
THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique

« The GNU Taler System »

« Practical and Provably Secure Electronic Payments »

Thèse présentée et soutenue à « Rennes », le « 25.02.2019 »
Unité de recherche : Inria
Thèse N° : 195897

Par

« Florian DOLD »

Rapporteurs avant soutenance :

Philip ROGAWAY Professeur à l’University of California, Davis
Sarah MEIKLEJOHN Professeure à l’University College London

Composition du Jury :

Président : Alan SCHMITT
Examinateurs : Philip ROGAWAY Professeur à l’University of California, Davis

Sarah MEIKLEJOHN Professeure à l’University College London

Chercheur à l’Inria Rennes

Alex PENTLAND

Professeur à Massachusetts Institute of Technology

Dir. de thèse : Christian GROTHOFF

Professeur à Bern University of Applied Sciences

Co-dir. de thèse : Jean-Louis LANET Directeur de recherche, Inria

Titre : Le système GNU Taler : Paiements électroniques pratiques et sécurisés.

Mots clés : Monnaie électronique, Cryptographie, Sécurité, Systèmes distribués, Applications pratiques

Résumé :

Les nouveaux protocoles de réseautage et
cryptographiques peuvent considérablement
améliorer les systèmes de paiement
électroniques en ligne. Le présent mémoire
porte sur la conception, la mise en œuvre et
l’analyse sécuritaire du GNU Taler, un système
de paiement respectueux de la vie privée conçu
pour être pratique pour l’utilisation en ligne
comme méthode de (micro-)paiement, et en
même temps socialement et moralement
responsable.

La base technique du GNU Taler peut être dû à
l’e cash de David Chaum. Notre travail va au-
delà de l’e-cash de Chaum avec un
changement efficace, et la nouvelle notion de
transparence des revenus garantissant que les
marchands ne peuvent recevoir de manière
fiable un paiement d’un payeur non fiable que
lorsque leurs revenus du paiement est visible
aux autorités fiscales.

La transparence des revenus est obtenue grâce
à l’introduction d’un protocole d’actualisation
donnant lieu à un changement anonyme pour
un jeton partiellement dépensé sans avoir
besoin de l’introduction d’une évasion fiscale
échappatoire. De plus, nous démontrons la
sécurité prouvable de la transparence anonyme
de nos revenus e-cash, qui concerne en plus
l’anonymat habituel et les propriétés
infalsifiables de l’e-cash, ainsi que la
conservation formelle des fonds et la
transparence des revenus.

Notre mise en œuvre du GNU Taler est utilisable
par des utilisateurs non experts et s’intègre à
l’architecture du web moderne. Notre plateforme
de paiement aborde une série de questions
pratiques telles que la prodigue des conseils aux
clients, le mode de remboursement, l’intégration
avec les banques et les chèques “know-your-
customer (KYC)”, ainsi que les exigences de
sécurité et de fiabilité de la plateforme web. Sur
une seule machine, nous réalisons des taux
d’opérations qui rivalisent avec ceux des
processeurs de cartes de crédit
commerciaux globaux.

Pendant que les crypto-monnaies basées sur la
preuve de travail à l’instar de Bitcoin doivent
encore être mises à l’échelle pour servir de
substituant aux systèmes de paiement établis,
d’autres systèmes plus efficaces basés sur les
blockchains avec des algorithmes de consensus
plus classiques pourraient avoir des applications
prometteurs dans le secteur financier. Nous
faisons dans la conception, la mise en œuvre et
l’analyse de la Byzantine Set Union Consensus,
un protocole de Byzantine consensus qui
s’accorde sur un (Super-)ensemble d’éléments à
la fois, au lieu d’accepter en séquence les
éléments individuels sur un ensemble. Byzantine
Set consensus peut être utilisé comme
composante de base pour des chaînes de blocs
de permissions, où (à l’instar du style Nakamoto
consensus) des blocs entiers d’opérations sont
convenus à la fois d’augmenter le taux
d’opération.

Title: The GNU Taler System: Practical and Provably Secure Electronic Payments

Keywords: Electronic Cash, Cryptography, Security, Distributed Systems, Practical Applications

Abstract:

We describe the design and implementation of
GNU Taler, an electronic payment system based
on an extension of Chaumian online e-cash with
efficient change. In addition to anonymity for
customers, it provides the novel notion of
income transparency, which guarantees that
merchants can reliably receive a payment from
an untrusted payer only when their income from
the payment is visible to tax authorities.

Income transparency is achieved by the
introduction of a refresh protocol, which gives
anonymous change for a partially spent coin
without introducing a tax evasion loophole. In
addition to income transparency, the refresh
protocol can be used to implement Camenisch-
style atomic swaps, and to preserve anonymity
in the presence of protocol aborts and crash
faults with data loss by participants.

Furthermore, we show the provable security of
our income-transparent anonymous e-cash,
which, in addition to the usual anonymity and
unforgeability properties of e-cash, also formally
models conservation of funds and income
transparency.

Our implementation of GNU Taler is usable by
non-expert users and integrates with the
modern Web architecture. Our payment
platform addresses a range of practical issues,
such as tipping customers, providing refunds,
integrating with banks and know-your-customer
(KYC) checks, as well as Web platform security
and reliability requirements.

On a single machine, we achieve transaction
rates that rival those of global, commercial credit
card processors.

We increase the robustness of the exchange—the
component that keeps bank money in escrow in
exchange for e-cash—by adding an auditor
component, which verifies the correct operation of
the system and allows to detect a compromise or
misbehavior of the exchange early.

Just like bank accounts have reason to exist
besides bank notes, e-cash only serves as part of
a whole payment system stack. Distributed
ledgers have recently gained immense popularity
as potential replacement for parts of the traditional
financial industry. While cryptocurrencies based
on proof-of-work such as Bitcoin have yet to scale
to be useful as a replacement for established
payment systems,
other more efficient systems based on
blockchains with more classical consensus
algorithms might still have promising applications
in the financial industry.

We design, implement and analyze the
performance of Byzantine Set Union Consensus
(BSC), a Byzantine consensus protocol that
agrees on a (super-)set of elements at once,
instead of sequentially agreeing on the individual
elements of a set. While BSC is interesting in
itself, it can also be used as a building block for
permissioned blockchains, where—just like in
Nakamoto-style consensus—whole blocks of
transactions are agreed upon at once, increasing
the transaction rate.

Acknowledgements

I would like to thank Moritz Bartl for helping with the funding for this thesis.
Bruno Haible provided generous support for the GNU Taler team to visit meetings
of the W3C’s Web Payment Working Group. I also thank Ashoka, the Tor project
and the Donaukurier for their support.

This work benefits from the financial support of the Brittany Region (ARED
9174) and the Renewable Freedom Foundation (RFF).

I want to thank Inria and my team leader Axel Legay for hosting me during
the work on my thesis, and Jean-Louis Lanet for agreeing to co-advise my thesis.
Special thanks goes to Thomas Given-Wilson, Fabrizio Biondi, Laurent Morin
and Nisrine Jafri for their support and company.

I also thank the Bern University of Applied Sciences for providing the hardware
that was using during experiments.

Thanks to Marcello Stanisci for his work as an engineer on the GNU Taler
project.

Chapter 5 is based on work published in the EURASIP Journal on Wireless
Communications and Networking in collaboration with Christian Grothoff. Parts
of Chapter 4 have been published in collaboration with Jeff Burdges, Christian
Grothoff and Marcello Stanisci at SPACE 2016.

Thanks to Cristina Onete and Jeff Burdges for their collaboration on the prov-
able security of GNU Taler.

I am grateful to the GNU project, in particular Richard Stallman, for their
support of this project. I also thank all GNUnet developers and GNU Guix
developers, especially Hartmut Goebel, Nils Gillmann, Gabor Toth, Ludovic
Courtès and Andreas Enge.

Thanks to the Taler Systems business team, in particular Leon Schumacher and
Michael Widmer, for their continuous faith in the project.

I thank my advisor Christian Grothoff for his advice and friendship.
Last but not least I’d like to thank my parents, my oldest friends Tom and Ben

and my fiancée Vaish for their relentless support even during the most difficult
times.

v

Contents

1. Introduction 1
1.1. Design Goals for GNU Taler . 2

1.2. Features of Value-based Payment Systems 4

1.2.1. Offline vs Online Payments 4

1.2.2. Change and Divisibility . 5

1.2.3. Anonymity Control . 6

1.2.4. User Suspension . 6

1.2.5. Transferability . 6

1.2.6. Atomic Swaps . 7

1.2.7. Refunds . 7

1.3. User Experience and Performance 7

1.4. The Technical Foundation: Anonymous E-Cash 8

1.5. Distributed Ledgers . 13

1.5.1. Consensus in Decentralized Blockchains 13

1.5.2. Permissioned Blockchains . 14

1.5.3. Blockchains and GNU Taler 14

1.6. Key Contributions . 15

1.7. Roadmap . 16

2. GNU Taler, an Income-Transparent Anonymous E-Cash System 17
2.1. Design of GNU Taler . 17

2.1.1. Entities and Trust Model . 17

2.1.2. System Assumptions . 18

2.1.3. Reserves . 19

2.1.4. Coins and Denominations . 20

2.1.5. Partial Spending and Unlinkable Change 21

2.1.6. Refreshing and Taxability . 21

2.1.7. Transactions vs. Sharing . 22

2.1.8. Aggregation . 22

2.1.9. Refunds . 23

2.1.10. Fees . 23

2.1.11. The Withdraw Loophole and Tipping 23

2.2. Auditing . 24

2.2.1. Exchange Compromise Modes 25

2.2.2. Cryptographic Proof . 28

2.2.3. Perfect Crime Scenarios . 28

vii

Contents

2.3. Related Work . 29

2.3.1. Anonymous E-Cash . 29

2.3.2. Blockchains . 33

2.3.3. Approaches to Micropayments 35

2.3.4. Walled Garden Payment Systems 37

2.3.5. Web Integration . 37

3. Security of Income-Transparent Anonymous E-Cash 41
3.1. Introduction to Provable Security . 41

3.1.1. Algorithms, Oracles and Games 42

3.1.2. Assumptions, Reductions and Game Hopping 45

3.1.3. Notation . 46

3.2. Model and Syntax for Taler . 46

3.2.1. Algorithms . 48

3.2.2. Oracles . 51

3.3. Games . 54

3.3.1. Anonymity . 54

3.3.2. Conservation . 55

3.3.3. Unforgeability . 56

3.3.4. Income Transparency . 56

3.4. Security Definitions . 57

3.5. Instantiation . 58

3.5.1. Generic Instantiation . 58

3.5.2. Concrete Instantiation . 64

3.6. Proofs . 64

3.6.1. Anonymity . 64

3.6.2. Conservation . 66

3.6.3. Unforgeability . 67

3.6.4. Income Transparency . 67

3.7. Discussion . 69

3.7.1. Limitations . 69

3.7.2. Other Properties . 70

4. Implementation of GNU Taler 73
4.1. Overview . 75

4.1.1. Taler APIs . 76

4.1.2. Cryptographic Algorithms 76

4.1.3. Entities and Public Key Infrastructure 77

4.1.4. Payments . 80

4.1.5. Resource-based Web Payments 84

4.1.6. Session-bound Payments and Sharing 86

4.1.7. Embedded Content . 87

4.1.8. Contract Terms . 88

4.1.9. Refunds . 89

viii

Contents

4.1.10. Tipping . 89

4.2. Bank Integration . 90

4.2.1. Wire Method Identifiers . 90

4.2.2. Demo Bank . 91

4.2.3. EBICS and SEPA . 92

4.2.4. Blockchain Integration . 92

4.3. Exchange . 92

4.4. Auditor . 94

4.5. Merchant Backend . 95

4.5.1. Processing payments . 96

4.5.2. Back Office APIs . 97

4.5.3. Example Merchant Frontends 97

4.6. Wallet . 99

4.6.1. Optimizations . 100

4.6.2. Coin Selection . 100

4.6.3. Wallet Detection . 100

4.6.4. Backup and Synchronization 101

4.6.5. Wallet Liquidation . 101

4.6.6. Wallet Signaling . 102

4.7. Cryptographic Protocols . 103

4.7.1. Preliminaries . 103

4.7.2. Withdrawing . 104

4.7.3. Payment transactions . 106

4.7.4. Refreshing and Linking . 107

4.7.5. Refunds . 114

4.8. Experimental results . 116

4.8.1. Hardware Setup . 117

4.8.2. Coins Per Transaction . 117

4.8.3. Transaction Rate and Scalability 120

4.8.4. Latency . 121

4.9. Current Limitations and Future Improvements 122

5. Byzantine Set-Union Consensus 125
5.1. Introduction . 125

5.2. Background . 126

5.2.1. The FLP Impossibility Result 127

5.2.2. Byzantine Consensus in the Partially Synchronous Model . 128

5.2.3. Gradecast . 129

5.2.4. ByzConsensus . 130

5.2.5. Set Reconciliation . 130

5.3. Our Approach . 133

5.3.1. Definition . 133

5.3.2. Byzantine Set-Union Consensus (BSC) Protocol 134

ix

Contents

5.4. Implementation . 139

5.4.1. The GNUnet Framework . 139

5.4.2. Set Reconciliation . 139

5.4.3. Set-Union Consensus . 140

5.4.4. Evaluating Malicious Behavior 141

5.5. Experimental Results . 141

5.5.1. Bounded Set Reconciliation 142

5.5.2. Byzantine Set Consensus . 146

5.6. Opportunities for Further Improving BSC 149

5.6.1. Extension to Partial Synchrony 149

5.6.2. Persistent Data Structures . 150

5.6.3. Fast Dissemination . 150

5.7. Application to SMC . 150

5.7.1. Bulletin Board for Electronic Voting 151

5.7.2. Distributed Threshold Key Generation and Cooperative
Decryption . 152

5.7.3. Electronic Voting with Homomorphic Encryption 153

5.7.4. Other Applications of BSC 154

5.8. Conclusions . 154

6. Future Work 155

7. Conclusion 157
7.1. Cryptocurrencies vs. Central-Bank-Issued Currencies 157

7.2. Electronic Payments . 158

Bibliography 161

A. Résumé en Français 179

B. dold-draft-payto 185

C. Coin Spending Simulation 195

x

List of Figures

1.1. The user is prompted to install the wallet. 8

1.2. The wallet popup shows an empty balance. 8

1.3. The bank asks for login details. 9

1.4. Account page of the demo bank. 9

1.5. Exchange selection dialog in the wallet. 9

1.6. PIN/TAN dialog of the demo bank. 10

1.7. After a successful withdrawal, the balance is shown in the wallet. . 10

1.8. Landing page of a store that sells essays. 11

1.9. Payment prompt for an essay. 11

1.10. Essay successfully purchased by the user. 12

2.1. High-level overview of GNU Taler components. 18

4.1. Components of GNU Taler in the context of a banking system. . . 75

4.2. Entities/PKI in Taler . 77

4.3. Example response for /keys . 78

4.4. A denomination’s lifetime. 79

4.5. The contract header that is signed by the merchant. 81

4.6. The deposit permission signed by the customer’s wallet. 81

4.7. Architecture of the exchange reference implementation 93

4.8. Data flow for updating the exchange’s keys. 94

4.9. Architecture of the merchant reference implementation 96

4.10. Code snippet for merchant frontend 98

4.11. Architecture of the wallet reference implementation 99

4.12. Withdraw protocol diagram. 105

4.13. Spend protocol diagram. 108

4.14. Deposit protocol diagram. 109

4.15. RefreshDerive algorithm . 110

4.16. Refresh Protocol (Commit Phase) . 111

4.17. Refresh Protocol (Reveal Phase) . 112

4.18. Linking protocol . 113

4.19. Refund protocol . 115

4.20. Coin throughput. 121

4.21. Comparison of components’ CPU usage for the benchmark. 122

4.22. Effect of artificial network delay on exchange’s latency. 123

5.1. CPU time for the SET service in relation to set size. 142

5.2. CADET traffic for the SET service in relation to set size. 143

xi

List of Figures

5.3. CPU time for the SET service in relation to set difference. 143

5.4. CADET traffic for the set service in relation to set difference. . . . 144

5.5. CADET traffic for the SET service at boundary for full transmission.145

5.6. CADET traffic per peer, only correct peers. 146

5.7. CPU usage of BSC, only correct peers. 147

5.8. Runtime of BSC, only correct peers. 147

5.9. CADET traffic for BSC, one malicious peer. 148

5.10. Latency for BSC, one malicious peer. 148

5.11. Total number of extra elements received with one malicious peer. . 149

5.12. Different subsystems related to SMC in GNUnet. 152

7.1. Historical market price of Bitcoin. 158

xii

1. Introduction

New networking and cryptographic protocols can substantially improve elec-
tronic online payment systems. This thesis is about the design, implementation
and security analysis of GNU Taler1, a privacy-friendly payment system that is
designed to be practical for usage as an online (micro-)payment method, and at
the same time socially and ethically responsible.

Payment systems can generally be divided into two types: Register-based and
value-based [Rik17]. A register-based system associates value with identities (e.g.,
bank account balances with customers), while a value-based system associates
value with typically anonymous, digital or physical tokens (such as cash or
prepaid credit cards). In practice, these two types of systems are combined, as
different layers have different (and often conflicting) requirements: the payment
system used to pay for a cappuccino in a coffee shop is most likely not suitable to
buy real estate. Value-based payment systems typically provide more anonymity
and convenience but also more risk to consumers (as they are responsible to secure
the values they hold), while register-based systems shift risks to the payment
service provider who has to authenticate consumers and ensure the integrity of
the register.

This thesis covers both categories of payment systems:

• We explain GNU Taler, a design and implementation of a value-based
payment system, discussing in-depth how to create a practical, privacy-
preserving and secure (micro-)payment protocol that integrates nicely with
the modern web. Our value-based payment protocol can in principle operate
on top of any existing register-based system.

• For register-based payment systems, we present a new Byzantine consensus
protocol. Consensus protocols are a key component of virtually all robust,
distributed, register-based systems, as they facilitate agreement on a trans-
action leger. Our Byzantine set union consensus (BSC) protocol can be used
to achieve consensus in a decentralized and robust manner that tolerates a
fraction of actively malicious participants. Our BSC protocol asymptotically
speeds up the implementation of such transaction ledgers, compared to
classic Byzantine consensus protocols.

GNU Taler is an official package of the GNU project2, and the BSC protocol

1https://taler.net/
2https://gnu.org/

1

https://taler.net/
https://gnu.org/

1. Introduction

was implemented in the CONSENSUS subsystem of the GNUnet framework.3

Our free software implementations are freely available from the GNU mirrors.

1.1. Design Goals for GNU Taler

The design of payment systems shapes economies and societies [ZSI13; Dal16].
Payment systems with high transaction costs create an economic burden. Predom-
inantly cash-based societies provide some degree of anonymity for their citizens,
but can fail to provide a sound foundation for taxation, facilitate corruption
[SB17] and thus risk creating weak governments. On the other hand, systems
with too much surveillance eliminate personal freedom.

As the Internet has no standardized payment system, especially not one that is
capable of quickly, efficiently and securely settling small transactions (so-called
micropayments), the majority of content on the web is financed by advertisements.
As a result, advertising (and by implication, collecting data on users) has been a
dominant business model on the Internet. This has not only resulted in a loss of
independence of publishers—who need to cater to the needs of advertisers—but
also in a situation where micro-targeted ads are so wide-spread, that they have
been suspected to have influenced multiple major elections [Per17]. Ads are also
a vector for malware [Pro+07]. Due to the prevalence of ad blockers, ads are also
not guaranteed to be a sustainable business model.

In the world of online payments, credit cards and a sprawling number of
smaller, proprietary payment processors are currently dominant, and market
shares vary widely between different countries [Ady16; LMS16]. The resulting
fragmentation again increases social costs: online shops can either choose to
invest in implementing many proprietary protocols, or only implement the most
popular ones, thereby reinforcing the dominance of a handful of proprietary
payment systems.

Considering these and other social implications of payment systems, we started
the development of GNU Taler with a set of high-level design goals that fit our
social agenda. They are ranked by the importance we give to them, and when
a trade-off must be made, the one that supports the more highly ranked goal is
preferred:

1. GNU Taler must be implemented as free software.

Free refers to “free as in free speech”, as opposed to “free as in free beer”.
More specifically, the four essential freedoms of free software [Sta02] must
be respected, namely users must have the freedom to (1) run the software,
(2) study and modify it, (3) redistribute copies, and (4) distribute copies of
the modified version.

For merchants this prevents vendor lock-in, as another payment provider can
take over, should the current one provide inadequate quality of service. As

3https://gnunet.org

2

https://gnunet.org

1.1. Design Goals for GNU Taler

the software of the payment provider itself is free, smaller or disadvantaged
countries or organizations can run the payment system without being
controlled by a foreign company. Customers benefit from this freedom,
as the wallet software can be made to run on a variety of platforms, and
user-hostile features such as tracking or telemetry could easily be removed
from wallet software.

This rules out the mandatory usage of specialized hardware such as smart
cards or other hardware security modules, as the software they run cannot
be modified by the user. These components can, however, be voluntarily
used by merchants, customers or payment processors to increase their
operational security.

2. GNU Taler must protect the privacy of buyers.

Privacy should be guaranteed via technical measures, as opposed to mere
policies. Especially with micropayments for online content, a disproportion-
ate amount of rather private data about buyers would be revealed, if the
payment system does not have privacy protections.

In legislations with data protection regulations (such as the recently intro-
duced GDPR in Europe [VV17]), merchants benefit from this as well, as
no data breach of customers can happen if this information is, by design,
not collected in the first place. Obviously some private data, such as the
shipping address for a physical delivery, must still be collected according to
business needs.

The security of the payment systems also benefits from this, as the model
shifts from authentication of customers to mere authorization of payments.
This approach rules out whole classes of attacks such as phishing [Gar+07]
or credit card fraud [SD10].

3. GNU Taler must enable the state to tax income and crack down on illegal
business activities.

As a payment system must still be legal to operate and use, it must comply
with these requirements. Furthermore, we consider levying of taxes as
beneficial to society.

4. GNU Taler must prevent payment fraud.

This imposes requirements on the security of the system, as well as on the
general design, as payment fraud can also happen through misleading user
interface design or the lack of cryptographic evidence for certain processes.

5. GNU Taler must only disclose the minimal amount of information nec-
essary.

The reason behind this goal is similar to (2). The privacy of buyers is given
priority, but other parties such as merchants still benefit from it, for example,
by keeping details about the merchant’s financials hidden from competitors.

3

1. Introduction

6. GNU Taler must be usable.

Specifically it must be usable for non-expert customers. Usability also
applies to the integration with merchants, and informs choices about the
architecture, such as encapsulating procedures that require cryptographic
operations into an isolated component with a simple API.

7. GNU Taler must be efficient.

Approaches such as proof-of-work are ruled out by this requirement. Effi-
ciency is necessary for GNU Taler to be used for micropayments.

8. GNU Taler must avoid single points of failure.

While the design we present later is rather centralized, avoiding single
points of failure is still a goal. This manifests in architectural choices such
as the isolation of certain components, and auditing procedures.

9. GNU Taler must foster competition.

It must be relatively easy for competitors to join the systems. While the
barriers for this in traditional financial systems are rather high, the technical
burden for new competitors to join must be minimized. Another design
choice that supports this is to split the whole system into smaller compo-
nents that can be operated, developed and improved upon independently,
instead of having one completely monolithic system.

1.2. Features of Value-based Payment Systems

There are many different possible features that have been proposed for value-
based (sometimes called token-based) payment systems in the past. While we
will discuss existing work on e-cash in more detail in Section 2.3.1, we will begin
by a brief summary of the possible features that value-based payment systems
could provide, and clarify which high-level features we chose to adopt for GNU
Taler.

1.2.1. Offline vs Online Payments

Anonymous digital cash schemes since Chaum [Cha83] were frequently designed
to allow the merchant to be offline during the transaction, by providing a means
to deanonymize customers involved in double-spending, typically by encoding
the customer’s identity into their coins in a way that makes it only possible to
decode the identity with two spending transcripts.

This approach is problematic in practice, as customers that restore a wallet
from backup might accidentally double-spend and would then face punishment
for it. Enforcing punishment for double-spenders can be rather difficult as well,
since the double-spender might have signed up with a false identity or might

4

1.2. Features of Value-based Payment Systems

already have fled to another country, and a large number of merchants might
already have been defrauded with the same coins.

Should the issuer of e-cash be compromised, an attacker could issue coins that
fail to identify a culprit or even blame somebody else when they are double-spent.
In an offline e-cash system, the detection of such an event is greatly delayed
compared to systems with online spending, which can immediately detect when
more coins are spent than were issued.

Thus, in GNU Taler, we decided that all coins must be immediately deposited
online during a purchase. Only either a merchant or a customer needs to be
online, since one of the two can forward messages to the payment service provider
for the other.

1.2.2. Change and Divisibility

Customers do not always have the right set of coins available to exactly cover
the amount to be paid to a merchant. With physical cash, the store would give
the customer change. For e-cash, the situation is more complex, as the customer
would have to make sure that the change has not already been spent, does not
violate their anonymity and the merchant does not have a digital “copy” of the
change tokens that the merchant can spend before the customer. Note that it
would be unwise to always withdraw the correct amount of e-cash directly before
a purchase, as it creates a temporal correlation between the non-anonymous
withdrawal event and the spending event.

Most modern e-cash schemes instead deal with exact spending by providing
divisibility of coins, where the customer can decide to only spend part of a coin.
A significant chunk of the e-cash literature has been concerned with developing
schemes that allow the individual, divided parts of a coin to be unlinkable (thus
preserving anonymity) and to optimize the storage costs for wallets and the
communication cost of withdrawals.

The current state of the art for divisible e-cash [PST17] achieves constant-time
withdrawal and wallet storage cost for coins that can be split into an arbitrary
but fixed (as a system parameter) number of pieces. A continuous “chunk” of
the smallest pieces of a coin can be spent with constant-time communication
complexity.

While this sounds attractive in theory, these results are mostly of academic
interest, as the storage and/or computational complexity for the party that is
checking for double spending of coins remains enormous: each smallest piece of
every coin needs to be recorded and checked individually. When paying $10.00
with a coin that supports division into cent pieces, 1000 individual coin pieces
must be checked for double spending and recorded, possibliy in compressed
form to trade storage costs for more computation.

For GNU Taler, we use a rather simple and practical approach, made possible
by requiring participants to be online during spending: coins can be fractionally
spent without having divisible, unlinkable parts. The remaining value on a coin

5

1. Introduction

that was spend (and thus revealed) can be used to withdraw fresh, unlinkable
coins. The protocol to obtain change takes additional measures to ensure that it
cannot be misused to facilitate untaxed transactions. Giving change for e-cash
has been proposed before [BGK95; TW01], but to the best of our knowledge, the
idea of income-transparent change is novel.

1.2.3. Anonymity Control

Some proposed e-cash protocols contain mechanisms to allow selective deanonymiza-
tion of transactions for scenarios involving crime [ST99], specifically blackmailing
and tax evasion.

Unfortunately this does not really work as a countermeasure against blackmail-
ing in practice. As noted in the paper that initially described such a mechanism
for blind signatures [SPC95], a blackmailer could simply request to be paid di-
rectly with plain, blindly signed coins, and thereby completely circumvent the
threat of revocable anonymity.

GNU Taler provides income transparency as a measure against tax evasion.
We furthermore describe a different approach in a blackmailing scenario in
Section 2.2.3, which we believe is more practical in dissuading blackmailers in
practice.

1.2.4. User Suspension

Anonymous user suspension [ASM11] has been proposed as another mechanism
to punish users suspected in illicit activities by preventing then from making
further transactions until the suspension is lifted. Anonymous suspension is
based on transactions; the user involved in a particular transaction is suspended,
but their identity is not revealed.

While the approach is interesting, it is not practical, as it requires a single
permanent key pair to be associated with each user. If a user claims they lost
their private key and requests a new key pair, their suspension would be effec-
tively lifted. Suspending users from a dominant payment system is also socially
problematic, as excluding them from most commercial activities would likely be
a disproportionate and cruel punishment.

1.2.5. Transferability

Transferability is a feature of certain e-cash systems that allows transfer of e-cash
between two parties without breaking anonymity properties [FPV09]. Contem-
porary systems that offer this type of disintermediation attract criminal activ-
ity [Ric16].

GNU Taler specifically provides roughly the opposite of this property, namely
income transparency, to guarantee that e-cash is not easily abused for tax evasion.
Mutually trusting users, however, can share ownership of a coin.

6

1.3. User Experience and Performance

1.2.6. Atomic Swaps

Atomic swaps (often called “fair exchange” in the e-cash literature) are a feature
of some e-cash systems that allows e-cash to be exchanged against some service
or (digital) product, with a trusted third party ensuring that the payee receives
the payment if and only if they correctly provided the merchandise.

GNU Taler supports Camenisch-style atomic swaps [CLM07], as explained in
Section 3.7.2.

1.2.7. Refunds

GNU Taler allows merchants to provide refunds to customers during a limited
time after the coins for the payment were deposited. The merchant signs a
statement that effectively allows the customer to reclaim a previously spent coin.
Customers can request anonymous change for the reclaimed amount.

While this is a rather simple extension, we are not aware of any other e-cash
system that supports refunds.

1.3. User Experience and Performance

For adoption of a payment system, the user experience is critical. Thus, before
diving into how GNU Taler is implemented, we begin by showing how GNU Taler
looks from the perspective of an end user in the context of web payments, in a
desktop browser (Chromium).

To use GNU Taler, the user must first install a browser extension (Figure 1.1).
Once installed, the user can open a pop-up window by clicking on the Taler logo,
to see the initially empty wallet balance (Figure 1.2).

The customer logs into their online bank—a simple demo bank in our case–
to withdraw digital cash from their bank account into their wallet (Figures 1.3
and 1.4). Our demo uses Kudos as an imaginary currency. Before the user is
asked to confirm, they are given the option to view details about or change the
default exchange provider, the GNU Taler payment service provider (Figure 1.5).

With a real bank, a second factor (such as a mobile TAN) would now be
requested from the user. Our demo instead asks the user to solve a simple
CAPTCHA (Figure 1.6). The amount withdrawn—minus withdrawal fees—is
now available as e-cash in the wallet (Figure 1.7).

The customer can now go to an online shop to spend their digital cash. We’ve
implemented a shop that sells single chapters from Richard Stallman’s essay
collection “Free Software, Free Society” [Sta02] (Figure 1.8). The user selects an
essay, and is then immediately presented with a confirmation page rendered by
the wallet (Figure 1.9). After paying, the user can immediately read the article
(Figure 1.10).

Our benchmarks, discussed in Chapter 4 show that a single machine can
support around 1000 payments per second, and our implementation is easily

7

1. Introduction

Figure 1.1.: The user is prompted to install the wallet.

Figure 1.2.: The wallet popup shows an empty balance.

amenable to further scaling.
The extra computation required in the customer’s wallet is in the order of a few

hundred milliseconds even on typical mobile or tablet devices, and thus barely
noticeable.

1.4. The Technical Foundation: Anonymous E-Cash

GNU Taler is based on anonymous e-cash. Anonymous e-cash was invented
by David Chaum in the 1980s [Cha83]. The idea behind Chaumian e-cash is
both simple and ingenious, and can be best illustrated with the carbon paper4

analogy: A long, random serial number is generated, for example, by throwing
a die a few dozen times, and written on a piece of paper. A carbon paper is
placed on top, with the pigmented side facing down, and both pieces of paper

4Carbon paper is a paper coated with pigment (originally carbon) on one side. When put
face-down between two sheets of normal paper, the pressure from writing with a pen or
typewriter on the first layer causes pigment to be deposited on the paper beneath, allowing a
copy to be made.

8

1.4. The Technical Foundation: Anonymous E-Cash

Figure 1.3.: The bank asks for login details.

Figure 1.4.: Account page of the demo bank.

Figure 1.5.: Exchange selection dialog in the wallet.

9

1. Introduction

Figure 1.6.: PIN/TAN dialog of the demo bank.

Figure 1.7.: After a successful withdrawal, the balance is shown in the wallet.

10

1.4. The Technical Foundation: Anonymous E-Cash

Figure 1.8.: Landing page of a store that sells essays.

Figure 1.9.: Payment prompt for an essay. Rendered by the wallet.

11

1. Introduction

Figure 1.10.: Essay successfully purchased by the user.

are put into an opaque envelope. The envelope is now sealed and brought to a
bank. The bank draws a signature on the outside of the envelope, which presses
through to the piece of paper with the serial number. In exchange for the signed
envelope, the bank deducts a fixed amount (say five dollars) from the customer’s
bank account. Under the (admittedly rather strong) assumption that the bank’s
signature cannot be forged, the signed piece of paper with the serial number is
now an untraceable bank note worth five dollars, as the bank signed it without
seeing the serial number inside the envelope! Since the signed paper can be easily
copied, merchants that accept it as payment must check the bank’s signature, call
the bank and transmit the serial number. The bank keeps a register of all serial
numbers that have been used as payment before. If the serial number is already
in the bank’s register, the bank informs the merchant about the attempted double
spending, and the merchant then rejects the payment.

The digital analogue of this process is called a blind signature, where the signer
knows that it gave a digital signature, but does not know the contents of the
message that it signed.

In this document, we use coin to refer to a token of value in an e-cash system.
Note that the analogy of a coin does not always hold up, as certain types of
operations possible in some e-cash schemes, such as partial spending, divisibility,
etc., do not transfer to physical coins.

We have the following security and correctness properties for GNU Taler
(formally defined in Chapter 3):

• Anonymity guarantees that transactions cannot be correlated with with-
drawals or other transactions made by the same customer.

• Unforgeability guarantees that users cannot spend more e-cash than they
withdrew.

• Conservation guarantees that customers do not lose money due to inter-

12

1.5. Distributed Ledgers

rupted protocols or malicious merchants; they can always obtain anonymous
change or a proof of successful spending.

• Income transparency guarantees that mutually distrusting parties are unable
to reliably transfer e-cash between them without the income of participants
being visible to tax auditors.

While anonymity and unforgeability are common properties of e-cash, we are
not aware of any other treatments of income transparency and conservation.

1.5. Distributed Ledgers

The main purpose of blockchains, including those implementing cryptocurrencies,
is to maintain a distributed ledger that holds state, together with rules on how
this state can be updated. The name “blockchain” derives from its structure:
A list of updates (“transactions”) is bundled into a so-called block, and each
block contains a hash of the previous block. Cryptocurrencies use blockchains to
remember the amount of currency controlled by a particular account (≡ private
key). Thus, while cryptocurrencies use the term “coin” (creating potentially
misleading associations with cash), they actually realize a decentralized register-
based payment system with the blockchain storing the register5 using private
keys to authenticate account owners.

Cryptocurrencies based on blockchains gained immense popularity over the
last years on the promise of a universal, global and decentralized payment sys-
tem that is independent from country boundaries and legislations. In practice,
however, current incarnations of these technologies can only handle a handful of
transactions, have high transaction fees and are surprisingly centralized [BS15;
Böh+15]. Bitcoin, the most popular cryptocurrency, can handle around 3-7 trans-
actions per second, globally. While there are various plans to make blockchains
more scalable [GM16], there is no concrete evidence that any of them will work
without further sacrificing decentralization.

1.5.1. Consensus in Decentralized Blockchains

In decentralized blockchains, multiple parties must agree on the current state of
the ledger by agreeing on a “head” of the chain of blocks. How to advance this
head to include new transactions is thus a critical design choice.

5Anonymous cryotocurrencies such as ZeroCash [Ben+14] have special accounts (called shielded
addresses) that can “hide” their balance, and require the owner to prove in zero-knowledge
that their balance is sufficient for a transaction. As such, anonymous transactions in these
systems (which are typically only a small subset of all transactions) are closer to value-
based systems. However, currently only a small percentage (≈ 5%) of all funds in ZCash,
the most widely used anonymous cryptocurrency, belong to shielded addresses (https:
//explorer.zcha.in/statistics/value).

13

https://explorer.zcha.in/statistics/value
https://explorer.zcha.in/statistics/value

1. Introduction

With proof-of-work blockchains such as Bitcoin, each block contains the solution
to a computationally expensive puzzle that is derived from the contents of the
block. The block that, together with its ancestors, contains the most expensive
accumulated work (and respects the rules of the blockchain with regards to what
transactions are valid) is considered the head of the chain. All participants of
the network can “mine” a block by collecting transactions and trying to solve
the corresponding computational puzzle. Successful miners are rewarded with
a mining reward and transaction fees. This type of agreement on a ledger is
also called “Nakamoto Consensus”, after the inventor of Bitcoin. The result of
the agreement is not final: if a branch originating from an earlier block of the
chain accumulates more work, it becomes the canonical head. While this type of
consensus has some attractive properties—there is no fixed set of members, and
remains secure as long as an adversary has less than 1/4 of computational power
[ES18]—it consumes a huge amount of energy to provide for computation of the
proof-of-work puzzles.

After Bitcoin popularized the concept of blockchains, alternative consensus
mechanisms were proposed to replace or augment proof-of-work. In proof-of-
stake blockchains, a single node is selected as a validator. The validator must
provide a safety deposit (the “stake”), and if any misbehavior is detected, the
safety deposit is destroyed. If the validator behaves correctly, they earn transaction
fees and get back their safety deposit. Currently proof-of-stake protocols are still
in development, and often require falling back to other consensus mechanisms in
certain situations.

1.5.2. Permissioned Blockchains

Permissioned blockchains have a known, relatively small set of participants, and
can rely on more traditional and cheaper consensus algorithms. When resilience
against actively malicious members is required, a so-called Byzantine consensus
protocol must be used. Byzantine consensus protocols typically agree on a single
value at once.

In Chapter 5 we introduce a Byzantine consensus algorithm that can be used to
agree directly on a (super-)set of all transaction that honest peers proposed. This
allows for implementations of permissioned blockchains where transactions are
accumulated into blocks, and the transactions within a block are agreed upon in
a way that’s asymptotically faster than agreeing on every transaction sequentially.

This protocol could be used in the future to implement an efficient and robust
implementation of the register-based layer of a payment system, with GNU Taler
e-cash as the value-based layer above it.

1.5.3. Blockchains and GNU Taler

Blockchains today fail to satisfy most of our design goals for payment systems.
While most blockchains are implemented as free software, they often manage to

14

1.6. Key Contributions

both fail to adequately protect the privacy of buyers and to enable the state to
crack down on illegal activities: With most non-permissioned blockchains, the
transaction history of all participants is publicly available, creating serious privacy
risks [Mei+13; Jaw+18]. At the same time, as accounts are simply private keys,
states have a hard time tracking down users [LI16]. Design variations that do
offer reasonable privacy generally have even more atrocious performance charac-
teristics and create additional traceability problems for law enforcement [Ben+14].
Additionally, blockchain-based cryptocurrencies suffer from usability and perfor-
mance problems.

With our BSC protocol, we focus on improving the performance of the consen-
sus protocol for permissioned blockchains. Permissioned blockchains can be given
rules that enforce Know-Your-Customer (KYC) and Anti-Money-Laundering
(AML) regulations [SWP16]. When deployed in the context of centrally-banked
fiat currencies, such a permissioned blockchain can then effectively recreate the
semantics of a classical distributed banking system. As mentioned before, GNU
Taler’s value-based protocol can be integrated with any kind of register-based
banking—including those based on blockchains—improving performance and
privacy for value-based transactions.

1.6. Key Contributions

We claim the following key contributions for this thesis:

• We design, implement and analyze an efficient Byzantine consensus protocol
on set structures that allows an optimized implementation of distributed
transaction ledgers.

• We introduce the notion of income transparency for e-cash, with an instanti-
ation in Chaum-style e-cash and proofs.

• We design the GNU Taler payment system under consideration of practical
aspects of e-cash including aborts, network failures, refunds, multi-coin
payments, faults from wallet synchronization and their effects on anonymity;
showing the necessity of a refresh operation.

• We propose a modification to our protocol that provides protection against
certain blackmailing and kidnapping scenarios.

• We design and implement the seamless, native integration of e-cash into the
web architecture, and discuss security and privacy aspects of this integration.

• We implemented the GNU Taler payment system and evaluate its perfor-
mance.

15

1. Introduction

1.7. Roadmap

Chapter 2 describes the high-level design of GNU Taler, and compares it to
payment systems found in the academic literature and real-world usage. Chapter
3 first gives a gentle introduction to provable security (which can be skipped by
readers with a background in cryptography), and then defines security properties
for income-transparent, anonymous e-cash. The cryptographic protocols for GNU
Taler are defined in detail, and proofs are given that our protocols satisfy the
security properties defined earlier. In Chapter 4, the implementation of GNU
Taler is described, and the performance and scalability is evaluated. Chapter 5

is about the design, implementation and evaluation of our Byzantine set union
consensus protocol. Chapter 6 discusses future work and missing pieces to deploy
GNU Taler in production. Chapter 7 concludes with an outlook on the potential
impact and practical relevance of this work.

16

2. GNU Taler, an Income-Transparent
Anonymous E-Cash System

This chapter gives a high-level overview of the design of GNU Taler, based
on the requirements discussed in Chapter 1. The cryptographic protocols and
security properties are described and analyzed in detail in Chapter 3. A complete
implementation with focus on of Web payments is discussed in Chapter 4.

2.1. Design of GNU Taler

GNU Taler is based on the idea of Chaumian e-cash [Cha83], with some differ-
ences and additions explained in the following sections. Other variants and ex-
tensions of anonymous e-cash and blind signatures are discussed in Section 2.3.1.

2.1.1. Entities and Trust Model

GNU Taler consists of the following entities (see 2.1):

• The exchanges serve as payment service provider for a financial transaction
between a customer and a merchant. They hold bank money in escrow in
exchange for anonymous digital coins.

• The customers keep e-cash in their electronic wallets.

• The merchants accept digital coins in exchange for digital or physical goods
and services. The digital coins can be deposited with the exchange, in
exchange for bank money.

• The banks receive wire transfer instructions from customers and exchanges.
A customer, merchant and exchange involved in one GNU Taler payment
do not need to have accounts with the same bank, as long as wire transfers
can be made between the respective banks.

