Zero-Knowledge Age Restriction for GNU Taler

Özgür Kesim, Christian Grothoff, Florian Dold, Martin Schanzenbach

FU Berlin, BFH Bern, Taler Systems SA, Fraunhofer AISEC

September 26, 2022

ESORICS 2022

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

- 1. ID Verification
- 2. Restricted Accounts
- 3. Attribute-based

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

		Privacy
1.	ID Verification	bad
2.	Restricted Accounts	bad
3.	Attribute-based	good

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

	Privacy	Ext. authority
1. ID Verification	bad	required
2. Restricted Accounts	bad bad	required
3. Attribute-based	good	required

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy bad

- 1. ID Verification
- 2. Restricted Accounts bad
- 3. Attribute-based

good

Ext. authority

required

required

required

Principle of Subsidiarity is violated

Principle of Subsidiarity

Functions of government—such as granting and restricting rights—should be performed at the lowest level of authority possible, as long as they can be performed adequately.

Principle of Subsidiarity

Functions of government—such as granting and restricting rights—should be performed at the lowest level of authority possible, as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Our contribution

Design and implementation of an age restriction scheme with the following goals:

- 1. It ties age restriction to the **ability to pay** (not to ID's)
- 2. maintains anonymity of buyers
- 3. maintains unlinkability of transactions
- 4. aligns with principle of subsidiartiy
- 5. is practical and efficient

Assumptions and scenario

Assumption: Checking accounts are under control of eligible adults/guardians.

- Assumption: Checking accounts are under control of eligible adults/guardians.
- ► Guardians commit to an maximum age

- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age
- ► Minors attest their adequate age

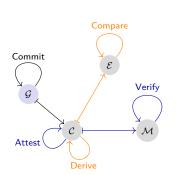
- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age
- Minors attest their adequate age
- ► Merchants verify the attestations

- Assumption: Checking accounts are under control of eligible adults/guardians.
- ► Guardians commit to an maximum age
- Minors attest their adequate age
- Merchants verify the attestations
- Minors derive age commitments from existing ones

- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age
- ► Minors attest their adequate age
- Merchants verify the attestations
- Minors derive age commitments from existing ones
- Exchanges compare the derived age commitments

Assumptions and scenario

- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age
- Minors attest their adequate age
- Merchants verify the attestations
- Minors derive age commitments from existing ones
- Exchanges compare the derived age commitments



Note: Scheme is independent of payment service protocol.

Searching for functions

Commit

Attest

Verify

Derive

Compare

Searching for functions with the following signatures

Commit:

$$(\mathsf{a},\omega)\mapsto (\mathsf{Q},\mathsf{P})$$

 $\mathbb{N}_{M} {\times} \Omega {\to} \mathbb{O} {\times} \mathbb{P},$

Attest

Verify

Derive

Compare

Mnemonics:

$$\mathbb{O}=c\mathbb{O}$$
 mmitments, $\mathbb{Q}=Q$ -mitment (commitment), $\mathbb{P}=\mathbb{P}$ roofs,

Searching for functions with the following signatures

Commit: $(a,\omega)\mapsto (Q,P)$

 $\mathbb{N}_{\mathsf{M}} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P}$.

 $(m, Q, P) \mapsto T$ Attest:

 $\mathbb{N}_{\mathsf{M}} \times \mathbb{O} \times \mathbb{P} \rightarrow \mathbb{T} \cup \{\bot\},$

Verify

Derive

Compare

Mnemonics:

$$\mathbb{O} = \textit{c}\mathbb{O}\textit{mmitments}, \ Q = \textit{Q-mitment} \ (\text{commitment}), \ \mathbb{P} = \mathbb{P}\textit{roofs}, \quad \mathsf{P} = \mathsf{P}\textit{roof},$$

 $\mathbb{T} = a\mathbb{T}$ testations, $\mathsf{T} = a\mathsf{T}$ testation,

Searching for functions with the following signatures

Commit: $(a,\omega)\mapsto (Q,P)$ $\mathbb{N}_{\mathsf{M}} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P}$.

