donau

Donation authority for GNU Taler (experimental)
Log | Files | Refs | Submodules | README | LICENSE

commit e1ccd6adc5107e3186a5ef45a2a3c7095d94c873
parent 8c66d819be60ff2c57edc7585a9d1ee36307daa0
Author: Matyja Lukas Adam <lukas.matyja@students.bfh.ch>
Date:   Sun, 12 Nov 2023 16:44:39 +0100

[doc] verify and some changes

Diffstat:
Mdoc/flows/definitions.tex | 12+++++++++---
Mdoc/flows/main.tex | 11++++++-----
2 files changed, 15 insertions(+), 8 deletions(-)

diff --git a/doc/flows/definitions.tex b/doc/flows/definitions.tex @@ -63,11 +63,17 @@ \end{itemize} - \item UNBLINDING! + \item \textbf{Unblinding function} $\beta := Unblind(\overline{\beta}, b, K_x^{pub})$ where $\overline{\beta}$ is the value to unblind, $b$ the blinding factor to apply and $K_x^{pub}$ the public key of the donation unit that was used for signing. The unblinding must be carried out using the same signature scheme that has already been used for blinding. + The unblinded value $\beta$ is a unique donor identifier. - \item Verify (blind + unblind versions)! + \item \textbf{Verify functions} to verify the signatures.\\ + $m$ corresponds to the message and $s$ to the signature: + \begin{itemize} + \item $verify\_blind(m,s,K_x^{pub})$ verifies only signatures made with $K_x^{priv}$. + \item $verify(m,s, P^{pub})$ where $P^{pub}$ can be the public key of the Donau $D^{pub}$ or of the charity $C^{pub}$. + \end{itemize} - \item Charity signing request. + \item Charity signing request \item \textbf{Donation Receipt} $r := \langle u, \beta, H(K_x^{pub}) \rangle$ where $\beta$ is the unblinded signature: Sent to the Donau to get the donation Statement. diff --git a/doc/flows/main.tex b/doc/flows/main.tex @@ -85,12 +85,13 @@ \begin{align} \overline \mu_1 :&= \langle \overline u_1, h(\color{red}{K^{pub}_1}\color{black}{}) \rangle \\ \overline \mu_2 :&= \langle \overline u_2, h(\color{red}{K^{pub}_2}\color{black}{}) \rangle \\ - \overline \mu_3 :&= \langle \overline u_3, h(\color{red}{K^{pub}_4}\color{black}{}) \rangle \\ \\ + \overline \mu_3 :&= \langle \overline u_3, h(\color{red}{K^{pub}_4}\color{black}{}) \rangle + \end{align} + \begin{align} \vec{\mu} :&= \langle \overline \mu_1, \overline \mu_2,\overline \mu_3 \rangle \end{align} - \item The donor sends all \emph{BKP's} the $\vec{\mu}$ as well as the corresponding payment to the charity. \end{enumerate} @@ -132,9 +133,9 @@ \item The donor unblinds the signatures of the $BUDI$'s to get the signatures of the $UDI$'s. This results in a collection of \textbf{Donation Receipts} $DR$'s each consisting of the $UDI$, the signature $\beta$ and the Hash of the \emph{donation unit public key} $h(K_x^{pub})$. \begin{align} - \beta_1 &= Unblind(\overline{\beta_1}, b_1) \\ - \beta_2 &= Unblind(\overline{\beta_i}, b_i) \\ - \beta_3 &= Unblind(\overline{\beta_i}, b_i) + \beta_1 &= Unblind(\overline{\beta_1}, b_1, K_1^{pub}) \\ + \beta_2 &= Unblind(\overline{\beta_2}, b_2, K_2^{pub}) \\ + \beta_3 &= Unblind(\overline{\beta_3}, b_3, K_4^{pub}) \end{align} \begin{align} r_1 &= \langle UDI_1, \beta_1, h(K_1^{pub}) \rangle \\