• The auditors, typically run by trusted financial regulators, monitor the
behavior of exchanges to assure customers and merchants that exchanges
operate correctly.

In GNU Taler, the exchanges can be separate entities from the banks. This
fosters competition between exchanges, and allows Taler to be deployed in an
environment with legacy banks that do not support Taler directly.

17

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

Exchange

Customer Merchant

Auditor

w
ith

dr
aw

co
in

s deposit coins

spend coins

verify

Figure 2.1.: High-level overview of the different components of GNU Taler, banks
are omitted.

If a customer wants to pay a merchant, the customer needs to hold coins at an
exchange that the merchant trusts. To make the selection of trusted exchanges
simpler, merchants and customers can choose to automatically trust all exchanges
audited by a certain auditor.

The exchange is trusted to hold funds of its customers in escrow and to make
payments to merchants when digital coins are deposited. Customer and merchant
can have assurances about the exchange’s liquidity and operation though the
auditor, which would typically be run by financial regulators or other trusted
third parties.

2.1.2. System Assumptions

We assume that an anonymous, bi-directional communication channel1 is used
for all communication between the customer and the merchant, as well as for
obtaining unlinkable change for partially spent coins from the exchange and for
retrieving the exchange’s public keys used in verifying and blindly signing coins.
The withdrawal protocol, on the other hand, does not require an anonymous
channel to preserve the anonymity of electronic coins.

During withdrawal, the exchange knows the identity of the withdrawing
customer, as there are laws, or bank policies, that limit the amount of cash that
an individual customer can withdraw in a given time period [Bad15; Reu15].
GNU Taler is thus only anonymous with respect to payments. While the exchange
does know their customer (KYC), it is unable to link the known identity of the

1An anonymization layer like Tor [DMS04] can provide a practical approximation of such a
communication channel, but does not provide perfect anonymity [Joh+13].

18

2.1. Design of GNU Taler

customer that withdrew anonymous digital coins to the purchase performed later
at the merchant.

While customers can make untraceable digital cash payments, the exchange will
always learn the merchants’ identity, which is necessary to credit their accounts.
This information can also be used for taxation, and GNU Taler deliberately
exposes these events as anchors for tax audits on merchants’ income. Note that
while GNU Taler enables taxation, it does not implement any automatic taxation.

GNU Taler assumes that each participant has full control over their system2.
We assume the contact information of the exchange is known to both customer
and merchant from the start, and the customer can authenticate the merchant,
for example, by using X.509 certificates [Yee13]. A GNU Taler merchant is
expected to deliver the service or goods to the customer upon receiving payment.
The customer can seek legal relief to achieve this, as the customer receives
cryptographic evidence of the contract and the associated payment.

2.1.3. Reserves

A reserve refers to a customer’s non-anonymous funds at an exchange, identi-
fied by a reserve public key. Suppose a customer wants to convert money into
anonymized digital coins. To do that, the customer first creates a reserve pri-
vate/public key pair, and then transfers money via their bank to the exchange.
The wire transfer instruction to the bank must include the reserve public key. To
withdraw coins from a reserve, the customer authenticates themselves using the
corresponding reserve private key.

Typically, each wire transfer is made with a fresh reserve public key and thus
creates a new reserve, but making another wire transfer with the same reserve
public key simply adds funds to the existing reserve. Even after all funds have
been withdrawn from a reserve, customers should keep the reserve key pair until
all coins from the corresponding reserve have been spent, as in the event of a
denomination key revocation (see Section 2.2.1) the customer needs this key to
recover coins of revoked denominations.

The exchange automatically transfers back to the customer’s bank account any
funds that have been left in a reserve for an extended amount of time, allowing
customers that lost their reserve private key to eventually recover their funds. If
a wire transfer to the exchange does not include a valid reserve public key, the
exchange transfers the money back to the sender.

Instead of requiring the customer to manually generate reserve key pairs and
copy them onto a wire transfer form, banks can offer tight integration with the
GNU Taler wallet software. In this scenario, the bank’s website or banking app
provides a “withdraw to GNU Taler wallet” action. After selecting this action,

2Full control goes both ways: it gives the customer the freedom to run their own software, but
also means that the behavior of fraudulent customers cannot be restricted by simpler technical
means such as keeping balances on tamper-proof smart cards, and thus can lead to an overall
more complex system.

19

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

the user is asked to choose the amount to withdraw from their bank account
into the wallet. The bank then instructs the GNU Taler wallet software to create
record of the corresponding reserve; this request contains the anticipated amount,
the reserve key pair and the URL of the exchange to be used. When invoked
by the bank, the wallet asks the customer to select an exchange and to confirm
the reserve creation. The exchange chosen by the customer must support the
wire transfer method used by the bank, which will be automatically checked by
the wallet. Typically, an exchange is already selected by default, as banks can
suggest a default exchange provider to the wallet, and additionally wallets have
a pre-defined list of trusted exchange providers. Subsequently, the wallet hands
the reserve public key and the bank account information of the selected exchange
back to the bank. The bank—typically after asking for a second authentication
factor from the customer—will then trigger a wire transfer to the exchange with
the information obtained from the wallet.

When the customer’s bank does not offer tight integration with GNU Taler, the
customer can still manually instruct their wallet to create a reserve. The public
key must then be included in a bank transaction to the exchange. When the
customer’s banking app supports pre-filling wire transfer details from a URL
or a QR code, the wallet can generate such a URL or QR code that includes the
pre-filled bank account details of the exchange as well as the reserve public key.
The customer clicks on this link or scans the QR code to invoke their banking
app with pre-filled transaction details. Since there currently is no standardized
format for pre-filled wire transfer details, we are proposing the payto:// URI
format explained in Section 4.2.1, currently under review for acceptance as an
IETF Internet Standard.

2.1.4. Coins and Denominations

Unlike plain Chaumian e-cash, where a coin just contains a serial number, a coin
in Taler is a public/private key pair where the private key is only known to the
owner of the coin.

A coin derives its financial value from a blind signature on the coin’s public
key. The exchange has multiple denomination key pairs available for blind-signing
coins of different financial values. Other approaches for representing different
denominations are discussed in Section 2.3.1.

Denomination keys have an expiration date, before which any coins signed
with it must be spent or exchanged into newer coins using the refresh protocol
explained in Section 2.1.6. This allows the exchange to eventually discard records
of old transactions, thus limiting the records that the exchange must retain
and search to detect double-spending attempts. If a denomination’s private
key were to be compromised, the exchange can detect this once more coins are
redeemed than the total that was signed into existence using that denomination
key. Should such an incident occur, the exchange can allow authentic customers
to redeem their unspent coins that were signed with the compromised private

20

2.1. Design of GNU Taler

key, while refusing further deposits involving coins signed by the compromised
denomination key (see Section 2.2.1). As a result, the financial damage of losing a
private signing key is limited to at most the amount originally signed with that
key, and denomination key rotation can be used to bound that risk.

To prevent the exchange from deanonymizing users by signing each coin with
a fresh denomination key, exchanges publicly announce their denomination keys
in advance with validity periods that imply sufficiently strong anonymity sets.
These announcements are expected to be signed with an offline long-term private
master signing key of the exchange and the auditor. Customers should obtain these
announcements using an anonymous communication channel.

After a coin is issued, the customer is the only entity that knows the private key
of the coin, making them the owner of the coin. Due to the use of blind signatures,
the exchange does not learn the public key during the withdrawal process. If the
private key is shared with others, they become co-owners of the coin. Knowledge
of the private key of the coin and the signature over the coin’s public key by an
exchange’s denomination key enables spending the coin.

2.1.5. Partial Spending and Unlinkable Change

Customers are not required to have exact change ready when making a payment.
In fact, it should be encouraged to withdraw a larger amount of e-cash beforehand,
as this blurs the correlation between the non-anonymous withdrawal event and
the anonymous spending event, increasing the anonymity set.

A customer spends a coin at a merchant by cryptographically signing a deposit
permission with the coin’s private key. A deposit permission contains the hash of
the contract terms, i.e., the details of the purchase agreement between the customer
and merchant. Coins can be partially spent, and a deposit permission specifies
the fraction of the coin’s value to be paid to the merchant. As digital coins are
trivial to copy, the merchant must immediately deposit them with the exchange,
in order to get a deposit confirmation or an error that indicates double spending.

When a coin is used in a completed or attempted/aborted payment, the coin’s
public key is revealed to the merchant/exchange, and further payments with
the remaining amount would be linkable to the first spending event. To obtain
unlinkable change for a partially spent (or otherwise revealed coin), GNU Taler
introduces a refresh protocol. The refresh protocol allows the customer to obtain
new coins for the remaining amount on a coin. The old coin is marked as spent
after it has been refreshed into new coins. Using blind signatures to withdraw
the refreshed coins makes them unlinkable from the old coin.

2.1.6. Refreshing and Taxability

One goal of GNU Taler is to make merchants’ income transparent to state auditors,
so that income can be taxed appropriately. Naively implemented, however, a
simple refresh protocol could be used to evade taxes: the payee of an untaxed

21

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

transaction would generate the private keys for the coins that result from refresh-
ing a (partially spent) old coin, and send the corresponding public keys to the
payer. The payer would execute the refresh protocol, provide the payee’s coin
public keys for blind signing, and provide the signatures to the payee, who would
now have exclusive control over the coins.

To remedy this, the refresh protocol introduces a link threat: coins are refreshed
in such a way that the owner of the old coin can always obtain the private key and
exchange’s signature on the new coins resulting from refreshes, using a separate
linking protocol. This introduces a threat to merchants that try to obtain untaxed
income. Until the coins are finally deposited at the exchange, the customer can
always re-gain ownership of them and could deposit them before the merchant
gets a chance to do so. This disincentivizes the circulation of unreported income
among untrusted parties in the system.

In our implementation of the refresh and linking protocols, there is a non-
negligible success chance (1

κ , depending on system parameter κ, typically ≥ 3)
for attempts to cheat during the refresh protocol, resulting in refreshed coins
that cannot be recovered from the old coin via the linking protocol. Cheating
during refresh, however, is still not profitable, as an unsuccessful attempt results
in completely losing the amount that was intended to be refreshed.

For purposes of anti-money-laundering and taxation, a more detailed audit of
the merchant’s transactions can be desirable. A government tax authority can
request the merchant to reveal the business agreement details that match the
contract terms hash recorded with the exchange. If a merchant is not able to
provide theses values, they can be subjected to financial penalties by the state in
relation to the amount transferred by the traditional currency transfer.

2.1.7. Transactions vs. Sharing

Sharing—in contrast to a transaction—happens when mutually trusted parties
simultaneously have access to the private keys and signatures on coins. Sharing is
not considered a transaction, as subsequently both parties have equal control over
the funds. A useful application for sharing are peer-to-peer payments between
mutually trusting parties, such as families and friends.

2.1.8. Aggregation

For each payment, the merchant can specify a deadline before which the exchange
must issue a wire transfer to the merchant’s bank account. Before this deadline
occurs, multiple payments from deposited coins to the same merchant can be ag-
gregated into one bigger payment. This reduces transaction costs from underlying
banking systems, which often charge a fixed fee per transaction. To incentivize
merchants to choose a longer wire transfer deadline, the exchange can charge the
merchant a fee per aggregated wire transfer.

22

2.1. Design of GNU Taler

2.1.9. Refunds

The aggregation period also opens the opportunity for cheap refunds. If a customer
is not happy with their product, the merchant can instruct the exchange to give
the customer a refund before the wire transfer deadline has occurred. This
effectively “undoes” the deposit of the coin, and restores the available amount
left on it. The refresh protocol is then used by the customer on the coins involved
in a refund, so that payments remain unlinkable.

2.1.10. Fees

In order to subsidize the operation of the exchange and enable a sustainable
business model, the exchange can charge fees for most operations. For withdrawal,
refreshing, deposit and refunds, the fee is dependent on the denomination, as
different denominations might have different key sizes, security and storage
requirements.

Most payment systems hide fees from the customer by putting them to the
merchant. This is also possible with Taler. As different exchanges (and denomina-
tions) can charge different fees, the merchant can specify a maximum amount of
fees it is willing to cover. Fees exceeding this amount must be explicitly paid by
the customer.

Another consideration for fees is the prevention of denial-of-service attacks.
To make “useless” operations, such as repeated refreshing on coins (causing the
exchange to use relatively expensive storage), unattractive to an adversary, these
operations must charge a fee. Again, for every refresh following a payment, the
merchant can cover the costs up to a limit set by the merchant, effectively hiding
the fees from the customer.

Yet another type of fee are the wire transfer fees, which are charged by the
exchange for every wire transfer to a merchant in order to compensate for the cost
of making a transaction in the underlying bank system. The wire transfer fees
encourage merchants to choose longer aggregation periods, as the fee is charged
per transaction and independant of the amount.

Merchants can also specify the maximum wire fee they are willing to cover
for customers, along with an amortization rate for the wire fees. In case the
wire fees for a payment exceed the merchant’s chosen maximum, the customer
must additionally pay the excess fee divided by the amortization rate. The
merchant should set amortization rate to the expected number of transactions per
wire transfer aggregation window. This allows the merchant to adjust the total
expected amount that it needs to pay for wire fees.

2.1.11. The Withdraw Loophole and Tipping

The withdraw protocol can be (ab)used to illicitly transfer money, when the
receiver generates the coin’s secret key, and gives the public key to the party
executing the withdraw protocol. We call this the “withdraw loophole”. This

23

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

is only possible for one “hop”, as money can still not circulate among mutually
distrusted parties, due to the properties of the refresh protocol.

A “benevolent” use of the withdraw loophole is tipping, where merchants give
small rewards to customers (for example, for filling out a survey or installing an
application), without any contractual obligations or digitally signed agreement.

Fixing the Withdraw Loophole

In order to discourage the usage of the withdraw loophole for untaxed payments,
the following approach would be possible: Normal withdraw operations and
unregistered reserves are disabled, except for special tip reserves that are regis-
tered by the merchant as part of a tipping campaign. Customers are required
to pre-register at the exchange and obtain a special withdraw key pair against
a small safety deposit. Customer obtain new coins via a refresh operation from
the withdraw key to a new coin. If customers want to abuse Taler for untaxed
payments, they either need to risk losing money by lying during the execution of
the refresh protocol, or share their reserve private key with the payee. In order to
discourage the latter, the exchanges gives the safety deposit to the first participant
who reports the corresponding private key as being used in an illicit transaction,
and requires a new safety deposit before the customer is allowed to withdraw
again.

However since the withdraw loophole allows only one additional “payment”
(without any cryptographic evidence that can be used in disputes) before the
coin must be deposited, these additional mitigations might not even be justified
considering their additional cost.

2.2. Auditing

The auditor is a component of GNU Taler which would typically be deployed by
a financial regulator, fulfilling the following functionality:

• It regularly examines the exchange’s database and bank transaction history
to detect discrepancies.

• It accepts samples of certain protocol responses that merchants received
from an audited exchange, to verify that what the exchange signed corre-
sponds to what it stored in its database.

• It certifies exchanges that fulfill the operational and financial requirements
demanded by regulators.

• It regularly runs anonymous checks to ensure that the required protocol
endpoints of the exchange are available.

• In some deployment scenarios, merchants need to pre-register with ex-
changes to fulfill know-your-customer (KYC) requirements. The auditor

24

2.2. Auditing

provides a list of certified exchanges to merchants, to which the merchant
then can automatically KYC-register.

• It provides customers with an interface to submit cryptographic proof that
an exchange misbehaved. If a customer claims that the exchange denies
service, it can execute a request on behalf of the customer.

2.2.1. Exchange Compromise Modes

The exchange is an attractive target for hackers and insider threats. We now
discuss different ways that the exchange can be compromised, how to reduce the
likelihood of such a compromise, and how to detect and react to such an event if
it happens.

Compromise of Denomination Keys and Revocation

When a denomination key pair is compromised, an attacker can “print money”
by using it to sign coins of that denomination. An exchange (or its auditor) can
detect this when the number of deposits for a certain denomination exceed the
number of withdrawals for that same denomination.

We allow the exchange to revoke denomination keys, and wallets periodically
check for such revocations. We call a coin of a revoked denomination a revoked
coin. If a denomination key has been revoked, the wallets use the payback protocol
to recover funds from coins of revoked denominations. Once a denomination is
revoked, new coins of this denomination can’t be withdrawn or used as the target
denomination for a refresh operation. A revoked coin cannot be spent, and can
only be refreshed if its public key was recorded in the exchange’s database (as
spending/refresh operations) before it was revoked.

The following cases are possible for payback:

1. The revoked coin has never been seen by the exchange before, but the
customer can prove via a withdraw protocol transcript and blinding factor
that the coin resulted from a legitimate withdrawal from a reserve. In this
case, the exchange credits the reserve that was used to withdraw the coin
with the value of the revoked coin.

2. The coin has been partially spent. In this case, the exchange allows the
remaining amount on the coin to be refreshed into fresh coins of non-
revoked denominations.

3. The revoked coin CR has never been seen by the exchange before, was
obtained via the refresh protocol, and the exchange has an existing record
of either a deposit or refresh for the ancestor coin CA that was refreshed
into the revoked coin CR. If the customer can prove this by showing a
corresponding refresh protocol transcript and blinding factors, the exchange
credits the remaining value of CR on CA. It is explicitly permitted for CA

25

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

to be revoked as well. The customer can then obtain back their funds by
refreshing CA.

These rules limit the maximum financial damage that the exchange can incur
from a compromised denomination key D to 2nv, with n being the maximum
number of D-coins simultaneously in circulation and v the financial value of a
single D-coin. Say denomination D was withdrawn by legitimate users n times.
As soon as the exchange sees more than n pairwise different D-coins, it must
immediately revoke D. An attacker can thus at most gain nv by either refreshing
into other non-revoked denominations or spending the forged D-coins. The
legitimate users can then request a payback for their coins, resulting in a total
financial damage of at most 2nv.

With one rare exception, the payback protocol does not negatively impact the
anonymity of customers. We show this by looking at the three different cases
for payback on a revoked coin. Specifically, in case (1), the coin obtained from
the credited reserve is blindly signed, in case (2) the refresh protocol guarantees
unlinkability of the non-revoked change, and in case (3) the revoked coin CR is
assumed to be fresh. If CR from case (3) has been seen by a merchant before in an
aborted/unfinished transaction, this transaction would be linkable to transactions
on CA. Thus, anonymity is not preserved when an aborted transaction coincides
with revoked denomination, which should be rare in practice.

Unlike most other operations, the payback protocol does not incur any transac-
tion fees. The primary use of the protocol is to limit the financial loss in cases
where an audit reveals that the exchange’s private keys were compromised, and
to automatically pay back balances held in a customers’ wallet if an exchange
ever goes out of business.

To limit the damage of a compromise, the exchange can employ a hardware se-
curity module that contains the denomination secret keys, and is pre-programmed
with a limit on the number of signatures it can produce. This might be mandated
by certain auditors, who will also audit the operational security of an exchange
as part of the certification process.

Compromise of Signing Keys

When a signing key is compromised, the attacker can pretend to be a merchant
and forge deposit confirmations. To forge a deposit confirmation, the attacker
also needs to get a customer to sign a contract from the adversary (which should
include the adversary’s banking details) with a valid coin. The attack here is that
the customer is allowed to have spent the coin already. Thus, a deposit of the
resulting deposit permission would result in a rejection from the exchange due to
double spending. By forging the deposit confirmation using the compromised
signing key, the attacker can thus claim in court that they properly deposited the
coin first and demand payment from the exchange.

We note that indeed an evil exchange could simply fail to record deposit
permissions in its database and then fail to execute them. Thus, given a merchant

26

2.2. Auditing

presenting a deposit confirmation, we need a way to establish whether this
is a case of an evil exchange that should be compelled to pay, or a case of a
compromised signing key and where payouts (and thus financial damage to the
exchange) can legitimately be limited.

To limit the financial damage of a compromised signing key, merchants must
be required to work with auditors to perform a probabilistic deposit auditing of
the exchange. Here, the goal is to help detect the compromise of a signing
key by making sure that the exchange does indeed properly record deposit
confirmations. However, double-checking with the auditor if every deposit
confirmation is recorded in the exchange’s database would be too expensive and
time-consuming. Fortunately, a probabilistic method where merchants only send
a small fraction of their deposit confirmations to the auditor suffices. Then, if
the auditor sees a deposit confirmation that is not recorded in the exchange’s
database (possibly after performing the next synchronization with the exchange’s
database), it signals the exchange that the signing key has been compromised.

At this point, the signing key must be revoked and the exchange will be
required to investigate the security of its systems and address the issue before
resuming normal operations.

Still, at this point various actors (including the attacker) could still step forward
with deposit confirmations signed by the revoked key and claim that the exchange
owes them for their deposits. Simply revoking a signing key cannot lift the ex-
change’s payment obligations, and the attacker could have signed an unlimited
number of such deposit confirmations with the compromised key. However, in
contrast to honest merchants, the attacker will not have participated proportionally
in the auditor’s probabilistic deposit auditing scheme for those deposit confirma-
tions: in that case, the key compromise would have been detected and the key
revoked.

The exchange must still pay all deposit permissions it signed for coins that were
not double-spent. However, for all coins where multiple merchants claim that they
have a deposit confirmation, the exchange will pay the merchants proportionate
to the fraction of the coins that they reported to the auditor as part of probabilistic
deposit auditing. For example, if 1% of deposits must be reported to the auditor
according to the protocol, a merchant might be paid at most say 100+X times the
number of reported deposits where X > 0 serves to ensure proper payout despite
the probabilistic nature of the reporting. As a result, honest merchants have an
incentive to correctly report the deposit confirmations to the auditor.

Given this scheme, the attacker can only report a small number of deposit
confirmations to the auditor before triggering the signing key compromise de-
tection. Suppose again that 1% of deposit confirmations are reported by honest
merchants, then the attacker can only expect to submit 100 deposit permissions
created by the compromised signing key before being detected. The attacker’s
expected financial benefit from the key compromise would then be the value of
(100 + X) · 100 deposit permissions.

Thus, the financial benefit to the attacker can be limited by probabilistic deposit

27

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

auditing, and honest merchants have proper incentives to participate in the
process.

Compromise of the Database

If an adversary would be able to modify the exchange, this would be detected
rather quickly by the auditor, provided that the database has appropriate integrity
mechanisms. An attacker could also prevent database updates to block the record-
ing of spend operations, and then double spend. This is effectively equivalent to
the compromise of signing keys, and can be detected with the same strategies.

Compromise of the Master Key

If the master key was compromised, an attacker could de-anonymize customers by
announcing different sets of denomination keys to each of them. If the exchange
was audited, this would be detected quickly, as these denominations will not be
signed by auditors.

2.2.2. Cryptographic Proof

We use the term “proof” in many places as the protocol provides cryptographic
proofs of which parties behave correctly or incorrectly. However, as [MA14]
point out, in practice financial systems need to provide evidence that holds up in
courts. Taler’s implementation is designed to export evidence and upholds the
core principles described in [MA14]. In particular, in providing the cryptographic
proofs as evidence none of the participants have to disclose their core secrets.

2.2.3. Perfect Crime Scenarios

GNU Taler can be slightly modified to thwart blackmailing or kidnapping at-
tempts by criminals who intend to use the anonymity properties of the system
and demand to be paid ransom in anonymous e-cash.

Our modification incurs a slight penalty on the latency for customers during
normal use and requires slightly more data to be stored in the exchange’s database,
and thus should only be used in deployments where resistance against perfect
crime scenarios is necessary. A payment system for a school cafeteria likely does
not need these extra measures.

The following modifications are made:

1. Coins can now only be used in either a transaction or in a refresh operations,
not a mix of both. Effectively, the customer’s wallet then needs to use the
refresh protocol to prepare exact change before a transaction is made, and
that transaction is made with exact change.

This change is necessary to preserve anonymity in face of the second
modification, but increases storage requirements and latency.

28

2.3. Related Work

2. The payback protocol is changed so that a coin obtained via refreshing must
be recovered differently when revoked: to recover a revoked coin obtained
via refreshing, the customer needs to show the transcripts for the chain of
all refresh operations and the initial withdrawal operation (including the
blinding factor). Refreshes on revoked coins are not allowed anymore.

After an attacker has been paid ransom, the exchange simply revokes all
currently offered denominations and registers a new set of denomination with
the auditor. Reserves used to pay the attacker are marked as blocked in the
exchange’s database. Normal users can use the payback protocol to obtain back
the money they’ve previously had in revoked denominations. The attacker can
try to recover funds via the (now modified) payback protocol, but this attempt
will not be successful, as the initial reserve is blocked. The criminal could also try
to spend the e-cash anonymously before it is revoked, but this is likely difficult
for large amounts, and furthermore due to income transparency all transactions
made between the payment of the ransom and the revocation can be traced back
to merchants that might be complicit in laundering the ransom payment.

Honest customers can always use the payback protocol to transfer the funds
to the initial reserve. Due to modification (1), unlinkability of transactions is not
affected, as only coins that were purely used for refreshing can now be correlated.

We believe that our approach is more practical than the approaches based
on tracing, since in a scheme with tracing, the attacker can always ask for a
plain blind signature. With our approach, the attacker will always lose funds
that they cannot immediately spend. Unfortunately our approach is limited to a
kidnapping scenario, and not applicable in those blackmail scenarios where the
attacker can do damage after they find out that their funds have been erased.

2.3. Related Work

2.3.1. Anonymous E-Cash

Chaum’s seminal paper [Cha83] introduced blind signatures and demonstrated
how to use them for online e-cash. Later work [Cha+89; CFN90] introduced
offline spending, where additional information is encoded into coins in such a
way that double spending reveals the culprit’s identity.

Okamoto [Oka95] introduced the first efficient offline e-cash scheme with divis-
ibility, a feature that allows a single coin to be spent in parts. With Okamoto’s
protocol, different spending operations that used parts of the same coin were
linkable. An unlinkable version of divisible e-cash was first presented by Ca-
nard [CG07].

Camenisch’s compact e-cash [CHL05] allows wallets with 2` coins to be stored
and withdrawn with storage, computation and computational costs in O(`). Each
coin in the wallet, however, still needs to be spent separately.

29

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

The protocol that can currently be considered the state-of-the-art for efficient
offline e-cash was introduced by Pointcheval et al. [PST17]. It allows constant-
time withdrawal of a divisible coin, and constant-time spending of a continuous
“chunk” of a coin. While the pre-determined number of divisions of a coin is
independent from the storage, bandwidth and computational complexity of the
wallet, the exchange needs to check for double-spending at the finest granularity.
Thus, highly divisible coins incur large storage and computational costs for the
exchange.

An e-cash system with multiple denominations with different financial values
was proposed by Canard and Gouget [CGH06] in the context of a divisible coupon
system.

One of the earliest mentions of an explicit change protocol can be found
in [BGK95]. Ian Goldberg’s HINDE system is another design that allows the
merchant to provide change, but the mechanism could be abused to hide income
from taxation.3 Another online e-cash protocol with change was proposed by
Tracz [TW01]. The use of an anonymous change protocol (called a “refund”
in their context) for fractional payments has also been suggested for a public
transit fees payment system [Rup+13]. Change protocols for offline e-cash were
recently proposed [BY18]. To the best of our knowledge, no change protocol with
protections against tax evasion has been proposed so far, and all change protocols
suggested so far can be (ab)used to make a payment into another wallet.

Transferable e-cash allows the transfer of funds between customers without
using the exchange as in intermediary [FPV09].

Chaum also proposed wallets with observers [CP92] as a mechanism against
double spending. The observer is a tamper-proof hardware security module that
prevents double-spending, while at the same time being unable to de-anonymize
the user.

Various works propose mechanisms to selectively de-anonymize customers or
transactions that are suspected of criminal activities [SPC95; Dav+97]. Another
approach suspends customers that were involved in a particular transaction,
while keeping the customer anonymous [ASM11].

One of the first formal treatments of the provable security of e-cash was given in
[Dam07]. The first complete security definition for blind signatures was given by
Pointcheval [PS96] and applied to RSA signatures later [PS00]. While the security
proof of RSA signatures requires the random oracle model, many blind signature
schemes are provably secure in the standard model [IL13; PST17]. While most
literature provides only “human-verified” security arguments, the security of a
simple e-cash scheme has been successfully modeled in ProVerif [DKL15], albeit
only in the symbolic model.

3Description based on personal communication. HINDE was never published, but supposedly
publicly discussed at Financial Crypto ’98.

30

2.3. Related Work

Implementations

DigiCash was the first commercial implementation of Chaum’s e-cash. It ulti-
mately failed to be widely adopted, and the company filed for bankruptcy in
1998. Some details of the implementation are available [Sch98]. In addition to
Chaum’s infamously paranoid management style [Ano99], reasons for DigiCash’s
failure could have been the following:

• DigiCash did not allow account-less operations. To use DigiCash, customers
had to sign up with a bank that natively supports DigiCash.

• DigiCash did not support change or partial spending, negating a lot of the
convenience and security of e-cash by requiring frequent withdrawals from
the customer’s bank account.

• The technology used by DigiCash was protected by patents, which stifled
innovation from competitors.

• Chaum’s published design does not clearly limit the financial damage an
exchange might suffer from the disclosure of its private online signing key.

To our knowledge, the only publicly available effort to implement anonymous
e-cash is Opencoin [DPW08]. However, Opencoin is neither actively developed
nor used, and it is not clear to what degree the implementation is even complete.
Only a partial description of the Opencoin protocol is available to date.

Representing Denominations

For GNU Taler, we chose to represent denominations of different values by a
different public key for every denomination, together with a mapping from public
key to financial value and auxiliary information about fees and expiration dates.
This approach has the advantage that coins of higher denominations can be
signed by denominations with a larger key size.

Schoenmakers [Sch98] proposes an optimized implementation of multiple
denomination that specifically works with RSA keys, which encodes the denomi-
nation in the public exponent e of the RSA public key, while the modulus N stays
the same for all denominations. An advantage of this scheme is the reduced size
of the public keys for a set of denominations. As this encoding is specific to RSA,
it would be difficult for future versions of this protocol to switch to different blind
signature primitives. More importantly, factoring N would lead to a compromise
of all denominations instead of just one.

Partially blind signatures can be used to represent multiple denominations by
blindly signing the coin’s serial number and including the financial value of the
coin in the common information seen by both the signer and signee [AO00].

The compact e-cash scheme of Märtens [Mär15] allows constant-time with-
drawal of wallets with an arbitrary number of coins, as long as the number of
coins is smaller than some system parameter. This approach effectively dispenses
with the need to have different denominations.

31

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

Comparison

Yea
r

Im
plem

en
tat

ion

Offl
in

e sp
en

din
g

Sa
fe

ab
orts

/bac
kups

Key
ex

pira
tio

n

In
co

m
e tra

nsp
ar

en
cy

No tru
ste

d
se

tu
p

Sto
ra

ge fo
r wall

et

Sto
ra

ge fo
r ex

ch
an

ge

Chan
ge/

Divisi
bili

ty

Rec
eip

ts
&

Refu
nds

Chaum [Cha83] 1983 P 7 7 ? ? 3 log n log n 7 7

DigiCash [Sch98] 1990 P 7 3 3 7 3 log n log n 7 7

Offline Chaum [CFN90] 1990 ? 3 7 ? ? 3 log n log n 7 7

Tracz [TW01] 2001 E 7 3 ? 7 3 log n log n Onl. 7

Compact [CHL05] 2005 7 3 7 ? ? 3 log n n Off. 7

Divisible [PST17] 2017 7 3 7 ? ? 7 1 n Off. 7

GNU Taler 2017 FS 7 3 3 3 3 log n log n Onl. 3

• Implementation. Is there an implementation? Is it proprietary (P), experi-
mental (E), or free software (FS).

• Offline Spending Can spending happen offline with delayed detection
of double spenders, or is double spending detected immediately during
spending?

• Safe abort/backup. Is anonymity preserved in the presence of interrupted
operations or restoration from backups? Inherently conflicts with offline
double spending detection in all approaches that we are aware of. We
specify “3” also for schemes that do not explicitly treat aborts/backup, but
would allow a safe implementation when aborts/backups happen.

• Key expiration. We specify “?” for schemes that do not explicitly discuss
key expiration, but do not fundamentally conflict with the concept.

• Income transparency. We specify “3” if income transparency is supported,
“7” if some feature of the scheme conflicts with income transparency and “?”
if it might be possible to add income transparency.

• No trusted setup. In a trusted setup, some parameters and cryptographic
keys are generated by a trusted third party. A compromise of the trusted
setup phase can mean loss of anonymity.

• Storage for wallet/exchange. The expected storage for coins adding up to
arbitrary value n is specified, with some reasonable upper bound for n.

• Change/Divisibility. Can customers pay without possessing exact change?
If so, is it handled by giving change online (Onl.) or by divisible coins that
support offline operation (Off.)?

• Receipts & Refunds. The customer either can prove that they payed for a
contract, or they can get their (unlinkable) money back. Also merchants
can issue refunds for completed transactions. These operations must not
introduce linkability or otherwise compromise the customer’s anonymity.

32

2.3. Related Work

2.3.2. Blockchains

The term “blockchain” refers to a wide variety of protocols and systems con-
cerned with maintaining a ledger—typically involving financial transactions—in
a distributed and decentralized manner.4

The first and most prominent system that would be categorized as a “blockchain”
today5 is Bitcoin [Nak08], published by an individual or group under the alias
“Satoshi Nakamoto”. The document timestamping service described in [HS90]
could be seen as an even earlier blockchain that predates Bitcoin by about 13

years and is still in use today.
As the name implies, blockchains are made up of a chain of blocks, each block

containing updates to the ledger and the hash code of its predecessor block. The
chain terminates in a “genesis block” that determines the initial state of the ledger.

Some of the most important decisions for the design of blockchains are the
following:

• The consensus mechanism, which determines how the participants agree on
the current state of the ledger.

In the simplest possible blockchain, a trusted authority would validate
transactions and publish new blocks as the head of the chain. In order
to increase fault tolerance, multiple trusted authorities can use Byzantine
consensus to agree on transactions. With classical Byzantine consensus
protocols, this makes the system robust with a malicious minority of up to
1/3 of nodes. While fast and appropriate for some applications, classical
Byzantine consensus only works with a known set of participants and does
not scale well to many nodes.

Bitcoin instead uses Proof-of-Work (PoW) consensus, where the head of the
chain that determines the current ledger state is chosen as the block that
provably took the most “work” to construct, including the accumulated
work of ancestor blocks. The work consists of finding a hash preimage
n‖c, where c are the contents of the block and n is a nonce, such that the
hash H(n‖c) ends with a certain number of zeroes (as determined by the
difficulty derived from previous blocks). Under the random oracle, the
only way to find such a nonce is by trial-and-error. This nonce proves to
a verifier that the creator of the block spent computational resources to
construct it, and the correctness is easily verified by computing H(n‖c). The
creator of a block is rewarded with a mining reward and transaction fees
for transactions within the block.

PoW consensus is not final: an adversary with enough computational power
can create an alternate chain branching off an earlier block. Once this
alternative, longer chain is published, the state represented by the earlier
branch is discarded. This creates a potential for financial fraud, where

4Even though there is a centralization tendency from various sources in practice [Wal19].
5The paper that introduces Bitcoin does not mention the term “blockchain”

33

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

an earlier transaction is reversed by publishing an alternate history that
does not contain it. While it was originally believed that PoW consensus
process is resistant against attackers that have less than a 51% majority
of computational power, closer analysis has shown that a 21% majority
sufficies [ES18].

A major advantage of PoW consensus is that the participants need not be
known beforehand, and that Sybil attacks are impossible since consensus
decisions are only dependent on the available computational power, and
not on the number of participants.

In practice, PoW consensus is rather slow: Bitcoin can currently support 3-7
transactions per second on a global scale. Some efforts have been made to
improve Bitcoin’s efficiency [Eya+16; Vuk15], but overall PoW consensus
needs to balance speed against security.

Proof-of-Stake (PoS) is a different type of consensus protocol for blockchains,
which intends to securely reach consensus without depleting scarce re-
sources such as energy for computation [BGM16; Kwo14]. Blocks are
created by randomly selected validators, which obtain a reward for serving
as a validator. To avoid Sybil attacks and create economic incentives for
good behavior, the probability to get selected as a validator is proportional
to one’s wealth on the respective blockchain. Realizing PoS has some practi-
cal challenges with respect to economic incentives: As blocks do not take
work to create, validators can potentially benefit from creating forks, instead
of validating on just one chain.

Algorand [Gil+17] avoids some of the problems with PoW consensus by
combining some of the ideas of PoW with classical Byzantine consensus
protocols. Their proposed system does not have any incentives for valida-
tors.

Avalance [Tea18] has been proposed as a scalable Byzantine Consensus
algorithm for use with blockchains. It is based on a gossip protocol and is
only shown to work in the synchronous model.

• Membership and visibility. Blockchains such as Bitcoin or Ethereum with
public membership and public visibility are called permissionless blockchains.
Opposed to that, permissioned blockchains have been proposed for usage in
banking, health and asset tracking applications [And+18].

• Monetary policy and wealth accumulation. Blockchains that are used as
cryptocurrencies come with their own monetary policy. In the case of
Bitcoin, the currency supply is limited, and due to difficulty increase in
mining the currency is deflationary. Other cryptocurrencies such as duniter6

have been proposed with built-in rules for inflation, and a basic income
mechanism for participants.

6See https://duniter.org/.

34

https://duniter.org/

2.3. Related Work

• Expressivity of transactions. Transactions in Bitcoin are small programs
in a stack-based programming language that are guaranteed to terminate.
Ethereum [Woo14] takes this idea further and allows smart contracts with
Turing-complete computation and access to external oracles.

• Governance. Blockchain governance [ROH16; Lev17] is a topic that received
relatively little attention so far. As blockchains interact with existing legal
and social systems across national borders, different sources of “truth” must
be reconciled.

Furthermore, consensus is not just internal to the operation of blockchains,
but also external in the development of the technology. Currently small
groups of developers create the rules for the operation of blockchains, and
likewise have the power to change them. There is currently very little
research on social and technological processes to find a “meta-consensus”
on the rules that govern such systems, and how these rules can be adapted
and changed in a consensus process.

• Anonymity and Zero-Knowledge Proofs. Bitcoin transactions are only
pseudoymous, the full transaction history is publicly available and leads
to reduced anonymity in practice [RH13]. Tumblers [Bon+14; Hei+17] are
an approach to increase the anonymity in Bitcoin-style cryptocurrencies by
creating additional transactions to cover up the real owner and sources of
funds. While newer tumblers such as TumbleBit [Hei+17] provide rather
strong security guarantees, mixing incurs transaction costs.

Some cryptocurrencies have direct support for anonymous transactions
[Sun+17]. ZeroCash [Ben+14] uses zero-knowledge proofs to hide the
sender, receiver and amount of a transaction. While ZeroCash currently
relies on a trusted setup for unforgeability of its currency, more recent pro-
posals dispense with that requirement [Ben+18; Wah+18]. As the anonymity
provided by ZeroCash facilitates tax evasion and use in other crimes, an ad-
ditional, optional layer for privacy-preserving policy for taxation, spending
limits and identity escrow has been proposed [GGM16].

Practical guidance on what kind of blockchain is appropriate for an application,
and if a blockchain is required in the first place, can be found in [WG17].

2.3.3. Approaches to Micropayments

Micropayments refer to payments of very small value. Microtransactions would
not be feasible in traditional payment systems due to high transaction costs,
which might even exceed that value that is to be transferred.

Peppercoin

Peppercoin [Riv04] is a microdonation protocol. The main idea of the protocol
is to reduce transaction costs by minimizing the number of transactions that

35

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

are processed directly by the exchange. Instead of always paying, the customer
“gambles” with the merchant for each microdonation. Only if the merchant
wins, the microdonation is upgraded to a macropayment to be deposited at the
exchange. Peppercoin does not provide customer-anonymity. The proposed
statistical method by which exchanges detect fraudulent cooperation between
customers and merchants at the expense of the exchange not only creates legal
risks for the exchange, but would also require that the exchange learns about
microdonations where the merchant did not get upgraded to a macropayment. It
is therefore unclear how Peppercoin would actually reduce the computational
burden on the exchange.

Tick Payments

Tick payments were proposed by Pedersen [Ped96] as a general technique to
amortize the cost for small, recurring payments to the same payee. The payer
first makes an up-front deposit as one larger payment that involves the payment
processor. To make a micropayment, the payer sends a message to the payee that
authorizes the payee to claim a fraction of this deposit. Each further micropayment
simply increases the fraction of the deposit that can be claimed, and only requires
communication between payer and payee. The payee only needs to show the last
message received from the payer to the payment processor in order to receive the
accumulated amounts received through tick payments.

Payment Channels and Lightning Network

The Lightning Network [PD16] is a proposed payment system that is meant to
run on top of Bitcoin and enable faster, cheaper (micro-)transactions. It is based
on establishing payment channels between Bitcoin nodes. A payment channel
is essentially a tick payment where the deposit and settlement happens on a
blockchain. The goal of the Lightning network is to route a payment between two
arbitrary nodes by finding a path that connects the two routes through payment
channels. The protocol is designed in such a way that a node on the path between
the initial sender and final receiver can only receive a payment on a payment
channel if it correctly forwards it to the next node.

Experimental deployments of the Lightning network recently suffered heavily
from denial-of-service attacks.

BOLT [GM16] is an anonymous payment channel for ZeroCash, and is intended
to be used as a building block for a second-layer payment protocol like the
Lightning Network.

Side-chains

Side-chains are an alternative approach to improve the scalability of blockchains,
intended to be useful in conjunction with arbitrary smart contracts. The approach
currently developed by the Ethereum project is described in the Plasma white

36

2.3. Related Work

paper [PB17]. Side-chains are separate blockchains, possibly with different rules
and even consensus protocols than the main chain. Side-chains operate in parallel
to the main Ethereum chain, and regularly publish “pointers” to the current head
of the sidechain on the main chain. Funds can be moved from the main chain
to the side-chain, and subsequently be moved off the side-chain by performing
an “exit”, during which the main chain verifies claims to funds on the side-chain
according to the side-chain’s rules.