 $(m, Q, P) \mapsto T$ Attest: $\mathbb{N}_{\mathsf{M}} \times \mathbb{O} \times \mathbb{P} \rightarrow \mathbb{T} \cup \{\bot\},$

Verify: $(m, Q, T) \mapsto b$ $\mathbb{N}_{\mathsf{M}} \times \mathbb{O} \times \mathbb{T} \rightarrow \mathbb{Z}_2$.

Derive

Compare

Mnemonics:

$$\mathbb{O} = \mathop{\mathit{c}} \mathbb{O} \mathop{\mathit{mmitments}}_{-} \mathsf{Q} = \mathop{\mathit{Q-mitment}}_{-} (\mathop{\mathsf{commitment}}_{-}), \ \mathbb{P} = \mathbb{P} \mathop{\mathit{roofs}}_{-}, \quad \mathsf{P} = \mathop{\mathsf{Proof}}_{-},$$

 $\mathbb{T} = a\mathbb{T}$ testations, $\mathsf{T} = a\mathsf{T}$ testation,

Searching for functions with the following signatures

Commit: $(a,\omega)\mapsto (Q,P)$ $\mathbb{N}_{\mathsf{M}} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P}$.

 $(m, Q, P) \mapsto T$ Attest: $\mathbb{N}_{\mathsf{M}} \times \mathbb{O} \times \mathbb{P} \rightarrow \mathbb{T} \cup \{\bot\},$

Verify: $(m, Q, T) \mapsto b$ $\mathbb{N}_{\mathsf{M}} \times \mathbb{O} \times \mathbb{T} \rightarrow \mathbb{Z}_2$.

 $(Q, P, \omega) \mapsto (Q', P', \beta)$ Derive: $\mathbb{O} \times \mathbb{P} \times \Omega \rightarrow \mathbb{O} \times \mathbb{P} \times \mathbb{B}$.

Compare

Mnemonics:

$$\mathbb{O} = c\mathbb{O} \text{mmitments}, \ \mathsf{Q} = \text{Q-mitment} \ (\mathsf{commitment}), \ \mathbb{P} = \mathbb{P} \text{roofs}, \quad \mathsf{P} = \mathsf{P} \text{roof},$$

 $\mathbb{T} = a\mathbb{T}$ testations, $T = a\mathbb{T}$ testation, $\mathbb{B} = \mathbb{B}$ lindings, $\beta = \beta$ linding.

Searching for functions with the following signatures

Commit:
$$(a, \omega) \mapsto (Q, P)$$
 $\mathbb{N}_M \times \Omega \to \mathbb{O} \times \mathbb{P}$,

$$\text{Attest}: \qquad \qquad (m,Q,P) \mapsto T \qquad \qquad \mathbb{N}_M \times \mathbb{O} \times \mathbb{P} \to \mathbb{T} \cup \{\bot\},$$

Verify:
$$(m, Q, T) \mapsto b$$

Derive :
$$(Q, P, \omega) \mapsto (Q', P', \beta)$$
 $0 \times P \times \Omega \rightarrow 0 \times P \times B$,

Compare:
$$(Q, Q', \beta) \mapsto b$$
 $0 \times 0 \times \mathbb{B} \rightarrow \mathbb{Z}_2$,

Mnemonics:

$$\mathbb{O} = c\mathbb{O}$$
 mmitments, $Q = Q$ -mitment (commitment), $\mathbb{P} = \mathbb{P}$ roofs, $P = P$ roof,

 $\mathbb{T} = a\mathbb{T}$ testations, $T = a\mathbb{T}$ testation, $\mathbb{B} = \mathbb{B}$ lindings, $\beta = \beta$ linding.

 $\mathbb{N}_{\mathsf{M}} \times \mathbb{O} \times \mathbb{T} \rightarrow \mathbb{Z}_2$.

