^{(i)}, C_p^{(i)}\right)$ where $C^{(i)}_p := c^{(i)}_s G$,
- \item randomly generates blinding factors $b^{(i)}$,
- \item computes $E^{(i)} := E_{K_i}\left(c_s^{(i)}, b^{(i)}\right)$ where $K_i := H(c'_s T_p^{(i)})$. (The encryption key $K_i$ is
- computed by multiplying the private key $c'_s$ of the original coin with the point on the curve
- that represents the public key $T^{(i)}_p$ of the transfer key $T^{(i)}$. This is basically DH between coin and transfer key.),
+ \item transfer key $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$ where $T^{(i)}_p := t^{(i)}_s G$,
+ \item coin key pair \\ $C^{(i)} := \left(c_s^{(i)}, C_p^{(i)}\right)$ where $C^{(i)}_p := c^{(i)}_s G$,
+ \item blinding factors $b^{(i)}$.
\end{itemize}
+ The customer then computes $E^{(i)} := E_{K_i}\left(c_s^{(i)}, b^{(i)}\right)$ where $K_i := H(c'_s T_p^{(i)})$. (The encryption key $K_i$ is
+ computed by multiplying the private key $c'_s$ of the original coin with the point on the curve
+ that represents the public key $T^{(i)}_p$ of the transfer key $T^{(i)}$. This is basically DH between coin and transfer key.),
and commits $\langle C', \vec{T}, \vec{C}, \vec{b} \rangle$ to disk.
\item The customer computes $B^{(i)} := B_{b^{(i)}}(C^{(i)}_p)$ for $i \in \{1,\ldots,\kappa\}$ and sends a commitment
$S_{C'}(\vec{E}, \vec{B}, \vec{T_p}))$ to the mint.