At the time of writing, Plasma is not yet implemented. Potential problems with
Plasma include the high costs of exits, lack of access to data needed to verify exit
claims, and associated potential for denial-of-service attacks.

2.3.4. Walled Garden Payment Systems

Walled garden payment systems offer ease of use by processing payments using
a trusted payment service provider. Here, the customer authenticates to the
trusted service, and instructs the payment provider to execute a transaction on
their behalf. In these payment systems, the provider basically acts like a bank
with accounts carrying balances for the various users. In contrast to traditional
banking systems, both customers and merchants are forced to have an account
with the same provider. Each user must take the effort to establish his identity
with a service provider to create an account. Merchants and customers obtain
the best interoperability in return for their account creation efforts if they start
with the biggest providers. As a result, there are a few dominating walled garden
providers, with AliPay, ApplePay, GooglePay, SamsungPay and PayPal being the
current oligopoly.

As with card payment systems, these oligopolies are politically dangerous [Run11],
and the lack of competition can result in excessive profit taking that may require
political solutions [Jon15] to the resulting market failure. The use of non-standard
proprietary interfaces to the payment processing service of these providers serves
to reinforce the customer lock-in.

2.3.5. Web Integration

Finally, we will discuss software solutions to web payments. We consider other
types of payments, including general payments and in particular hardware
solutions as out of scope for this thesis.

Web Payments API

The Web Payments API7 is a JavaScript API offered by browsers, and currently still
under development. It allows merchant to offer a uniform checkout experience
across different payment systems. Unlike GNU Taler, the Web Payments API is

7See https://www.w3.org/TR/payment-request/

37

https://www.w3.org/TR/payment-request/

2. GNU Taler, an Income-Transparent Anonymous E-Cash System

only concerned with aspects of the checkout process, such as display of a payment
request, selection of a shipping address and selection of a payment method.

Currently only basic-card is supported across popular browsers.
The Payment Handler API8 supports the registration of user-defined payment

method handlers. Unfortunately the only way to add payment method handlers is
via an HTTPS URL. This leaks all information to the payment service provider and
precludes the implementation of privacy-preserving payment system handlers.

In order to integrate Taler as a payment method, browsers would need to either
offer Taler as a native, built-in payment method or allow an extension to register
web payment handlers.

The Web Payments Working Group discontinued work on a HTTP-based API
for machine-to-machine payments.9

Payment Pointers

Payment pointers are a proposed standard syntax for accounts that are able to
receive payments. Unlike payto:// URIs (discussed in Section 4.2.1), payment
pointers do not follow the generic URI syntax and only specify a pointer to the
receiver’s bank account in form of a HTTPS URI. Payment pointers do not specify
any mechanism for the payment, but instead direct the user’s browser to a website
to carry out the payment.

3-D Secure

3-D Secure is a complex and widely deployed protocol that is intended to add an
additional security layer on top of credit and debit card transactions.

The 3-D Secure protocol requires the use of inline frames on the HTML page
of the merchant for extended verification/authentication of the user. This makes
it hard or sometimes – such as when using a mobile browser – even impossible
to tell whether the inline frame is legitimate or an attempt to steal information
from the user.

Traditionally, merchants bear most of the financial risk, and a key “feature”
of the 3DS process compared to traditional card payments is to shift dispute
liability to the issuer of the card—who may then try to shift it to the customer
[MA10, §2.4]. Even in cases where the issuer or the merchant remain legally
first in line for liabilities, there are still risks customers incur from the card
dispute procedures, such as neither them nor the payment processor noticing
fraudulent transactions, or them noticing fraudulent transactions past the deadline
until which their bank would reimburse them. The customer also typically only
has a merchant-generated comment and the amount paid in their credit card
statement as a proof for the transaction. Thus, the use of credit cards online does
not generate any cryptographically verifiable electronic receipts for the customer,

8See https://www.w3.org/TR/payment-handler/
9See https://www.w3.org/TR/webpayments-http-api/.

38

https://www.w3.org/TR/payment-handler/
https://www.w3.org/TR/webpayments-http-api/

2.3. Related Work

which theoretically enables malicious merchants to later change the terms of the
contract.

Beyond these primary issues, customers face secondary risks of identity theft
from the personal details exposed by the authentication procedures. In this case,
even if the financial damages are ultimately covered by the bank, the customer
always has to deal with the procedure of notifying the bank in the first place. As a
result, customers must remain wary about using their cards, which limits their
online shopping [ibi14, p. 50].

Other Proprietary Payment APIs

The Electronic Payment Standard URI scheme epspayment: is a proprietary/un-
registered URI scheme used by predominantly Austrian banks and merchants to
trigger payments from within websites on mobile devices. Merchants can register
an invoice with a central server. The user’s banking app is associated with the
epspayment URI scheme and will open to settle the invoice. It lies conceptually
between payto:// and taler:pay (see Section 4.1.5). A technical problem of
epspayment is that when a user has multiple bank accounts at different banks
that support epspayment, some platforms decide non-deterministically and
without asking the user which application to launch. Thus, a user with two
banking applications on their phone can often not chose which bank account is
used for the payment. If payto were widely supported, the problem of register-
ing/choosing bank accounts for payment methods could be centrally addressed
by the browser / operating system.

PayPal is a very popular, completely proprietary payment system provider. Its
offer-based API is similar in the level of abstraction to Taler’s reference merchant
backend API.

LaterPay is a proprietary payment system for online content as well as dona-
tions. It offers similar functionality to session-bound payments in Taler. LaterPay
does not provide any anonymity.

39

3. Security of Income-Transparent
Anonymous E-Cash

We so far discussed Taler’s protocols and security properties only informally. In
this chapter, we model a slightly simplified version of the system that we have
implemented (see Chapter 4), make our desired security properties more precise,
and prove that our protocol instantiation satisfies those properties.

3.1. Introduction to Provable Security

Provable security [GM82; Poi05; Sho04; Cor00] is a common approach for con-
structing formal arguments that support the security of a cryptographic protocol
with respect to specific security properties and underlying assumptions on cryp-
tographic primitives.

The adversary we consider is computationally bounded, i.e., the run time is
typically restricted to be polynomial in the security parameters (such as key
length) of the protocol.

Contrary to what the name might suggest, a protocol that is “provably secure”
is not necessarily secure in practice [KM07; Dam07]. Instead, provable security
results are typically based on reductions of the form “if there is an effective adver-
sary A against my protocol P, then I can use A to construct an effective adversary A′
against Q” where Q is a protocol or primitive that is assumed to be secure or
a computational problem that is assumed to be hard. The practical value of a
security proof depends on various factors:

• How well-studied is Q? Some branches of cryptography, for example, some
pairing-based constructions, rely on rather complex and exotic underlying
problems that are assumed to be hard (but might not be) [KM10].

• How tight is the reduction of Q to P? A security proof may only show that
if P can be solved in time T, the underlying problem Q can be solved (using
the hypothetical A) in time, e.g., f (T) = T2. In practice, this might mean
that for P to be secure, it needs to be deployed with a much larger key size
or security parameter than Q to be secure.

• What other assumptions are used in the reduction? A common and useful
but somewhat controversial assumption is the Random Oracle Model (ROM)
[BR93], where the usage of hash functions in a protocol is replaced with

41

3. Security of Income-Transparent Anonymous E-Cash

queries to a black box (called the Random Oracle), which is effectively
a trusted third party that returns a truly random value for each input.
Subsequent queries to the Random Oracle with the same value return the
same result. While many consider ROM a practical assumption [KM15;
BR93], it has been shown that there exist carefully constructed protocols
that are secure under the ROM, but are insecure with any concrete hash
function [CGH04]. It is an open question whether this result carries over to
practical protocols, or just certain classes of artificially constructed protocols
of theoretical interest.

Furthermore, a provably secure protocol does not always lend itself easily to a
secure implementation, since side channels and fault injection attacks [HTI97;
Lom+11] are usually not modeled. Finally, the security properties stated might
not be sufficient or complete for the application.

For our purposes, we focus on game-based provable security [BR06; Poi05;
Sho04; GSM18] as opposed to simulation-based provable security [GMR89; Lin17],
which is another approach to provable security typically used for zero-knowledge
proofs and secure multiparty computation protocols.

3.1.1. Algorithms, Oracles and Games

In order to analyze the security of a protocol, the protocol and its desired security
properties against an adversary with specific capabilities must first be modeled
formally. This part is independent of a concrete instantiation of the protocol; the
protocol is only described on a syntactic level.

The possible operations of a protocol (i.e., the protocol syntax) are abstractly
defined as the signatures of algorithms. Later, the protocol will be instantiated
by providing a concrete implementation (formally a program for a probabilistic
Turing machine) of each algorithm. A typical public key signature scheme, for
example, might consist of the following algorithms:

• KeyGen(1λ) 7→ (sk, pk), a probabilistic algorithm which on input 1λ gener-
ates a fresh key pair consisting of secret key sk of length λ and and the
corresponding public key pk. Note that 1λ is the unary representation of λ.1

• Sign(sk, m) 7→ σ, an algorithm that signs the bit string m with secret key sk

to output the signature σ.

• Verify(pk, σ, m) 7→ b, an algorithm that determines whether σ is a valid
signature on m made with the secret key corresponding to the public key
pk. It outputs the flag b ∈ {0, 1} to indicate whether the signature was valid
(return value 1) or invalid (return value 0).

1This formality ensures that the size of the input of the Turing machine program implementing
the algorithm will be as least as big as the security parameter. Otherwise the run-time
complexity cannot be directly expressed in relation to the size of the input tape.

42

3.1. Introduction to Provable Security

The abstract syntax could be instantiated with various concrete signature proto-
cols.

In addition to the computational power given to the adversary, the capabilities
of the adversary are defined via oracles. The oracles can be thought of as the
API2 that is given to the adversary and allows the adversary to interact with the
environment it is running in. Unlike the algorithms, which the adversary has free
access to, the access to oracles is often restricted, and oracles can keep state that is
not accessible directly to the adversary. Oracles typically allow the adversary to
access information that it normally would not have direct access to, or to trigger
operations in the environment running the protocol.

Formally, oracles are an extension to the Turing machine that runs the adversary,
which allow the adversary to submit queries to interact with the environment
that is running the protocol.

For a signature scheme, the adversary could be given access to an OSign oracle,
which the adversary uses to make the system produce signatures, with secret
keys that the adversary does not have direct access to. Different definitions of
OSign lead to different capabilities of the adversary and thus to different security
properties later on:

• If the signing oracle OSign(m) is defined to take a message m and return a
signature σ on that message, the adversary gains the power to do chosen
message attacks.

• If OSign(·) was defined to return a pair (σ, m) of a signature σ on a random
message m, the power of the adversary would be reduced to a known
message attack.

While oracles are used to describe the possible interactions with a system,
it is more convenient to describe complex, multi-round interactions involving
multiple parties as a special form of an algorithm, called an interactive protocol,
that takes the identifiers of communicating parties and their (private) inputs as
a parameter, and orchestrates the interaction between them. The adversary will
then have an oracle to start an instance of that particular interactive protocol and
(if desired by the security property being modeled) the ability to drop, modify or
inject messages in the interaction. The typically more cumbersome alternative
would be to introduce one algorithm and oracle for every individual interaction
step.

Security properties are defined via games, which are experiments that challenge
the adversary to act in a way that would break the desired security property.
Games usually consist multiple phases, starting with the setup phase where
the challenger generates the parameters (such as encryption keys) for the game.
In the subsequent query/response phase, the adversary is given some of the
parameters (typically including public keys but excluding secrets) from the setup

2In the modern sense of application programming interface (API), where some system exposes a
service with well-defined semantics.

43

3. Security of Income-Transparent Anonymous E-Cash

phase, and runs with access to oracles. The challenger3 answers oracle queries
during that phase. After the adversary’s program terminates, the challenger
invokes the adversary again with a challenge. The adversary must now compute
a final response to the challenger, sometimes with access to oracles. Depending
on the answer, the challenger decides if the adversary wins the game or not, i.e.,
the game returns 0 if the adversary loses and 1 if the adversary wins.

A game for the existential unforgeability of signatures could be formulated like
this:

ExpEUF
A (1λ):

1. (sk, pk)← KeyGen(1λ)

2. (σ, m)← AOSign(·)(pk)

(Run the adversary with input pk and access to the OSign oracle.)

3. If the adversary has called OSign(·) with m as argument, return 0.

4. Return Verify(pk, σ, m).

Here the adversary is run once, with access to the signing oracle. Depending on
which definition of OSign is chosen, the game models existential unforgeability
under chosen message attack (EUF-CMA) or existential unforgeability under
known message attack (EUF-KMA)

The following modification to the game would model selective unforgeability
(SUF-CMA / SUF-KMA):

ExpSUF
A (1λ):

1. m← A()
2. (sk, pk)← KeyGen(1λ)

3. σ← AOSign(·)(pk, m)

4. If the adversary has called OSign(·) with m as argument, return 0.

5. Return Verify(pk, σ, m).

Here the adversary has to choose a message to forge a signature for before
knowing the message verification key.

After having defined the game, we can now define a security property based on
the probability of the adversary winning the game: we say that a signature scheme
is secure against existential unforgeability attacks if for every adversary A (i.e., a
polynomial-time probabilistic Turing machine program), the success probability

Pr
[
ExpEUF

A (1λ) = 1
]

of A in the EUF game is negligible (i.e., grows less fast with λ than the inverse of
any polynomial in λ).

3The challenger is conceptually the party or environment that runs the game/experiment.

44

3.1. Introduction to Provable Security

Note that the EUF and SUF games are related in the following way: an adver-
sary against the SUF game can be easily transformed into an adversary against
the EUF game, while the converse does not necessarily hold.

Often security properties are defined in terms of the advantage of the adversary.
The advantage is a measure of how likely the adversary is to win against the real
cryptographic protocol, compared to a perfectly secure version of the protocol.
For example, let ExpBIT

A () be a game where the adversary has to guess the next
bit in the output of a pseudo-random number generator (PRNG). The idealized
functionality would be a real random number generator, where the adversary’s
chance of a correct guess is 1/2. Thus, the adversary’s advantage is∣∣∣Pr

[
ExpBIT

A ()
]
− 1/2

∣∣∣ .

Note that the definition of advantage depends on the game. The above definition,
for example, would not work if the adversary had a way to “voluntarily” lose the
game by querying an oracle in a forbidden way

3.1.2. Assumptions, Reductions and Game Hopping

The goal of a security proof is to transform an attacker against the protocol under
consideration into an attacker against the security of an underlying assumption.
Typical examples for common assumptions might be:

• the difficulty of the decisional/computational Diffie–Hellman problem
(nicely described by [Bon98])

• existential unforgeability under chosen message attack (EUF-CMA) of a
signature scheme [GMR88]

• indistinguishability against chosen-plaintext attacks (IND-CPA) of a sym-
metric encryption algorithm [Bel+98]

To construct a reduction from an adversary A against P to an adversary against
Q, it is necessary to specify a program R that both interacts as an adversary with
the challenger for Q, but at the same time acts as a challenger for the adversary
against P. Most importantly, R can chose how to respond to oracle queries from
the adversary, as long as R faithfully simulates a challenger for P. The reduction
must be efficient, i.e., R must still be a polynomial-time algorithm.

A well-known example for a non-trivial reduction proof is the security proof of
FDH-RSA signatures [Cor00].

In practice, reduction proofs are often complex and hard to verify. Game
hopping has become a popular technique to manage the complexity of security
proofs. The idea behind game hopping proofs is to make a sequence of small
modifications starting from initial game, until you arrive at a game where the
success probability for the adversary becomes obvious, for example, because the
winning state for the adversary becomes unreachable in the code that defines the

45

3. Security of Income-Transparent Anonymous E-Cash

final game, or because all values the adversary can observe to make a decision
are drawn from a truly random and uniform distribution. Each hop modifies the
game in a way such that the success probability of game Gn and game Gn+1 is
negligibly close.

Useful techniques for hops are, for example:

• Bridging hops, where the game is syntactically changed but remains seman-
tically equivalent, i.e., Pr [Gn = 1] = Pr [Gn = 1].

• Indistinguishability hops, where some distribution is changed in a way that
an adversary that could distinguish between two adjacent games could be
turned into an adversary that distinguishes the two distributions. If the
success probability to distinguish between those two distributions is ε, then
|Pr [Gn = 1]− Pr [Gn = 1]| ≤ ε

• Hops based on small failure events. Here adjacent games proceed iden-
tically, until in one of the games a detectable failure event F (such as
an adversary visibly forging a signature) occurs. Both games most pro-
ceed the same if F does not occur. Then it is easy to show [Sho04] that
|Pr [Gn = 1]− Pr [Gn = 1]| ≤ Pr [F]

A tutorial introduction to game hopping is given by Shoup [Sho04], while a
more formal treatment with a focus on “games as code” can be found in [BR06].
A version of the FDH-RSA security proof based on game hopping was generated
with an automated theorem prover by Blanchet and Pointcheval [BP06].

3.1.3. Notation

We prefix public and secret keys with pk and sk, and write x $←− S to randomly
select an element x from the set S with uniform probability.

3.2. Model and Syntax for Taler

We consider a payment system with a single, static exchange and multiple,
dynamically created customers and merchants. The subset of the full Taler
protocol that we model includes withdrawing digital coins, spending them with
merchants and subsequently depositing them at the exchange, as well as obtaining
unlinkable change for partially spent coins with an online “refresh” protocol.

The exchange offers digital coins in multiple denominations, and every de-
nomination has an associated financial value; this mapping is not chosen by the
adversary but is a system parameter. We mostly ignore the denomination values
here, including their impact on anonymity, in keeping with existing literature
[CLM07; PST17]. For anonymity, we believe this amounts to assuming that all

46

3.2. Model and Syntax for Taler

customers have similar financial behavior. We note logarithmic storage, computa-
tion and bandwidth demands denominations distributed by powers of a fixed
constant, like two.

We do not model fees taken by the exchange. Reserves4 are also omitted.
Instead of maintaining a reserve balance, withdrawals of different denominations
are tracked, effectively assuming every customer has unlimited funds.

Coins can be partially spent by specifying a fraction 0 < f ≤ 1 of the total
value associated with the coin’s denomination. Unlinkable change below the
smallest denomination cannot be given. In practice the unspendable, residual
value should be seen as an additional fee charged by the exchange.

Spending multiple coins is modeled non-atomically: to spend (fractions of)
multiple coins, they must be spent one-by-one. The individual spend/deposit
operations are correlated by a unique identifier for the transaction. In practice,
this identifier is the hash transactionId = H(contractTerms) of the contract terms5.
Contract terms include a nonce to make them unique, that merchant and customer
agreed upon. Note that this transaction identifier and the correlation between
multiple spend operations for one payment need not be disclosed to the exchange
(it might, however, be necessary to reveal during a detailed tax audit of the
merchant): When spending the i-th coin for the transaction with the identifier
transactionId, messages to the exchange would only contain H(i‖transactionId).
This is preferable for merchants that might not want to disclose to the exchange the
individual prices of products they sell to customers, but only the total transaction
volume over time. For simplicity, we do not include this extra feature in our
model.

Our system model tracks the total amount (≡ financial value) of coins with-
drawn by each customer. Customers are identified by their public key pkCustomer.
Every customer’s wallet keeps track of the following data:

• wallet[pkCustomer] contains sets of the customer’s coin records, which indi-
vidually consist of the coin key pair, denomination and exchange’s signature.

• acceptedContracts[pkCustomer] contains the sets of transaction identifiers ac-
cepted by the customer during spending operations, together with coins
spent for it and their contributions 0 < f ≤ 1.

• withdrawIds[pkCustomer] contains the withdraw identifiers of all withdraw
operations that were created for this customer.

• refreshIds[pkCustomer] contains the refresh identifiers of all refresh operations
that were created for this customer.

The exchange in our model keeps track of the following data:

4“Reserve” is Taler’s terminology for funds submitted to the exchange that can be converted to
digital coins.

5The contract terms are a digital representation of an individual offer for a certain product or
service the merchant sells for a certain price.

47

3. Security of Income-Transparent Anonymous E-Cash

• withdrawn[pkCustomer] contains the total amount withdrawn by each cus-
tomer, i.e., the sum of the financial value of the denominations for all coins
that were withdrawn by pkCustomer.

• The overspending database of the exchange is modeled by deposited[pkCoin]
and refreshed[pkCoin], which record deposit and refresh operations respec-
tively on each coin. Note that since partial deposits and multiple refreshes
to smaller denominations are possible, one deposit and multiple refresh
operations can be recorded for a single coin.

We say that a coin is fresh if it appears in neither the deposited or refreshed lists
nor in acceptedContracts. We say that a coin is being overspent if recording an
operation in deposited or refreshed would cause the total spent value from both
lists to exceed the value of the coin’s denomination. Note that the adversary does
not have direct read or write access to these values; instead the adversary needs
to use the oracles (defined later) to interact with the system.

We parameterize our system with two security parameters: The general security
parameter λ, and the refresh security parameter κ. While λ determines the length
of keys and thus the security level, using a larger κ will only decrease the success
chance of malicious merchants conspiring with customers to obtain unreported
(and thus untaxable) income.

3.2.1. Algorithms

The Taler e-cash scheme is modeled by the following probabilistic6 polynomial-
time algorithms and interactive protocols. The notation P(X1, . . . , Xn) stands
for a party P ∈ {E , C,M} (Exchange, Customer and Merchant respectively)
in an interactive protocol, with X1, . . . , Xn being the (possibly private) inputs
contributed by the party to the protocol. Interactive protocols can access the state
maintained by party P.

While the adversary can freely execute the interactive protocols by creating
their own parties, the adversary is not given direct access to the private data of
parties maintained by the challenger in the security games we define later.

• ExchangeKeygen(1λ, 1κ,D) 7→ (sksE, pksE): Algorithm executed to generate
keys for the exchange, with general security parameter λ and refresh security
parameter κ, both given as unary numbers. The denomination specification
D = d1, . . . , dn is a finite sequence of positive rational numbers that defines
the financial value of each generated denomination key pair. We henceforth
use D to refer to some appropriate denomination specification, but our
analysis is independent of a particular choice of D.

The algorithm generates the exchange’s master signing key pair (skESig, pkESig)
and denomination secret and public keys (skD1, . . . , skDn), (pkD1, . . . , pkDn).

6Our Taler instantiations are not necessarily probabilistic (except, e.g., key generation), but we
do not want to prohibit this for other instantiations

48

3.2. Model and Syntax for Taler

We write D(pkDi), where D : {pkDi} → D to look up the financial value of
denomination pkDi.

We collectively refer to the exchange’s secrets by sksE and to the exchange’s
public keys together with D by pksE.

• CustomerKeygen(1λ, 1κ) 7→ (skCustomer, pkCustomer): Key generation algo-
rithm for customers with security parameters λ and κ.

• MerchantKeygen(1λ, 1κ) 7→ (skMerchant, pkMerchant): Key generation algo-
rithm for merchants. Typically the same as CustomerKeygen.

• WithdrawRequest(E(sksE, pkCustomer), C(skCustomer, pksE, pkD)) 7→ (TWR, wid):
Interactive protocol between the exchange and a customer that initiates with-
drawing a single coin of a particular denomination.

The customer obtains a withdraw identifier wid from the protocol execution
and stores it in withdrawIds[pkCustomer].

The WithdrawRequest protocol only initiates a withdrawal. The coin is only
obtained and stored in the customer’s wallet by executing the WithdrawPickup

protocol on the withdraw identifier wid.

The customer and exchange persistently store additional state (if required
by the instantiation) such that the customer can use WithdrawPickup to
complete withdrawal or to complete a previously interrupted or unfinished
withdrawal.

Returns a protocol transcript TWR of all messages exchanged between the
exchange and customer, as well as the withdraw identifier wid.

• WithdrawPickup(E(sksE, pkCustomer), C(skCustomer, pksE, wid)) 7→ (TWP, coin):
Interactive protocol between the exchange and a customer to obtain the coin
from a withdraw operation started with WithdrawRequest, identified by the
withdraw identifier wid.

The first time WithdrawPickup is run with a particular withdraw identifier wid,
the exchange increments withdrawn[pkCustomer] by D(pkD), where pkD is the
denomination requested in the corresponding WithdrawRequest execution.
How exactly pkD is restored depends on the particular instantiation.

The resulting coin

coin = (skCoin, pkCoin, pkD, coinCert),

consisting of secret key skCoin, public key pkCoin, denomination public key
pkD and certificate coinCert from the exchange, is stored in the customers
wallet wallet[pkCustomer].

Executing the WithdrawPickup protocol multiple times with the same cus-
tomer and the same withdraw identifier does not result in any change

49

3. Security of Income-Transparent Anonymous E-Cash

of the customer’s withdraw balance withdrawn[pkCustomer], and results in
(re-)adding the same coin to the customer’s wallet.

Returns a protocol transcript TWP of all messages exchanged between the
exchange and customer.

• Spend(transactionId, f , coin, pkMerchant) 7→ depositPermission: Algorithm to
produce and sign a deposit permission depositPermission for a coin under
a particular transaction identifier. The fraction 0 < f ≤ 1 determines the
fraction of the coin’s initial value that will be spent.

The contents of the deposit permission depend on the instantiation, but it
must be possible to derive the public coin identifier pkCoin from them.

• Deposit(E(sksE, pkMerchant),M(skMerchant, pksE, depositPermission)) 7→ TD:
Interactive protocol between the exchange and a merchant.

From the deposit permission we obtain the pkCoin of the coin to be deposited.
If pkCoin is being overspent, the protocol is aborted with an error message
to the merchant.

On success, we add depositPermission to deposited[pkCoin].

Returns a protocol transcript TD of all messages exchanged between the
exchange and merchant.

• RefreshRequest(E(sksE), C(pkCustomer, pksE, coin0, pkDu)) → (TRR, rid) Inter-
active protocol between exchange and customer that initiates a refresh
of coin0. Together with RefreshPickup, it allows the customer to convert
D(pkDu) of the remaining value on coin

coin0 = (skCoin0, pkCoin0, pkD0, coinCert0)

into a new, unlinkable coin coinu of denomination pkDu.

Multiple refreshes on the same coin are allowed, but each run subtracts the
respective financial value of coinu from the remaining value of coin0.

The customer only records the refresh operation identifier rid in refreshIds[pkCustomer],
but does not yet obtain the new coin. To obtain the new coin, RefreshPickup

must be used.

Returns the protocol transcript TRR and a refresh identifier rid.

• RefreshPickup(E(sksE, pkCustomer), C(skCustomer, pksE, rid)) → (TRP, coinu):
Interactive protocol between exchange and customer to obtain the new
coin for a refresh operation previously started with RefreshRequest, identi-
fied by the refresh identifier rid.

The exchange learns the target denomination pkDu and signed source coin
(pkCoin0, pkD0, coinCert0). If the source coin is invalid, the exchange aborts
the protocol.

50

3.2. Model and Syntax for Taler

The first time RefreshPickup is run for a particular refresh identifier, the
exchange records a refresh operation of value D(pkDu) in refreshed[pkCoin0].
If pkCoin0 is being overspent, the refresh operation is not recorded in
refreshed[pkCoin0], the exchange sends the customer the protocol transcript
of the previous deposits and refreshes and aborts the protocol.

If the customer C plays honestly in RefreshRequest and RefreshPickup, the
unlinkable coin coinu they obtain as change will be stored in their wallet
wallet[pkCustomer]. If C is caught playing dishonestly, the RefreshPickup

protocol aborts.

An honest customer must be able to repeat a RefreshPickup with the same rid

multiple times and (re-)obtain the same coin, even if previous RefreshPickup

executions were aborted.

Returns a protocol transcript TRP.

• Link(E(sksE), C(skCustomer, pksE, coin0)) → (T , (coin1, . . . , coinn)): Interac-
tive protocol between exchange and customer. If coin0 is a coin that was
refreshed, the customer can recompute all the coins obtained from previous
refreshes on coin0, with data obtained from the exchange during the proto-
col. These coins are added to the customer’s wallet wallet[pkCustomer] and
returned together with the protocol transcript.

3.2.2. Oracles

We now specify how the adversary can interact with the system by defining
oracles. Oracles are queried by the adversary, and upon a query the challenger
will act according to the oracle’s specification. Note that the adversary for the
different security games is run with specific oracles, and does not necessarily
have access to all oracles simultaneously.

We refer to customers in the parameters to an oracle query simply by their
public key. The adversary needs the ability to refer to coins to trigger operations
such as spending and refresh, but to model anonymity we cannot give the
adversary access to the coins’ public keys directly. Therefore we allow the
adversary to use the (successful) transcripts of the withdraw, refresh and link
protocols to indirectly refer to coins. We refer to this as a coin handle H. Since
the execution of a link protocol results in a transcript T that can contain multiple
coins, the adversary needs to select a particular coin from the transcript via the
index i as H = (T , i). The respective oracle tries to find the coin that resulted
from the transcript given by the adversary. If the transcript has not been seen
before in the execution of a link, refresh or withdraw protocol; or the index for a
link transcript is invalid, the oracle returns an error to the adversary.

In oracles that trigger the execution of one of the interactive protocols defined
in Section 3.2.1, we give the adversary the ability to actively control the com-
munication channels between the exchange, customers and merchants; i.e., the
adversary can effectively record, drop, modify and inject messages during the

51

3. Security of Income-Transparent Anonymous E-Cash

execution of the interactive protocol. Note that this allows the adversary to leave
the execution of an interactive protocol in an unfinished state, where one or more
parties are still waiting for messages. We use I to refer to a handle to interactive
protocols where the adversary can send and receive messages.

• OAddCustomer() 7→ pkCustomer: Generates a key pair (skCustomer, pkCustomer)
using the CustomerKeygen algorithm, and sets

withdrawn[pkCustomer] := 0
acceptedContracts[pkCustomer] := {}

wallet[pkCustomer] := {}
withdrawIds[pkCustomer] := {}

refreshIds[pkCustomer] := {}.

Returns the public key of the newly created customer.

• OAddMerchant() 7→ pkMerchant: Generate a key pair (skMerchant, pkMerchant)
using the MerchantKeygen algorithm.

Returns the public key of the newly created merchant.

• OSendMessage(I , P1, P2, m) 7→ (): Send message m on the channel from
party P1 to party P2 in the execution of interactive protocol I . The oracle
does not have a return value.

• OReceiveMessage(I , P1, P2) 7→ m: Read message m in the channel from party
P1 to party P2 in the execution of interactive protocol I . If no message is
queued in the channel, return m = ⊥.

• OWithdrawRequest(pkCustomer, pkD) 7→ I : Triggers the execution of the
WithdrawRequest protocol. the adversary full control of the communication
channels between customer and exchange.

• OWithdrawPickup(pkCustomer, pkD, T) 7→ I : Triggers the execution of the
WithdrawPickup protocol, additionally giving the adversary full control of
the communication channels between customer and exchange.

The customer and withdraw identifier wid are obtained from the WithdrawRequest

transcript T .

• ORefreshRequest(H, pkD) 7→ I : Triggers the execution of the RefreshRequest

protocol with the coin identified by coin handle H, additionally giving the
adversary full control over the communication channels between customer
and exchange.

• ORefreshPickup(T) 7→ I : Triggers the execution of the RefreshPickup pro-
tocol, where the customer and refresh identifier rid are obtained from the
RefreshRequest protocol transcript T .

52

3.2. Model and Syntax for Taler

Additionally gives the adversary full control over the communication chan-
nels between customer and exchange.

• OLink(H) 7→ I : Triggers the execution of the Link protocol for the coin
referenced by handle H, additionally giving the adversary full control over
the communication channels between customer and exchange.

• OSpend(transactionId, pkCustomer,H, pkMerchant) 7→ depositPermission: Makes
a customer sign a deposit permission over a coin identified by handle H.
Returns the deposit permission on success, or ⊥ if H is not a coin handle
that identifies a coin.

Note that OSpend can be used to generate deposit permissions that, when
deposited, would result in an error due to overspending

Adds (transactionId, depositPermission) to acceptedContracts[pkCustomer].

• OShare(H, pkCustomer) 7→ (): Shares a coin (identified by handle H) with
the customer identified by pkCustomer, i.e., puts the coin identified by H
into wallet[pkCustomer]. Intended to be used by the adversary in attempts to
violate income transparency. Does not have a return value.

Note that this trivially violates anonymity (by sharing with a corrupted
customer), thus the usage must be restricted in some games.

• OCorruptCustomer(pkCustomer) 7→
(skCustomer, wallet[pkCustomer], acceptedContracts[pkCustomer],
refreshIds[pkCustomer], withdrawIds[pkCustomer]):

Used by the adversary to corrupt a customer, giving the adversary access to
the customer’s secret key, wallet, withdraw/refresh identifiers and accepted
contracts.

Permanently marks the customer as corrupted. There is nothing “spe-
cial” about corrupted customers, other than that the adversary has used
OCorruptCustomer on them in the past. The adversary cannot modify cor-
rupted customer’s wallets directly, and must use the oracle again to obtain
an updated view on the corrupted customer’s private data.

• ODeposit(depositPermission) 7→ I : Triggers the execution of the Deposit pro-
tocol, additionally giving the adversary full control over the communication
channels between merchant and exchange.

Returns an error if the deposit permission is addressed to a merchant that
was not registered with OAddMerchant.

This oracle does not give the adversary new information, but is used to
model the situation where there might be multiple conflicting deposit per-
missions generated via Spend, but only a limited number can be deposited.

53

3. Security of Income-Transparent Anonymous E-Cash

We writeOTaler for the set of all the oracles we just defined, andONoShare :=
OTaler−OShare for all oracles except the share oracle.

The exchange does not need to be corrupted with an oracle. A corrupted
exchange is modeled by giving the adversary the appropriate oracles and the
exchange secret key from the exchange key generation.

If the adversary determines the exchange’s secret key during the setup, invoking
OWithdrawRequest, OWithdrawPickup, ORefreshRequest, ORefreshPickup or OLink

can be seen as the adversary playing the exchange. Since the adversary is an
active man-in-the-middle in these oracles, it can drop messages to the simulated
exchange and make up its own response. If the adversary calls these oracles with
a corrupted customer, the adversary plays as the customer.

3.3. Games

We now define four security games (anonymity, conservation, unforgeability and
income transparency) that are later used to define the security properties for Taler.
Similar to [BR06] we assume that the game and adversary terminate in finite time,
and thus random choices made by the challenger and adversary can be taken
from a finite sample space.

All games except income transpacency return 1 to indicate that the adversary
has won and 0 to indicate that the adversary has lost. The income transparency
game returns 0 if the adversary has lost, and a positive “laundering ratio” if the
adversary won.

3.3.1. Anonymity

Intuitively, an adversary A (controlling the exchange and merchants) wins the
anonymity game if they have a non-negligible advantage in correlating spending
operations with the withdrawal or refresh operations that created a coin used in
the spending operation.

Let b be the bit that will determine the mapping between customers and spend
operations, which the adversary must guess.

We define a helper procedure

Refresh(E(sksE), C(pkCustomer, pksE, coin0)) 7→ R

that refreshes the whole remaining amount on coin0 with repeated application of
RefreshRequest and RefreshPickup using the smallest possible set of target denomi-
nations, and returns all protocol transcripts in R.

Expanon
A (1λ, 1κ, b):

1. (sksE, pksE, skM, pkM)← A()
2. (pkCustomer0, pkCustomer1, transactionId0, transactionId1, f)← AONoShare()

54

3.3. Games

3. Select distinct fresh coins

coin0 ∈ wallet[pkCustomer0]

coin1 ∈ wallet[pkCustomer1]

Return 0 if either pkCustomer0 or pkCustomer1 are not registered customers
with sufficient fresh coins.

4. For i ∈ {0, 1} run

dpi ← Spend(transactionIdi, f , coini−b, pkM)

Deposit(A(),M(skM, pksE, dpi))

Ri ← Refresh(A(), C(pkCustomeri, pksE, coini−b))

5. b′ ← AONoShare(R0,R1)

6. Return 0 if OSpend was used by the adversary on the coin handles for coin0 or
coin1 or OCorruptCustomer was used on pkCustomer0 or pkCustomer1.

7. If b = b′ return 1, otherwise return 0.

Note that unlike some other anonymity games defined in the literature (such as
[PST17]), our anonymity game always lets both customers spend in order to avoid
having to hide the missing coin in one customer’s wallet from the adversary.

3.3.2. Conservation

The adversary wins the conservation game if it can bring an honest customer
in a situation where the spendable financial value left in the user’s wallet plus
the value spent for transactions known to the customer is less than the value
withdrawn by the same customer through by the exchange.

In practice, this property is necessary to guarantee that aborted or partially
completed withdrawals, payments or refreshes, as well as other (transient) mis-
behavior from the exchange or merchant do not result in the customer losing
money.

Expconserv
A (1λ, 1κ):

1. (sksE, pksE)← ExchangeKeygen(1λ, 1κ, M)

2. pkCustomer← AONoShare(pksE)

3. Return 0 if pkCustomer is a corrupted user.

4. Run WithdrawPickup for each withdraw identifier wid and RefreshPickup for
each refresh identifier rid that the user has recorded in withdrawIds and refreshIds.
Run Deposit for all deposit permissions in acceptedContracts.

5. Let vC be the total financial value left on valid coins in wallet[pkCustomer],
i.e., the denominated values minus the spend/refresh operations recorded

55

3. Security of Income-Transparent Anonymous E-Cash

in the exchange’s database. Let vS be the total financial value of contracts in
acceptedContracts[pkCustomer].

6. Return 1 if withdrawn[pkCustomer] > vC + vS.

Hence we ensure that:

• if a coin was spent, it was spent for a contract that the customer knows
about, i.e., in practice the customer could prove that they “own” what they
paid for,

• if a coin was refreshed, the customer “owns” the resulting coins, even if the
operation was aborted, and

• if the customer withdraws, they can always obtain a coin whenever the
exchange accounted for a withdrawal, even when protocol executions are
intermittently aborted.

Note that we do not give the adversary access to the OShare oracle, since that
would trivially allow the adversary to win the conservation game. In practice,
conservation only holds for customers that do not share coins with parties that
they do not fully trust.

3.3.3. Unforgeability

Intuitively, adversarial customers win if they can obtain more valid coins than
they legitimately withdraw.

Exp f orge
A (1λ, 1κ):

1. (skE, pkE)← ExchangeKeygen()

2. (C0, . . . , C`)← AOAll(pkExchange)

3. Return 0 if any Ci is not of the form (skCoin, pkCoin, pkD, coinCert) or any
coinCert is not a valid signature by pkD on the respective pkCoin.

4. Return 1 if the sum of the unspent value of valid coins in C0 . . . , C` exceeds
the amount withdrawn by corrupted customers, return 0 otherwise.

3.3.4. Income Transparency

Intuitively, the adversary wins if coins are in exclusive control of corrupted
customers, but the exchange has no record of withdrawal or spending for them.
This presumes that the adversary cannot delete from non-corrupted customer’s
wallets, even though it can use oracles to force protocol interactions of non-
corrupted customers.

For practical e-cash systems, income transparency disincentivizes the emer-
gence of “black markets” among mutually distrusting customers, where currency
circulates without the transactions being visible. This is in contrast to some other

56

3.4. Security Definitions

proposed e-cash systems and cryptocurrencies, where disintermediation is an
explicit goal. The Link protocol introduces the threat of losing exclusive control
of coins (despite having the option to refresh them) that were received without
being visible as income to the exchange.

Expincome
A (1λ, 1κ):

1. (skE, pkE)← ExchangeKeygen()

2. (coin1, . . . , coin`)← AOAll(pkExchange)

(The coini must be coins, including secret key and signature by the denomina-
tion, for the adversary to win. However these coins need not be present in any
honest or corrupted customer’s wallet.)

3. Augment the wallets of all non-corrupted customers with their transitive
closure using the Link protocol. Mark all remaining value on coins in wallets
of non-corrupted customers as spent in the exchange’s database.

4. Let L denote the sum of unspent value on valid coins in (coin1, . . . coin`), after
accounting for the previous update of the exchange’s database. Also let w′ be
the sum of coins withdrawn by corrupted customers. Then p := L− w′ gives
the adversary’s untaxed income.

5. Let w be the sum of coins withdrawn by non-corrupted customers, and s be
the value marked as spent by non-corrupted customers, so that b := w− s
gives the coins lost during refresh, that is the losses incurred attempting to
hide income.

6. If b + p 6= 0, return p
b+p , i.e., the laundering ratio for attempting to obtain

untaxed income. Otherwise return 0.

3.4. Security Definitions

We now give security definitions based upon the games defined in the previous
section. Recall that λ is the general security parameter, and κ is the security
parameter for income transparency. A polynomial-time adversary is implied to
be polynimial in λ + κ.

Definition 3.4.1 (Anonymity). We say that an e-cash scheme satisfies anonymity if

the success probability Pr
[
b $←− {0, 1} : Expanon

A (1λ, 1κ, b) = 1
]

of the anonymity
game is negligibly close to 1/2 for any polynomial-time adversary A.

Definition 3.4.2 (Conservation). We say that an e-cash scheme satisfies conserva-
tion if the success probability Pr

[
Expconserv

A (1λ, 1κ) = 1
]

of the conservation game
is negligible for any polynomial-time adversary A.

Definition 3.4.3 (Unforgeability). We say that an e-cash scheme satisfies unforge-
ability if the success probability Pr

[
Exp f orge

A (1λ, 1κ) = 1
]

of the unforgeability
game is negligible for any polynomial-time adversary A.

57

3. Security of Income-Transparent Anonymous E-Cash

Definition 3.4.4 (Strong Income Transparency). We say that an e-cash scheme sat-
isfies strong income transparency if the success probability Pr

[
Expincome

A (1λ, 1κ) 6= 0
]

for the income transparency game is negligible for any polynomial-time adver-
sary A.

The adversary is said to win one execution of the strong income transparency
game if the game’s return value is non-zero, i.e., there was at least one successful
attempt to obtain untaxed income.

Definition 3.4.5 (Weak Income Transparency). We say that an e-cash scheme
satisfies weak income transparency if, for any polynomial-time adversary A, the
return value of the income transparency game satisfies

E
[
Expincome

A (1λ, 1κ)
]
≤ 1

κ
. (3.1)

In (3.1), the expectation runs over any probability space used by the adversary
and challenger.