Searching for functions with the following signatures

Commit:
$$(a, \omega) \mapsto (Q, P)$$
 $\mathbb{N}_M \times \Omega \to \mathbb{O} \times \mathbb{P}$,

$$\text{Attest}: \qquad \qquad \left(m,Q,P\right) \mapsto T \qquad \qquad \mathbb{N}_{M} \times \mathbb{O} \times \mathbb{P} \rightarrow \mathbb{T} \cup \{\bot\},$$

Verify:
$$(m, Q, T) \mapsto b$$

Derive :
$$(Q, P, \omega) \mapsto (Q', P', \beta)$$
 $0 \times P \times \Omega \rightarrow 0 \times P \times B$,

Compare:
$$(Q, Q', \beta) \mapsto b$$
 $0 \times 0 \times \mathbb{B} \rightarrow \mathbb{Z}_2$,

with $\Omega, \mathbb{P}, \mathbb{O}, \mathbb{T}, \mathbb{B}$ sufficiently large sets.

Basic and security requirements are defined later.

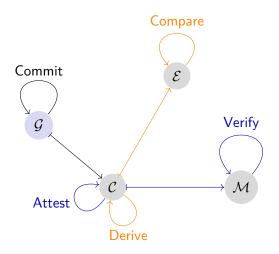
Mnemonics:

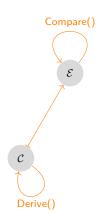
$$\mathbb{O} = \textit{c} \mathbb{O} \textit{mmitments}, \ \mathsf{Q} = \textit{Q-mitment} \ (\mathsf{commitment}), \ \mathbb{P} = \mathbb{P} \textit{roofs}, \quad \mathsf{P} = \mathsf{P} \textit{roof},$$

$$\mathbb{T}=a\mathbb{T}$$
testations, $\mathbb{T}=a\mathbb{T}$ testation, $\mathbb{B}=\mathbb{B}$ lindings, $\beta=\beta$ linding.

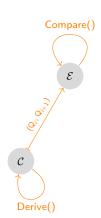
 $\mathbb{N}_{\mathsf{M}} \times \mathbb{O} \times \mathbb{T} \rightarrow \mathbb{Z}_2$.

Naïve scheme



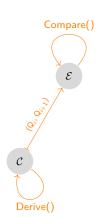


Simple use of Derive() and Compare() is problematic.



Simple use of Derive() and Compare() is problematic.

- ► Calling Derive() iteratively generates sequence $(Q_0, Q_1,...)$ of commitments.
- ightharpoonup Exchange calls Compare(Q_i, Q_{i+1}, .)



Simple use of Derive() and Compare() is problematic.

- ► Calling Derive() iteratively generates sequence $(Q_0, Q_1, ...)$ of commitments.
- ightharpoonup Exchange calls Compare($Q_i, Q_{i+1}, .$)
- ⇒ Exchange identifies sequence
- Unlinkability broken

Define cut&choose protocol $\frac{DeriveCompare_{\kappa}}{Compare()}$, using $\frac{Derive()}{Compare()}$ and $\frac{DeriveCompare_{\kappa}}{Compare()}$.

Define cut&choose protocol DeriveCompare, using Derive() and Compare().

Sketch:

- 1. \mathcal{C} derives commitments $(Q_1, \ldots, Q_{\kappa})$ from Q_0 by calling Derive() with blindings $(\beta_1, \ldots, \beta_{\kappa})$
- 2. \mathcal{C} calculates $h_0 := H(H(Q_1, \beta_1)|| \dots ||H(Q_\kappa, \beta_\kappa)||$
- 3. \mathcal{C} sends Q_0 and h_0 to \mathcal{E}
- 4. \mathcal{E} chooses $\gamma \in \{1, \ldots, \kappa\}$ randomly
- 5. C reveals $h_{\gamma} := H(Q_{\gamma}, \beta_{\gamma})$ and all (Q_i, β_i) , except $(Q_{\gamma}, \beta_{\gamma})$
- 6. \mathcal{E} compares h_0 and $H(H(Q_1, \beta_1)||...||h_{\gamma}||...||H(Q_{\kappa}, \beta_{\kappa}))$ and evaluates Compare(Q_0, Q_i, β_i).

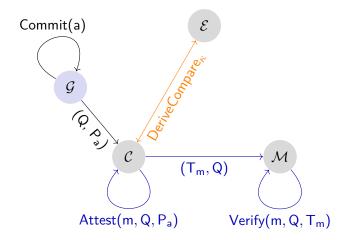
Note: Scheme is similar to the *refresh* protocol in GNU Taler.