For some instantiations, e.g., ones based on zero-knowledge proofs, κ might be
a security parameter in the traditional sense. However for an e-cash scheme to be
useful in practice, the adversary does not need to have only negligible success
probability to win the income transparency game. It suffices that the financial
losses of the adversary in the game are a deterrent, after all our purpose of the
game is to characterize tax evasion.

Taler does not fulfill strong income transparency, since for Taler κ must be
a small cut-and-choose parameter, as the complexity of our cut-and-choose
protocol grows linearly with κ. Instead we show that Taler satisfies weak income
transparency, which is a statement about the adversary’s financial loss when
winning the game instead of the winning probability. The return-on-investment
(represented by the game’s return value) is bounded by 1/κ.

We still characterize strong income transparency, since it might be useful for
other instantiations that provide more absolute guarantees.

3.5. Instantiation

We give an instantiation of our protocol syntax that is generic over a blind
signature scheme, a signature scheme, a combined signature scheme / key
exchange, a collision-resistant hash function and a pseudo-random function
family (PRF).

3.5.1. Generic Instantiation

Let BlindSign be a blind signature scheme with the following syntax, where the
party S is the signer and R is the signature requester:

58

3.5. Instantiation

• KeyGenBS(1λ) 7→ (sk, pk) is the key generation algorithm for the signer of
the blind signature protocol.

• BlindBS(S(sk),R(pk, m)) 7→ (m, r) is a possibly interactive protocol to blind
a message m that is to be signed later. The result is a blinded message m
and a residual r that allows to unblind a blinded signature on m made by
sk.

• SignBS(S(sk),R(m)) 7→ σ is an algorithm to sign a blinded message m. The
result σ is a blinded signature that must be unblinded using the r returned
from the corresponding blinding operation before verification.

• UnblindSigBS(r, m, σ) 7→ σ is an algorithm to unblind a blinded signature.

• VerifyBS(pk, m, σ) 7→ b is an algorithm to check the validity of an unblinded
blind signature. Returns 1 if the signature σ was valid for m and 0 otherwise.

Note that this syntax excludes some blind signature protocols, such as those
with interactive/probabilistic verification or those without a “blinding factor”,
where the BlindBS and SignBS and UnblindSigBS would be merged into one interac-
tive signing protocol. Such blind signature protocols have already been used to
construct e-cash [CHL05].

We require the following two security properties for BlindSign:

• blindness: It should be computationally infeasible for a malicious signer
to decide which of two messages has been signed first in two executions
with an honest user. The corresponding game can be defined as in Abe
and Okamoto [AO00], with the additional enhancement that the adversary
generates the signing key [SU17].

• unforgeability: An adversary that requests k signatures with SignBS is unable
to produce k + 1 valid signatures with non-negligible probability.

For more generalized notions of the security of blind signatures see, e.g., [FS09;
SU17].

Let CoinSignKx be combination of a signature scheme and key exchange
protocol:

• KeyGenSecCSK(1λ) 7→ sk is a secret key generation algorithm.

• KeyGenPubCSK(sk) 7→ pk produces the corresponding public key.

• SignCSK(sk, m) 7→ σ produces a signature σ over message m.

• VerifyCSK(pk, m, σ) 7→ b is a signature verification algorithm. Returns 1 if
the signature σ is a valid signature on m by pk, and 0 otherwise.

• KxCSK(sk1, pk2) 7→ x is a key exchange algorithm that computes the shared
secret x from secret key sk1 and public key pk2.

59

3. Security of Income-Transparent Anonymous E-Cash

We occasionally need these key generation algorithms separately, but we usually
combine them into KeyGenCSK(1λ) 7→ (sk, pk).

We require the following security properties to hold for CoinSignKx:

• unforgeability: The signature scheme (KeyGenCSK, SignCSK, VerifyCSK) must
satisfy existential unforgeability under chosen message attacks (EUF-CMA).

• key exchange completeness: Any probabilistic polynomial-time adversary
has only negligible chance to find a degenerate key pair (skA, pkA) such
that for some honestly generated key pair (skB, pkB)← KeyGenCSK(1λ) the
key exchange fails, that is KexCSK(skA, pkB) 6= KexCSK(skB, pkA), while the
adversary can still produce a pair (m, σ) such that VerifyBS(pkA, m, σ) = 1.

• key exchange security: The output of KxCSK must be computationally indistin-
guishable from a random shared secret of the same length, for inputs that
have been generated with KeyGenCSK.

Let Sign = (KeyGenS, SignS, VerifyS) be a signature scheme that satisfies selective
unforgeability under chosen message attacks (SUF-CMA).

Let PRF be a pseudo-random function family and H : {0, 1}∗ → {0, 1}λ a
collision-resistant hash function.

Using these primitives, we now instantiate the syntax of our income-transparent
e-cash scheme:

• ExchangeKeygen(1λ, 1κ,D):

Generate the exchange’s signing key pair skESig← KeyGenS(1λ).

For each element in the sequence D = d1, . . . , dn, generate denomination
key pair (skDi, pkDi)← KeyGenBS(1λ).

• CustomerKeygen(1λ, 1κ): Return key pair KeyGenS(1λ).

• MerchantKeygen(1λ, 1κ): Return key pair KeyGenS(1λ).

• WithdrawRequest(E(sksE, pkCustomer), C(skCustomer, pksE, pkD)):

Let skD be the exchange’s denomination secret key corresponding to pkD.

1. C generates coin key pair (skCoin, pkCoin)← KeyGenCSK(1λ)

2. C runs (m, r)← BlindCSK(E(skCoin), C(m)) with the exchange

The withdraw identifier is then

wid := (skCoin, pkCoin, m, r)

• WithdrawPickup(E(sksE, pkCustomer), C(skCustomer, pksE, wid)):

The customer looks up skCoin, pkCoin, pkD m and r via the withdraw identi-
fier wid.

60

3.5. Instantiation

1. C runs σ← SignBS(E(skD), C(m)) with the exchange

2. C unblinds the signature σ← UnblindSigBS(σ, r, m) and stores the coin
(skCoin, pkCoin, pkD, σ) in their wallet.

• Spend(transactionId, f , coin, pkMerchant): Let (skCoin, pkCoin, pkD, σC) := coin.
The deposit permission is computed as

depositPermission := (pkCoin, σD, m),

where

m := (pkCoin, pkD, sigmaC, transactionId, f , pkMerchant)

σD ← SignCSK(skCoin, m).

• Deposit(E(sksE, pkMerchant),M(skMerchant, pksE, depositPermission)): The mer-
chant sends depositPermission to the exchange.

The exchange checks that the deposit permission is well-formed and sets

(pkCoin, pkD, σC, σD, transactionId, f , pkMerchant)) := depositPermission

The exchange checks the signature on the deposit permission and the
validity of the coin with

b1 := VerifyCSK(pkCoin, σD, m)

b2 := VerifyBS(pkD, σC, pkCoin)

and aborts of b1 = 0 or b2 = 0.

The exchange aborts if spending f would result in overspending pkCoin

based on existing deposit/refresh records, and otherwise marks pkCoin as
spent for D(pkD).

• RefreshRequest(E(sksE, pkCustomer), C(skCustomer, pksE, coin0, pkDu)):

Let skDu be the secret key corresponding to pkDu.

We write

Blind∗BS(S(sk, skESig),R(R, skR, pk, m)) 7→ (m, r, TB∗)

for a modified version of BlindBS where the signature requester R takes
all randomness from the sequence (PRF(R,"blind"‖n))n>0, the messages
from the exchange are recorded in transcript TB∗, all messages sent by R
are signed with skR and all messages sent by S are signed with skESig.

Furthermore, we write

KeyGen∗CSK(R, 1λ) 7→ (sk, pk)

for a modified version of the key generation algorithm that takes random-
ness from the sequence (PRF(R,"key"‖n))n>0.

For each i ∈ {1, . . . , κ}, the customer

61

3. Security of Income-Transparent Anonymous E-Cash

1. generates seed si
$←− {1, . . . , 1λ}

2. generates transfer key pair (ti, Ti)← KeyGen∗CSK(si, 1λ)

3. computes transfer secret xi ← Kx(ti, pkCoin0)

4. computes coin key pair (skCoini, pkCoini)← KeyGen∗CSK(xi, 1λ)

5. and executes the modified blinding protocol

(mi, ri, T(B∗,i))← Blind∗BS(E(skDu), C(xi, skCoin0, pkDu, pkCoini))

with the exchange.

The customer stores the refresh identifier

rid := (coin0, pkDu, {si}, {mi}, {ri}, {T(B∗,i)}). (3.2)

• RefreshPickup(E(sksE, pkCustomer), C(skCustomer, pksE, rid)) → T : The cus-
tomer looks up the refresh identifier rid and recomputes the transfer key
pairs, transfer secrets and new coin key pairs.

Then customer sends the commitment π1 = (pkCoin0, pkDu, hC) together
with signature sig1 ← SignCSK(skCoin0, π1) to the exchange, where

hT := H(T1, . . . , Tκ)

hm := H(m1, . . . , mκ)

hC := H(hT‖hm)

The exchange checks the signature sig1, and aborts if invalid. Otherwise,
depending on the commitment:

1. If the exchange did not see π1 before, it marks pkCoin0 as spent for
D(pkDu), chooses a uniform random 0 ≤ γ < κ, stores it, and sends
this choice in a signed message (γ, sig2) to the customer, where sig2 ←
SignS(skESig, γ).

2. Otherwise, the exchange sends back the same π2 as it sent for the last
equivalent π1.

The customer checks if π2 differs from a previously received π′2 for the same
request π1, and aborts if such a conflicting response was found. Otherwise,
the customer in response to π2 sends the reveal message

π3 = Tγ, mγ, (s1, . . . , sγ−1, sγ+1, . . . , sκ)

and signature

sig3′ ← SignCSK(skCoin0, (pkCoin0, pkDu, T(B∗,γ), Tγ, mγ))

to the exchange. Note that sig3′ is not a signature over the full reveal
message, but is primarily used in the linking protocol for checks by the
customer.

62

3.5. Instantiation

The exchange checks the signature sig3′ and then computes for i 6= γ:

(t′i, T′i)← KeyGen∗CSK(si, 1λ)

x′i ← Kx(ti, pkCoin0)

(skCoin′i, pkCoin′i)← KeyGen∗CSK(x′i, 1λ)

h′T := H(T′1, . . . , T′γ−1, Tγ, T′γ+1, . . . , T′κ)

and simulates the blinding protocol with recorded transcripts (without
signing each message, as indicated by the dot (·) instead of a signing secret
key), obtaining

(m′i, r′i, Ti)← Blind∗BS(S(skDu),R(x′i, ·, pkDu, skCoin′i))

and finally

h′m := H(m′1, . . . , m′γ−1, mγ, m′γ+1, . . . , m′κ)

h′C := H(h′T‖h′m).

Now the exchange checks if hC = h′C, and aborts the protocol if the check
fails. Otherwise, the exchange sends a message back to C that the commit-
ment verification succeeded and includes the signature

σγ := SignBS(E(skDu), C(mγ)).

As a last step, the customer obtains the signature σγ on the new coin’s
public key pkCoinu with

σγ := UnblindSig(rγ, pkCoinγ, σγ).

Thus, the new, unlinkable coin is coinu := (skCoinγ, pkCoinγ, pkDu, σγ).

• Link(E(sksE), C(skCustomer, pksE, coin0)): The customer sends the public key
pkCoin0 of coin0 to the exchange.

For each completed refresh on pkCoin0 recorded in the exchange’s database,
the exchange sends the following data back to the customer: the signed
commit message (sig1, π1), the transfer public key Tγ, the signature sig3′ ,
the blinded signature σγ, and the transcript T(B∗,γ) of the customer’s and
exchange’s messages during the Blind∗BS protocol execution.

The following logic is repeated by the customer for each response:

1. Verify the signatures (both from pkESig and pkCoin0) on the transcript
T(B∗,γ), abort otherwise.

2. Verify that sig1 is a valid signature on π1 by pkCoin0, abort otherwise.

63

3. Security of Income-Transparent Anonymous E-Cash

3. Re-compute the transfer secret and the new coin’s key pair as

xγ ← KxCSK(skCoin0, Tγ)

(skCoinγ, pkCoinγ)← KeyGen∗CSK(xγ, 1λ).

4. Simulate the blinding protocol with the message transcript received
from the exchange to obtain (mγ, rγ).

5. Check that VerifyCSK(pkCoin0, pkDu, skCoin0, (T(B∗,γ), mγ), sig3′) indicates
a valid signature, abort otherwise.

6. Unblind the signature to obtain σγ ← UnblindSig(rγ, pkCoinγ, σγ)

7. (Re-)add the coin (skCoinγ, pkCoinγ, pkDu, σγ) to the customer’s wallet.

3.5.2. Concrete Instantiation

We now give a concrete instantiation that is used in the implementation of GNU
Taler for the schemes BlindSign, CoinSignKx and Sign.

For BlindSign, we use RSA-FDH blind signatures [Cha83; BR96]. From the
information-theoretic security of blinding, the computational blindness property
follows directly. For the unforgeability property, we additionally rely on the RSA-
KTI assumption as discussed in [Bel+03]. Note that since the blinding step in
RSA blind signatures is non-interactive, storage and verification of the transcript
is omitted in refresh and link.

We instantiate CoinSignKx with signatures and key exchange operations on
elliptic curves in Edwards form, where the same key is used for signatures and
the Diffie–Hellman key exchange operations. In practice, we use Ed25519 [Ber+12]
/ Curve25519 [Ber06] for λ = 256. We caution that some other elliptic curve key
exchange implementation might not satisfy the completeness property that we
require, due to the lack of complete addition laws.

For Sign, we use elliptic-curve signatures, concretely Ed25519. For the collision-
resistant hash function H we use SHA-512 [H306] and HKDF [KE10] as a PRF.

3.6. Proofs

We now give proofs for the security properties defined in Section 3.4 with the
generic instantiation of Taler.

3.6.1. Anonymity

Theorem 1. Assuming

• the blindness of BlindSign,

• the unforgeability and key exchange security of CoinSignKx, and

64

3.6. Proofs

• the collision resistance of H,

our instantiation satisfies anonymity.

Proof. We give a proof via a sequence of games G0(b), G1(b), G2(b), where G0(b)
is the original anonymity game Expanon

A (1λ, 1κ, b). We show that the adversary
can distinguish between subsequent games with only negligible probability. Let
εHC and εKX be the advantage of an adversary for finding hash collisions and for
breaking the security of the key exchange, respectively.

We define G1 by replacing the link oracle OLink with a modified version that
behaves the same as OLink, unless the adversary responds with link data that did
not occur in the transcript of a successful refresh operation, but despite of that
still passes the customer’s verification. In that case, the game is aborted instead.

Observe that in case this failure event happens, the adversary must have forged
a signature on sig3 on values not signed by the customer, yielding an existential
forgery. Thus, |Pr [G0 = 1]− Pr [G1 = 1]| is negligible.

In G2, the refresh oracle is modified so that the customer responds with value
drawn from a uniform random distribution D1 for the γ-th commitment instead
of using the key exchange function. We must handle the fact that γ is chosen by
the adversary after seeing the commitments, so the challenger first makes a guess
γ∗ and replaces only the γ∗-th commitment with a uniform random value. If the
γ chosen by the adversary does not match γ∗, then the challenger rewinds A to
the point where the refresh oracle was called. Note that we only replace the one
commitment that will not be opened to the adversary later.

Since κ � λ and the security property of Kx guarantees that the adversary
cannot distinguish the result of a key exchange from randomness, the runtime
complexity of the challenger still stays polynomial in λ. An adversary that
could with high probability choose a γ that would cause a rewind, could also
distinguish randomness from the output of Kx.

We now show that |Pr [G1 = 1]− Pr [G2 = 1]| ≤ εKX by defining a distinguish-
ing game G1∼2 for the key exchange as follows:

G1∼2(b):
1. If b = 0, set

D0 := {(A, B, Kex(a, B)) | (a, A)← KeyGen(1λ), (b, B)← KeyGen(1λ)}.

Otherwise, set

D1 := {(A, B, C) | (a, A)← KeyGen(1λ), (b, B)← KeyGen(1λ), C $←− {1, . . . , 2λ}}.

2. Return Exp′anon
A (b, Db)

(Modified anonymity game where the γ-th commitment in the refresh oracle
is drawn uniformly from Db (using rewinding). Technically, we need to
draw from Db on withdraw for the coin secret key, write it to a table, look it
up on refresh and use the matching tuple, so that with b = 0 we perfectly
simulate G1.)

65

3. Security of Income-Transparent Anonymous E-Cash

Depending on the coin flip b, we either simulate G1 or G2 perfectly for our ad-
versaryA against G1. At the same time b determines whetherA receives the result
of the key exchange or real randomness. Thus, |Pr [G1 = 1]− Pr [G2 = 1]| = εKX
is exactly the advantage of G1∼2.

We observe in G2 that as xγ is uniform random and not learned by the adversary,
the generation of (skCoinγ, pkCoinγ) and the execution of the blinding protocol
is equivalent (under the PRF assumption) to using the randomized algorithms
KeyGenCSK and BlindBS.

By the blindness of the BlindSign scheme, the adversary is not able to distin-
guish blinded values from randomness. Thus, the adversary is unable to correlate
a SignBS operation in refresh or withdraw with the unblinded value observed
during Deposit.

We conclude the success probability for G2 must be 1/2 and hence the success
probability for Expanon

A (1λ, κ, b) is at most 1/2 + ε(λ), where ε is a negligible
function.

3.6.2. Conservation

Theorem 2. Assuming existential unforgeability (EUF-CMA) of CoinSignKx, our
instantiation satisfies conservation.

Proof. In honest executions, we have withdrawn[pkCustomer] = vC + vS, i.e., the
coins withdrawn add up to the coins still available and the coins spent for known
transactions.

In order to win the conservation game, the adversary must increase withdrawn[pkCustomer]
or decrease vC or vS. An adversary can abort withdraw operations, thus causing
withdrawn[pkCustomer] to increase, while the customer does not obtain any coins.
However, in step 4, the customer obtains coins from interrupted withdraw opera-
tions. Similarly, for the refresh protocol, aborted RefreshRequest / RefreshPickup

operations that result in a coin’s remaining value being reduced are completed in
step 4.

Thus, the only remaining option for the adversary is to decrease vC or vS with
the ORefreshPickup and ODeposit oracles, respectively.

Since the exchange verifies signatures made by the secret key of the coin that is
being spent/refreshed, the adversary must forge this signature or have access to
the coin’s secret key. As we do not give the adversary access to the sharing oracle,
it does not have direct access to any of the honest customer’s coin secret keys.

Thus, the adversary must either compute the coin’s secret key from observing
the coin’s public key (e.g., during a partial deposit operation), or forge signatures
directly. Both possibilities allow us to carry out a reduction against the unforge-
ability property of the CoinSignKx scheme, by injecting the challenger’s public
key into one of the coins.

66

3.6. Proofs

3.6.3. Unforgeability

Theorem 3. Assuming the unforgeability of BlindSign, our instantiation satisfies
unforgeability.

Proof. The adversary must have produced at least one coin that was not blindly
signed by the exchange. In order to carry out a reduction from this adversary to
a blind signature forgery, we inject the challenger’s public key into one randomly
chosen denomination. Since we do not have access to the corresponding secret key
of the challenger, signing operations for this denomination are replaced with calls
to the challenger’s signing oracle in OWithdrawPickup and ORefreshPickup. For n
denominations, an adversary against the unforgeability game would produce a
blind signature forgery with probability 1/n.

3.6.4. Income Transparency

Theorem 4. Assuming

• the unforgeability of BlindSign,

• the key exchange completeness of CoinSignKx,

• the pseudo-random function property of PRF, and

• the collision resistance of H,

our instantiation satisfies weak income transparency.

Proof. We consider the directed forest on coins induced by the refresh protocol. It
follows from unforgeability that any coin must originate from some customer’s
withdraw in this graph. We may assume that all coin1, . . . , coinl originate from
non-corrupted users, for some l ≤ `.

For any i ≤ l, there is a final refresh operation Ri in which a non-corrupted user
could obtain the coin C′ consumed in the refresh via the linking protocol, but no
non-corrupted user could obtain the coin provided by the refresh, as otherwise
coini gets marked as spent in step step 3. Set F := {Ri | i ≤ l}.

During each Ri ∈ F, our adversary must have submitted a blinded coin and
transfer public key for which the linking protocol fails to produce the resulting
coin correctly, otherwise the coin would have been spent in step 3. In this case,
we consider several non-exclusive cases

1. the execution of the refresh protocol is incomplete,

2. the commitment for the γ-th blinded coin and transfer public key is dishon-
est,

3. a commitment for a blinded coin and transfer public key other than the γ-th
is dishonest,

67

3. Security of Income-Transparent Anonymous E-Cash

We show these to be exhaustive by assuming their converses all hold: As the
commitment is signed by skCoin0, our key exchange completeness assumption of
CoinSignKx applies to the coin public key. Any revealed values must match our
honestly computed commitments, as otherwise a collision in H would have been
found. We assumed the revealed γ-th transfer public key is honest. Hence our
key exchange completeness assumption of CoinSignKx yields KexCSK(t, C′) =
KexCSK(c′, T) where T = KeyGenPubCSK(t) is the transfer key, thus the customer
obtains the correct transfer secret. We assumed the refresh concluded and all
submissions besides the γ-th were honest, so the exchange correctly reveals the
signed blinded coin. We assumed the γ-th blinded coin is correct too, so customer
now re-compute the new coin correctly, violating Ri ∈ F.

We shall prove

E
[

p
b + p

∣∣∣∣F 6= ∅
]
=

1
κ

(3.3)

where the expectation runs over any probability space used by the adversary and
challenger.

We shall now consider executions of the income transparency game with an
optimal adversary with respect to maximizing p

b+p . Note that this is permissible
since we are not carring out a reduction, but are interested in the expectation of
the game’s return value.

As a reminder, if a refresh operation is initiated using a false commitment
that is detected by the exchange, then the new coin cannot be obtained, and
contributes to the lost coins b := w− s instead of the winnings p := L− w′. We
also note b + p gives the value of refreshes attempted with false commitments.
As these are non-negative, p

b+p is undefined if and only if p = 0 and b = 0, which
happens if and only if the adversary does not use false commitments, i.e., F = ∅.

We may now assume for optimality that A submits a false commitment for
at most one choice of γ in any Ri ∈ F, as otherwise the refresh always fails.
Furthermore, for an optimal adversary we can exclude refreshes in F that are
incomplete, but that would be possible to complete successfully, as completing
such a refresh would only increase the adversaries winnings.

We emphasize that an adversary that loses an Ri loses the coin that would have
resulted from it completely, while an optimal adversary who wins an Ri should
not gamble again. Indeed, an adversary has no reason to touch its winnings from
an Ri.

For any Ri, there are κ game runs identical up through the commitment phase
of Ri and exhibiting different outcomes based on the challenger’s random choice
of γ. If vi is the financial value of the coin resulting from refresh operation Ri
then one of the possible runs adds vi to p, while the remaining κ − 1 runs add vi
to b.

We define pi and bi to be these contributions summed over the κ possible runs,

68

3.7. Discussion

i.e.,

pi := vi

bi = (κ − 1)vi

The adversary will succeed in 1/κ runs (pi = v) and loses in (κ − 1)/κ runs
(pi = 0). Hence:

E
[

p
b + p

∣∣∣∣F 6= ∅
]
=

1
|F| ∑

Ri∈F

pi

bi + pi

=
1

κ|F| ∑
Ri∈F

vi

0 + vi
+

κ − 1
κ|F| ∑

Ri∈F

0
vi + 0

=
1
κ

,

which yields the equality (3.3).
As for F = ∅, the return value of the game must be 0, we conclude

E
[
Expincome

A (1λ, 1κ)
]
≤ 1

κ
.

3.7. Discussion

3.7.1. Limitations

Not all features of our implementation are part of the security model and proofs.
In particular, the following features are left out of the formal discussion:

• Reserves. In our formal model, we effectively assume that every customer
has access to exactly one unlimited reserve.

• Offline and online keys. In our implementation, the exchange has one
offline master signing key, and online signing keys with a shorter live span.

• Refunds allow merchants to effectively “undo” a deposit operation be-
fore the exchange settles the transaction with the merchant. This simple
extension preserves unlinkability of payments through refresh.

• Timeouts. In practice, a merchant gives the customer a deadline until which
the payment for a contract must have been completed, potentially by using
multiple coins.

If a customer is unable to complete a payment (e.g., because they notice that
their coins are already spent after a restore from backup), a refund for this
partial payment can be requested from the merchant.

69

3. Security of Income-Transparent Anonymous E-Cash

Should the merchant become unavailable after a partially completed pay-
ment, there are two possibilities: Either the customer can deposit the coins
on behalf of the merchant to obtain proof of their on-time payment, which
can be used in a later arbitration if necessary. Alternatively, the customer
can ask the exchange to undo the partial payments, though this requires
the exchange to know (or learn from the customer) the exact amount to be
payed for the contract.

• The fees incurred for operations, the protocols for backup and synchroniza-
tion as well as other possible extensions like tick payments are not formally
modeled.

We note that customer tipping (see 2.1.11) basically amounts to an execution of
the Withdraw protocol where the party that generates the coin keys and blinding
factors (in that case the merchant’s customer) is different from the party that
signs the withdraw request (the merchant with a “customer” key pair tied to the
merchant’s bank account). While this is desirable in some cases, we discussed in
2.1.11 how this “loophole” for a one-hop untaxed payment could be avoided.

3.7.2. Other Properties

Exculpability

Exculpability is a property of offline e-cash which guarantees that honest users
cannot be falsely blamed for misbehavior such as double spending. For online e-
cash it is not necessary, since coins are spent online with the exchange. In practice,
even offline e-cash systems that provide exculpability are often undesirable, since
hardware failures can result in unintentional overspending by honest users. If
a device crashes after an offline coin has been sent to the merchant but before
the write operation has been permanently recorded on the user’s device (e.g.,
because it was not yet flushed from the cache to a hard drive), the next payment
will cause a double spend, resulting in anonymity loss and a penalty for the
customer.

Fair Exchange

The Endorsed E-Cash system by Camenisch et al. [CLM07] allows for fair
exchange—sometimes called atomic swap in the context of cryptocurrencies—of
online or offline e-cash against digital goods. The online version of Camenisch’s
protocol does not protect the customer against loss of anonymity from linkability
of aborted fair exchanges.

Taler’s refresh protocol can be used for fair exchange of online e-cash against
digital goods, without any loss of anonymity due to linkability of aborted trans-
actions, with the following small extension: The customer asks the exchange to
lock coins to a merchant until a timeout. Until the timeout occurs, the exchange

70

3.7. Discussion

provides the merchant with a guarantee that these coins can only be spent with
this specific merchant, or not at all. The fair exchange exchanges the merchant’s
digital goods against the customer’s deposit permissions for the locked coins. On
aborted fair exchanges, the customer refreshes to obtain unlinkable coins.

71

4. Implementation of GNU Taler

This chapter describes the implementation of GNU Taler in detail. Concrete design
decisions, protocol details and our reference implementation are discussed.

We implemented the GNU Taler protocol in the context of a payment system
for the web, as shown in Figure 2.1. The system was designed for real-world
usage with current web technologies and within existing financial systems.

The following technical goals and constraints influenced the design of the
concrete protocol and implementation:

• The implementation should allow payments in browsers with hardened
security settings. In particular, it must be possible to make a payment
without executing JavaScript on a merchant’s website and without having
to store (session-)cookies or requiring a login.

• Cryptographic evidence should be available to all parties in case of a dispute.

• In addition to the guarantees provided by the GNU Taler protocol, the
implementation must take care to not introduce additional threats to security
and privacy. Features that trade privacy for convenience should be clearly
communicated to the user, and the user must have the choice to deactivate
them. Integration with the web should minimize the potential for additional
user tracking.

• The integration for merchants must be simple. In particular, merchants
should not have to write code involving cryptographic operations or have
to manage Taler-specific secrets in their own application processes.

• The web integration must not be specific to a single browser platform,
but instead must be able to use the lowest common denominator of what
is currently available. User experience enhancements supported for only
specific platforms are possible, but fallbacks must be provided for other
platforms.

• URLs should be clean, user-friendly and must have the expected semantics
when sharing them with others or revisiting them after a session expired.

• Multiple currencies must be supported. Conversion between different
currencies is out of scope.

• The implementation should offer flexibility with regards to what context or
applications it can be used for. In particular, the implementation must make

73

4. Implementation of GNU Taler

it possible to provide plugins for different underlying banking systems and
provide hooks to deal with different regulatory requirements.

• The implementation must be robust against network failures and crash
faults, and recover as gracefully as possible from data loss. Operations must
be idempotent if possible, e.g., accidentally clicking a payment button twice
should only result in one payment, and refreshing a page should not lead
to failures in the payment process.

• Authorization should be preferred to authentication. In particular, there
should be no situations in which the user must enter confidential informa-
tion on a page that cannot be clearly identified as secure.

• No flickering or unnecessary redirects. To complete a payment, the number
of request, especially in the user’s navigation context, should be minimized.

• While the implementation should integrate well with browsers, it must be
possible to request and make payments without a browser. This makes at
least part of the implementation completely independent of the extremely
complex browser standards, and makes Taler usable for machine-to-machine
payments.

We now recapitulate how a GNU Taler payment works, with some more details
specific to the implementation.

By instructing their bank to send money to an exchange, the customer creates a
(non-anonymous) balance, called a reserve, at the exchange. Once the exchange
has received and processed the bank transfer, the customer’s wallet automatically
drains the reserve by withdrawing coins from it until the reserve is empty. With-
drawing immediately before a purchase should be avoided, as it decreases the
customer’s anonymity set by creating a correlation between the non-anonymous
withdrawal and the spending.

To withdraw coins from the exchange, the customer’s wallet authenticates itself
using an Ed25519 private key for the customer’s reserve. The customer must
include the corresponding reserve public key in the payment instruction from
the customer’s bank to the exchange’s bank that funded their reserve. With a
bank that directly supports Taler on their online banking website, this process is
streamlined for the user, since the wallet automatically creates the key pair for
the reserve and adds the public key to the payment instruction.

While browsing a merchant’s website, the website can signal the wallet to
request a payment from a user. The user is then asked to confirm or reject this
proposal. If the user accepts, the wallet spends coins with the merchant. The
merchant deposits coins received from the customer’s wallet at the exchange.
Since bank transfers are usually costly, the exchange delays and aggregates
multiple deposits into a bigger wire transfer. This allows GNU Taler to be
used even for microtransactions of amounts smaller than usually handled by the
underlying banking system.

74

4.1. Overview

Customer's
Bank

Customer

Wallet
extension

Browser

1.
 p

ay
 e

xc
ha

ng
e

Merchant's
Bank

SDK

Frontend

www

Business
logic Backend

Merchant

7. view
 balance

2. wire transfer

3. withdraw coins

6. wire transfer

5. deposit coins

4. spend coins

Exchange's
Bank

Exchange

Database

Figure 4.1.: The different components of the Taler system in the context of a
banking system providing money creation, wire transfers and authen-
tication. (Auditor omitted.)

As shown in Figure 4.1, the merchant is internally split into multiple compo-
nents. The implementation of the Taler protocol and cryptographic operations
is isolated into a separate component, called the merchant backend, which the
merchant accesses through an API or software development kit (SDK) in the
programming language of their choice.

Our implementations of the exchange (70,000 LOC) and merchant backend
(20,000 LOC) are written in C using PostgreSQL as the database and libgcrypt for
cryptographic operations. The wallet (10,000 LOC) is implemented in TypeScript
as a cross-browser extension using the WebExtensions API, which is available
for a majority of widely used browsers. It also uses libgcrypt (compiled to
JavaScript) for cryptographic operations as the required primitives are not yet
natively supported by web browsers. Sample merchant websites (1,000 LOC) and
an example bank (2,000 LOC) with tight Taler integration are provided in Python.

The code is available at https://git.taler.net/ and a demo is publicly
available at https://demo.taler.net/.

4.1. Overview

We provide a high-level overview over the implementation, before discussing the
respective components in detail.

75

https://git.taler.net/
https://demo.taler.net/

4. Implementation of GNU Taler

4.1.1. Taler APIs

The components of Taler communicate over an HTTP-based, RESTful1 [FT00] API.
All request payloads and responses are JSON [Bra17] documents.

Binary data (such as key material, signatures and hashes) is encoded as a
base32-crockford [Cro] string. Base32-crockford is a simple, case-insensitive
encoding of binary data into a subset of the ASCII alphabet that encodes 5 bits
per character. While this is not the most space-efficient encoding, it is relatively
resilient against human transcription errors.

Financial amounts are treated as fixed-point decimal numbers. The imple-
mentation internally uses a pair of integers (v, f) with value part 0 ≤ v ≤ 252

and fractional part 0 ≤ f < 108 to represent the amount a = v + f · 10−8. This
representation was chosen as the smallest representable amount is equal to one
Satoshi (the smallest representable amount in Bitcoin), and the largest possi-
ble value part (besides being large enough for typical financial applications) is
still accurately representable in 64-bit IEEE 754 floating point numbers. These
constraints are useful as some languages such as JavaScript2 provide IEEE 753

floating point numbers as the only numeric type. More importantly, fixed-point
decimal numbers allow exact representation of decimal values (say 0.10e), which
is not possible with floating point numbers but essential in financial applications.

Signatures are made over custom binary representations of the respective
values, prefixed with a 64-bit tag consisting of the size of the message (32 bits)
and an integer tag (32 bits) uniquely identifying the purpose of the message. To
sign a free-form JSON object, a canonical representation as a string is created by
removing all white space and sorting objects’ fields.

In the future, more space-efficient representations (such as BSON3 or CBOR
[BH13]) could be used. The representation can be negotiated between client and
server in a backwards-compatible way with the HTTP “Accept” header.

4.1.2. Cryptographic Algorithms

The following cryptographic primitives are used by Taler:

• SHA512 [H306] as a cryptographic hash function

• Ed25519 [Ber06] for non-blind signing operations

• Curve25519 [Ber06] for the refreshing operation

• HKDF [KE10] as a key derivation function for the refreshing operation

• FDH-RSA blind signatures [Bel+03]

1Some REST purists might disagree, because the Taler APIs do not follow all REST principles
religiously. In particular, the HATEOAS principle is not followed.

2Big integers are currently in the process of being added to the JavaScript language standard.
3http://bsonspec.org/

76

4.1. Overview

Figure 4.2.: Entities/PKI in Taler. Solid arrows denote signatures, dotted arrows
denote blind signatures.

We chose these primitives as they are simple, cheap enough and relatively well
studied. Note that other signature schemes that have the syntax and properties
described in Section 3.5.1, such as [Bol03], could be used instead of FDH-RSA.

4.1.3. Entities and Public Key Infrastructure

The public key infrastructure (PKI) used by Taler is orthogonal to the PKI used
by TLS [RD08]. While TLS is used as the transport layer for Taler API messages,
we do not rely on TLS for authenticity or integrity of API queries and responses.
We do rely on TLS for the confidentiality of digital business contracts and the
authenticity, integrity and confidentiality of digital product delivery. For the
anonymity properties to hold, the customer must access the merchant and ex-
change through an anonymity layer (approximated by practical implementations
like Tor [DMS04]).

In the case of merchants, we cannot use a trusted auditor or exchange as a trust
anchor, since merchants are not required to register within our PKI to accept Taler
payments. Here we rely on TLS instead: The merchant is required to include
their Taler-specific merchant public key in their TLS certificate. If a merchant fails
to do this, the wallet will show a warning when asking the user to confirm a
payment.

Auditor

Auditors serve as trust anchors for Taler, and are identified by a single Ed25519

public key. Wallet implementations come with a pre-defined list of trusted

77

4. Implementation of GNU Taler

1 {
2 "version": "2:0:0",
3 "master_public_key": "CQQZ...",
4 "reserve_closing_delay": "/Delay(2419200)/",
5 "signkeys": [
6 {
7 "stamp_start": "/Date(1522223035)/",
8 "stamp_expire": "/Date(1533109435)/",
9 "stamp_end": "/Date(1585295035)/",

10 "master_sig": "842D...",
11 "key": "05XW..."
12 }
13],
14 "payback": [],
15 "denoms": [
16 {
17 "master_sig": "BHG5...",
18 "stamp_start": "/Date(1500450235)/",
19 "stamp_expire_withdraw": "/Date(1595058235)/",
20 "stamp_expire_deposit": "/Date(1658130235)/",
21 "stamp_expire_legal": "/Date(1815810235)/",
22 "denom_pub": "51RD...",
23 "value": "TESTKUDOS:10",
24 "fee_withdraw": "TESTKUDOS:0.01",
25 "fee_deposit": "TESTKUDOS:0.01",
26 "fee_refresh": "TESTKUDOS:0.01",
27 "fee_refund": "TESTKUDOS:0.01"
28 },
29 {
30 "master_sig": "QT0T...",
31 "stamp_start": "/Date(1500450235)/",
32 "stamp_expire_withdraw": "/Date(1595058235)/",

33 "stamp_expire_deposit": "/Date(1658130235)/",
34 "stamp_expire_legal": "/Date(1815810235)/",
35 "denom_pub": "51R7",
36 "value": "TESTKUDOS:0.1",
37 "fee_withdraw": "TESTKUDOS:0.01",
38 "fee_deposit": "TESTKUDOS:0.01",
39 "fee_refresh": "TESTKUDOS:0.01",
40 "fee_refund": "TESTKUDOS:0.01"
41 },
42],
43 "auditors": [
44 {
45 "denomination_keys": [
46 {
47 "denom_pub_h": "RNTQ...",
48 "auditor_sig": "6SC2..."
49 },
50 {
51 "denom_pub_h": "CP6B...",
52 "auditor_sig": "0GSE..."
53 }
54],
55 "auditor_url": "https://auditor.test.taler.net/",
56 "auditor_pub": "BW9DC..."
57 }
58],
59 "list_issue_date": "/Date(1530196508)/",
60 "eddsa_pub": "05XW...",
61 "eddsa_sig": "RXCD..."
62 }

Figure 4.3.: Example response for /keys

auditors, similar to the certificate store of browsers or operating systems.

Exchange

An exchange is identified by a long term Ed25519 master key and the exchange’s
base URL. The master key is used as an offline signing key, typically stored on an
air-gapped machine. API requests to the exchange are made by appending the
name of the endpoint to the base URL.

The exchange uses the master key to sign the following data offline:

• The exchange’s online Ed25519 signing keys. The online signing keys are
used to sign API responses from the exchange. Each signing key has a
validity period.

• The denominations offered by the exchange (explained further in Sec-
tion 4.1.3).

• The bank accounts supported by the exchange (for withdrawals and de-
posits) and associated fees.

The <base-url>/keys HTTP endpoint of the exchange is used by wallets and
merchants to obtain the exchange’s signing keys, currently offered denominations
and other details. In order to reduce traffic, clients can also request only signing
keys and denominations that were created after a specific time. The response to
/keys is signed by a currently active signing key, so that customers would have
proof in case the exchange gave different sets of denomination keys to different
customers in an attempt to deanonymize them.

78

4.1. Overview

Figure 4.4.: A denomination’s lifetime.

Coins and Denominations

Denominations are the RSA public keys used to blindly sign coins of a fixed
amount, together with information about their validity and associated fees. The
following information is signed by the exchanges master key for every denomina-
tion:

• The RSA public key.

• The start date, after which coins of this denomination can be withdrawn
and deposited.

• The withdraw expiration date, after which coins cannot be withdrawn
anymore, must be after the start date.

• The deposit expiration date, after which coins cannot be deposited anymore,
must be after the withdraw expiration date.

• The legal expiration date, after which the exchange can delete all records
about operations with coins of this denominations, must be (typically quite
a long time!) after the deposit expiration date.

• The fees for a withdraw, deposit, refresh and refund operation with this
coin, respectively.

An exchange can be audited by zero, one or multiple auditors. An auditor
must monitor all denominations currently offered by the exchange, and an audit
of a subset of denominations is not intended in the current design. To allow
customers of an exchange to confirm that it is audited properly, the auditor signs
an auditing request from the exchange, containing basic information about the
exchange as well as all keys offered during the auditing period. In addition to
the full auditing request, the auditor also signs an individual certificate for each
denomination individually, allowing clients of the exchange to incrementally
verify newly offered denominations.

Merchant

The merchant has one Ed25519 key pair that is used to sign responses to the
customer and authenticate some requests to the exchange. Depending on the
legislation that applies to a particular GNU Taler deployment, merchants might

79

4. Implementation of GNU Taler

not need to establish an a priori relationship with the exchange, but instead send
their bank account information during or after the first deposit of a payment from
a customer.

In some jurisdictions, exchanges are required to follow know-your-customer
(KYC) regulations and to verify the identity of merchants [Arn+18] using that
particular exchange for deposits. Typically, the identity of a merchant only has to
be verified if a merchant exceeds a certain threshold of transactions in a given
time span. As the KYC registration process can be costly to the exchange, this
requirement is somewhat at odds with merchants accepting payments from all
exchanges audited by a trusted auditor, since KYC registration needs to be done at
every exchange separately. It is, however, unavoidable to run a legally compliant
payment system.

A merchant is typically configured with a set of trusted auditors and exchanges,
and consequently accepts payments with coins of denominations from a trusted
exchange and denominations audited by a trusted auditor.

In order to make the deployment of Taler easier and more secure, the parts that
deal with the merchant’s private key and cryptographic operations are isolated
into a separate service (the merchant backend) with a well-defined RESTful HTTP
API. This concept is similar to payment gateways used commonly for credit card
payments. The merchant backend can be deployed on-premise by the online shop,
or run by a third party provider that is fully trusted by the merchant.

Bank

Since the banks are third parties that are not directly part of Taler, they do not
participate directly in Taler’s PKI.

Customer

Customers are not registered with an exchange, instead they use the private keys
of reserves that they own to authenticate with the exchange. The exchange knows
the reserve’s public key from the subject/instruction data of the wire transfer.
Wire transfers that do not contain a valid public key are automatically reversed.

4.1.4. Payments

Payments in Taler are based on contract terms, a JSON object that describes the
subject and modalities of a business transaction. The cryptographic hash of such
a contract terms object can be used as a globally unique identifier for the business
transaction. Merchants must sign the contract terms before sending them to the
customer, allowing a customer to prove in case of a dispute the obligations of the
merchant resulting from the payment.

Unless a third party needs to get involved in a dispute, it is sufficient (and
desirable for data minimization) that only the merchant and the customer know
the full content of the contract terms. The exchange, however, must still know the

80

4.1. Overview

0 31 63 95 127

size purpose timestamp

merchant public key

contract terms hash

deposit deadline refund deadline

KYC / account info hash

Figure 4.5.: The contract header that is signed by the merchant.

0 31 63 95 127

size purpose timestamp

contract header hash

coin public key

contributed amount

deposit fee

Figure 4.6.: The deposit permission signed by the customer’s wallet.

81

4. Implementation of GNU Taler

parts of the contract terms that specify payment modalities, such as the refund
policy, micropayment aggregation deadline and the merchant’s KYC registration
data (typically a hash to prove the KYC enrollment of the merchant).

Thus, the merchant’s signature is made over the contract header, which contains
the contract terms hash, as well as the payment modalities.

In addition to the data provided by the merchant, the contract terms contain a
claim_pub field whose value is provided by the customer. This field is an Ed25519

public key, and the customer can use the corresponding private key to prove that
they have indeed obtained the individual contract terms from the merchant, and
did not copy contract terms that the merchant gave to another customer. Note
that this key is not a permanent identity of the customer, but should be freshly
generated for each payment.

The signed contract header is created by the merchant’s backend from an order,
which is the “blueprint” for the contract terms. The order is generated by the
merchant’s frontend and contains a subset of the data contained in the contract
terms. Missing data (in particular the merchant’s bank account information,
public key and accepted auditors/exchanges) and the claim public key obtained
from the customer is automatically added by the merchant backend. This allows
applications to process payments without having to specify Taler-internal details.
In fact, the smallest possible order only needs to contain two fields: the amount
to be paid and a human-readable summary of the payment’s subject.

An order contains an order ID, which is an identifier that is unique within a
given merchant and can be a human-friendly identifier such as a booking number.
If the order ID is not manually provided, it is automatically filled in by the
merchant backend. It can be used to refer to the payment associated with the
order without knowing the contract terms hash, which is only available once the
customer has provided their claim public key.

To initiate a payment, the merchant sends the customer an unclaimed contract
terms URL. The customer can download and thereby claim ownership of the
contract by appending their claim public key p as a query parameter to the
unclaimed contract terms URL and making an HTTP GET request to the resulting
URL. The customer must then verify that the resulting contract terms are signed
correctly by the merchant and that the contract terms contain their claim public
key p. A malicious customer could try to claim other customers’ contracts by
guessing contract term URLs and appending their own claim public key. For
products that have limited availability, the unclaimed contract URL must have
enough entropy so that malicious customers are not able to guess them and claim
them before the honest customer.4

To give an example, an online shop for concert tickets might allow users to put
themselves on a waiting list, and will send them an email once a ticket becomes
available. The contract terms URL that allows the customer to purchase the ticket
(once they have visited a link in this email), should contain an unguessable nonce,

4Note that this URL cannot be protected by a session cookie, as it might be requested from a
different session context than the user’s browser, namely in the wallet.

82

4.1. Overview

as otherwise an attacker might be able to predict the URL and claim the contract
for the concert ticket before the customer’s wallet can.

In order to settle the payment, the customer must sign a deposit permission
for each coin that comprises the payment. The deposit permission is a message
signed by the coin’s private key, containing

• the amount contributed by this coin to the payment,

• the merchant’s public key

• the contract header together with the merchant’s signature on it,

• the time at which the deposit permission was signed.

After constructing the deposit permissions for a contract, the customer sends
them to the merchant by doing an HTTP POST request to the pay_url indicated
by the merchant in the contract terms. The merchant individually deposits each
deposit permission with the exchange.

The merchant responds with a payment confirmation to the customer after it
has successfully deposited the customer’s coins with the exchange. The payment
confirmation can be used by the customer to prove that they completed the
payment before the payment deadline indicated in the contract terms.

Note that the depositing multiple coins with the exchange deliberately does
not have transactional semantics. Instead, each coin is deposited in an individual
transaction. This allows the exchange to be horizontally scaled (as discussed in
Section 4.9) more easily, as deposit transaction might otherwise have to span
multiple database shards.

The lack of transactional semantics, however, means that it must be possible
to recover from partially completed payments. There are several cases: If one
of the coins that the customer submitted as payment to the merchant is invalid
(e.g., because the wallet’s state was restored from a backup), the customer can
re-try the partially completed payment and provide a different coin instead. If
that is not possible or desired by the customer, the merchant may voluntarily
give a refund on the coins that have been previously deposited. The reference
implementation of the merchant backend offers refunds for partially completed
payments automatically.

If refunds were disabled for the payment, the merchant does not cooperate in
giving refunds for a partially completed payment, or becomes unresponsive after
partially depositing the customer’s coin, the customer has two options: They can
either complete the deposits on the merchant’s behalf, and then use the deposit
permissions to prove (either to the merchant or to a court) that they completed
the payment.

Another possibility would be to allow customers to request refunds for partially
completed payments themselves, directly from the exchange. This requires that
the merchant additionally includes the amount to be paid for the contract in
the contract header, as the exchange needs to know that amount to decide if a

83

4. Implementation of GNU Taler

payment with multiple coins is complete. We do not implement this approach,
since it implies that the exchange always learns the exact prices of products that
the merchant sells, as opposed to just the merchant’s total revenue.

The customer could also reveal the contract terms to the exchange to prove
that a payment is incomplete, but this is undesirable for privacy reasons, as
the exchange should not learn about the full details of the business agreement
between customer and merchant.

4.1.5. Resource-based Web Payments

In order to integrate natively with the concepts and architecture of the web, Taler
supports paying for a web resource in the form of a URL. In fact all Taler contract
terms contain a fulfillment URL, which identifies the resource that is being paid
for. If the customer is not paying for a digital product (such as an movie, song or
article), the fulfillment URL can point to a confirmation page that shows further
information, such as a receipt for a donation or shipment tracking information
for a physical purchase. A fulfillment URL does not necessarily refer to a single
item, but could also represent a collection such as a shopping basket.

The following steps illustrate a typical payment with the online shop alice-shop.
example.com.

1. The user opens the shop’s page and navigates to a paid resource, such as
https://alice-shop.example.com/essay-24.pdf.

2. The shop sends a response with HTTP status “402 Payment Required” with
the headers (↪→ marks a continued line)

Taler-Contract-Url: https://alice-shop.example.com/
↪→ contract?product=essay-24.pdf

Taler-Resource-Url: https://alice-shop.example.com/
↪→ essay-24.pdf

3. Since the user’s wallet does not yet contain contract terms with the fulfill-
ment URL https://alice-shop.example.com/esasy-24.pdf that
matches the resources URL, it claims the contract by generating a claim key
pair (s, p) and requesting the contract URL with the claim public key p as ad-
ditional parameter: https://alice-shop.example.com/contract?
product=essay-24.pdf&claim_pub=p.

4. The wallet displays the contract terms to the customer and asks them to
accept or decline. If the customer accepted the contract, the wallet sends a
payment to the merchant. After the merchant received a valid payment, it
marks the corresponding order as paid.

5. The wallet constructs the extended fulfillment URL by adding the order
id from the contract as an additional parameter and navigates the browser

84

4.1. Overview

to the resulting URL https://alice-shop.example.com/esasy-24.
pdf?order_id=....

6. The shop receives the request to the extended fulfillment URL and checks
if the payment corresponding to the order ID was completed. In case the
payment was successful, it serves the purchased content.

To avoid checking the status of the payment every time, the merchant can
instead set a session cookie (signed/encrypted by the merchant) in the user’s
browser which indicates that essay-24.pdf has been purchased.

The resource-based payment mechanism must also handle the situation where
a customer navigates again to a resource that they already paid for, without
directly navigating to the extended fulfillment URL. In case no session cookie
was set for the purchase or the cookie was deleted / has expired, the customer
would be prompted for a payment again. To avoid this, the wallet tries to find an
existing contract whose plain fulfillment URL matches the resource URL specified
in the merchant’s HTTP 402 response. If such an existing payment was found, the
wallet instead redirects the user to the extended fulfillment URL for this contract,
instead of downloading the new contract terms and prompting for payment.

In the example given above, the URL that triggers the payment is the same as
the fulfillment URL. This may not always the case in practice. When the merchant
backend is hosted by a third party, say https://bob.example.com/, the page
that triggers the payment even has a different origin, i.e., the scheme, host or port
may differ [Bar11].

This cross-origin operation presents a potential privacy risk if not implemented
carefully. To check whether a user has already paid for a particular resource
with URL u, an arbitrary website could send an HTTP 402 response with the
“Taler-Resource-Url” header set to u and the “Taler-Contract-Url” set to a URL
pointing to the attacker’s server. If the user paid for u, the wallet will navigate to
the extended fulfillment URL corresponding to u. Otherwise, the wallet will try
to download a contract from the URL given by the attacker. In order to prevent
this attack on privacy, the wallet must only redirect to u if the origin of the page
responding with HTTP 402 is the same origin as either the u or the pay URL.5

Loose Browser Integration

The payment process we just described does not directly work in browsers that do
not have native Taler integration, as the browser (or at least a browser extension)
would have to handle the HTTP status code 402 and handle the Taler-specific
headers correctly. We now define a fallback, which is transparently implemented
in the reference merchant backend.

In addition to indicating that a payment is required for a resource in the HTTP
status code and header, the merchant includes a fallback URL in the body of the

5This type of countermeasure is well known in browsers as the same origin policy, as also
outlined in [Bar11].

85

4. Implementation of GNU Taler

“402 Payment Required” response. This URL must have the custom URL scheme
taler, and contains the contract terms URL (and other Taler-specific settings
normally specified in headers) as parameters. The above payment would include
a link (labled, e.g., “Pay with GNU Taler”) to the following URL, encoding the
same information as the headers:

taler:pay?
↪→ contract_url=
↪→ https%3A%2F%2Falice-shop.example.com%2Fcontract%3
↪→ Fproduct%3Dessay-24.pdf
↪→ &resource_url=
↪→ https%3A%2F%2Falice-shop.example.com%2Fessay-24.pdf

This fallback can be disabled for requests from user agents that are known to
natively support GNU Taler.

GNU Taler wallet applications register themselves as a handler for the taler
URI scheme, and thus following a taler:pay link opens the dedicated wallet,
even if GNU Taler is not supported by the browser or a browser extension.
Registration a custom protocol handler for a URI scheme is possible on all
modern platforms with web browsers that we are aware of.

Note that wallets communicating with the merchant do so from a different
browsing context, and thus the merchant backend cannot rely on cookies that
were set in the customer’s browser when using the shop page.

We chose HTTP headers as the primary means of signaling to the wallet
(instead of relying on, e.g., a new content media type), as it allows the fallback
content to be an HTML page that can be rendered by all browsers. Furthermore,
current browser extension mechanism allow intercepting headers synchronously
before the rendering of the page is started, avoiding visible flickering caused by
intermediate page loads.

4.1.6. Session-bound Payments and Sharing

As we described the payment protocol so far, an extended fulfillment URL is
not bound to a browser session. When sharing an extended fulfillment URL,
another user would get access to the same content. This might be appropriate for
some types of fulfillment pages (such as a donation receipt), but is generally not
appropriate when digital content is sold. Even though it is trivial to share digital
content unless digital restrictions management (DRM) is employed, the ability to
share links might set the bar for sharing too low.

While the validity of a fulfillment URL could be limited to a certain time,
browser session or IP address, this would be too restrictive for scenarios where
the user wants to purchase permanent access to the content.

As a compromise, Taler provides session-bound payments. For session-bound
payments, the seller’s website assigns the user a random session ID, for example,
via a session cookie. The extended fulfillment URL for session-bound payments is

86

4.1. Overview

constructed by additionally specifying the URL parameter session_sig, which
contains proof that the user completed (or re-played) the payment under their
current session ID.

To initiate a session-bound payment, the HTTP 402 response must additionally
contain the “Taler-Session-Id” header, which will cause the wallet to additionally
obtain a signature on the session ID from the merchant’s pay URL, by additionally
sending the session ID when executing (or re-playing) the payment. As an
optimization, instead of re-playing the full payment, the wallet can also send
the session ID together with the payment receipt it obtained from the completed
payment with different session ID.

Before serving paid content to the user, the merchant simply checks if the
session signature matches the assigned session and contract terms. To simplify
the implementation of the frontend, this signature check can be implemented as
a request to the GNU Taler backend. Using session signatures instead of storing
all completed session-bound payments in the merchant’s database saves storage.

While the coins used for the payment or the payment receipt could be shared
with other wallets, it is a higher barrier than just sharing a URL. Furthermore,
the merchant could restrict the rate at which new sessions can be created for the
same contract terms and restrict a session to one IP address, limiting sharing.

For the situation where a user accesses a session-bound paid resource and
neither has a corresponding contract in their wallet nor does the merchant provide
a contract URL to buy access to the resource, the merchant can specify an offer
URL in the “Taler-Offer-Url” header. If the wallet is not able to take any other
steps to complete the payment, it will redirect the user to the offer URL. As
the name suggests, the offer URL can point to a page with alternative offers for
the resource, or some other explanation as to why the resource is not available
anymore.

4.1.7. Embedded Content

So far we only considered paying for a single, top-level resource, namely the ful-
fillment URL. In practice, however, websites are composed of many subresources
such as embedded images and videos.

We describe two techniques to “paywall” subresources behind a GNU Taler
payment. Many other approaches and variations are possible.

1. Visiting the fulfillment URL can set a session cookie. When a subresource is
requested, the server will check that the customer has the correct session
cookie set.

2. When serving the fulfillment page, the merchant can add an additional
authentication token to the URLs of subresources. When the subresource
is requested, the validity of the authentication token is checked. If the
merchant itself (instead of a Content Delivery Network that supports token

87

4. Implementation of GNU Taler

authentication) is serving the paid subresource, the order ID and session
signature can also be used as the authentication token.

It would technically be possible to allow contract terms to refer to multiple
resources that are being purchased by including a list or pattern that defines a set
of URLs. The browser would then automatically include information to identify
the completed payment in the request for the subresource. We deliberately do not
implement this approach, as it would require deeper integration in the browser
than possible on many platforms. If not restricted carefully, this feature could
also be used as an additional method to track the user across the merchant’s
website.

4.1.8. Contract Terms

The contract terms, only seen by the customer and the merchant (except when a
tax audit of the merchant is requested) contain the following information:

• The total amount to be paid,

• the pay_url, an HTTP endpoint that receives the payment,

• the deadline until the merchant accepts the payment (repeated in the signed
contract header),

• the deadline for refunds (repeated in the signed contract header),

• the claim public key provided by the customer, used to prove they have
claimed the contract terms,

• the order ID, which is a short, human-friendly identifier for the contract
terms within the merchant,

• the fulfillment_url, which identifies the resources that is being paid
for,

• a human-readable summary and product list,

• the fees covered by the merchant (if the fees for the payment exceed this
value, the customer must explicitly pay the additional fees),

• depending on the underlying payment system, KYC registration information
or other payment-related data that needs to be passed on to the exchange
(repeated in the signed contract header),

• the list of exchanges and auditors that the merchants accepts for the pay-
ment,

• information about the merchant, including the merchant public key and
contact information.

88

4.1. Overview

4.1.9. Refunds

By signing a refund permission, the merchant can “undo” a deposit on a coin,
either fully or partially. The customer can then spend (or refresh) the refunded
value of the coin again. A refund is only possible before the refund deadline
(specified in the contract header). After the refund deadline has passed (and
before the deposit deadline) the exchange makes a bank transfer the merchant
with the aggregated value from deposits, a refund after this point would require
a bank transfer back from the merchant to the exchange.

Each individual refund on each coin incurs fees; the refund fee is subtracted
from the amount given back to the customer and kept by the exchange.

Typically a refund serves either one of the following purposes:

• An automatic refund is given to the customer when a payment only partially
succeeded. This can happen when a customer’s wallet accidentally double-
spends, which is possible even with non-malicious customers and caused
by data loss or delayed/failed synchronization between the same user’s
wallet on multiple devices. In these cases, the user can choose to re-try the
payment with different, unspent coins (if available) or to ask for a refund
from the merchant.

• A voluntary refund can be given at the discretion of the merchant, for
example, when the customer is not happy with their purchase.

Refunds require a signature by the merchant, but no consent from the customer.
A customer is notified of a refund with the HTTP 402 Payment Required status

code and the “Taler-Refund” header. The value of the refund header is a URL.
An HTTP GET request on that URL will return a list of refund confirmations that
the merchant received from the exchange.

4.1.10. Tipping

Tipping in Taler uses the “withdraw loophole” (see 2.1.11) to allow the mer-
chant6 to donate small amounts (without any associated contract terms or legal
obligations) into the user’s wallet.

To be able to give tips, the merchant must create a reserve with an exchange.
The reserve private key is used to sign blinded coins generated by the user that is
being given the tip.

The merchant triggers the wallet by returning an HTTP 402 Payment Required
response that includes the “Taler-Tip” header. The value of the tip header (called
the tip token) contains

• the amount of the tip,

6We still use the term “merchant”, since donations use the same software component as the
merchant, but “donor” would be more accurate.

89

4. Implementation of GNU Taler

• the exchange to use,

• a URL to redirect after processing the tip,

• a deadline for picking up the tip,

• a merchant-internal unique ID for the tip, and

• the pickup URL for the tip.

Upon receiving the tip token, the wallet creates coin planchets that sum up to at
most the amount specified in the tip token, with denominations offered by the
exchange specified in the tip token.

The list of planchets is then sent to the merchant via an HTTP POST request to
the tip-pickup URL. The merchant creates a withdrawal confirmation signature
for each planchet, using the private key of the tipping reserve, and responds to
the HTTP POST request with the resulting list of signatures. The user then uses
these signatures in the normal withdrawal protocol with the exchange to obtain
coins “paid for” by the merchant, but anonymized and only spendable by the
customer.

4.2. Bank Integration

In order to use Taler for real-world payments, it must be integrated with the
existing banking system. Banks can choose to tightly integrate with Taler and
offer the ability to withdraw coins on their website. Even existing banks can be
used to withdraw coins via a manual bank transfer to the exchange, with the only
requirement that the 52 character alphanumeric, case-insensitive encoding of the
reserve public key can be included in the transaction without modification other
than case folding and white space normalization.7

4.2.1. Wire Method Identifiers

We introduce a new URI scheme payto, which is used in Taler to identify target
accounts across a wide variety of payment systems with uniform syntax.

In in its simplest form, a payto URI identifies one account of a particular
payment system:

’payto://’ TYPE ’/’ ACCOUNT

When opening a payto URI, the default action is to open an application that
can handle payments with the given type of payment system, with the target
account pre-filled. In its extended form, a payto URL can also specify additional
information for a payment in the query parameters of the URI.

7Some banking systems specify that the subject of the can be changed, and provide an additional
machine-readable “instruction” field.

90

4.2. Bank Integration

In the generic syntax for URIs, the payment system type corresponds to the
authority, the account corresponds to the path, and additional parameters for the
payment correspond to the query parameters. Conforming to the generic URI
syntax makes parsing of payto URIs trivial with existing parsers.

Formally, a payto URI is an encoding of a partially filled out pro forma invoice.
The full specification (in the form of an IETF draft currently at the time of writing)
of the payto URI is in Appendix B.

In the implementation of Taler, payto URIs are used in various places:

1. The exchange lists the different ways it can accept money as payto URIs. If
the exchange uses payment methods that do not have tight Taler integration.

2. In order to withdraw money from an exchange that uses a bank account
type that does not typically have tight Taler integration, the wallet can
generate a link and a QR code that already contains the reserve public key.
When scanning the QR code with a mobile device that has an appropriate
banking app installed, a bank transfer form can be pre-filled and the user
only has to confirm the transfer to the exchange.

3. The merchant specifies the account it wishes to be paid on as a payto URI,
both in the configuration of the merchant backend as well as in communica-
tion with the exchange.

A major advantage of encoding payment targets as URIs is that URI schemes
can be registered with an application on most platforms, and will be “clickable”
in most applications and open the right application when scanned as a QR code.
This is especially useful for the first use case listed above; the other use cases
could be covered by defining a media type instead [FKH13].

As an example, the following QR code would open a banking application that
supports SEPA payments, pre-filled with a 15e donation to the bank account of
GNUnet:

4.2.2. Demo Bank

For demonstration purposes and integration testing, we use our toy bank im-
plementation8, which might be used in the future for regional currencies or
accounting systems (e.g., for a company cafeteria). The payment type identifier
is taler-bank. The authority part encodes the base URL of the bank, and the
path must be the decimal representation of a single integer between 1 and 252,
denoting the internal demo bank account number.

8https://git.taler.net/bank.git

91

payto://sepa/DE67830654080004822650?amount=EUR:15
https://git.taler.net/bank.git

4. Implementation of GNU Taler

4.2.3. EBICS and SEPA

The Electronic Banking Internet Communication Standard9 (EBICS) is a standard
for communicating with banks, and is widely used in Germany, France and
Switzerland, which are part of the Single European Payment Area (SEPA). EBICS
itself is just a container format. A commonly supported payload for EBICS is ISO
2022, which defines messages for banking-related business processes.

Integration of GNU Taler with EBICS is currently under development, and
would allow Taler to be easily deployed in many European countries, provided
that the exchange provider can obtain the required banking license.

4.2.4. Blockchain Integration

Blockchains such as Bitcoin could also be used as the underlying financial system
for GNU Taler, provided that merchants and customers trust the exchange to be
honest.

With blockchains that allow more complex smart contracts, the auditing func-
tionality could be implemented by the blockchain itself. In particular, the ex-
change can be incentivized to operate correctly by requiring an initial safety
deposit to the auditing smart contract, which is distributed to defrauded partici-
pants if misbehavior of the exchange is detected.

4.3. Exchange

The exchange consists of three independent processes:

• The taler-exchange-httpd process handles HTTP requests from clients,
mainly merchants and wallets.

• The taler-exchange-wirewatch process watches for wire transfers to
the exchange’s bank account and updates reserves based on that.

• The taler-exchange-aggregator process aggregates outgoing transac-
tions to merchants.

All three processes exchange data via the same database. Only taler-exchange-httpd
needs access to the exchanges online signing keys and denomination keys.

The database is accessed via a Taler-specific database abstraction layer. Different
databases can be supported via plugins; at the time of writing this, only a
PostgreSQL plugin has been implemented.

Wire plugins are used as an abstraction to access the account layer that Taler
runs on. Specifically, the wirewatch process uses the plugin to monitor incoming
transfers, and the aggregator process uses the wire plugin to make wire transfers
to merchants.

The following APIs are offered by the exchange:
9http://www.ebics.org

92

http://www.ebics.org

4.3. Exchange

Figure 4.7.: Architecture of the exchange reference implementation

Announcing keys, bank accounts and other public information The exchange of-
fers the list of denomination keys, signing keys, auditors, supported bank
accounts, revoked keys and other general information needed to use the
exchange’s services via the /keys and /wire APIs.

Reserve status and withdrawal After having wired money to the exchange, the
status of the reserve can be checked via the /reserve/status API. Since
the wire transfer usually takes some time to arrive at the exchange, wal-
lets should periodically poll this API, and initiate a withdrawal with
/reserve/withdraw once the exchange received the funds.

Deposits and tracking Merchants transmit deposit permissions they have re-
ceived from customers to the exchange via the /deposit API. Since multi-
ple deposits are aggregated into one wire transfer, the merchant additionally
can use the exchange’s /track/transfer API that returns the list of de-
posits for an identifier included in the wire transfer to the merchant, as well
as the /track/transaction API to look up which wire transfer included
the payment for a given deposit.

Refunds The refund API (/refund) can “undo” a deposit if the merchant gave
their signature, and the aggregation deadline for the payment has not
occurred yet.

Emergency payback The emergency payback API (/payback) allows customers
to be compensated for coins whose denomination key has been revoked.
Customers must send either a full withdrawal transcript that includes their
private blinding factor, or a refresh transcript (of a refresh that had the

93

4. Implementation of GNU Taler

Figure 4.8.: Data flow for updating the exchange’s keys.

revoked denominations as one of the targets) that includes blinding factors.
In the former case, the reserve is credited, in the latter case, the source coin
of the refresh is refunded and can be refreshed again.

New denomination and signing keys are generated and signed with the ex-
change’s master secret key using the taler-exchange-keyup utility, according
to a key schedule defined in the exchange’s configuration. This process should be
done on an air-gapped offline machine that has access to the exchange’s master
signing key.

Generating new keys with taler-exchange-keyup also generates an audit-
ing request file, which the exchange should send its auditors. The auditors then
certify these keys with the taler-auditor-sign tool.

This process is illustrated in Figure 4.8.

4.4. Auditor

The auditor consists of two processes that are regularly run and generate audit-
ing reports. Both processes access the exchange’s database, either directly (for
exchange-internal auditing as part if its operational security) or over a replica (in
the case of external auditors).

The taler-wire-auditor process checks that the incoming and outgoing
transfers recorded in the exchange’s database match wire transfers of the un-
derlying bank account. To access the transaction history (typically recorded
by the bank), the wire auditor uses a wire plugin, with the same interface and
implementation as the exchange’s wire plugins.

94

4.5. Merchant Backend

The taler-auditor process generates a report with the following informa-
tion:

• Do the operations stored in a reserve’s history match the reserve’s balance?

• Did the exchange record outgoing transactions to the right merchant for
deposits after the deadline for the payment was reached?

• Do operations recorded on coins (deposit, refresh, refund) match the re-
maining value on the coin?

• Do operations respect the expiration of denominations?

• For a denomination, is the number of pairwise different coin public keys
recorded in deposit/refresh operations smaller or equal to the number of
blind signatures recorded in withdraw/refresh operations? If this invariant
is violated, the corresponding denomination must be revoked.

• What is the income if the exchange from different fees?

The operation of both auditor processes is incremental. There is a separate
database to checkpoint the auditing progress and to store intermediate results
for the incremental computation. Most database tables used by the exchange are
append-only: rows are only added but never removed or changed. Tables that are
destructively modified by the exchange only store cached computations based on
the append-only tables. Each append-only table has a monotonically increasing
row ID. Thus, the auditor’s checkpoint simply consists of the set of row IDs that
were last seen.

The auditor exposes a web server with the taler-auditor-httpd process.
Currently, it only shows a website that allows the customer to add the auditor
to the list of trusted auditors in their wallet. In future versions, the auditor will
also have HTTP endpoints that allow merchants to submit samples of deposit
confirmations, which will be checked against the deposit permissions in the
exchange’s database to detect compromised signing keys or missing writes.
Furthermore, in deployments that require the merchant to register with the
exchange beforehand, the auditor also offers a list of exchanges it audits, so that
the merchant backend can automatically register with all exchanges it transitively
trusts.

4.5. Merchant Backend

The Taler merchant backend is a component that abstracts away the details of
processing Taler payments and provides a simple HTTP API. The merchant
backend handles cryptographic operations (signature verification, signing), secret
management and communication with the exchange.

The backend API10 is divided into two types of HTTP endpoints:
10See https://docs.taler.net/api/ for the full documentation

95

https://docs.taler.net/api/

4. Implementation of GNU Taler

Figure 4.9.: Architecture of the merchant reference implementation

1. Functionality that is accessed internally by the merchant. These APIs
typically require authentication and/or are only accessible from within the
private network of the merchant.

2. Functionality that is exposed publicly on the Internet and accessed by the
customer’s wallet and browser.

A typical merchant has a storefront component that customers visit with their
browser, as well as a back office component that allows the merchant to view
information about payments that customers made and that integrates with other
components such as order processing and shipping.

4.5.1. Processing payments

To process a payment, the storefront first instructs the backend to create an order.
The order contains information relevant to the purchase, and is in fact a subset
of the information contained in the contract terms. The backend automatically
adds missing information to the order details provided by the storefront. The full
contract terms can only be signed once the customer provides the claim public
key for the contract.

Each order is uniquely identified by an order ID, which can be chosen by the
storefront or automatically generated by the backend.

The order ID can be used to query the status of the payment. If the customer
did not pay for an order ID yet, the response from the backend includes a payment
redirect URL. The storefront can redirect the customer to this payment redirect

96

4.5. Merchant Backend

URL; visiting the URL will trigger the customer’s browser/wallet to prompt for a
payment.

To simplify the implementation of the storefront, the merchant backend can
serve a page to the customer’s browser that triggers the payment via the HTTP 402

status code and the corresponding headers, and provides a fallback (in the form
of a taler:pay link) for loosely integrated browsers. When checking the status
of a payment that is not settled yet, the response from the merchant backend will
contains a payment redirect URL. The storefront redirects the browser to this
URL, which is served by the merchant backend and triggers the payment.

The code snippet shown in Figure 4.10 implements the core functionality of
a merchant frontend that prompts the customer for a donation (upon visiting
/donate with the right query parameters) and shows a donation receipt on the
fulfillment page with URL /receipt. The code snippet is written in Python
and uses the Flask library11 to process HTTP requests. The helper functions
backend_post and backend_get make an HTTP POST/GET request to the
merchant backend, respectively, with the given request body / query parameters.

4.5.2. Back Office APIs

The back office API allows the merchant to query information about the history
and status of payments, as well as correlate wire transfers to the merchant’s bank
account with the respective GNU Taler payment. This API is necessary to allow
integration with other parts of the merchant’s e-commerce infrastructure.

4.5.3. Example Merchant Frontends

We implemented the following applications using the merchant backend API.

Blog Merchant The blog merchant’s landing page has a list of article titles with a
teaser. When following the link to the article, the customer is asked to pay
to view the article.

Donations The donations frontend allows the customer to select a project to
donate to. The fulfillment page shows a donation receipt.

Codeless Payments The codeless payment frontend is a prototype for a user
interface that allows merchants to sell products on their website without
having to write code to integrate with the merchant backend. Instead,
the merchant uses a web interface to manage products and their available
stock. The codeless payment frontend then creates an HTML snippet with a
payment button that the merchant can copy-and-paste integrate into their
storefront.

Survey The survey frontend showcases the tipping functionality of GNU Taler.
The user fills out a survey and receives a tip for completing it.

11http://flask.pocoo.org/

97

http://flask.pocoo.org/

4. Implementation of GNU Taler

@app . route ("/donate ")
def donate () :

donation_amount = expect_parameter (" donation_amount ")
donation_donor = expect_parameter (" donation_donor ")
f u l f i l l m e n t _ u r l = f l a s k . u r l _ f o r (" f u l f i l l m e n t " , _ e x t e r n a l =True)
order = d i c t (

amount=donation_amount ,
e x t r a = d i c t (donor=donation_donor , amount=donation_amount) ,
f u l f i l l m e n t _ u r l = f u l f i l l m e n t _ u r l ,
summary=" Donation to the GNU Taler p r o j e c t " ,

)
a s k back end t o c r e a t e new o r d e r
order_resp = backend_post (" order " , d i c t (order=order))
order_id = order_resp [" order_id "]
return f l a s k . r e d i r e c t (f l a s k . u r l _ f o r (" f u l f i l l m e n t " , order_id=order_id))

@app . route ("/ r e c e i p t ")
def f u l f i l l m e n t () :

order_id = expect_parameter (" order_id ")
pay_params = d i c t (order_id=order_id)

a s k back end f o r s t a t u s o f payment
pay_status = backend_get (" check−payment " , pay_params)

i f pay_status . get (" payment_redirect_ur l ") :
return f l a s k . r e d i r e c t (pay_status [" payment_redirect_url "])

i f pay_status . get (" paid ") :
The " e x t r a " f i e l d in t h e c o n t r a c t t e rms can be used
by t h e merchant f o r f r e e−form data , i n t e r p r e t e d
by t h e merchant (a v o i d s a d d i t i o n a l d a t a b a s e a c c e s s)
e x t r a = pay_status [" contrac t_ terms "] [" e x t r a "]
return f l a s k . render_template (

" templates/ f u l f i l l m e n t . html " ,
donation_amount= e x t r a [" amount "] ,
donation_donor= e x t r a [" donor "] ,
order_id=order_id ,
currency=CURRENCY)

no p a y _ r e d i r e c t but a r t i c l e not pa id , t h i s s h o u l d n e v e r happen !
e r r _ a b o r t (5 0 0 , message=" I n t e r n a l error , i n v a r i a n t f a i l e d " , j son=pay_status)

Figure 4.10.: Code snippet with core functionality of a merchant frontend to
accept donations.

98

4.6. Wallet

Figure 4.11.: Architecture of the wallet reference implementation

Back office The example back-office application shows the history and status of
payments processed by the merchant.

The code for these examples is available at https://git.taler.net/ in the
repositories blog, donations, codeless, survey and backoffice respec-
tively.

4.6. Wallet

The wallet manages the customer’s reserves and coins, lets the customer view
and pay for contracts from merchants. It can be seen in operation in Section 1.3.

The reference implementation of the GNU Taler wallet is written in the Type-
Script language against the WebExtension API12, a cross-browser mechanism for
browser extensions. The reference wallet is a “tightly integrated” wallet, as it
directly hooks into the browser to process responses with the HTTP status code
“402 Payment Required”.

Many cryptographic operations needed to implement the wallet are not com-
monly available in a browser environment. We cross-compile the GNU Taler
utility library written in C as well as its dependencies (such as libgcrypt) to asm.js
(and WebAssembly on supported platforms) using the LLVM-based emscripten
toolchain [Zak11].

12https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions

99

https://git.taler.net/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions

4. Implementation of GNU Taler

Cryptographic operations run in an isolated process implemented as a Web-
Worker.13 This design allows the relatively slow cryptographic operations to run
concurrently in the background in multiple threads. Since the crypto WebWorkers
are started on-demand, the wallet only uses minimal resources when not actively
used.

4.6.1. Optimizations

To improve the perceived performance of cryptographic operations, the wallet
optimistically creates signatures in the background while the user is looking at
the “confirm payment” dialog. If the user does not accept the contract, these
signatures are thrown away instead of being sent to the merchant. This effectively
hides the latency of the most expensive cryptographic operations, as they are
done while the user consciously needs to make a decision on whether to proceed
with a payment.

4.6.2. Coin Selection

The wallet hides the implementation details of fractionally spending different
denomination from the user, and automatically selects which denominations to
use for withdrawing a given amount, as well as which existing coins to (partially)
spend for a payment.

Denominations for withdrawal are greedily selected, starting with the largest
denomination that fits into the remaining amount to withdraw. Coin selection
for spending proceeds similarly, but first checks if there is a single coin that
can be partially spent to cover the whole amount. After each payment, the
wallet automatically refreshes coins with a remaining amount large enough to be
refreshed. We discuss a simple simulation of the current coin selection algorithm
in Section 4.8.2.

A more advanced coin selection would also consider the fee structure of the
exchange, minimizing the number of coins as well as the fees incurred by the
various operations. The wallet could additionally learn typical amounts that
the user spends, and adjust withdrawn denominations accordingly to further
minimize costs. An opposing concern to the financial cost is the anonymity of
customers, which is improved when the spending behavior of wallets is as similar
as possible.

4.6.3. Wallet Detection

When websites such as merchants or banks try to signal the Taler wallet—for
example, to request a payment or trigger reserve creation—it is possible that the
customer simply has no Taler wallet installed. To accommodate for this situation
in a user-friendly way, the HTTP response containing signaling to wallet should

13https://html.spec.whatwg.org/

100

https://html.spec.whatwg.org/

4.6. Wallet

contain as response body an HTML page with (1) a taler: link to manually
open loosely integrated wallets and (2) instructions on how to install a Taler
wallet if the user does not already have one.

It might seem useful to dynamically update page content depending on whether
the Taler wallet is installed, for example, to hide or show a “Pay with Taler” or
“Withdraw to Taler wallet” option. This functionality cannot be provided in
general, as only the definitive presence of a wallet can be detected, but not its
absence when the wallet is only loosely integrated in the user’s browser via a
handler for the taler: URI scheme.

We nevertheless consider the ability to know whether a customer has defi-
nitely installed a Taler wallet useful (if only for the user to confirm that the
installation was successful), and expose two APIs to query this. The first one is
JavaScript-based and allows to register a callback for the when presence/absence
of the wallet is detected. The second method works without any JavaScript
on the merchant’s page, and uses CSS [CSS11] to dynamically show/hide el-
ement on the page marked with the special taler-installed-show and
taler-installed-hide CSS classes, whose visibility is changed when a wallet
browser extension is loaded.

Browser fingerprinting [Mul+13] is a concern with any additional APIs made
available to websites, either by the browser itself or by browser extensions. Since
a website can simply try to trigger a payment to determine whether a tightly
integrated Taler wallet is installed, one bit of additional fingerprinting information
is already available through the usage of Taler. The dynamic detection methods
do not, however, expose any information that is not already available to websites
by signaling the wallet through HTTP headers.

4.6.4. Backup and Synchronization

While users can manually import and export the state of the wallet, at the time
of writing this, automatic backup and synchronization between wallets is not
implemented yet. We discuss the challenges with implementing backup and
synchronization in a privacy-preserving manner in Chapter 6.

4.6.5. Wallet Liquidation

If a customer wishes to stop using GNU Taler, they can deposit the remaining
coins in their wallet back to their own bank account. We call this process
liquidation.

In deployments with relatively lenient KYC regulation, the normal deposit
functionality used by merchants is used for wallet liquidation. The wallet simply
acts as a merchant for one transaction, and asks the exchange to deposit the coins
into the customer’s bank account.

However in deployments with strict KYC regulations, the customer would first
have to register and complete a KYC registration procedure with the exchange. To

101

4. Implementation of GNU Taler

avoid this, liquidation can be implemented as a modified deposit, which restricts
the payment to the bank account that was used to create a reserve of the customer.

The exchange cannot verify that a coin that is being liquidated actually orig-
inated the reserve that the customer claims it originated from, unless the user
reveals the protocol transcripts for withdrawal and refresh operations on that
coin, violating their privacy. Instead, each reserve tracks the amount that was
liquidated into it, and the exchange rejects a liquidation request if the liquidated
amount exceeds the amount that was put into the reserve. Note that liquidation
does not refill the funds of a reserve, but instead triggers a bank transfer of the
liquidated amount to the bank account that created the reserve.

4.6.6. Wallet Signaling

We now define more precisely the algorithm that the wallet executes when a
website signals to that wallet that an operation related to payments should be
triggered, either by opening a taler:pay URL or by responding with HTTP 402

and at least one Taler-specific header.
The steps to process a payment trigger are as follows. The algorithm takes

the following parameters: current_url (the URL of the page that raises
the 402 status or null if triggered by a taler:pay URL), contract_url,
resource_url, session_id, offer_url, refund_url, tip_token (from
the “Taler-. . . ” headers or taler:pay URL parameters respectively)

1. If resource_url a non-empty string, set target_url to resource_url,
otherwise set target_url to current_url.

2. If target_url is empty, stop.

3. If there is an existing payment p whose fulfillment URL equals target_url
and either current_url is null or current_url has the same origin as
either the fulfillment URL or payment URL in the contract terms, then:

3.1. If session_id is non-empty and the last session ID for payment
p was recorded in the wallet with session signature sig, construct a
fulfillment instance URL from sig and the order ID of p.

3.2. Otherwise, construct an extended fulfillment URL from the order ID of
p.

3.3. Navigate to the extended fulfillment URL constructed in the previous
step and stop.

4. If contract_url is a non-empty URL, execute the steps for processing a
contract URL (with session_id) and stop.

5. If offer_url is a non-empty URL, navigate to it and stop.

6. If refund_url is a non-empty URL, process the refund and stop.

102

4.7. Cryptographic Protocols

7. If tip_url is a non-empty URL, process the tip and stop.

For interactive web applications that request payments, such as games or single
page apps (SPAs), the payments initiated by navigating to a page with HTTP
status code 402 are not appropriate, since the state of the web application is
destroyed by the navigation. Instead the wallet can offer a JavaScript-based
API, exposed as a single function with a subset of the parameters of the 402-
based payment: contract_url, resource_url, session_id refund_url,
offer_url, tip_token. Instead of navigating away, the result of the operation
is returned as a JavaScript promise (either a payment receipt, refund confirmation,
tip success status or error). If user input is required (e.g., to ask for a confirmation
for a payment), the page’s status must not be destroyed. Instead, an overlay or
separate tab/window displays the prompt to the user.

4.7. Cryptographic Protocols

In this section, we describe the main cryptographic protocols for Taler in more
detail. The more abstract, high-level protocols from Section 3.5.1 are instantiated
and and embedded in concrete protocol diagrams that can hopefully serve as a
reference for implementors.

For ease of presentation, we do not provide a bit-level description of the
cryptographic protocol. Some details from the implementation are left out, such
as fees, additional timestamps in messages and checks for the expiration of
denominations. Furthermore, we do not specify the exact responses in the error
cases, which in the actual implementation should include signatures that could
be used during a legal dispute. Similarly, the actual implementation contains
some additional signatures on messages sent that allow to prove to a third party
that a participant did not follow the protocol.

As we are dealing with financial transactions, we explicitly describe whenever
entities need to safely write data to persistent storage. As long as the data persists,
the protocol can be safely resumed at any step. Persisting data is cumulative, that
is an additional persist operation does not erase the previously stored information.

The implementation also records additional entries in the exchange’s database
that are needed for auditing.

4.7.1. Preliminaries

In our protocol definitions, we write check COND to abort the protocol with an
error if the condition COND is false.

We use the following algorithms:

• Ed25519.Keygen() 7→ 〈sk, pk〉 to generate an Ed25519 key pair.

• Ed25519.GetPub(sk) 7→ pk to derive the public key from an Ed25519 public
key.

103

4. Implementation of GNU Taler

• Ed25519.Sign(sk, m) 7→ σ to create a signature σ on message m using secret
key sk.

• Ed25519.Verify(pk, σ, m) 7→ b to check if σ is a valid signature from pk on
message m.