With DeriveCompare κ

- \triangleright \mathcal{E} learns nothing about Q_{γ} ,
- ▶ trusts outcome with $\frac{\kappa-1}{\kappa}$ certainty,
- ▶ i.e. C has $\frac{1}{\kappa}$ chance to cheat.

Note: Still need Derive and Compare to be defined.

Refined scheme



Basic Requirements

Candidate functions

(Commit, Attest, Verify, Derive, Compare)

must first meet basic requirements:

- Existence of attestations
- Efficacy of attestations
- Derivability of commitments and attestations

Basic Requirements

Formal Details

Existence of attestations

$$\bigvee_{\substack{a\in\mathbb{N}_M\\\omega\in\mathbb{N}}}:\mathsf{Commit}(\mathsf{a},\omega)=:(\mathsf{Q},\mathsf{P})\implies\mathsf{Attest}(\mathsf{m},\mathsf{Q},\mathsf{P})=\begin{cases}\mathsf{T}\in\mathbb{T},\;\mathsf{if}\;\mathsf{m}\leq\mathsf{a}\\\bot\;\mathsf{otherwise}\end{cases}$$

Efficacy of attestations

$$Verify(m,Q,T) = \begin{cases} 1, \text{if } \mathrel{\dfrac{-}{-}} : Attest(m,Q,P) = T \\ 0 \text{ otherwise} \end{cases}$$

$$\forall_{n \leq a} : \mathsf{Verify}(n, \mathsf{Q}, \mathsf{Attest}(n, \mathsf{Q}, \mathsf{P})) = 1.$$

etc.

Security Requirements

Candidate functions must also meet *security* requirements. Those are defined via security games:

- ► Game: Age disclosure by commitment or attestation
- $\leftrightarrow \ \mbox{Requirement: Non-disclosure of age}$
- ► Game: Forging attestation
- \leftrightarrow Requirement: Unforgeability of minimum age
- Game: Distinguishing derived commitments and attestations
- \leftrightarrow Requirement: Unlinkability of commitments and attestations

Meeting the security requirements means that adversaries can win those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all relevant input.

Security Requirements

Simplified Example

Game $G_{\Lambda}^{\mathsf{FA}}(\lambda)$ —Forging an attest:

- 1. $(a, \omega) \stackrel{\$}{\leftarrow} \mathbb{N}_{M-1} \times \Omega$
- 2. $(Q, P) \leftarrow Commit(a, \omega)$
- 3. $(m, T) \leftarrow \mathcal{A}(a, Q, P)$
- 4. Return 0 if m < a
- Return Verify(m, Q, T)

Requirement: Unforgeability of minimum age

$$\bigvee_{\mathcal{A} \in \mathfrak{A}(\mathbb{N}_{\mathsf{M}} \times \mathbb{O} \times \mathbb{P} \to \mathbb{N}_{\mathsf{M}} \times \mathbb{T})} : \Pr \Big[\mathit{G}_{\mathcal{A}}^{\mathsf{FA}}(\lambda) = 1 \Big] \leq \epsilon(\lambda)$$

Solution: Instantiation with ECDSA

To Commit to age (group) 'a'

Solution: Instantiation with ECDSA

To Commit to age (group) 'a'

1. Guardian generates ECDSA-keypairs, one per age (group):

```
\langle (q_1, p_1), \ldots, (q_M, p_M) \rangle
```


Solution: Instantiation with ECDSA

To Commit to age (group) 'a'

1. Guardian generates ECDSA-keypairs, one per age (group):

$$\langle (q_1, p_1), \ldots, (q_{\mathsf{M}}, p_{\mathsf{M}}) \rangle$$

2. Guardian then **drops** all private keys p_i for i > a:

$$\langle (q_1, p_1), \ldots, (q_a, p_a), (q_{a+1}, \bot), \ldots, (q_M, \bot) \rangle$$

- $\vec{\mathsf{Q}} := (q_1, \dots, q_{\mathsf{M}})$ is the *Commitment*, $\vec{\mathsf{P}}_{\mathsf{a}} := (p_1, \dots, p_{\mathsf{a}}, \perp, \dots, \perp)$ is the *Proof*