• HKDF(n, k, s) 7→ m is the HMAC-based key derivation function [KE10],
producing an output m of n bits from the input key material k and salt s.

We write Z∗N for the multiplicative group of integers modulo N. Given an
r ∈ Z∗N, we write r−1 for the multiplicative inverse modulo N of r.

We write H(m) for the SHA-512 hash of a bit string, and FDH(N, m) for the
full domain hash that maps the bit string m to an element of Z∗N.

The expression x $←− X denotes uniform random selection of an element x from
set X. We use SelectSeeded(s, X) 7→ x for pseudo-random uniform selection of an
element x from set X and seed s. Here, the result is deterministic for fixed inputs
s and X.

The exchange’s denomination signing key pairs {〈skDi, pkDi〉} are RSA keys
pairs, and thus pkDi = 〈ei, Ni〉, skDi = di. We write D(pkDi) for the financial
value of the denomination pkDi.

4.7.2. Withdrawing

The withdrawal protocol is defined in Figure 4.12. The following additional
algorithms are used, which we only define informally here:

• CreateBalance(Wp, v) 7→ ⊥ is used by the exchange, and has the side-effect of
creating a reserve record with balance v and reserve public key (effectively
the identifier of the reserve) Wp.

• GetWithdrawR(ρ) 7→ {⊥, σC} is used by the exchange, and checks if there is
an existing withdraw request ρ. If the existing request exists, the existing
blind signature σC over coin C is returned. On a fresh request, ⊥ is returned.

• BalanceSufficient(Ws, pkDt) 7→ b is used by the exchange, and returns true if
the balance in the reserve identified by Ws is sufficient to withdraw at least
one coin if denomination pkDt.

• DecreaseBalance(Ws, pkDt) 7→ ⊥ is used by the exchange, and decreases the
amount left in the reserve identified by Ws by the amount D(pkDt) that the
denomination pkDt represents.

104

4.7. Cryptographic Protocols

Customer Exchange

Knows {〈ei, Ni〉} = {pkDi} Knows {〈skDi, pkDi〉}

. Create Reserve .

〈ws, Wp〉 ← Ed25519.Keygen()

Persist reserve 〈ws, v〉

Bank transfer
(subject: Wp, amount: v)

CreateBalance(Wp, v)

. Prepare Withdraw .

Choose t with pkDt ∈ {pkDi}
〈cs, Cp〉 ← Ed25519.Keygen()

r $←− Z∗N

Persist planchet 〈cs, r〉

. Execute Withdraw .

m := FDH(Nt, Cp) · ret mod Nt

ρW := 〈pkDt, m〉
σW := Ed25519.Sign(ws, ρW)

ρ := 〈Wp, σW , ρW〉

check pkDt ∈ {pkDi}
check Ed25519.Verify(Wp, ρW , σW)

x ← GetWithdraw(ρ)

if x ?
= ⊥

check BalanceSufficient(Wp, pkDt)

DecreaseBalance(Wp, pkDt)

Persist withdrawal ρ

σC := (m)skDt mod Nt

else

σC := x

σC

σC := r−1σC

check σet
C

?≡Nt FDH(Nt, Cp)

Persist coin 〈pkDt, cs, Cp, σC〉

Figure 4.12.: Withdrawal protocol diagram.
105

4. Implementation of GNU Taler

4.7.3. Payment transactions

The payment protocol is defined in two parts. First, the spend protocol in
Figure 4.13 defines the interaction between a merchant and a customer. The
customer obtains the contract terms (as ρP) from the merchant, and sends the
merchant deposit permissions as a payment. The deposit protocol in Figure 4.14

defines how subsequently the merchant sends the deposit permissions to the
exchange to detect double-spending and ultimately to receive a bank transfer
from the exchange.

Note that in practice the customer can also execute the deposit protocol on
behalf of the merchant. This is useful in situations where the customer has
network connectivity but the merchant does not. It also allows the customer to
complete a payment before the payment deadline if a merchant unexpectedly
becomes unresponsive, allowing the customer to later prove that they paid on
time.

We limit the description to one exchange here, but in practice, the merchant
communicates to the customer the exchanges that it supports, in addition to the
account information AM that might differ between exchanges.

We use the following algorithms, defined informally here:

• SelectPayCoins(v, EM) 7→ {〈coini, fi〉} selects fresh coins (signed with denom-
ination keys from exchange EM) to pay for the amount v. The result is a set
of coins together with the fraction of each coin that must be spent such that
the amounts contributed by all coins sum up to v.

• MarkDirty(coin, f) 7→ ⊥ subtracts the fraction f from the available amount
left on a coin, and marks the coin as dirty (to trigger refreshing in case f is
below the denomination value). Thus, assuming the coin has any residual
value, the customer’s wallet will do a refresh on coin and not use it for
further payments. This provides unlinkability of transactions made with
change arising from paying with fractions of a coin’s denomination.

• Deposit(EM, Di) 7→ b executes the second part of the payment protocol (i.e.,
the deposit) with exchange EM, using deposit permission Di.

• GetDeposit(Cp, h) 7→ {⊥, ρ(D,i)} checks in the exchange’s database for an
existing processed deposit permission on coin Cp for the contract identified
by h. The algorithm returns the existing deposit permission ρ(D,i), or ⊥ if a
matching deposit permission is not recorded.

• IsOverspending(Cp, pkD, f) 7→ b checks in the exchange’s database if there if
at least the fraction f of the coin Cp of denomination pkD is still available
for use, based on existing spend/withdraw records of the exchange.

• MarkFractionalSpend(Cp, f) 7→ ⊥ adds a spending record to the exchanges
database, indicating that fraction f of coin Cp has been spent (in addition to
existing spending/refreshing records).

106

4.7. Cryptographic Protocols

• ScheduleBankTransfer(AM, f , pkD, hc) 7→ ⊥ schedules a bank transfer from
the exchange to the account identified by AM, for subject hc and for the
amount f · D(pkD).

4.7.4. Refreshing and Linking

The refresh protocol is defined in Figures 4.16 and 4.17. The refresh protocol
allows the customer to obtain change for the remaining fraction of the value of a
coin. The change is generated as a fresh coin that is unlinkable to the dirty coin
to anyone except for the owner of the dirty coin.

A naïve implementation of a refresh protocol that just gives the customer a
new coin could be used for peer-to-peer transactions that hides income from
tax authorities. Thus, (with probability (1− 1/κ)) the refresh protocol records
information that allows the owner of the original coin to obtain the refreshed coin
from the original coin via the linking protocol (illustrated in Figure 4.18).

We use the following algorithms, defined informally here:

• RefreshDerive is defined in Figure 4.15.

• GetOldRefresh(ρRC) 7→ {⊥, γ} returns the past choice of γ if ρRC is a refresh
commit message that has been seen before, and ⊥ otherwise.

• IsConsistentChallenge(ρRC, γ) 7→ {⊥,>} returns > if no refresh-challenge
has been persisted for the refresh operation by commitment ρRC or γ is
consistent with the persisted (and thus previously received) challenge;
returns ⊥ otherwise.

• LookupLink(Cp) 7→ {〈ρ(i)L , σ
(i)
L , σ

(i)
C 〉} looks up refresh records on coin with

public key Cp in the exchange’s database and returns the linking message

ρ
(i)
L , linking signature σ

(i)
L and blinded signature σ

(i)
C for each refresh record

i.

107

4. Implementation of GNU Taler

Customer Merchant

Knows pkM Knows 〈pkM, skM〉

Select product/service

Determine:

• v (price)

• EM (exchange)

• AM (acct.)

• info (free-form details)

Request payment

〈ps, Pp〉 ← Ed25519.Keygen()

Persist ownership identifier ps

Pp

ρP := 〈EM, AM, pkM, H(〈v, info〉), Pp〉
σP := Ed25519.Sign(skM, ρP)

ρP, σP, v, info

〈M, AM, pkM, h′, P′p〉 := ρP

check Ed25519.Verify(pkM, σP, ρP)

check P′p
?
= Pp

check h′ ?
= H(〈v, info〉)

cf ← SelectPayCoins(v, EM)

for 〈coini, fi〉 ∈ cf

MarkDirty(coini, fi)

〈cs, Cp, pkD, σC〉 := coini

ρ(D,i) := 〈Cp, pkD, σC, fi, H(ρP), AM, pkM〉
σ(D,i) := Ed25519.Sign(cs, ρ(D,i))

Persist 〈σP, cf, ρP, ρ(D,i), σ(D,i), v, info〉

D := {〈ρ(D,i), σ(D,i)〉}

for Di ∈ D
check Deposit(EM, Di)

Figure 4.13.: Spend Protocol executed between customer and merchant for the
purchase of an article of price v using coins from exchange EM. The
merchant has provided his account details to the exchange under an
identifier AM. The customer can identify themselves as the one who
received the offer using ps.

108

4.7. Cryptographic Protocols

Customer/Merchant Exchange

Knows pkESig Knows skESig, pkESig, {pkDi}
Knows Di = 〈ρ(D,i), σ(D,i)〉

Di

〈ρ(D,i), σ(D,i)〉 := Di

〈Cp, pkD, σC, fi, h, AM, pkM〉 := ρ(D,i)

check pkD ∈ {pkDi}
〈e, N〉 := pkD

check Ed25519.Verify(Cp, σ(D,i), ρ(D,i))

x ← GetDeposit(Cp, h)

if x ?
= ⊥

check σe
C

?≡N FDH(N, Cp)

check ¬IsOverspending(Cp, pkD, f)

Persist deposit-record Di

MarkFractionalSpend(Cp, f)

ScheduleBankTransfer(AM, f , pkD, hc)

else

check x ?
= ρ(D,i)

σDC ← Ed25519.Sign(pkESig, ρ(D,i))

σDC

check Ed25519.Verify

(pkESig, σDC, ρ(D,i))

Figure 4.14.: Deposit Protocol run for each deposited coin Di ∈ D with the
exchange that signed the coin.

109

4. Implementation of GNU Taler

RefreshDerive(s, 〈e, N〉, Cp)

t := HKDF(256, s,"t")

T := Curve25519.GetPub(t)

x := ECDH-EC(t, Cp)

r := SelectSeeded(x, Z∗N)

c′s := HKDF(256, x,"c")

C′p := Ed25519.GetPub(c′s)

m := re · C′p mod N

return 〈t, T, x, c′s, C′p, m〉

Figure 4.15.: The RefreshDerive algorithm running with the seed s on dirty coin
Cp to generate a fresh coin C′p to be later signed with denomination
key pkD := 〈e, N〉.

110

4.7. Cryptographic Protocols

Customer Exchange

Knows {pkDi} Knows {〈skDi, pkDi〉}

Knows coin0 = 〈pkD0, c(0)s , C(0)
p , σ

(0)
C 〉

Select 〈Nt, et〉 := pkDt ∈ {pkDi}
for i = 1, . . . , κ

si
$←− {0, 1}256

Xi := RefreshDerive(si, pkDt, C(0)
p)

(ti, Ti, xi, c(i)s , C(i)
p , mi) := Xi

hT := H(T1, . . . , Tκ)

hm := H(m1, . . . , mκ)

hC := H(ht, hm)

ρRC := 〈hC, pkDt, pkD0, C(0)
p , σ

(0)
C 〉

σRC := Ed25519.Sign(c(0)s , ρRC)

Persist refresh-request 〈ρRC, σRC〉

ρRC, σRC

(hC, pkDt, pkD0, C(0)
p , σ

(0)
C) := ρRC

check Ed25519.Verify(C(0)
p , σRC, ρRC)

x ← GetOldRefresh(ρRC)

if x ?
= ⊥

v := D(pkDt)

〈e0, N0〉 := pkD0

check ¬IsOverspending(C(0)
p , pkD0, v)

check pkDt ∈ {pkDi}

check FDH(N0, C(0)
p)

?≡N0 (σ
(0)
0)e0

MarkFractionalSpend(C(0)
p , v)

γ
$←− {1, . . . , κ}

Persist refresh-record 〈ρRC, γ〉
else

γ := x

γ

. (Continued in Figure 4.17) .

Figure 4.16.: Refresh Protocol (Commit Phase)

111

4. Implementation of GNU Taler

Customer Exchange

. (Continuation of 4.16) .

γ

check IsConsistentChallenge(ρRC, γ)

Persist refresh-challenge 〈ρRC, γ〉
S := 〈s1, . . . , sγ−1, sγ+1, . . . , sκ〉

ρL = 〈C(0)
p , pkDt, Tγ, mγ〉

ρRR = 〈Tγ, mγ, S〉

σL = Ed25519.Sign(c(0)s , ρL)

ρRR, ρL, σL

〈T′γ, m′γ, S〉 := ρRR

〈s1, . . . , sγ−1, sγ+1, . . . , sκ〉) := S

check Ed25519.Verify(C(0)
p , σL, ρL)

for i = 1, . . . , γ− 1, γ + 1, . . . , κ

Xi := RefreshDerive(si, pkDt, C(0)
p)

〈ti, Ti, xi, c(i)s , C(i)
p , mi〉 := Xi

h′T = H(T1, . . . , Tγ−1, T′γ, Tγ+1, . . . , Tκ)

h′m = H(m1, . . . , mγ−1, m′γ, mγ+1, . . . , mκ)

h′C = H(h′T , h′m)

check hC
?
= h′C

σ
(γ)
C := mskDt

σ
(γ)
C

σ
(γ)
C := r−1σ

(γ)
C

check (σ
(γ)
C)et

?≡Nt C(γ)
p

Persist coin 〈pkDt, c(γ)s , C(γ)
p , σ

(γ)
C 〉

Figure 4.17.: Refresh Protocol (Reveal Phase)

112

4.7. Cryptographic Protocols

Customer Exchange

Knows coin0 = 〈pkD0, c(0)s , C(0)
p , σ

(0)
C 〉

C(0)
p

L := LookupLink(C(0)
p)

L

for 〈ρ(i)L , σ
(i)
L , σ

(i)
C 〉 ∈ L

〈Ĉ(i)
p , pkD

(i)
t , T(i)

γ , m(i)
γ 〉 := ρ

(i)
L

〈e(i)t , N(i)
t 〉 := pkD

(i)
t

check Ĉ(i)
p

?
= C(0)

p

check Ed25519.Verify(C(0)
p , ρ

(i)
L , σ

(i)
L)

xi := ECDH(c(0)s , T(i)
γ)

ri := SelectSeeded(xi, Z∗Nt
)

c(i)s := HKDF(256, xi,"c")

C(i)
p := Ed25519.GetPub(c(i)s)

σ
(i)
C := (ri)

−1 · σ(i)
C

check (σ
(i)
C)e(i)t

?≡
N(i)

t
C(i)

p

(Re-)obtain coin 〈pkD
(i)
t , c(i)s , C(i)

p , σ
(i)
C 〉

Figure 4.18.: Linking protocol

113

4. Implementation of GNU Taler

4.7.5. Refunds

The refund protocol is defined in Figure 4.19. The customer requests from
the merchant that a deposit should be “reversed”, and if the merchants allows
the refund, it authorizes the exchange to apply the refund and sends the refund
confirmation back to the customer. Note that in practice, refunds are only possible
before the refund deadline, which is not considered here.

We use the following algorithms, defined informally here:

• ShouldRefund(ρP, m) 7→ {>,⊥} is used by the merchant to check whether
a refund with reason m should be given for the purchase identified by
the contract terms ρP. The decision is made according to the merchant’s
business rules.

• LookupDeposits(ρP, m) 7→ {〈ρ(D,i), σ(D,i)〉} is used by the merchant to retrieve
deposit permissions that were previously sent by the customer and already
deposited with the exchange.

• RefundDeposit(Cp, h, f , pkM) is used by the exchange to modify its database.
It (partially) reverses the amount f of a deposit of coin Cp to the merchant
pkM for the contract identified by h. The procedure is idempotent, and
subsequent invocations with a larger f increase the refund.

114

4.7. Cryptographic Protocols

. Request refund .

Customer Merchant

Knows pkM, pkESig Knows 〈pkM, skM〉, pkESig

Ask for refund
(Payment ρP, reason m)

check ShouldRefund(ρP, m)

. Execute refund .

Exchange Merchant

Knows 〈skESig, pkESig〉
for 〈ρ(D,i), ·〉 ∈ LookupDeposits(ρP)

ρ(X,i) := 〈”refund”, ρD〉
σ(X,i) := Ed25519.Sign(skM, ρ(X,i))

X := {ρ(X,i), σ(X,i)}

for 〈ρ(X,i), σ(X,i)〉 ∈ X

check 〈”refund”, ρD〉 := ρX

check 〈Cp, pkD, σC, f , h, AM, pkM〉 := ρD

check Ed25519.Verify(pkM, ρX , σX)

RefundDeposit(Cp, h, f , pkM)

ρ(XC,i) := 〈”refunded”, ρD〉
σ(XC,i) := Ed25519.Sign(skESig, ρ(XC,i))

XC := {ρ(XC,i), σ(XC,i)}

. Confirm refund .

Customer Merchant

XC

for 〈ρ(XC,i), σ(XC,i)〉 ∈ XC

check Ed25519.Verify(pkESig, ρ(XC,i), σ(XC,i))

Figure 4.19.: Refund protocol

115

4. Implementation of GNU Taler

Operation Time (ms)

eddsa create 9.69

eddsa sign 22.31

eddsa verify 19.28

hash big 0.05

hash small 0.13

rsa 2048 blind 3.35

rsa 2048 unblind 4.94

rsa 2048 verify 1.97

rsa 4096 blind 10.38

rsa 4096 unblind 16.13

rsa 4096 verify 6.57

(a) Wallet microbenchmark on a
Laptop (Intel i7-4600U) with
Firefox

Operation Time (ms)

eddsa create 34.80

eddsa sign 78.55

eddsa verify 72.50

hash big 0.51

hash small 1.37

rsa 2048 blind 14.35

rsa 2048 unblind 19.78

rsa 2048 verify 9.10

rsa 4096 blind 47.86

rsa 4096 unblind 69.91

rsa 4096 verify 29.02

(b) Wallet microbenchmark on An-
droid Moto G3 with Firefox

Table 4.1.: Wallet microbenchmarks

4.8. Experimental results

We now evaluate the performance of the core components of the reference imple-
mentation of GNU Taler. No separate benchmarks are provided for the merchant
backend, as the work done by the merchant per transaction is relatively negligible
compared to the work done by the exchange, and one exchange needs to provide
service many merchants and all of their customers. Thus, the exchange is the
bottleneck for the performance of the system.

We provide a microbenchmark for the performance of cryptographic opera-
tions in the wallet (Table 4.1. Even on a low-end smartphone device, the most
expensive cryptographic operations remain well under 150ms, a threshold for
user-interface latency under which user happiness and productivity is considered
to be unaffected [TAS06].

We implemented a benchmarking tool that starts a single (multi-threaded)
exchange and a bank process for the taler-test wire transfer protocol. It then
generates workload on the exchange with a configurable number of concurrent
clients and operations. The benchmarking tool is able to run the exchange on a
different machine (via SSH14) than the benchmark driver, mock bank and clients.
At the end, the benchmark outputs the number of deposited coins per second
and latency statistics.

14https://www.openssh.com/

116

https://www.openssh.com/

4.8. Experimental results

4.8.1. Hardware Setup

We used two server machines (firefly and gv) with the following hardware
specifications for our tests:

• firefly has a 96-core AMD EPYC 7451 CPU and 256GiB DDR42667 MHz
RAM.

• gv has a 16-core Intel(R) Xeon X5550 (2.67GHz) CPU and 128GiB DDR31333

MHz RAM.

We used 2048-bit RSA denomination keys for all of our exchange bench-
marks. We used a development version of the exchange (with git commit hash
5fbda29b76c24d. . .). PostgreSQL version 11.3 was used as the database. As our
server machines have only slower hard-disk drives instead of faster solid-state
drives, we ran the benchmarks with an in-memory database.

4.8.2. Coins Per Transaction

The transaction rate is an important characteristic of a payment system. Since
GNU Taler internally operates on the level of coins instead of transactions, we
need to define what actually consititutes one transaction in our measurements.
This includes both how many coins are used per transaction on average, as well
as how often refresh operations are run.

We ran a simple simulation to determine rather conservative upper bounds for
the parameters that characterize the average transaction. The source code for the
simulation can be found in Appendix C.

In the simulation, thirteen denominations of values 20, . . . , 212 are available.
Customers repeatedly select a random value to be spent between 4 and 5000.
When customers do not have enough coins for a transaction, they withdraw
a uniform random amount between the minimum amount to complete the
transaction and 10000. The denominations selected for withdrawal are chosen
by greedy selection of the largest possible denomination. When spending, the
customer first tries to use one coin, namely the smallest coin larger than the
requested amount. If no such coin exists in the customer’s wallet, the customer
pays with multiple coins, spending smallest coins first.

Choosing a random uniform amount for withdrawal could be considered
unrealistic, as customers in practice likely would select from a fixed list of
common withdrawal amounts, just like most ATMs operate. Thus, we also
implemented a variation of the simulation that withdraws a constant amount
of 1250 (i.e., 1/4 of the maximum transaction value) if it is sufficient for the
transaction, and the exact required amount otherwise.

We obtained the following results for the number of average operations exe-
cuted for one “business transaction”:

117

4. Implementation of GNU Taler

random withdraw constant withdraw

#spend operations 8.3 7.0
#refresh operations 1.3 0.51
#refresh output coins 4.2 3.62

Based on these results, we chose the parameters for our benchmark: for every
spend operation we run a refresh operation with probability 1/10, where each
refresh operation produces 4 output coins. In order to arrive at the transaction
rate, the rate of spend operations should be divided by 10.

Note that this is a rather conservative analysis. In practice, the coin selection
for withdrawal/spending can use more sophisticated optimization algorithms,
rather than using greedy selection. Furthermore, we expect that the amounts
paid in real-world transactions will have more predictable distributions, and thus
the offered denominations can be adjusted to typical amounts.

Baseline Sequential Resource Usage

To obtain a baseline for the resource usage of the exchange, we ran the benchmark
on firefly with a single client that executes sequential requests to withdraw
and spend 10000 coins, with 10% refresh probability.

Table 4.2 shows the time used for cryptographic operations, together with
the number of times they are executed by the clients (plus the mock bank and
benchmark setup) and exchange, respectively. Note that while we measured the
wall-clock time for these operations, the averages should correspond to the actual
CPU time required for the respective operations, as the benchmark with one
client runs significantly fewer processes/threads than the number of available
CPUs on our machine.

The benchmark completed in 15.10 minutes on firefly. We obtained the
total CPU usage of the benchmark testbed and exchange. The refresh operations
are rather slow in comparison to spends and deposits, as the benchmark with a
refresh probability of 0% only took 8.84 minutes to complete.

The size of the exchange’s database after the experiment (starting from an empty
database) is shown in Table 4.3. We measured the size of tables and indexes using
the pg_relation_size / pg_indexes_size functions of PostgreSQL.

We observe that even though the refresh operations account for about half of the
time taken by the benchmark, they contribute to only ≈ 16% of the database’s size.
The computational costs for refresh are higher than the storage costs (compared
to other operations), as the database stores only needs to store one commitment,
one transfer key and the blinded coins that are actually signed.

In our sequential baseline benchmark run, only one reserve was used to
withdraw coins, and thus the tables that store the reserves are very small. In
practice, information for multiple reserves would be tracked for each active
cutomers.

118

4.8. Experimental results

Operation Time/Op (µs) Count (exchange) Count (clients)

ecdh eddsa 1338.62 2430 3645
ecdhe key create 1825.38 0 3645
ecdhe key get public 1272.64 2430 4860
eddsa ecdh 1301.78 0 4860
eddsa key create 1896.27 0 12 180
eddsa key get public 1729.69 9720 80 340
eddsa sign 5182.33 13 393 25 608
eddsa verify 3976.96 25 586 25 627
hash 1.41 165 608 169 445
hash context finish 0.28 1215 1227
hash context read 0.81 25 515 25 655
hash context start 11.38 1215 1227
hkdf 40.61 65 057 193 506
rsa blind 695.25 9720 31 633
rsa private key get public 5.30 0 40
rsa sign blinded 5284.88 17 053 0
rsa unblind 1348.62 0 21 898
rsa verify 421.19 13 393 29 216

Table 4.2.: Cryptographic operations in the benchmark with one client and 10000
operations.

Relation Table (MiB) Indexes (MiB) Total (MiB)

denominations 0.02 0.03 0.05
reserves_in 0.01 0.08 0.09
reserves 0.02 0.25 0.27
refresh_commitments 0.36 0.28 0.64
refresh_transfer_keys 0.38 0.34 0.73
refresh_revealed_coins 4.19 0.91 5.14
known_coins 7.37 0.70 8.07
deposits 4.85 6.80 11.66
reserves_out 8.95 4.48 13.43

Sum 26.14 13.88 40.02

Table 4.3.: Space usage by database table for 10000 deposits with 10% refresh
probability.

119

4. Implementation of GNU Taler

The TCP/IP network traffic between the exchange, clients and the mock bank
was 57.95 MiB, measured by the Linux kernel’s statistics for transmitted/received
bytes on the relevant network interface. As expected, the traffic is larger than the
size of the database, since some data (such as signatures) is only verified/gener-
ated and not stored in the database.

4.8.3. Transaction Rate and Scalability

Figure 4.20 shows the mean time taken to process one coin for different numbers
of parallel clients. With increasing parallelism, the throughput continues to rise
roughly until after the number of parallel clients saturates the number of available
CPU cores (96). There is no significant decrease in throughput even when the
system is under rather high load, as clients whose requests cannot be handled in
parallel are either waiting in the exchange’s listen backlog or waiting in a retry
timeout (with randomized, truncated, exponential back-off) after being refused
when the exchange’s listen backlog is full.

Figure 4.21 shows the CPU time (sum of user and system time) of both the
exchange and the whole benchmark testbed (including the exchange) in relation
to the wall-clock time the benchmark took to complete. We can see that the
gap between the wall-clock time and CPU time used by the benchmark grows
with an increase in the number of parallel clients. This can be explained by the
CPU usage of the database (whose CPU usage is not measured as part of the
benchmark). With a growing number of parallel transactions, the database runs
into an increasing number of failed commits due to read/write conflicts, leading
to retries of the corresponding transactions.

To estimate the time taken up by cryptographic operations in the exchange,
we first measured a baseline with a single client, where the wall-clock time for
cryptographic operations is very close to the actual CPU time, as virtually no
context switching occurs. We then extrapolated these timings to experiment runs
with parallelism by counting the number of times each operation is executed and
multiplying with the baseline. As seen in the dot-and-dash line in Figure 4.21, by
our extrapolation slightly more than half of the time is spent in cryptographic
routines.

We furthermore observe in Figure 4.21 that under full load, less than 1/3 of the
CPU time is spent by the exchange. A majority of the CPU time in the benchmark
is used by the simulation of clients. As we did not have a machine available
that is powerful enough to generate traffic that can saturate a single exchange
running on firefly, we estimate the throughput that would be possible if the
machine only ran the exchange. The highest rate of spends was 780 per second.
Thus, the theoretically achievable transaction rate on our single test machine (and
a dedicated machine for the database) would be 780 · 3/10 = 234 transactions
per second under the relatively pessimistic assumptions we made about what
consitutes a transaction.

If a GNU Taler deployment was used to pay for items of fixed price (e.g.,

120

4.8. Experimental results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

co
in

s
p
e
r

se
co

n
d

parallel clients

Figure 4.20.: Coin throughput in relation to number of parallel clients, with 1000
coins per client per experiment run.

online news articles), the overhead of multiple coins and refresh operations
(which accounts for ≈ 50% of spent time as measured earlier) and multiple coins
per payment would vanish, giving an estimated maximum transaction rate of
742 · 2 = 1484 transactions per second.

4.8.4. Latency

We connected firefly and gv directly with a patch cable, and introduced artifi-
cial network latency by configuring the Linux packet scheduler with the tc tool.
The goal of this experiment was to observe the network latency characteristics of
the implementation. Note that we do not consider the overhead of TLS in our
experiments, as we assume that TLS traffic is already terminated before it reaches
the exchange service, and exchanges can be operated securely even without TLS.

The comparison between no additional delay and a 100 ms delay is shown in
Table 4.4. TCP Fast Open [Che+14] was enabled on both gv and firefly. Since
for all operations except /refresh/reveal, both request and response fit into
one TCP segment, these operations complete within one round-trip time. This
explains the additional delay of ≈ 200 ms when the artificial delay is introduced.
Without TCP Fast Open, we would observe an extra round trip for the SYN and
SYN/ACK packages without any payload. The /refresh/reveal operation
takes an extra roundtrip due to the relatively large size of the request (as show in
Table 4.5), which exceeds the MTU of 1500 for the link between gv and firefly,
and thus does not fit into the first TCP Fast Open packet.

121

4. Implementation of GNU Taler

 0

 5x108

 1x109

 1.5x109

 2x109

 2.5x109

 3x109

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
P
U

 t
im

e
 (

u
s)

parallel clients

wall clock
benchmark CPU / 96
exchange CPU / 96
exchange crypto / 96

Figure 4.21.: Comparison of real time, the CPU time for the exchange and the
whole benchmark.

Figure 4.22 shows the latency for the exchange’s HTTP endpoints in relation to
different network delays. As expected, the additional delay grows linearly for a
single client. We note that in larger benchmarks with multiple parallel clients, the
effect of additional delay would likely not just be linear, due to timeouts raised
by clients.

4.9. Current Limitations and Future Improvements

Currently the auditor does not support taking samples of deposit confirma-
tions that merchants receive. The API and user interface to receive and process

Endpoint
Base latency

(ms)

Latency with
100 ms delay

(ms)

/keys 1.14 201.25
/reserve/withdraw 22.68 222.46
/deposit 22.36 223.22
/refresh/melt 20.71 223.9
/refresh/reveal 63.64 466.30

Table 4.4.: Effects of 100 ms symmetric network delay on total latency.

122

4.9. Current Limitations and Future Improvements

Endpoint
Request size
2048-bit RSA

(kB)

Response size
2048-bit RSA

(kB)

Request size
1024-bit RSA

(kB)

Response size
1024-bit RSA

(kB)

/keys 0.14 3.75 0.14 3.43
/reserve/withdraw 0.73 0.71 0.60 0.49
/deposit 1.40 0.34 1.14 0.24
/refresh/melt 1.06 0.35 0.85 0.35
/refresh/reveal 1.67 2.11 1.16 1.23

Table 4.5.: Request and response sizes for the exchange’s API. In addition to the
sizes for 2048-bit RSA keys (used throughout the benchmark), the sizes
for 1024-bit RSA keys are also provided.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200

la
te

n
cy

delay

/refresh/melt

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 50 100 150 200

la
te

n
cy

delay

/refresh/reveal

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200

la
te

n
cy

delay

/keys

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200

la
te

n
cy

delay

/reserve/withdraw

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200

la
te

n
cy

delay

/deposit

Figure 4.22.: Effect of artificial network delay on exchange’s latency.

123

4. Implementation of GNU Taler

proofs of misbehavior of the exchange/merchant generated by the wallet is not
implemented yet.

As a real-world deployment of electronic cash has rather high requirements for
the operational security, the usage of hardware security modules for generation
of signatures should be considered. Currently, a single process has access to all
key material. For a lower-cost improvement that decreases the performance of
the system, a threshold signature scheme could be used.

The current implementation is focused on web payments. To use GNU Taler
for payments in brick-and-mortar stores, hardware wallets and smartphone
apps for devices with near-field-communication (NFC) must be developed. In
some scenarios, either the customer or the merchant might not have an Internet
connection, and this must be considered in the protocol design. In typical western
brick-and-mortar stores, it is currently more likely that the merchant has Internet
connectivity, and thus the protocol must allow operations of the wallet (such
as refreshing) to be securely routed over the merchant’s connection. In other
scenarios, typically in developing countries, the merchant (for example, a street
vendor) might not have Internet connection. If the vendor has a smartphone, the
connection to the merchant can be routed through the customer. In other cases,
street vendors only have a “dumb phone” that can receive text messages, and
the payment goes through a provider trusted by the merchant that sends text
messages as confirmation for payments. All these possibilities must be considered
both from the perspective of the procotol and APIs as well as the user experience.

Our experiments were only done with single exchange process and a single
database on the same machine. There are various ways to horizontally scale the
exchange:

• Multiple exchange processes can be run on multiple machines and access
the database that runs a separate machine. Requests are directed to the
machines running the exchange process via a load balancer. In this scenario,
the throughput of the database is likely to be the bottleneck.

• To avoid having the database as a bottleneck, the contents can be partitioned
into shards. For this technique to be effective, data in the shards should not
have any dependencies in other shards. A natural way to do sharding for
the Taler exchange is to give each shard the sole responsibility for a subset
of all available denominations.

• If the transaction volume on one denomination is too high to handle for
a single shard, transactions can be further partitioned based on the coin’s
public key. Each would maintain the database of spent/refreshed coins for
a subset of all possible coin public keys. This approach has been suggested
for a centrally-banked cryprocurrency by Danezis and Meiklejohn [DM16].

124

5. Byzantine Set-Union Consensus ∗

5.1. Introduction

Byzantine consensus is a fundamental building block for fault-tolerant distributed
systems. It allows a group of peers to reach agreement on some value, even if
a fraction of the peers are controlled by an active adversary. Theory-oriented
work on Byzantine consensus often focuses on finding a single agreement on a
binary flag or bit string [FH06]. More recent approaches for practical applications
are mainly based on state machine replication (SMR), wherein peers agree on
a sequence of state machine transitions. State machine replication makes it
relatively easy to lift existing, non-fault-tolerant services to a Byzantine fault-
tolerant implementation [CL99]. Each request from a client triggers a state
transition in the replicated state machine that provides the service.

A major shortcoming of SMR is that all requests to the service need to be
individually agreed upon in sequence by the replica peers of the state machine.
This is undesirable since in unoptimized SMR protocols, such as PBFT [CL99], a
single transition requires O(n2) messages to be exchanged for n replicas. Some
implementations [Kot+07] try to address this inefficiency by optimistically pro-
cessing requests and falling back to individual Byzantine agreements only when
Byzantine behavior is detected. In practice, this leads to very complex imple-
mentations whose correctness is hard to verify and that have weak progress
guarantees [Cle+09].

The canonical example for a service where this inefficiency becomes apparent
is the aggregation of values submitted by clients into a set. This scenario is
relevant for the implementation of secure multiparty computation protocols such
electronic voting [CGS97], where ballots must be collected, and auctions [Bog+09],
where bids must be collected. A direct implementation that reaches agreement on
a set of m elements with SMR requires m sequential agreements, each consisting
of O(n2) messages.

We introduce Byzantine set-union consensus (BSC) as an alternative communi-
cation primitive that allows this aggregation to be implemented more efficiently.
In order to implement the set aggregation service described above, the peers
first reconcile their sets using an efficient set reconciliation protocol that is not
fault-tolerant but where the complexity is bounded even in the case of failures.
Then, they use a variant of ByzConsensus [BDH10] to reach Byzantine agreement

∗The content of this chapter has been previously published in the EURASIP Journal on Wireless
Communications and Networking [DG17].

125

5. Byzantine Set-Union Consensus

on the union.
We assume a partially synchronous communication model, where non-faulty

peers are guaranteed to successfully receive values transmitted by other non-
faulty peers within an existing but unknown finite time bound [DLS88]. Peers
communicate over pairwise channels that are authenticated. Message delivery
is reliable (i.e., messages arrive uncorrupted and in the right order) but the
receipt of messages may be delayed. We make the same assumption as Castro
and Liskov [CL99; CL02] about this delay, namely that it does not grow faster
than some (usually exponential) function of wall-clock time. We assume a
computationally unbounded adversary that can corrupt at most t = dn/3e − 1
peers creating Byzantine faults. The adversary is static, that is the set of corrupted
peers is fixed before the protocol starts, but this set is not available to the correct
peers. The actual number of faulty peers is denoted by f , with f ≤ t.

The BSC protocol has message complexity O(mn + n2) when no peers show
Byzantine behavior. When f peers show Byzantine behavior, the message com-
plexity is O(mn f + k f n2), where k is the number of valid set elements exclusively
available to the adversary. We will show how k can be bounded for common prac-
tical applications, since in the general case k is only bounded by the bandwidth
available to the adversary. In practice, we expect k f to be significantly smaller
than m. Thus, O(mn f + k f n2) is an improvement over using SMR-PBFT which
would have complexity O(mn2).

We have created an implementation of the BSC protocol by combining Ben-Or’s
protocol for Byzantine consensus [BDH10] with a bounded variant of Eppstein’s
protocol for efficient set reconciliation [Epp+11]. We demonstrate the practical
applicability of our resulting abstraction by using BSC to implement distributed
key generation, ballot collection and cooperative decryption from the Cramer-
Gennaro-Schoenmakers remote electronic voting scheme [CGS97] in the GNUnet
framework. Our experimental results show that the behavior of the implementa-
tion matches our predictions from theory.

In summary, we make the following contributions in this chapter:

• The introduction of Byzantine Set-Union Consensus (BSC) with Byzantine
Eppstein Set Reconciliation.

• The analysis and proof of correctness of Byzantine Set Union Consensus.

• An implementation and experimental evaluation of the protocol.

• A discussion of practical applications to Secure Multiparty Computation.

5.2. Background

The Byzantine consensus problem [LSP82] is a generalization of the consensus
problem where the peers that need to reach agreement on some value might also
exhibit Byzantine faults.

126

5.2. Background

Many specific variants of the agreement problem (such as interactive consis-
tency [FL81], k-set consensus [DMR01], or leader election [MWV00] and many
others [FLM86]) exist. We will focus on the consensus problem, wherein each peer
in a set of peers {P1, . . . , Pn} starts with an initial value vi ∈ M for an arbitrary
fixed set M. At some point during the execution of the consensus protocol, each
peer irrevocably decides on some output value v̂i ∈ M. Informally, a protocol
that solves the consensus problem must fulfill the following properties:2

• Agreement: If peers Pi, Pj are correct, then ṽi = ṽj.

• Termination: The protocol terminates in a finite number of steps.

• Validity: If all correct peers have the same input value v, then all correct
peers decide on ṽ = v.

Some definitions of the consensus problem also include strong validity, which
requires the value that is agreed upon to be the initial value of some correct
peer [Nei94]. The consensus protocol presented in this chapter does not offer
strong validity; in fact, for a set union operation this is not exactly desirable as
the goal is to have all peers agree a union of all of the original sets, not on some
peer’s initial subset.

5.2.1. The FLP Impossibility Result

A fundamental theoretical result (often called FLP impossibility for the initials
of the authors) states, informally, that no deterministic protocol can solve the
consensus problem in the asynchronous communication model, even in the
presence of only one crash-fault [FLP85].

While this result initially seems discouraging, the conditions under which FLP
impossibility holds are quite specific and subtle [Agu10]. There are a number of
techniques to avoid these conditions while still resulting in a useful protocol. For
example:

• Common coins: Some protocols introduce a shared source of randomness
that the adversary cannot predict or bias. This avoids the FLP impossibility
result, since the protocol is not deterministic anymore. In practice, these
protocols are very complex and often use variants of secret-sharing and
weaker forms of Byzantine agreement to implement the common coin [Fel88;
FM88; MMR14]. Implementing a common coin oracle resilient against an
active adversary is non-trivial and usually required extra assumptions such
as a trusted dealer in the startup phase [CKS05] or shared memory [Asp98].
Recent designs to implement a Byzantine fault-tolerant bias-resistant public
random generator only scale to hundreds of participants and still have
relatively high failure rates (reported at 0.08% for and adversary power
bounded at 1

3 and 32 participants) [Syt+16].

2Different variations and names can be found in the literature. We have chosen a definition that
extends to our generalization to sets later on.

127

5. Byzantine Set-Union Consensus

• Failure oracles: Approaches based on unreliable failure detectors [Gue+00]
augment the model with oracles for the detection of faulty nodes. Much care
has to be taken not to violate correctness of the protocol by classifying too
many correct peers as faulty; this is a problem present in early systems such
as Rampart [Rei95] and SecureRing [KMM98] as noted by Castro and Liskov
[CL99; CL02]. While the theory of failure detectors is quite established for
the non-Byzantine case, it is not clear whether they are still useful in the
presence of Byzantine faults.

• Partial synchrony: A model where a bound on the message delay or clock
shift exists but is unknown or is known but only holds from an unknown
future point in time is called partial synchrony. The FLP result does not
hold in this model [DLS88].

• Minimal synchrony: The definition of synchrony used by the FLP impossibil-
ity result can be split into three types of synchrony: Processor synchrony,
communication synchrony and and message ordering synchrony. Dolev et
al. [DDS87] show that consensus is still possible if only certain subsets of
these three synchrony assumptions are fulfilled.

This work follows the path of [DLS88] in relaxing the full asynchrony assump-
tion behind the FLP impossibility result.

5.2.2. Byzantine Consensus in the Partially Synchronous Model

The protocols presented in this chapter operate within the constraints of the par-
tially synchronous model, where participants have some approximate information
about time.

A fundamental result is that no Byzantine consensus protocol with n peers can
support dn/3e or more Byzantine faults in the partially synchronous model [DLS88].

Early attempts at implementing Byzantine consensus with state machine repli-
cation are SecureRing [KMM98] and Rampart [Rei95]. A popular design in the
partially synchronous model is Castro and Liskov’s Practical Byzantine Fault
Tolerance (PBFT) [CL99; CL02]. PBFT uses a leader to coordinate peers (called
replicas in PBFT terminology). When replicas detect that the leader is faulty, they
run a leader-election protocol to appoint a new leader.

PBFT guarantees progress as long as the message delay does not grow in-
definitely for some fixed growth function3. The approach taken by PBFT (and
several derived protocols) has several problems [Cle+09]: In practice, malicious
participants are able to slow down the system significantly. When facing an
adversarial scheduler that violates PBFT’s weak synchrony assumption, PBFT can
fail to make progress entirely [Mil+16].

Some more recent Byzantine state machine replication protocols such as
Q/U [Abd+05] or Zyzzyva [Kot+07] have less overhead per request since they

3In practice, exponential back-off is used.

128

5.2. Background

optimize for the non-Byzantine case. This comes, however, often at the expense
of robustness in the presence of Byzantine faults [Cle+09], not to mention that
correctness proofs for the respective protocols and the implementation of state
machine replication are notoriously difficult [Aub+15].

5.2.3. Gradecast

A key building block for our protocol is Feldman’s Gradecast protocol [FM88]. In
contrast to an unreliable broadcast, Gradecast provides correctness properties to
the receivers, even if the leader is exhibiting Byzantine faults.

In a Gradecast, a leader PL broadcasts a message m among a fixed set P =
{P1, . . . , Pn} of peers. For notational convenience, we assume that PL ∈ P . These
are the communication steps for peer Pi:

1. LEAD: If i = L, send the input value vL to P

2. ECHO: Send the value received in LEAD to P .

3. CONFIRM: If a common value v was received at least n− t times in round
ECHO, send v to P . Otherwise, send nothing.

Afterwards, each peer assigns a confidence value ci ∈ {0, 1, 2} that “grades” the
correctness of the broadcast. The result is a graded result tuple 〈v̂i, ci〉 containing
the output value v̂i and the confidence ci. The grading is done with the following
rules:

• If some v̂ was received at least n− t times in CONFIRM, output 〈v̂, 2〉.

• Otherwise, if some v̂ was received at least t + 1 times in CONFIRM, output
〈v̂, 1〉.

• Otherwise, output 〈⊥, 0〉. Here, ⊥ denotes a special value that indicates the
absence of a meaningful value.

For the ci, the following correctness properties must hold:

1. If ci ≥ 1 then v̂i = v̂j for correct Pi and Pj

2. If PL is correct, then ci = 2 and v̂i = vL for correct Pi.

3. |ci − cj| ≤ 1 for correct Pi and Pj.

When a correct peer Pi receives a Gradecast with confidence 2, it can deduce
that all other peers received the same message, but some other peers might have
only received it with a confidence of 1. Receiving a Gradecast with confidence 1
also guarantees that all other correct peers received the same message. However,
it indicates that the leader behaved incorrectly. No assumption can be made
about the confidence of other peers. Receiving a Gradecast with confidence 0

129

5. Byzantine Set-Union Consensus

indicates that the leader behaved incorrectly and, crucially, that all other correct
peers know that the leader behaved incorrectly.

A simple counting argument proves that the above protocol satisfies the three
Gradecast properties [FM88].

5.2.4. ByzConsensus

ByzConsensus [BDH10] uses Gradecast to implement a consensus protocol for
simple values. Each peer begins with a starting value s(1)i and the list of all
n participants P . Each peer also starts with an empty blacklist of corrupted
peers. If a peer is ever blacklisted, it is henceforth excluded from the protocol.
In ByzConsensus, Gradecast is used to force corrupt peers to either expose
themselves as faulty—and consequently be excluded—by gradecasting a value
with low confidence, or to follow the protocol and allow all peers to reach
agreement.

ByzConsensus consists of at most f + 1 sequentially executed super-rounds
r ∈ 1 . . . f + 1 where f ≤ t. In each super-round, each peer leads a Gradecast
using their candidate value s(r)i ; these n Gradecasts can be executed in parallel.
Leaders where the Gradecast results in a confidence of less than 2 are put on
the blacklist. Recall that different correct peers might receive a Gradecast with
different confidence; thus, peers do not necessarily agree on the blacklist.

At the end of each super-round, each peer computes a new candidate value
s(r+1)

i using the value that was received most often from the Gradecasts with a

confidence of as least 1. If s(r)i was received more than n− t times, then r = f
and the next round is the last round.

If the final candidate value does not receive a majority of at least 2t + 1 among
the n Gradecasts, or if the blacklist has more than t entries, then the protocol
failed: either more than t faults happened or, in the partially synchronous model,
correct peers did not receive a message within the designated round due to the
delayed delivery.

ByzConsensus has message complexity O(f n3). While the asymptotic message
complexity is obviously worse than the O(n2) of PBFT, there is a way to use set
reconciliation to benefit from the parallelism of the Gradecast rounds and thereby
reduce the complexity to O(f n2).

5.2.5. Set Reconciliation

The goal of set reconciliation is to identify the differences between two large sets,
say Sa and Sb, that are stored on two different machines in a network. A simple
but inefficient solution would be to transmit the smaller of the two sets, and let
the receiver compute and announce the difference. Research has thus focused
on protocols that are more efficient than this naïve approach with respect to the
amount of data that needs to be communicated when the sets Sa and Sb are large,

130

5.2. Background

but their symmetric difference Sa ⊕ Sb is small.
An early attempt to efficiently reconcile sets [MTZ03] was based on representing

sets by their characteristic polynomial over a finite field. Conceptually, dividing
the characteristic polynomials of two sets cancels out the common elements,
leaving only the set difference. The characteristic polynomials are transmitted
as a sequence of sampling points, where the number of sampling points is
proportional to the size of the symmetric difference of the sets Sa and Sb. The
number of sampling points can be approximated with an upper bound, or
increased on the fly should a peer be unable to interpolate a polynomial. While
theoretically elegant, the protocol is not efficient in practice. The computational
complexity of the polynomial interpolation grows as O(|Sa⊕ Sb|3) and uses rather
expensive arithmetic operations over large finite fields.

A practical protocol was first proposed by Eppstein et al. in 2011 [Epp+11]. It
is based on invertible Bloom filters (IBFs), a probabilistic data structure that is
related to Bloom filters [Blo70], and stratas for difference estimation.

Invertible Bloom Filters

An IBF is a constant-size data structure that supports four basic operations, insert,
delete, decode and subtract.

Insert and delete operations are commutative operations encoding a key that
uniquely identifies a set element, typically derived from the element via a hash
function.

The decode operation can be used to extract some or all of the updates, returning
the key and the sign of the operation, that is either insert or delete. Since the data
structure uses constant space, decoding cannot always succeed. Decoding is a
probabilistic operation that is more likely to succeed when the IBF is sparse, that
is the number of encoded operations (excluding the operations that canceled each
other out) is small. The decoding process can also be partially successful, if some
elements could be extracted but the remaining IBF is non-empty. Extracting an
update by decoding an IBF is only possible if the key was recorded only once
in the IBF. However, storing a deletion or insertion of the same key twice or
more (not counting operations that canceled each other out) makes both updates
impossible to decode.

IBFs of the same size can also be subtracted from each other. When subtracting
IBFb from IBFa, the resulting structure IBFc := IBFa − IBFb contains all insertions
and deletions from IBFa, and insertions from IBFb are recorded as deletions in
IBFc and deletions from IBFb are recorded as insertions in IBFc. Effectively, the
IBF subtraction allows to compute the difference between two sets simply by
encoding each set as an IBF using only insertion operations.

Under the hood, an IBF of size n is an array of n buckets. Each bucket holds
three values:

• A signed counter that handles overflow via wrap-around. Recording an
insertion or deletion adds −1 or +1 to the counter, respectively.

131

5. Byzantine Set-Union Consensus

• An ⊕-sum4, called the keySum, over the keys that identify set the elements
that were recorded in the bucket.

• An ⊕-sum, called the keyHashSum, over a the hash h(·) of each key that
was recorded in the bucket.

As with ordinary Bloom filters, encoding an update in an IBF records the
update in k different buckets of the IBF. The indices of buckets that record the
update are derived via a k independent hash functions from the key of the element
that is subject of the update. We write Pos(x) for the set of array positions that
correspond to the element key x.

Before we describe the decoding process, we introduce some terminology.
A bucket is called a candidate bucket if its counter is −1 or +1, which might
indicate that the keySum field contains the key of an element that was the subject
of an update. Candidate buckets that contain the key of an element that was
previously updated are called pure buckets. Candidate buckets are not necessarily
pure buckets, since a candidate bucket could also result from, for example, first
inserting an element key e1 and then deleting e2 when Pos(e1)∩ Pos(e1) 6= ∅ and
Pos(e1) 6= Pos(e2).

The keyHashSum provides a way to detect if a candidate bucket is not a pure
bucket, namely when h(keySum) 6= keyHashSum. The probability of classifying
an impure bucket as pure with this method is dependent on the probability of a
hash collision. Another method to check for an impure candidate bucket with
index i is to check whether i /∈ Pos(keySum).

The decoding process then simply searches for buckets that are, with high
probability, pure. When the count field of the bucket is 1, the key decoding
procedure reports the key as “inserted” and exececutes a deletion operation with
that key. When the count field is −1, the key is reported as “deleted” and
subsequently an insertion operation is executed.

With a probability that increases with sparser IBFs, decoding one element may
cause one or more other buckets to become pure, allowing the decoding to be
repeated. If none of the buckets is pure, the IBF is undecodable, and a larger
IBF must be used, or the reconciliation could fall back to the naïve approach of
sending the whole set.

The IBF decoding process is particularly suitable for reconciling large sets
with small differences. When the symmetric difference between the sets is small
enough compared to the size of the IBFs, the result IBFc of the subtraction can be
decoded, since the common elements encoded in IBFa and IBFb cancel each other
out. This makes it possible to obtain the elements of the symmetric difference,
even when the IBFs that represent the full sets cannot be decoded.

As long as the symmetric difference between the original sets Sa and Sb can be
approximated well enough, IBFs can be used for set reconciliation by encoding
Sa in IBFa and Sb in IBFb. One of the IBFs is sent over the network, the IBFc =

4The ⊕ denotes bit-wise exclusive or.

132

5.3. Our Approach

IBFa − IBFb is computed and decoded. Should the decoding (partially) fail, the
same procedure is repeated with larger IBFs.

Difference Estimation with Stratas

In order to select the initial size of the IBF appropriately for the set reconciliation
protocol, one needs an estimate of the symmetric difference between the sets
that are being reconciled. Eppstein et al. [Epp+11] describe a simple technique,
called strata estimation, that is accurate for small differences. While Eppstein et
al. suggest combining the strata estimator, with a min-wise estimator, which is
more accurate for large differences, our work only requires the strata estimators.

A strata estimator is an array of fixed-size IBFs. These fixed-size IBFs are called
strata since each of them contains a sample of the whole set, with increased
sampling probability towards inner strata. Similar to how two IBFs can be
subtracted, strata estimators are subtracted by pairwise subtraction of the IBFs
they consist of.

The set difference is estimated by having both peers encode their set in a strata
estimator. One of the strata estimators is then sent over to the other peer, which
subtracts the strata estimators from each other. With every IBF of the strata
estimator that results from the subtraction, a decoding attempt is made. The
number of successfully decoded elements in each stratum allows an estimate to
be made on the set difference, which is then used to determine the size of the IBF
for the actual set reconciliation.

5.3. Our Approach

We now describe how to combine the previous approaches into a protocol for
Byzantine fault-tolerant set consensus. The goal of the adversary is to sabotage
timely consensus among correct peers, e.g., by increasing message complexity or
forcing timeouts.

A major difficulty with agreeing on a set of elements as a whole is that malicious
peers can initially withhold elements from the correct peers and later send them
only to a subset of the correct peers. This could possibly happen at a time when
it is too late to reconcile the remaining difference caused by distributing these
elements. We assume that the number of these elements that are initially known
to the adversary but not to all correct peers is bounded by k, where k exists but is
not necessarily known to the correct participants.

5.3.1. Definition

We now give a definition of set-union consensus that is motivated by practical
applications to secure multiparty computation protocols such as electronic voting,
which are discussed in more detail in Section 5.7.

133

5. Byzantine Set-Union Consensus

Consider a set of n peers P = {P1, . . . , Pn}. Fix some (possibly infinite) universe
M of elements that can be represented by a bit string. Each peer Pi has an initial
set S(0)

i ⊆ M.
Let R : P(M)→ P(M) be an idempotent function that canonicalizes subsets of

M by replacing multiple conflicting elements with the lexically smallest element
in the conflict set and removes invalid elements. What is considered conflicting
or invalid is application-specific. During the execution of the set-union consensus
protocol, after finite time each peer Pi irrevocably commits to a set Si such that:

1. For any pair of correct peers Pi, Pj it holds that Si = Sj.

2. If Pi is correct and e ∈ S0
i then e ∈ Si.

3. The set Si is canonical, that is Si = R(Si).

The canonicalization function allows us to set an upper bound on the number
of elements that can simultaneously be in a set. For example, in electronic voting,
canonicalization would remove malformed ballots and combine multiple different
(encrypted) ballots submitted by the same voter into a single “invalid” ballot for
that voter.

5.3.2. Byzantine Set-Union Consensus (BSC) Protocol

Recall that every peer Pi, 0 < i ≤ n starts with a set S(0)
i . The BSC protocol incor-

porates two subprotocols, bounded set reconciliation and lower bound agreement,
and uses those to realize an efficient Byzantine fault-tolerant variant of ByzCon-
sensus. An existing generalization of IBFs to multi-party set reconciliation [MP13]
based on network coding is not applicable to this problem, as it requires trusted
intermediaries.

The basic problem solved by the two subprotocols is bounding the cost of
Eppstein’s set reconciliation. Given a set size difference between two peers of k,
the expected cost of Eppstein’s set reconciliation is O(k) if both participants are
honest. However, we need to ensure that malicious peers cannot generally raise
the complexity to O(m) where m is the size of the union.

For this, we use a bounded variant of Eppstein’s set reconciliation protocol,
which is given a lower bound L on the size of the set of elements shared by all
honest participants. Given such a lower bound, the bounded set reconciliation
protocol must detect faulty participants in O(k + (m − L)). We note that for
L = 0, the bounded set reconciliation is still allowed to cost O(m).

Bounded Set Reconciliation

In bounded set reconciliation we are thus concerned with modifications that
ensure that a set reconciliation step between an honest and a faulty peer either
succeeds after O(k) traffic, or aborts notifying the honest peer that the other peer
is faulty. While we use probabilities to detect faulty behavior, we note that suitable

134

5.3. Our Approach

parameters can be used to ensure that false-positives are rare, say 1 : 2128, and
thus as unlikely as successful brute-force attacks against canonical cryptographic
primitives, which BSC also assumes to be safe.

To begin with, to bound the complexity of Eppstein set reconciliation one needs
to bound the number of iterations the protocol performs. Assuming honest peers,
the initial strata estimation ensures that the IBFs will decode with high probability,
resulting in Eppstein’s claim of single-round complexity. Given aggressive choices
of the parameters to improve the balance between round-trips and bandwidth
consumption, decoding failures can happen with non-negligible probability in
practice. In this case, the process can simply be restarted using a different set
of hash functions and an IBF doubled in size. This addresses issues caused by
conservative choices for IBF sizes that optimize for the average case. What is
critical is that the probability of such failures remains small enough that after if
the number of rounds exceeds some constant, we can assert faulty behavior and
overall remain within the O(k) bound assuming individual rounds are bounded
by O(k).

Another problem with Eppstein’s original protocol related to aggressive pa-
rameter choices is that iterative decoding does not always have to end with an
empty or an undecodable IBF. Specifically, the decoding step can sometimes
decode a key that was never added to the IBF, simply because the two purity
checks are also probabilistic. This is usually not an issue, as when a decoder
requests the transmission of the element corresponding to improperly decoded
key, the presumed element’s owner can indicate a decoding failure at that time.
Here, another round of the protocol is unlikely to produce the same error and
would again fix the problem. However, given reasonably short strings for the
hashKeySum, it is actually even possible to obtain a looping IBF that spawns
an infinite series of “successfully” decoded keys. Here, the implementor has to
be careful to ensure that the iterated decoding algorithm terminates. Instead of
mandating an excessively long hashKeySum to prevent this, it is in practice more
efficient to handle this case by stopping the iteration and reporting the IBF as
undecodable when the number of decoded keys exceeds a threshold proportional
to the size of the IBF.

We also need to consider the bandwidth consumption of an individual round.
To cause more than O(k) traffic, a malicious peer could produce strata that
result in a huge initial symmetric difference. In this case, the initial size of the
IBF may exceed O(k). We address this problem by not permitting the use of
Eppstein’s method if the symmetric difference definitively exceeds n−L

2 , where n
is the smaller of the two set sizes.5 Instead, once the estimate of the symmetric
difference substantially exceeds this threshold, the reconciliation algorithm falls
back to sending the complete set. As this creates O(m) traffic, it must only be
allowed under certain conditions.

5The optimal formula here depends on the size ratio of IBF element to the transmission size
of an individual element and the estimated size of the set overlap. However, to simplify the
exposition, we will assume a simple 50% threshold henceforth.

135

5. Byzantine Set-Union Consensus

First, we consider the case where the honest peer has the larger set. Here, the
honest peer Pi will only send its full set if the set difference is no larger than
|Si| − L, and otherwise report a fault. This ensures that a malicious peer cannot
arbitrarily request the full set from honest peers.

Second, we consider the case where the honest peer Pi is facing a faulty
peer that claims to have a huge set. This is can happen either directly from
the strata estimator, or after Pi observes a constant number of successive IBF
decoding failures.6 At this point, instead of passively accepting the transmission
of elements, the receiver Pi checks that a sufficient number of the elements
received are not in Si. Let R be the stream of elements e received at any point
in time. We assume that the sender is required to transmit the elements in
randomized order. Thus, if |R ∩ Si| − |R \ Si| ≥ 128, Pi can determine that the
sender is faulty with probability 2128 : 1, as the n

2 -threshold for converting to
complete set transmission ensures that for an honest sender less than half of the
elements would be in Si.

Finally, we note that the individual insert, delete, decode and subtract operations
on the IBF are all constant time and that IBFs are also constant size. Thus, given
a constant number of rounds and a bound on the bandwidth per round, we
have implicitly assured that memory and CPU consumption of the bounded set
reconciliation is also O(k + (m−L)).

Lower Bound Agreement

To provide a lower bound on the permissable set size for set reconciliation, BSC
first executes a protocol for lower bound agreement (LBA). In this first step, every
correct peer Pi learns a superset S(1)

i of the union of all correct peers’ initial
sets, as well as a lower bound `i for the minimum number of elements shared
by all correct peers where n− `i ≤ k. Note that neither S(1)

i = S(1)
j nor `i = `j

necessarily hold even for correct peers Pi and Pj. Our LBA protocol proceeds in
three steps:

(i) All peers reconcile their initial set with each other, using pairwise bounded
set reconciliation using a lower bound of L = 0.

(ii) All peers send their current set size to each other, and each peer Pi sets sets
`i to the (t + 1)-smallest set size that Pi received.

(iii) All peers again reconcile their sets with each other, using pairwise bounded
set reconciliation.

The third step is necessary to ensure that every correct Pi has at least `i elements,
since malicious peers could use the k elements initially withheld to force an honest

6Each failure causes the IBF size to double and thus corresponds to a doubling of the set
difference estimate. Thus, the number of decoding failures could remain the threshold that
causes an abort, while the set difference estimate substantially exceeds 2(|Si| − L).

136

5.3. Our Approach

peer’s set size below the (t + 1)-smallest set size. Thanks to the repetition even
if `i is different for each peer, it is guaranteed that Pi has at least `i elements in
common with every other good peer.

In subsequent set reconciliations, `i can be used to bound the traffic that
malicious peers are able to cause by falsely claiming to have a large number
of elements missing. LBA itself has complexity O(nm f): initially all malicious
peers can once claim to have empty sets with all other peers. LBA ensures that
for the remainder of the protocol, a correct peer with mi elements can stop
sending elements to malicious peer PM after PM requested mi − `i ≤ k elements
by reducing the complexity of bounded set reconciliation with peer mi to O(k)
using L = `i.

Exact Set Agreement

After LBA, an exact set agreement is executed, where all peers reach Byzantine
agreement for a super-set of the set reached in LBA. The exact set agreement is
implemented by executing a variant of ByzConsensus which instead of sending
values reconciles sets.

The Gradecast is adapted as follows:

(i) LEAD: If i = L, reconcile the input set VL with P .

(ii) ECHO: Reconcile the set received in LEAD with P .

(iii) CONFIRM: Let UE be the union of all sets received in the ECHO round, and
NE(e) the number of times a single set element e was received.

If
∨

e∈UE
t < NE(e) < n − t, send ⊥ (where ⊥ 6= ∅). Otherwise send

UE − {e | NE(e) ≤ t} to P .

The grading rules are also adapted to sets. Let UC be the union of sets received
in CONFIRM, N+

C (e) the number of times a single element e ∈ UC was received,
and N−C (e) the number of sets (not ⊥) received in CONFIRM that excluded e.

• If
∧

e∈U N+
C (e) ≥ n− t ∨ N−C (e) ≥ n− t,

output 〈{e | N+
C (e) ≥ n− t}, 2〉.

• Otherwise if
∧

e∈UC
N+

C (e) > t ∧ N+
C (e) ≥ N−C (e)

or
∧

e∈UC
N−C (e) > t ∧ N−C (e) > N+

C (e),
output 〈{e | N+

C (e) > t ∧ N+
C (e) ≥ N−C (e)}, 1〉.

• Otherwise, output 〈⊥, 0〉.

Similar to ByzConsensus, the BSC consists of at most f + 1 super-rounds, where
f ≤ t. Each peer Pi starts with S(1)

i as its current set. In sequential super-rounds,
all peers lead a Gradecast for their candidate set. Like in ByzConsensus, if Pi
receives a Gradecast with a confidence value that is not 2, then Pi puts the leader

137

5. Byzantine Set-Union Consensus

of the Gradecast on its blacklist, and correct peers stop all communictation with
peers on their blacklist.

At the end of each super-round, peers update their candidate set as follows. Let
n′ be the number of leaders that gradecasted a set with a non-zero confidence. The
new candidate set contains all set elements that were included in at least dn′/2e
sets that were gradecasted with a non-zero confidence value. If all elements occur
with a (n− t)-majority, then the next round is the last round. The output of the
consensus protocol is the candidate set after the last round—or failure if f > t.

We give a correctness proof that generalizes Feldman’s proof for Gradecast of
single values [Fel88, Section 4.1].

Lemma 1. If two correct peers send sets A 6= ⊥ and B 6= ⊥ respectively in CONFIRM,
then A = B.

Proof. Proof by contradiction and counting argument. Assume w.l.o.g. that e ∈ A
and e /∈ B. At least n− t peers must have echoed a set that includes e to the
first peer. Suppose f of these peers were faulty, then at least n− t− f > t good
peers included e in the ECHO transmission to the second peer. If e /∈ B, then
t < NE(e) < n − t. In this case, an honest second peer must output B = ⊥.
Contradiction.

Theorem 5. The generalization of Gradecast to sets satisfies the three Gradecast proper-
ties.

Proof. We show that each property holds:

• Property 1 (If ci, cj ≥ 1 then V̂i = V̂j for correct Pi and Pj): Assume w.l.o.g.
that e ∈ V̂i \ V̂j.

For e ∈ V̂j, Pi must have received e at least N+
C (e) > t times in CONFIRM.

Given f ≤ t failures, at least one honest peer must thus have included e in
CONFIRM. According to Lemma 1, then all n− f honest peers must either
include e in CONFIRM or send ⊥.

Because ⊥ is not a set, this leaves at most all f ≤ t faulty peers that can
send a set without e. But for e /∈ V̂j we need N−C (e) ≥ t + 1. Contradiction.

• Property 2 (If PL is correct, then ci = 2 and V̂i = V̂L for correct Pi): All
n − f ≥ n − t good peers ECHO and CONFIRM the same set. By the
grading rules, they must output a confidence of 2.

• Property 3 (|ci − cj| ≤ 1 for correct Pi and Pj): Proof by contradiction.
Assume w.l.o.g. ci = 2 and cj = 0. ci = 2 implies that for each x ∈ V̂i at
least n− t peers (and thus (n− t)− f ≥ t + 1 correct peers) must have sent
a set in CONFIRM that includes x. For any y /∈ V̂i, n− t peers (and thus
(n− t)− f ≥ t + 1 correct peers) must have sent a non-⊥ set in CONFIRM
that excludes y.

138

5.4. Implementation

Given cj = 0, there must have been an element e such that, N+
C (e) ≤ t and

N−C (e) ≤ t for Pj. However, we just derived that for all elements either
N+

C (e) > t or N−C (e) > t. Contradiction.

Given the Gradecast properties for sets, the correctness argument given by
Ben-Or [BDH10] for the Byzantine consensus applies to BSC’s generalization to
sets.

As described, the protocol has complexity O(mn f + f kn3). However, the n
parallel set reconciliation rounds in each super-round can be combined by tagging
the set elements that are being reconciled in the LEAD, ECHO and CONFIRM
rounds with the respective leader L. Because LBA (via n− `i ≤ k) and bounded
set reconciliation limit mischief for the combined super-round, each malicious
peer can, as leader, once cause bounded set reconciliation during the ECHO round
to all-to-all transmit at most k extra elements, resulting in a total of O(f kn2) extra
traffic over all f + 1 rounds. Before exposing themselves this way, non-leading
malicious peers can only cause O(f 2kn) additional traffic during all ECHO rounds.
Finally, malicious peers can also cause at most O(f kn2) traffic in the CONFIRM
round. Thus, BSC has overall message complexity of O(mn f + f kn2).

5.4. Implementation

We implemented the BSC protocol in the SET and CONSENSUS services of
GNUnet [GNUNET].

5.4.1. The GNUnet Framework

GNUnet is composed of various components that run in separate operating
system processes and communicate via message passing. Components that
expose an interface to other components are called services in GNUnet. The
main service used by our implementation is the CADET service, which offers
pairwise authenticated end-to-end encryption between all participants. CADET
uses a variation of the Axolotl public key ratcheting scheme and double-encrypts
using both TwoFish and AES [PG14]. The resulting encryption is relatively
expensive compared to the other operations, and thus dominates in terms of CPU
consumption for the experiments.

5.4.2. Set Reconciliation

Bounded set reconciliation is implemented in the SET service. The SET service
provides a generic interface for set operations between two peers; the operations
currently implemented are the IBF-based set reconciliation and set intersec-
tion [TRL12].

139

5. Byzantine Set-Union Consensus

In addition to the operation-specific protocols, the following aspects are handled
generically (i.e., independent of the specific remote set operation) in the SET
service:

Local set operations
Applications need to create sets and perform actions (iteration, insertion,
deletion) on them locally.

Concurrent modifications
While a local set is in use in a network operation, the application may
still continue to mutate that set. To allow this without interfering with
concurrent the network operations, changes are versioned. A network
operation only sees the state of a set at the time the operation was started.

Lazy copying
Some applications building on the SET service—especially the CONSENSUS
service described in the next section—manage many local sets that are large
but only differ in a few elements. We optimize for this case by providing a
lazy copy operation that returns a logical copy of the set without duplicating
the sets in memory.

Negotiating remote operations
In a network operation, the involved peers have one of two roles: The
acceptor, which waits for remote operation requests and accepts or rejects
them, as well as the initiator, which sends the request.

Our implementation estimates the initial difference between sets only using
strata estimators as described by Eppstein [Epp+11]. However, we compress the
strata estimator—which is 60KB uncompressed—using gzip. The compression is
highly effective at reducing bandwidth consumption due to the high probability
of long runs of zeros or ones in the most sparse or most dense strata respectively.

We also use a salt when deriving the bucket indices from the element keys.
When the decoding of an IBF fails, the IBF size is doubled and the salt is changed.
This prevents decoding failures in scenarios where keys map to the same bucket
indices even modulo a power of two, where doubling the size of the IBF does not
remove the collision.

5.4.3. Set-Union Consensus

To keep the description of the set-union consensus protocol in the previous
section succinct, we merely stated that peers efficiently transmit sets using the
reconciliation protocol. However, given that the receiving peer has usually many
sets to reconcile against, an implementation needs to be careful to ensure that it
scales to large sets as intended.

The key goal is to avoid duplicating full sets and to instead focus on the differ-
ences. New sets usually differ in only a few elements, thus our implementation

140

5.5. Experimental Results

avoids copying entire sets. Instead, in the leader round we just store the set of
differences with a reference to the original set. In the ECHO and CONFIRM
round, we also reconcile with respect to the set we received from the leader, and
not a peer’s current set. In the ECHO round, we only store one set and annotate
each element to indicate which peer included or excluded that element. This also
allows for a rather efficient computation of the set to determine the ⊥-result in
the CONFIRM round.

5.4.4. Evaluating Malicious Behavior

For the evaluation, our CONSENSUS service can be configured to exhibit the
following types of adversarial behavior:

• SpamAlways: A malicious peer adds a constant number of additional
elements in every reconciliation.

• SpamLeader: A malicious peer adds a constant number of additional
elements in reconciliations where the peer is the leader.

• SpamEcho: A malicious peer adds a constant number of additional elements
in echo rounds.

• Idle: Malicious peers do not participate actively in the protocol, which
amounts to a crash fault from the start of the protocol. This type of behavior
is not interesting for the evaluation, but used to test the implementation
with regards to timeouts and majority counting.

For the Spam-* behaviors, two different variations are implemented. One of
them (“*-replace”) always generates new elements for every reconciliation. This is
not typical for real applications where the number of stuffable elements ought to
be limited by set canonicalization. However, this shows the performance impact
in the worst case. The other variation (“*-noreplace”) reuses the same set of
additional elements for all reconciliations, which is more realistic for most cases.
We did not implement adversarial behaviour where elements are elided, since the
resulting traffic is the same as for additional elements, and memory usage would
only be reduced.

5.5. Experimental Results

All of the experiments were run on a single machine with a 24-core 2.30GHz
Intel Xeon E5-2630 CPU, and GNUnet SVN revision 36765. We used the gnunet-
consensus-profiler tool, which is based on GNUnet’s TESTBED service [Tot13],
to configure and launch multiple peers on the target system. We configured the
profiler to emulate a network of peers connected in a clique topology (via loop-
back, without artificial latency). Elements for the set operations are randomly
generated and always 64 bytes large.

141

5. Byzantine Set-Union Consensus

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000

S
E
T
 s

e
rv

ic
e
 u

se
r

C
P
U

 t
im

e
 (

se
co

n
d
s)

total set size

Figure 5.1.: CPU system time for the SET service in relation to total set size.
Average over 50 executions.

Bandwidth consumption was measured using the statistics that GNUnet’s
CADET service [PG14] provides. Processor time was measured using GNUnet’s
resource reporting functionality, which uses the wait3 system call for that
purpose.

5.5.1. Bounded Set Reconciliation

We now summarize the experimental results for the bounded set reconciliation
protocol between two peers. We first measured the behavior of the set reconcil-
iation if identical sets were given to both peers (Figure 5.1 and 5.2). Figure 5.1
shows that total CPU utilization generally grows slowly as the set size increases.
The sudden jump in processing time that is visible at around 7,000 elements can
most likely be explained by cache effects. The effect could not be observed when
we ran the experiment under profiling tools.

Figure 5.2 shows that bandwidth consumption does not grow linearly with the
total set size, as long as the set size difference between the two peers is small.
The logarithmic increase of the traffic with larger sets can be explained by the
compression of strata estimators: The k-th strata samples the set with probability
2−k, and for small input sets the strata tends to contain long runs of zeros that
are more easily compressed.

We also measured the behavior of the set reconciliation implementation if
the sets differed. Figure 5.3 and 5.4 show that—as expected—CPU time and
bandwidth do grow linearly with the symmetric difference between the two sets.

142

5.5. Experimental Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2000 4000 6000 8000 10000

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

total set size

Figure 5.2.: CADET traffic for the SET service in relation to total set size. Average
over 50 executions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000

S
E
T
 s

e
rv

ic
e
 u

se
r

C
P
U

 t
im

e
 (

se
co

n
d
s)

symmetric set difference

Figure 5.3.: CPU system time for the SET service in relation to symmetric set
difference. Average over 50 executions.

143

5. Byzantine Set-Union Consensus

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 2000 4000 6000 8000 10000

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

symmetric set difference

Figure 5.4.: CADET traffic for the SET service in relation to symmetric difference.
Average over 50 executions.

Finally, we analyzed what happens when the algorithm switches from trans-
mitting set differences to full sets. Figure 5.5 shows the bandwidth in relation
to the symmetric set difference, for different total numbers of elements in the
shared set. Up to the threshold where the algorithm switches from IBFs to full
set transmission, we expect the transmission size to grow steeply, and then after-
wards continue linearly at a lower rate again. If the handover threshold is chosen
well, the two lines should meet. This is the case in the dashed curve in Figure 5.5.
The small bump at a set difference of ≈ 800 is due to an unlucky size estimate by
the strata estimator causing the algorithm to initially attempt set reconciliation,
before switching to full set transmission. If the threshold between IBF and full set
transmission is picked a bit too high and IBFs are sent slightly beyond the point
where they are beneficial, the curve from the IBF transmission will peak above
the one that represents the full set transmission. This is the case in the solid curve
in Figure 5.5. Finally, the dotted curve shows the case where the threshold is
picked too low, causing expensive full set transmission to occur when IBFs would
have been more useful. Here, we also see a lucky case of underestimating the size
of the difference. We note that given the size of an IBF entry, the average size of a
set element and an estimate of the size overlap, near-perfect thresholds (instead
of the 50%-heuristic we described earlier) can be trivially computed.

144

5.5. Experimental Results

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 100 200 300 400 500 600 700 800 900 1000

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

symmetric set difference

size=32B, shared=1000
size=500B, shared=500

size=1000B, shared=500

Figure 5.5.: CADET traffic for the SET service in relation to symmetric difference
at the boundary between IBF and full set transmission. Note that we
did cherry-pick runs for this graph. Our goal is to illustrate how the
curves evolve with regard to different thresholds between IBF and full
set transmission. We also wanted to show how significant deviations
in set difference estimates generated by the strata estimator can have
a minor impact on performance.

145

5. Byzantine Set-Union Consensus

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 1.8x106

 2 4 6 8 10 12 14 16

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

number of peers

Figure 5.6.: CADET traffic for BSC per peer for 100 elements and only correct
peers. Average over 50 executions.

5.5.2. Byzantine Set Consensus

For our experiments with the BSC implementation, all ordinary peers start with
the same set of elements; different sets would only affect the all-to-all union phase
of the protocol which does pairwise set reconciliation, resulting in increased
bandwidth and CPU consumption proportional to the set difference as shown in
the previous section.

As expected, traffic increases cubically with the number of peers when no
malicious peers are present (Figure 5.6). Most of the CPU time (Figure 5.7) is
taken up by CADET, which uses expensive cryptographic operations [PG14].
Since we ran the experiments on a multicore machine, the total runtime follows
the same pattern as the traffic (Figure 5.8).

We now consider the performance implications from the presence of malicious
peers. Figures 5.10 and Figure 5.11 show that bandwidth and runtime increase
linearly with the additional elements malicious peers can exclusivly supply, in
contrast to the sub-linear growth for the non-Byzantine case (Figure 5.2).

Figure 5.11 highlights how the different attack strategies impact the number of
additional elements that were received during set reconciliations: The number
of stuffed elements for the “SpamEcho” behavior is significantly larger than for
“SpamLead”, since multiple ECHO rounds are executed for one LEAD round,
and the number of stuffed elements is fixed per reconciliation. When malicious
peers add extra elements during the LEAD round, the effect of that is amplified,
since all correct receivers have to re-distribute the additional elements in the

146

5.5. Experimental Results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16

u
se

r
C

P
U

 t
im

e
 (

se
co

n
d
s)

number of peers

cadet service
set service

consensus service

X X X X X X X X X X X X X X X

X

Figure 5.7.: CPU of BSC for 100 elements of 64 bytes and only correct peers.
Average over 50 executions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 2 4 6 8 10 12 14 16

e
n
d
-t

o
-e

n
d
 l
a
te

n
cy

 i
n
 s

e
co

n
d
s

number of peers

Figure 5.8.: Runtime of BSC for 100 elements of 64 bytes and only correct peers.
Average over 50 executions.

147

5. Byzantine Set-Union Consensus

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

number of stuffed elements per reconciliation

SpamEcho-replace
SpamLead-replace
SpamAll-noreplace

X X X X X X X X X X X

X

Figure 5.9.: CADET traffic for BSC on 100 elements of 64 bytes and one malicious
peer with the indicated mode. Average over 50 executions.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

la
te

n
cy

 i
n
 s

e
co

n
d
s

number of stuffed elements per reconciliation

SpamEcho-replace
SpamLead-replace
SpamAll-noreplace

Figure 5.10.: Latency for BSC with 4 peers on 100 elements of 64 bytes and one
malicious peer with the indicated mode. Average over 50 executions.

148

5.6. Opportunities for Further Improving BSC

ECHO/CONFIRM round. Even though adding elements in the LEAD round
requires the least bandwidth from the leader, the effect on traffic and latency is
the largest (see Figures 5.9 and 5.10).

As expected, when the number of stuffed elements is limited to a fixed set, the
effect on the performance is limited (“SpamAll-noreplace” in Figures 5.9, 5.10,
5.11).

5.6. Opportunities for Further Improving BSC

We now discuss some of the key limitations of the current implementation and,
how it could be optimized further.

5.6.1. Extension to Partial Synchrony

The prototype used in the evaluation only works in the synchronous model. It
would be trivial to extend it to the partially synchronous model with synchronous
clocks by using the same construction as PBFT [CL99], namely retrying the
protocol with larger round timeouts (usually doubled on each retry) when it did
not succeed.

It might be worthwhile to further investigate the Byzantine round synchroniza-
tion protocols discovered independently by Attya and Dolev [ADG84] as well

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100

to
ta

l
e
x
tr

a
 e

le
m

e
n
ts

number of stuffed elements per reconciliation

SpamEcho-replace
SpamLead-replace
SpamAll-noreplace

Figure 5.11.: Total number of extra elements received by each peer for BSC on
100 elements of 64 bytes and one malicious peer with the indicated
mode. Average over 50 executions.

149

5. Byzantine Set-Union Consensus

as Dwork, Lynch and Stockmeyer [DLS88]. Running a Byzantine clock synchro-
nization protocol interleaved with consensus protocol might lead to a protocol
with lower latency, since the timeouts are dynamically adjusted instead of being
increased for each failed iteration.

5.6.2. Persistent Data Structures

Both the SET and CONSENSUS service have to store many variations of the same
set when faulty peers elide or add elements. While the SET service API already
supports lazy copying, the underlying implementation is inefficient and based
on a log of changes per element with an associated version number. It might
be possible to reduce memory usage and increase performance of the element
storage by using data structures that are more well suited, such as the persistent
data structures described by Okasaki [Oka98].

5.6.3. Fast Dissemination

Recall that in order to be included in the final set, an element must be sent to
at least t + 1 peers, so that at least one correct peer will receive the element. In
applications of set-union consensus such as electronic voting, the effort to the
client should be minimized, and thus in practice, elements might be sent only
to t + 1 peers, which would lead to large initial symmetric differences between
peers.

A possible optimization would be to add another dissemination round that only
requires n log2 n reconciliations to achieve perfect element distribution when only
correct peers are present. The n2 reconciliations that follow will consequently be
more efficient, since no difference has to be reconciled when all peers are correct.
In the presence of faulty peers, the optimization adds more overhead due to the
additional dissemination round.

More concretely, in the additional dissemination round the peers reconcile
with their 2`-th neighbour (for some arbitrary, fixed order on the peers) in the
`-th subround of the dissemination round. After dlog2e of these subrounds, the
elements are perfectly distributed as long as every peer passed along their current
set correctly.

5.7. Application to SMC

Secure multiparty computation (SMC) is an area of cryptography that is concerned
with protocols that allow a group of peers P = P1, . . . , Pn to jointly compute a
function y = f (x1, . . . , xn) over private input values x1, . . . , xn without using a
trusted third party [GL05]. Each peer Pi contributes its own input value xi, and
during the course of the SMC protocol, Pi ideally only learns the output y, but no
additional information about the other peers’ input values. Applications of SMC
include electronic voting, secure auctions and privacy-preserving data mining.

150

5.7. Application to SMC

SMC protocols often assume a threshold t < n on the amount of peers con-
trolled by an adversary, which is typically either honest-but-curious (i.e., tries
to learn as much information as possible but follows the protocol) or actively
malicious. The actively malicious case mandates the availability of Byzantine
consensus as a building block [SZ15].7

In practical applications, the inputs typically consist of sets of values that were
given to the peers P by external clients: In electronic voting protocols the peers
need to agree on the set of votes; with secure auctions, the peers need to agree on
bids, and so on.

In this section, we focus on one practical problem, namely electronic voting.
We show how BSC is useful at multiple stages of the protocol, and discuss how
our approach differs from existing solutions found in the literature.

5.7.1. Bulletin Board for Electronic Voting

The bulletin board is a communication abstraction commonly used for electronic
voting [Ben87; Pet05]. It is a stateful, append-only channel that participants of
the election can post messages to. Participants of the election identify themselves
with a public signing key and must sign all messages that they post to the bulletin
board. The posted messages are publicly available to facilitate independent
auditing of elections.

Existing work on electronic voting either does not provide a Byzantine fault-
tolerant bulletin board in the first place [Adi08] and instead relies on trusted
third parties, or suggests the use of state machine replication [CGS97].

Some of the bulletin board protocols surveyed by Peters [Pet05] use threshold
signatures to certify to the voter that the vote was accepted by a sufficiently
large fraction of the peers that jointly provide the bulletin board service. With a
naïve approach, the message that certifies acceptance by t peers is the concate-
nation of the peers’ individual signatures and thus O(t) bits large. Threshold
signature schemes allow smaller signatures, but at the expense of a more com-
plex protocol. Since the number of peers is typically not very large, a linear
growth in t is acceptable, which makes the simple scheme sufficient for practical
implementations.

It is easy to implement a variant of the bulletin board with set-union consensus.
In contrast to traditional bulletin boards, this variant has phases, where posted
messages are only visible after the group of peers have agreed that a phase is
concluded. The concept of phases maps well to the requirements of existing
voting protocols. Every phase is implemented with one set-union consensus
execution. To guarantee that a message is posted to the bulletin board, it must be
sent to at least one correct peer from the group of peers that jointly implements

7An attempt has been made to relax the definition of SMC to alleviate this requirement, resulting
in a weaker definition that includes non-unanimous aborts as a possible result [GL05]. This
definition is mainly useful in scenarios without an non-faulty 2/3 majority, where Byzantine
consensus is not possible in the asynchronous model [DLS88].