Solution: Instantiation with ECDSA

To Commit to age (group) 'a'

1. Guardian generates ECDSA-keypairs, one per age (group):

$$\langle (q_1, p_1), \ldots, (q_M, p_M) \rangle$$

2. Guardian then **drops** all private keys p_i for i > a:

$$\langle (q_1, p_1), \dots, (q_{\mathsf{a}}, p_{\mathsf{a}}), (q_{\mathsf{a}+1}, \bot), \dots, (q_{\mathsf{M}}, \bot) \rangle$$

- $\vec{\mathsf{Q}} := (q_1, \dots, q_{\mathsf{M}})$ is the *Commitment*, $\vec{\mathsf{P}}_{\mathsf{a}} := (p_1, \dots, p_{\mathsf{a}}, \perp, \dots, \perp)$ is the *Proof*
- 3. Guardian gives child $\langle \vec{Q}, \vec{P}_a \rangle$

Definitions of Attest and Verify

Child has

- ightharpoonup ordered public-keys $\vec{\mathsf{Q}}=(q_1,\ldots,q_{\mathsf{M}})$,
- (some) private-keys $\vec{P} = (p_1, \dots, p_a, \perp, \dots, \perp)$.

Definitions of Attest and Verify

Child has

- ightharpoonup ordered public-keys $\vec{\mathsf{Q}}=(q_1,\ldots,q_{\mathsf{M}})$,
- (some) private-keys $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

To Attest a minimum age $m \le a$:

Sign a message with ECDSA using private key $p_{\rm m}$

Definitions of Attest and Verify

Child has

- ightharpoonup ordered public-keys $\vec{\mathsf{Q}}=(q_1,\ldots,q_{\mathsf{M}})$,
- (some) private-keys $\vec{\mathsf{P}} = (p_1, \dots, p_{\mathsf{a}}, \bot, \dots, \bot)$.

To Attest a minimum age $m \le a$:

Sign a message with ECDSA using private key $p_{\rm m}$

Merchant gets

- ightharpoonup ordered public-keys $ec{\mathsf{Q}} = (q_1, \dots, q_\mathsf{M})$
- ightharpoonup Signature σ

Definitions of Attest and Verify

Child has

- ightharpoonup ordered public-keys $\vec{\mathsf{Q}}=(q_1,\ldots,q_{\mathsf{M}})$,
- (some) private-keys $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

To Attest a minimum age $m \le a$:

Sign a message with ECDSA using private key $p_{\rm m}$

Merchant gets

- ightharpoonup ordered public-keys $\vec{\mathsf{Q}} = (q_1, \dots, q_{\mathsf{M}})$
- ightharpoonup Signature σ

To Verify a minimum age m:

Verify the ECDSA-Signature σ with public key $q_{\rm m}$.

Definitions of Derive and Compare

Child has
$$\vec{\mathsf{Q}} = (q_1, \dots, q_{\mathsf{M}})$$
 and $\vec{\mathsf{P}} = (p_1, \dots, p_{\mathsf{a}}, \bot, \dots, \bot)$.

Definitions of Derive and Compare

Child has $\vec{\mathsf{Q}} = (q_1, \dots, q_{\mathsf{M}})$ and $\vec{\mathsf{P}} = (p_1, \dots, p_{\mathsf{a}}, \bot, \dots, \bot)$.

To Derive new \vec{Q}' and \vec{P}' : Choose random $\beta \in \mathbb{Z}_g$ and calculate

$$ec{\mathsf{Q}}' := ig(eta * q_1, \dots, eta * q_{\mathsf{M}}ig), \ ec{\mathsf{P}}' := ig(eta p_1, \dots, eta p_{\mathsf{a}}, \bot, \dots, \botig)$$

Note: $(\beta p_i) * G = \beta * (p_i * G) = \beta * q_i$

 $\beta * q_i$ is scalar multiplication on the elliptic curve.

Definitions of Derive and Compare

Child has $\vec{\mathsf{Q}} = (q_1, \dots, q_{\mathsf{M}})$ and $\vec{\mathsf{P}} = (p_1, \dots, p_{\mathsf{a}}, \perp, \dots, \perp)$.

To Derive new \vec{Q}' and \vec{P}' : Choose random $\beta \in \mathbb{Z}_g$ and calculate

$$\vec{\mathsf{Q}}' := \big(\beta * q_1, \dots, \beta * q_{\mathsf{M}}\big),\,$$

$$\vec{\mathsf{P}}' := (\beta p_1, \ldots, \beta p_\mathsf{a}, \bot, \ldots, \bot)$$

Note: $(\beta p_i) * G = \beta * (p_i * G) = \beta * q_i$

 $\beta * q_i$ is scalar multiplication on the elliptic curve.

Exchange gets $\vec{Q} = (q_1, \dots, q_M), \vec{Q}' = (q'_1, \dots, q'_M)$ and β

To Compare, calculate: $(\beta * a_1, \ldots, \beta * a_M) \stackrel{?}{=} (a'_1, \ldots, a'_M)$

Functions (Commit, Attest, Verify, Derive, Compare) as defined in the instantiation with ECDSA

- meet the basic requirements,
- also meet all security requirements.
 Proofs by security reduction, details are in the paper.

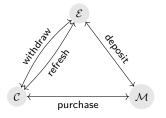
GNU Taler

https://www.taler.net

- Protocol suite for online payment services
- ► Based on Chaum's blind signatures
- Allows for change and refund (F. Dold)
- Privacy preserving: anonymous and unlinkable payments

GNU Taler

https://www.taler.net



- Protocol suite for online payment services
- ▶ Based on Chaum's blind signatures
- Allows for change and refund (F. Dold)
- Privacy preserving: anonymous and unlinkable payments
- ▶ Coins are public-/private key-pairs (C_p, c_s) .
- ightharpoonup Exchange blindly signs FDH(C_p) with denomination key d_p
- Verification:

$$1 \stackrel{?}{=} SigCheck(FDH(C_p), D_p, \sigma_p)$$

 $(D_p = \text{public key of denomination and } \sigma_p = \text{signature})$

Integration with GNU Taler

Binding age restriction to coins

To bind an age commitment Q to a coin C_p , instead of signing $FDH(C_p)$, \mathcal{E} now blindly signs

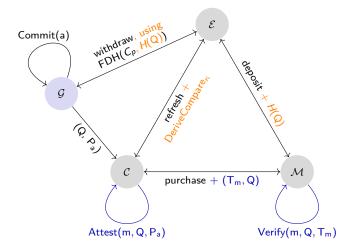
$$FDH(C_p, H(Q))$$

Verfication of a coin now requires H(Q), too:

$$1 \stackrel{?}{=} SigCheck(FDH(C_p, H(Q)), D_p, \sigma_p)$$

Integration with GNU Taler

Integrated schemes



Instantiation with Edx25519

Paper also formally defines another signature scheme: Edx25519.

- Scheme already in use in GNUnet,
- based on EdDSA (Bernstein et al.),
- generates compatible signatures and
- allows for key derivation from both, private and public keys, independently.

Current implementation of age restriction in GNU Taler uses Edx25519.

Discussion

- Our solution can in principle be used with any token-based payment scheme
- GNU Taler best aligned with our design goals (security, privacy and efficiency)
- Subsidiarity requires bank accounts being owned by adults
 - Scheme can be adapted to case where minors have bank accounts
 - Assumption: banks provide minimum age information during bank transactions.
 - Child and Exchange execute a variant of the cut&choose protocol.
- Our scheme offers an alternative to identity management systems (IMS)

Related Work

- Current privacy-perserving systems all based on attribute-based credentials (Koning et al., Schanzenbach et al., Camenisch et al., Au et al.)
- Attribute-based approach lacks support:
 - Complex for consumers and retailers
 - Requires trusted third authority

- Other approaches tie age-restriction to ability to pay ("debit cards for kids")
 - Advantage: mandatory to payment process
 - Not privacy friendly

Conclusion

Age restriction is a technical, ethical and legal challenge. Existing solutions are

- without strong protection of privacy or
- based on identity management systems (IMS)

Our scheme offers a solution that is

- based on subsidiarity
- privacy preserving
- efficient
- an alternative to IMS