151

5. Byzantine Set-Union Consensus

set union consensus

set reconciliation

distributed key generation

bulletin board

cooperative decryption

voting

Figure 5.12.: Relation of different SMC protocols and communication primitives
in GNUnet. Dashed arrows indicate optional dependencies.

the bulletin board.

5.7.2. Distributed Threshold Key Generation and Cooperative
Decryption

Voting schemes as well as other secure multiparty computation protocols often
rely on threshold cryptography [Des94]. The basic intuition behind threshold
cryptography is that some operations—such as signing a message or decrypting a
ciphertext—should only succeed if a large enough fraction of some group of peers
cooperate. Typically, the public key of the threshold cryptosystem is publicly
known, while the private key is not known by any entity but reconstructible from
the shares that are distributed among the participants, for example, with Shamir’s
secret sharing scheme [Sha79].

Generating this shared secret key either requires a trusted third party, or a
protocol for distributed key generation [FS01; Ped91]. The former is undesirable
for most practical applications since it creates a single point of failure.

In a distributed key generation protocol, each peer contributes a number of
pre-shares. The peers agree on the set of pre-shares and each peer re-combines

152

5.7. Application to SMC

them in a different way, yielding the shares of the private threshold key.
In the key generation protocol used for the Cramer et al. voting scheme, the

number of pre-shares that need to be agreed upon is quadratic in the number of
peers. Every peer needs to know every pre-share, even if it is not required by the
individual peer for reconstructing the share, since the pre-shares are accompanied
by non-interactive proofs of correctness. Thus, the number of values that need
to be agreed upon is quadratic in the number of peers, which makes the use of
set-union consensus attractive compared to individual agreement.

Even though the pre-shares can be checked for correctness, Byzantine consensus
on the set of shares is still necessary for the case when a malicious peer submits
a incorrect share to only some peers. Without Byzantine consensus, different
correct recipients might exclude different peers, resulting in inconsistent shares.

Similarly, when a message that was encrypted with the threshold public key
shall be decryped, every peer contributes a partial decryption with a proof of
correctness. While the set of partial decryptions is typically linear in the number
of peers, set-union consensus is still a reasonable choice here, this way the whole
system only needs one agreement primitive.

5.7.3. Electronic Voting with Homomorphic Encryption

Various conceptually different voting schemes use homomorphic encryption;
we look as the scheme by Cramer et al. [CGS97] as a modern and practical
representative. A fundamental mechanism of the voting scheme is that a set
of voting authorities A1, . . . , An establish a threshold key pair that allows any
entity that knows the public part of the key to encrypt a message that can
only be decrypted when a threshold of the voting authorities cooperate. The
homomorphism in the cryptosystem enables the computation of an encrypted
tally with only the ciphertext of the submitted ballots. Ballots represent a choice
of one candidate from a list of candidate options. The validity of encrypted ballot
is ensured by equipping them with a non-interactive zero-knowledge proof of
their validity.

It is assumed that the adversary is not able to corrupt more than 1/3 of the
authorities. The voting process itself is then facilitated by all voters encrypting
their vote and submitting it to the authorities. The encrypted tally is computed
by every authority and then cooperatively decrypted by the authorities and
published. Since correct authorities will only agree to decrypt the final tally and
not individual ballots, the anonymity of the voter is preserved. For the voting
scheme to work correctly, all correct peers must agree on exactly the same set of
ballots before the cooperative decryption process starts, otherwise the decryption
of the tally will fail.

Using BSC for this final step to agree on a set of ballots again makes sense,
as the number of ballots is typically much larger than the number of author-
ities. Figure 5.12 summarizes the various ways how BSC and is used in our
implementation [Dol14] of Cramer-style [CGS97] electronic voting.

153

5. Byzantine Set-Union Consensus

5.7.4. Other Applications of BSC

Bitcoin [Nak08] has gained immense popularity over the past few years. Bitcoin
solves a slight variation of Byzantine consensus without strong validity [ML14;
GKL15]. Given that a block in Bitcoin is basically just a set of (valid) transactions,
BSC could be used to efficiently achieve agreement between participants about
the next transaction group. Here, the most natural application would be to use
BSC to improve the efficiency of proof-of-stake incentivized peers running BFT
consensus in Cosmos [KB16].

5.8. Conclusions

Given m ballots, n authorities, f Byzantine faults and k ballots exclusively avail-
able to the adversary, voting with BSC achieves a complexity of O(mn+(f + k)n3),
which in practice is better than the O(mn2) complexity of using SMR as m is usu-
ally significantly larger than n. Equivalent arguments hold for other applications
requiring consensus over large sets. Furthermore, BSC remains advantageous in
the absence of Byzantine failures, and the bounded set reconciliation makes it
particularly efficient at handling various non-Byzantine faults.

To ensure these performance bounds, BSC requires a bounded variant of Epp-
stein’s set reconciliation protocol that ensures that individual steps in the protocol
cannot consume unbounded amounts of bandwidth. We are currently applying
bounded set reconciliation in related domains, as any set reconciation can be
made more robust if the complexity of the operation is bounded. For example, the
GNU Name System [WSG14] can use bounded set reconciliation when gossiping
sets of key revocation sets. Here, the use of bounded set reconciliation protects the
key revocation protocol against denial-of-service attacks where an attacker might
have previously sent excessively large IBFs or retransmitted known revocation
messages already known to the recipient. The result is an efficient and resilient
method for disseminating key revocation data.

In future work, it would be interesting to apply bounded set reconciliation to
Byzantine consensus protocols that are more efficient than the simple gradecast
consensus. It would also be interesting to experimentally compare bulletin boards
using BSC with those using traditional replicated state machines.

154

6. Future Work

We now discuss future work that builds upon the results presented so far.

Standard Model

Our current instantiation of the Taler protocol relies heavily on hash functions.
Since the result by Canetti and others [CGH04] about the theoretical impossibility
of securely instantiating protocols that rely on the random oracle assumption for
their security, a vast amount of literature has been devoted to find instantiations
of interesting protocols in the standard model [KM15]. The Taler protocol syntax
could likely be also instantiated securely in the standard model, based existing
on blind signature schemes in the standard model. The trade-off however is that
while removing the random oracle assumption, typically other less well known
assumptions must be made.

Post-Quantum security

The possibility of post-quantum computers breaking the security of established
cryptographic primitives has lately received a lot of attention from cryptographers.
While currently most schemes with post-quantum security are impractical, it
might be worthwhile to further investigate their application to e-cash, based on
existing work such as [Zha+18].

Applications to network incentives

Some peer-to-peer networking protocols (such as onion routing [DMS04]) do
not have inherent incentives and rely on volunteers to provide infrastructure. In
future work, we want to look at adding incentives in the form of Taler payments
to a peer-to-peer networking platform such as GNUnet.

Smart(er) Contracts and Auctions

Contract terms in Taler are relatively limited. There are some interesting secure
multiparty computations, such as privacy-preserving auctions [Bra06] that could
be offered by exchanges as a fixed smart contract. This would allow a full privacy-
preserving auction platform, as current auction protocols only output the winner
of a privacy-preserving auction but do not address the required anonymous
payments.

155

6. Future Work

Backup and Sync

Synchronization of wallets between multiple devices is a useful feature, but
a naïve implementation endangers privacy. A carefully designed protocol for
backup and synchronization must make sure that the hosting service for the
wallet’s data cannot collaborate with the exchange and merchants to deanonymize
users or transactions. Thus when spending coins for a payment, devices should
not have to synchronously talk to their backup/sync provider. This creates
the challenge of allocating the total available balance to individual devices in
a way that fits the customer’s spending pattern, and only require synchronous
communication at fixed intervals or when really necessary to re-allocate coins.

Another possible approach might be to use Private Information Retrieval (PIR)
[Gol07] to access backup and synchronization information.

Machine-Verified Proofs

We currently model only a subset of the GNU Taler protocol formally, and proofs
are handwritten and verified by humans. A tool such as CryptoVerif [Bla07] can
allow a higher coverage and computer-checked proofs, and would allow protocol
changes to be validated in shorter time.

Coin Restrictions / “Taler for Children”

By designating certain denominations for different purposes, GNU Taler could be
used to implement a very simple form of anonymous credentials [PZ11; CL04],
which then could be used to implement a Taler wallet specifically aimed at
children, in order to teach them responsible and autonomous spending behavior,
while granting them privacy and at the same time preventing them from making
age-inappropriate purchases online, as the discretion of parents.

156

7. Conclusion

This thesis presented efficient protocols for both register- and value-based elec-
tronic payment systems with focus on security and privacy. While we believe
our approach to be socially and economically beneficial, a technological impact
analysis is in order prior to adopting new systems that have broad economic and
socio-political implications.

Currencies serve three key functions in society: [Man10]

1. As a unit for measurement of value,

2. a medium of exchange, and

3. a store of value.

How do the various methods measure up to these requirements?

7.1. Cryptocurrencies vs. Central-Bank-Issued
Currencies

Cryptocurrencies generally fail to achieve the required stability to serve as a
reasonable unit of measurement (Figure 7.1). The volatility of cyptocurrencies is
caused by a combination of a lack of institutions that could intervene to dampen
fluctuations and a comparatively limited liquidity in the respective markets.
The latter is exacerbated by the limited ability of decentralized cryptocurrencies
to handle large transaction volumes, despite their extreme levels of resource
consumption. As a result, the utility of decentralized cryptocurrencies is limited
to highly speculative investments and to the facilitation of criminal transactions.

With respect to privacy, completely decentralized cryptocurrencies provide
either too much or too little anonymity. Transparent cryptocurrencies create
the spectre of discriminatory pricing, while especially for privacy-enhanced
cryptocurrencies the lack of regulation creates an attractive environment for fraud
and criminal activity from tax evasion to financing of terrorism.

These problems are easily addressed by combining the register (or ledger)
with a central bank providing a regulatory framework and monetary policy,
including anti-money-laundering and know-your-customer enforcement. Such
central-bank-issued currencies

may be able to improve the availability, integrity and performance of their reg-
ister using our Byzantine Set Consensus protocol in lieu of simplistic provisioned
blockchains.

157

7. Conclusion

Figure 7.1.: Historical market price (in USD) of Bitcoin across major exchanges
(Source: https://blockchain.com).

7.2. Electronic Payments

Day-to-day payments using registers are expensive and inconvenient. Using a
register requires users to identify themselves to authorize transactions, and the use
of register-based banking systems tends to be more expensive than the direct
exchange of physical cash. However, with the ongoing digitalization of daily life
where a significant number of transactions is realized over networks, some form
of electronic payments remain inevitable.

The current alternative to (centrally banked) electronic cash are a payment sys-
tems under full control of oligopoly companies such as Google, Apple, Facebook
or Visa. The resulting oligopolies are anti-competitive. In addition to excessive
fees, they sometimes even refuse to process payments with certain types of legal
businesses, which then are often ruined due to lack of alternatives. Combining
payment services with companies where the core business model is advertising is
also particularly damaging for privacy. Finally, the sheer size of these companies
creates systemic risks, just as their global scale creates challenges for regulation.

As GNU Taler is free software, even without backing by a central bank, Taler
would not suffer from these drawbacks arising from the use of proprietary
technology.

Furthermore, Taler-style electronic cash comes with some unique benefits:

• improved income transparency compared to cash and traditional Chaum-
style e-cash,

• anonymity for payers,

• avoidance of enticement towards consumer debt — especially compared to
credit cards, and

• support of new business models and Internet security mechanisms which
require (anonymous) micro-transactions.

158

https://blockchain.com

7.2. Electronic Payments

Central banks are carefully considering what might be the right technology to
implement an electronic version of their centrally banked currency, and with Taler
we hope to address most of their concerns. Nevertheless, all electronic payment
systems, including Taler even when backed by central-bank-issued currencies,
come with their own inherent set of risks: [Rik17]

• increased risk of a bank run: in a banking crisis, as it is easier to withdraw
large amounts of digital cash quickly — even from remote locations;

• increased volatility due to foreign holdings that would not be as easily
possible with physical cash;

• increased risk of theft and disruption: while physical cash can also be
stolen (and likely with much less effort), it is difficult to transport in vol-
ume [FEF15], the risk is increased with computers because attacks scale
[Ham18], and generally many small incidents are socially preferable over a
tiny number of very large-scale incidents; and

• unavailability in crisis situations without electricity and Internet connectiv-
ity.

We believe that in the case of Taler, some of the risks mentioned above can be
mitigated:

• Volatility due to foreign holdings and the resulting increased risk of bank
runs can be reduced by putting limits on the amount of electronic coins that
customers can withdraw. Limiting the validity periods of coins is another
method that can help disincentivize the use of Taler as a value store.

• The use of open standards and reference implementations enables white-hat
security research around GNU Taler, which together with good operational
security procedures and the possibility of competing providers should
reduce the risks from attacks.

• GNU Taler can co-exist with physical cash, and might even help revive
the use of cash if it succeeds in reducing credit card use online thereby
eliminating a key reason for people to have credit cards.

Unlike cryptocurrencies, Taler does not prescribe a solution for monetary
policy or just taxation, as we believe these issues need to be subject to continuous
political debate and cannot be “solved” by simplistic algorithms. What we offer
to society is an open and free (as in free speech) system with mechanisms to audit
merchants’ income, instead of proprietary systems controlled by a few oligopoly
companies.

159

Bibliography

[Abd+05] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael
K Reiter, and Jay J Wylie. “Fault-scalable Byzantine fault-tolerant
services”. In: ACM SIGOPS Operating Systems Review 39.5 (2005),
pp. 59–74 (cit. on p. 128).

[ADG84] Chagit Attiya, Danny Dolev, and Joseph Gil. “Asynchronous Byzan-
tine Consensus”. In: Proceedings of the Third Annual ACM Sympo-
sium on Principles of Distributed Computing. PODC ’84. Vancouver,
British Columbia, Canada: ACM, 1984, pp. 119–133. url: http:
//doi.acm.org/10.1145/800222.806740 (cit. on p. 149).

[Adi08] Ben Adida. “Helios: Web-based Open-audit Voting”. In: Proceedings
of the 17th Conference on Security Symposium. SS’08. San Jose, CA:
USENIX Association, 2008, pp. 335–348. url: http://dl.acm.
org/citation.cfm?id=1496711.1496734 (cit. on p. 151).

[Ady16] Adyen. The Global E-Commerce Payments Guide. 2016 (cit. on p. 2).

[Agu10] Marcos K. Aguilera. “Replication”. In: ed. by Bernadette Charron-
Bost, Fernando Pedone, and André Schiper. Berlin, Heidelberg:
Springer-Verlag, 2010. Chap. Stumbling over Consensus Research:
Misunderstandings and Issues, pp. 59–72. url: http://dl.acm.
org/citation.cfm?id=2172338.2172342 (cit. on p. 127).

[And+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, et al. “Hyper-
ledger fabric: a distributed operating system for permissioned
blockchains”. In: Proceedings of the Thirteenth EuroSys Conference.
ACM. 2018, p. 30 (cit. on p. 34).

[Ano99] Anonymous. How DigiCash Blew Everything. 1999 (cit. on p. 31).

[AO00] Masayuki Abe and Tatsuaki Okamoto. “Provably secure partially
blind signatures”. In: Annual International Cryptology Conference.
Springer. 2000, pp. 271–286 (cit. on pp. 31, 59).

[Arn+18] Douglas W Arner, Dirk A Zetzsche, Ross P Buckley, and Janos
Nathan Barberis. “The Identity Challenge in Finance: From Ana-
logue Identity to Digitized Identification to Digital KYC Utilities”.
In: European Banking Institute (2018) (cit. on p. 80).

161

http://doi.acm.org/10.1145/800222.806740
http://doi.acm.org/10.1145/800222.806740
http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dl.acm.org/citation.cfm?id=2172338.2172342
http://dl.acm.org/citation.cfm?id=2172338.2172342

Bibliography

[ASM11] Man Ho Au, Willy Susilo, and Yi Mu. “Electronic cash with anony-
mous user suspension”. In: Australasian Conference on Information
Security and Privacy. Springer. 2011, pp. 172–188 (cit. on pp. 6, 30).

[Asp98] James Aspnes. “Lower bounds for distributed coin-flipping and
randomized consensus”. In: Journal of the ACM (JACM) 45.3 (1998),
pp. 415–450 (cit. on p. 127).

[Aub+15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien
Quéma, and Marko Vukolić. “The Next 700 BFT Protocols”. In:
ACM Trans. Comput. Syst. 32.4 (Jan. 2015), 12:1–12:45. url: http:
//doi.acm.org/10.1145/2658994 (cit. on p. 129).

[Bad15] Heinz-Peter Bader. France steps up monitoring of cash payments to fight
low-cost terrorism. http://www.reuters.com/article/2015/
03/18/us-france-security-financing-idUSKBN0ME14720150318.
Mar. 2015 (cit. on p. 18).

[Bar11] Adam Barth. The Web Origin Concept. RFC 6454. Dec. 2011. url:
https://rfc-editor.org/rfc/rfc6454.txt (cit. on p. 85).

[BDH10] Michael Ben-Or, Danny Dolev, and Ezra N Hoch. “Simple gradecast
based algorithms”. In: arXiv preprint arXiv:1007.1049 (2010) (cit. on
pp. 125, 126, 130, 139).

[Bel+03] Bellare, Namprempre, Pointcheval, and Semanko. “The One-More-
RSA-Inversion Problems and the Security of Chaum’s Blind Signa-
ture Scheme”. In: Journal of Cryptology 16.3 (June 2003), pp. 185–215.
url: https://doi.org/10.1007/s00145-002-0120-1 (cit.
on pp. 64, 76).

[Bel+98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Ro-
gaway. “Relations among notions of security for public-key en-
cryption schemes”. In: Annual International Cryptology Conference.
Springer. 1998, pp. 26–45 (cit. on p. 45).

[Ben+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. “Zerocash: De-
centralized Anonymous Payments from Bitcoin”. In: IEEE Sympo-
sium on Security & Privacy. 2014 (cit. on pp. 13, 15, 35).

[Ben+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
“Scalable, transparent, and post-quantum secure computational in-
tegrity”. In: Cryptol. ePrint Arch., Tech. Rep 46 (2018), p. 2018 (cit. on
p. 35).

[Ben87] Josh Daniel Cohen Benaloh. Verifiable secret-ballot elections. Yale Uni-
versity. Department of Computer Science, 1987 (cit. on p. 151).

[Ber+12] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang. “High-speed high-security signatures”. In: Journal of
Cryptographic Engineering 2.2 (2012), pp. 77–89 (cit. on p. 64).

162

http://doi.acm.org/10.1145/2658994
http://doi.acm.org/10.1145/2658994
http://www.reuters.com/article/2015/03/18/us-france-security-financing-idUSKBN0ME14720150318
http://www.reuters.com/article/2015/03/18/us-france-security-financing-idUSKBN0ME14720150318
https://rfc-editor.org/rfc/rfc6454.txt
https://doi.org/10.1007/s00145-002-0120-1

[Ber06] Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed records”.
In: International Workshop on Public Key Cryptography. Springer. 2006,
pp. 207–228 (cit. on pp. 64, 76).

[BGK95] Ernest F Brickell, Peter Gemmell, and David W Kravitz. “Trustee-
based Tracing Extensions to Anonymous Cash and the Making of
Anonymous Change.” In: SODA. Vol. 95. 1995, pp. 457–466 (cit. on
pp. 6, 30).

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. “Cryptocurrencies
without proof of work”. In: International Conference on Financial
Cryptography and Data Security. Springer. 2016, pp. 142–157 (cit. on
p. 34).

[BH13] Carsten Bormann and Paul E. Hoffman. Concise Binary Object Rep-
resentation (CBOR). RFC 7049. Oct. 2013. url: https://rfc-
editor.org/rfc/rfc7049.txt (cit. on p. 76).

[Bla07] Bruno Blanchet. “CryptoVerif: Computationally sound mechanized
prover for cryptographic protocols”. In: Dagstuhl seminar “Formal
Protocol Verification Applied. Vol. 117. 2007 (cit. on p. 156).

[Blo70] Burton H Bloom. “Space/time trade-offs in hash coding with allow-
able errors”. In: Communications of the ACM 13.7 (1970), pp. 422–426

(cit. on p. 131).

[Bog+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin
Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen,
Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach,
and Tomas Toft. “Financial Cryptography and Data Security”. In:
ed. by Roger Dingledine and Philippe Golle. Berlin, Heidelberg:
Springer-Verlag, 2009. Chap. Secure Multiparty Computation Goes
Live, pp. 325–343. url: http://dx.doi.org/10.1007/978-3-
642-03549-4_20 (cit. on p. 125).

[Böh+15] Rainer Böhme, Nicolas Christin, Benjamin Edelman, and Tyler
Moore. “Bitcoin: Economics, technology, and governance”. In: Jour-
nal of Economic Perspectives 29.2 (2015), pp. 213–38 (cit. on p. 13).

[Bol03] Alexandra Boldyreva. “Threshold signatures, multisignatures and
blind signatures based on the gap-Diffie-Hellman-group signa-
ture scheme”. In: International Workshop on Public Key Cryptography.
Springer. 2003, pp. 31–46 (cit. on p. 77).

[Bon+14] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark,
Joshua A Kroll, and Edward W Felten. “Mixcoin: Anonymity for
Bitcoin with accountable mixes”. In: International Conference on Fi-
nancial Cryptography and Data Security. Springer. 2014, pp. 486–504

(cit. on p. 35).

163

https://rfc-editor.org/rfc/rfc7049.txt
https://rfc-editor.org/rfc/rfc7049.txt
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1007/978-3-642-03549-4_20

Bibliography

[Bon98] Dan Boneh. “The decision diffie-hellman problem”. In: International
Algorithmic Number Theory Symposium. Springer. 1998, pp. 48–63

(cit. on p. 45).

[BP06] Bruno Blanchet and David Pointcheval. “Automated security proofs
with sequences of games”. In: Annual International Cryptology Con-
ference. Springer. 2006, pp. 537–554 (cit. on p. 46).

[BR06] Mihir Bellare and Phillip Rogaway. “Code-based game-playing
proofs and the security of triple encryption”. In: Advances in Cryptology–
EUROCRYPT. Vol. 4004. 2006, p. 10 (cit. on pp. 42, 46, 54).

[BR93] Mihir Bellare and Phillip Rogaway. “Random oracles are practical:
A paradigm for designing efficient protocols”. In: Proceedings of the
1st ACM conference on Computer and communications security. ACM.
1993, pp. 62–73 (cit. on pp. 41, 42).

[BR96] Mihir Bellare and Phillip Rogaway. “The exact security of digital
signatures-How to sign with RSA and Rabin”. In: International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 1996, pp. 399–416 (cit. on p. 64).

[Bra06] Felix Brandt. “How to obtain full privacy in auctions”. In: Interna-
tional Journal of Information Security 5.4 (2006), pp. 201–216 (cit. on
p. 155).

[Bra17] Tim Bray. “The JavaScript Object Notation (JSON) Data Interchange
Format”. In: RFC 8259 (2017), pp. 1–16. url: https://doi.org/
10.17487/RFC8259 (cit. on p. 76).

[BS15] Alireza Beikverdi and JooSeok Song. “Trend of centralization in
Bitcoin’s distributed network”. In: Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD),
2015 16th IEEE/ACIS International Conference on. IEEE. 2015, pp. 1–6

(cit. on p. 13).

[BY18] Lynn Batten and Xun Yi. “Off-line digital cash schemes providing
untraceability, anonymity and change”. In: Electronic Commerce Re-
search (Jan. 2018). url: https://doi.org/10.1007/s10660-
018-9289-8 (cit. on p. 30).

[CFN90] David Chaum, Amos Fiat, and Moni Naor. “Untraceable Electronic
Cash”. In: Advances in Cryptology — CRYPTO’ 88: Proceedings. Ed. by
Shafi Goldwasser. New York, NY: Springer New York, 1990, pp. 319–
327. url: https://doi.org/10.1007/0-387-34799-2_25
(cit. on pp. 29, 32).

[CG07] Sébastien Canard and Aline Gouget. “Divisible e-cash systems can
be truly anonymous”. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer. 2007,
pp. 482–497 (cit. on p. 29).

164

https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
https://doi.org/10.1007/s10660-018-9289-8
https://doi.org/10.1007/s10660-018-9289-8
https://doi.org/10.1007/0-387-34799-2_25

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle
methodology, revisited”. In: Journal of the ACM (JACM) 51.4 (2004),
pp. 557–594 (cit. on pp. 42, 155).

[CGH06] Sébastien Canard, Aline Gouget, and Emeline Hufschmitt. “A handy
multi-coupon system”. In: International Conference on Applied Cryp-
tography and Network Security. Springer. 2006, pp. 66–81 (cit. on
p. 30).

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. “A
secure and optimally efficient multi-authority election scheme”. In:
European transactions on Telecommunications 8.5 (1997), pp. 481–490

(cit. on pp. 125, 126, 151, 153).

[Cha+89] David Chaum, Bert den Boer, Eugène van Heyst, Stig Mjølsnes, and
Adri Steenbeek. “Efficient offline electronic checks”. In: Workshop on
the theory and application of of cryptographic techniques. Springer. 1989,
pp. 294–301 (cit. on p. 29).

[Cha83] David Chaum. “Blind Signatures for Untraceable Payments”. In:
Advances in Cryptology: Proceedings of Crypto 82. Ed. by David Chaum,
Ronald L. Rivest, and Alan T. Sherman. Boston, MA: Springer US,
1983, pp. 199–203. url: https://doi.org/10.1007/978-1-
4757-0602-4_18 (cit. on pp. 4, 8, 17, 29, 32, 64).

[Che+14] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind
Jain. TCP Fast Open. RFC 7413. Dec. 2014. url: https://rfc-
editor.org/rfc/rfc7413.txt (cit. on p. 121).

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. “Com-
pact E-Cash”. In: Advances in Cryptology – EUROCRYPT 2005: 24th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings.
Ed. by Ronald Cramer. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2005, pp. 302–321. url: https://doi.org/10.1007/
11426639_18 (cit. on pp. 29, 32, 59).

[CKS05] Christian Cachin, Klaus Kursawe, and Victor Shoup. “Random ora-
cles in Constantinople: Practical asynchronous Byzantine agreement
using cryptography”. In: Journal of Cryptology 18.3 (2005), pp. 219–
246 (cit. on p. 127).

[CL02] Miguel Castro and Barbara Liskov. “Practical Byzantine fault tol-
erance and proactive recovery”. In: ACM Transactions on Computer
Systems (TOCS) 20.4 (2002), pp. 398–461 (cit. on pp. 126, 128).

[CL04] Jan Camenisch and Anna Lysyanskaya. “Signature schemes and
anonymous credentials from bilinear maps”. In: Annual International
Cryptology Conference. Springer. 2004, pp. 56–72 (cit. on p. 156).

165

https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://rfc-editor.org/rfc/rfc7413.txt
https://rfc-editor.org/rfc/rfc7413.txt
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/11426639_18

Bibliography

[CL99] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Toler-
ance”. In: Third Symposium on Operating Systems Design and Implemen-
tation (OSDI). Vol. 99. New Orleans, Louisiana: USENIX Association,
Co-sponsored by IEEE TCOS and ACM SIGOPS, Feb. 1999, pp. 173–
186 (cit. on pp. 125, 126, 128, 149).

[Cle+09] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and
Mirco Marchetti. “Making Byzantine Fault Tolerant Systems Tolerate
Byzantine Faults”. In: Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation. NSDI’09. Boston,
Massachusetts: USENIX Association, 2009, pp. 153–168. url: http:
//dl.acm.org/citation.cfm?id=1558977.1558988 (cit. on
pp. 125, 128, 129).

[CLM07] J. Camenisch, A. Lysyanskaya, and M. Meyerovich. “Endorsed E-
Cash”. In: 2007 IEEE Symposium on Security and Privacy (SP ’07). May
2007, pp. 101–115 (cit. on pp. 7, 46, 70).

[Cor00] Jean-Sébastien Coron. “On the exact security of full domain hash”.
In: Annual International Cryptology Conference. Springer. 2000, pp. 229–
235 (cit. on pp. 41, 45).

[CP92] David Chaum and Torben Pryds Pedersen. “Wallet databases with
observers”. In: Annual International Cryptology Conference. Springer.
1992, pp. 89–105 (cit. on p. 30).

[Cro] Douglas Crockford. Base32 Encoding. url: https://www.crockford.
com/wrmg/base32.html (cit. on p. 76).

[CSS11] Bert Bos, ed. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Speci-
fication. 2011 (cit. on p. 101).

[Dal16] Therése Dalebrant. “The Monetary Policy Effects of Sweden’s Tran-
sition Towards a Cashless Society: An Econometric Analysis”. In:
(2016) (cit. on p. 2).

[Dam07] Ivan Damgård. “A “proof-reading” of some issues in cryptography”.
In: International Colloquium on Automata, Languages, and Programming.
Springer. 2007, pp. 2–11 (cit. on pp. 30, 41).

[Dav+97] George Davida, Yair Frankel, Yiannis Tsiounis, and Moti Yung.
“Anonymity control in e-cash systems”. In: International Conference
on Financial Cryptography. Springer. 1997, pp. 1–16 (cit. on p. 30).

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. “On the
minimal synchronism needed for distributed consensus”. In: Journal
of the ACM (JACM) 34.1 (1987), pp. 77–97 (cit. on p. 128).

[Des94] Yvo G Desmedt. “Threshold cryptography”. In: European Transac-
tions on Telecommunications 5.4 (1994), pp. 449–458 (cit. on p. 152).

166

http://dl.acm.org/citation.cfm?id=1558977.1558988
http://dl.acm.org/citation.cfm?id=1558977.1558988
https://www.crockford.com/wrmg/base32.html
https://www.crockford.com/wrmg/base32.html

[DG17] Florian Dold and Christian Grothoff. “Byzantine set-union con-
sensus using efficient set reconciliation”. In: EURASIP Journal on
Information Security 2017.1 (July 2017), p. 14. url: https://doi.
org/10.1186/s13635-017-0066-3 (cit. on p. 125).

[DKL15] Jannik Dreier, Ali Kassem, and Pascal Lafourcade. “Formal analysis
of e-cash protocols”. In: e-Business and Telecommunications (ICETE),
2015 12th International Joint Conference on. Vol. 4. IEEE. 2015, pp. 65–
75 (cit. on p. 30).

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus
in the presence of partial synchrony”. In: Journal of the ACM (JACM)
35.2 (1988), pp. 288–323 (cit. on pp. 126, 128, 150, 151).

[DM16] George Danezis and Sarah Meiklejohn. “Centrally Banked Cryp-
tocurrencies”. In: 23nd Annual Network and Distributed System Se-
curity Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society, 2016 (cit. on p. 124).

[DMR01] Roberto De Prisco, Dahlia Malkhi, and Michael Reiter. “On k-set
consensus problems in asynchronous systems”. In: Parallel and Dis-
tributed Systems, IEEE Transactions on 12.1 (2001), pp. 7–21 (cit. on
p. 127).

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor:
The Second-Generation Onion Router”. In: Proceedings of the 13th
USENIX Security Symposium. Aug. 2004 (cit. on pp. 18, 77, 155).

[Dol14] Florian Dold. “Cryptographically Secure, Distributed Electronic
Voting”. Bachelor’s Thesis. Technische Universität München, 2014

(cit. on p. 153).

[DPW08] AW Dent, KG Paterson, and PR Wild. “Extensions to Chaum’s Blind
Signature Scheme and OpenCoin Requirements”. In: (2008) (cit. on
p. 31).

[Epp+11] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George
Varghese. “What’s the Difference?: Efficient Set Reconciliation With-
out Prior Context”. In: SIGCOMM Comput. Commun. Rev. 41.4 (Aug.
2011), pp. 218–229. url: http://doi.acm.org/10.1145/
2043164.2018462 (cit. on pp. 126, 131, 133, 140).

[ES18] Ittay Eyal and Emin Gün Sirer. “Majority is not enough: Bitcoin
mining is vulnerable”. In: Communications of the ACM 61.7 (2018),
pp. 95–102 (cit. on pp. 14, 34).

[Eya+16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van
Renesse. “Bitcoin-NG: A Scalable Blockchain Protocol.” In: NSDI.
2016, pp. 45–59 (cit. on p. 34).

167

https://doi.org/10.1186/s13635-017-0066-3
https://doi.org/10.1186/s13635-017-0066-3
http://doi.acm.org/10.1145/2043164.2018462
http://doi.acm.org/10.1145/2043164.2018462

Bibliography

[FEF15] Financial Action Task Force, Middle East, and North Africa Fi-
nancial Action Task Force. Money laundering through the physical
transportation of cash. 2015 (cit. on p. 159).

[Fel88] Paul Neil Feldman. “Optimal algorithms for Byzantine agreement”.
PhD thesis. Massachusetts Institute of Technology, 1988 (cit. on
pp. 127, 138).

[FH06] Matthias Fitzi and Martin Hirt. “Optimally Efficient Multi-valued
Byzantine Agreement”. In: Proceedings of the Twenty-fifth Annual
ACM Symposium on Principles of Distributed Computing. PODC ’06.
Denver, Colorado, USA: ACM, 2006, pp. 163–168. url: http://
doi.acm.org/10.1145/1146381.1146407 (cit. on p. 125).

[FKH13] Ned Freed, Dr. John C. Klensin, and Tony Hansen. Media Type
Specifications and Registration Procedures. RFC 6838. Jan. 2013. url:
https://rfc-editor.org/rfc/rfc6838.txt (cit. on p. 91).

[FL81] Michael J Fischer and Nancy A Lynch. A lower bound for the time to
assure interactive consistency. Tech. rep. DTIC Document, 1981 (cit. on
p. 127).

[FLM86] Michael J Fischer, Nancy A Lynch, and Michael Merritt. “Easy
impossibility proofs for distributed consensus problems”. In: Dis-
tributed Computing 1.1 (1986), pp. 26–39 (cit. on p. 127).

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. “Im-
possibility of distributed consensus with one faulty process”. In:
Journal of the ACM (JACM) 32.2 (1985), pp. 374–382 (cit. on p. 127).

[FM88] Paul Feldman and Silvio Micali. “Optimal Algorithms for Byzantine
Agreement”. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing. STOC ’88. Chicago, Illinois, USA: ACM,
1988, pp. 148–161. url: http://doi.acm.org/10.1145/62212.
62225 (cit. on pp. 127, 129, 130).

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. “Trans-
ferable constant-size fair e-cash”. In: International Conference on Cryp-
tology and Network Security. Springer. 2009, pp. 226–247 (cit. on pp. 6,
30).

[FS01] Pierre-Alain Fouque and Jacques Stern. “One Round Threshold
Discrete-Log Key Generation without Private Channels”. In: Public
Key Cryptography: 4th International Workshop on Practice and Theory
in Public Key Cryptosystems, PKC 2001 Cheju Island, Korea, February
13–15, 2001 Proceedings. Ed. by Kwangjo Kim. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 300–316. url: https://doi.
org/10.1007/3-540-44586-2_22 (cit. on p. 152).

168

http://doi.acm.org/10.1145/1146381.1146407
http://doi.acm.org/10.1145/1146381.1146407
https://rfc-editor.org/rfc/rfc6838.txt
http://doi.acm.org/10.1145/62212.62225
http://doi.acm.org/10.1145/62212.62225
https://doi.org/10.1007/3-540-44586-2_22
https://doi.org/10.1007/3-540-44586-2_22

[FS09] Marc Fischlin and Dominique Schröder. “Security of blind signa-
tures under aborts”. In: International Workshop on Public Key Cryptog-
raphy. Springer. 2009, pp. 297–316 (cit. on p. 59).

[FT00] Roy T Fielding and Richard N Taylor. Architectural styles and the
design of network-based software architectures. Vol. 7. University of
California, Irvine Doctoral dissertation, 2000 (cit. on p. 76).

[Gar+07] Sujata Garera, Niels Provos, Monica Chew, and Aviel D Rubin. “A
framework for detection and measurement of phishing attacks”. In:
Proceedings of the 2007 ACM workshop on Recurring malcode. ACM.
2007, pp. 1–8 (cit. on p. 3).

[GGM16] Christina Garman, Matthew Green, and Ian Miers. “Accountable
privacy for decentralized anonymous payments”. In: International
Conference on Financial Cryptography and Data Security. Springer. 2016,
pp. 81–98 (cit. on p. 35).

[Gil+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. “Algorand: Scaling byzantine agreements for
cryptocurrencies”. In: Proceedings of the 26th Symposium on Operating
Systems Principles. ACM. 2017, pp. 51–68 (cit. on p. 34).

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin
Backbone Protocol: Analysis and Applications”. In: Advances in
Cryptology - EUROCRYPT 2015: 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bul-
garia, April 26-30, 2015, Proceedings, Part II. Ed. by Elisabeth Oswald
and Marc Fischlin. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 281–310. url: https://doi.org/10.1007/978-3-
662-46803-6_10 (cit. on p. 154).

[GL05] Shafi Goldwasser and Yehuda Lindell. “Secure multi-party com-
putation without agreement”. In: Journal of Cryptology 18.3 (2005),
pp. 247–287 (cit. on pp. 150, 151).

[GM16] Matthew Green and Ian Miers. Bolt: Anonymous Payment Chan-
nels for Decentralized Currencies. Cryptology ePrint Archive, Report
2016/701. http://eprint.iacr.org/2016/701. 2016 (cit. on
pp. 13, 36).

[GM82] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption &
how to play mental poker keeping secret all partial information”.
In: Proceedings of the fourteenth annual ACM symposium on Theory of
computing. ACM. 1982, pp. 365–377 (cit. on p. 41).

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. “A digital
signature scheme secure against adaptive chosen-message attacks”.
In: SIAM Journal on Computing 17.2 (1988), pp. 281–308 (cit. on p. 45).

169

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2016/701

Bibliography

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowl-
edge complexity of interactive proof systems”. In: SIAM Journal on
computing 18.1 (1989), pp. 186–208 (cit. on p. 42).

[GNUNET] The GNUnet Project. https://gnunet.org/. Accessed 28 Feb
2017 (cit. on p. 139).

[Gol07] Ian Goldberg. “Improving the robustness of private information
retrieval”. In: Security and Privacy, 2007. SP’07. IEEE Symposium on.
IEEE. 2007, pp. 131–148 (cit. on p. 156).

[GSM18] Fuchun Guo, Willy Susilo, and Yi Mu. Introduction to Security Reduc-
tion. Springer, 2018 (cit. on p. 42).

[Gue+00] Rachid Guerraoui, Michel Hurfinn, Achour Mostefaoui, Riucarlos
Oliveira, Michel Raynal, and Andre Schiper. “Consensus in Asyn-
chronous Distributed Systems: A Concise Guided Tour”. In: Ad-
vances in Distributed Systems: Advanced Distributed Computing: From
Algorithms to Systems. Ed. by Sacha Krakowiak and Santosh Shrivas-
tava. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 33–47.
url: https://doi.org/10.1007/3-540-46475-1_2 (cit. on
p. 128).

[H306] Tony Hansen and Donald E. Eastlake 3rd. US Secure Hash Algorithms
(SHA and HMAC-SHA). RFC 4634. Aug. 2006. url: https://rfc-
editor.org/rfc/rfc4634.txt (cit. on pp. 64, 76).

[Ham18] Joshua Hammer. “The Billion-Dollar Bank Job”. In: The New York
Times Magazine (2018) (cit. on p. 159).

[Hei+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Sca-
furo, and Sharon Goldberg. “TumbleBit: An untrusted Bitcoin-
compatible anonymous payment hub”. In: Network and Distributed
System Security Symposium. 2017 (cit. on p. 35).

[HS90] Stuart Haber and W Scott Stornetta. “How to time-stamp a digital
document”. In: Conference on the Theory and Application of Cryptogra-
phy. Springer. 1990, pp. 437–455 (cit. on p. 33).

[HTI97] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. “Fault
injection techniques and tools”. In: Computer 30.4 (1997), pp. 75–82

(cit. on p. 42).

[ibi14] ibi research. Digitalisierung der Gesellschaft 2014 — Aktuelle Ein-
schätzungen und Trends. http://www.ecommerce-leitfaden.
de/digitalisierung-der-gesellschaft-2014.html. 2014

(cit. on p. 39).

170

https://gnunet.org/
https://doi.org/10.1007/3-540-46475-1_2
https://rfc-editor.org/rfc/rfc4634.txt
https://rfc-editor.org/rfc/rfc4634.txt
http://www.ecommerce-leitfaden.de/digitalisierung-der-gesellschaft-2014.html
http://www.ecommerce-leitfaden.de/digitalisierung-der-gesellschaft-2014.html

[IL13] Malika Izabachène and Benoît Libert. “Divisible E-Cash in the
Standard Model”. In: Pairing-Based Cryptography – Pairing 2012: 5th
International Conference, Cologne, Germany, May 16-18, 2012, Revised
Selected Papers. Ed. by Michel Abdalla and Tanja Lange. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 314–332. url:
https://doi.org/10.1007/978-3-642-36334-4_20 (cit.
on p. 30).

[Jaw+18] Husam Al Jawaheri, Mashael Al Sabah, Yazan Boshmaf, and Aimen
Erbad. “When A Small Leak Sinks A Great Ship: Deanonymizing
Tor Hidden Service Users Through Bitcoin Transactions Analysis”.
In: arXiv preprint arXiv:1801.07501 (2018) (cit. on p. 15).

[Joh+13] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul
Syverson. “Users get routed: Traffic correlation on Tor by realistic
adversaries”. In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM. 2013, pp. 337–348 (cit. on
p. 18).

[Jon15] Rupert Jones. Cap on card fees could lead to lower prices for consumers.
http://www.theguardian.com/money/2015/jul/27/cap-
on-card-fees-retailers. July 2015 (cit. on p. 37).

[KB16] Jae Kwon and Ethan Buchman. Cosmos: A Network of Distributed
Ledgers. https://cosmos.network/whitepaper. Accessed 22

Feb 2017. 2016 (cit. on p. 154).

[KE10] Dr. Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-
Expand Key Derivation Function (HKDF). RFC 5869. May 2010. url:
https://rfc-editor.org/rfc/rfc5869.txt (cit. on pp. 64,
76, 104).

[KM07] Neal Koblitz and Alfred J Menezes. “Another look at" provable
security"”. In: Journal of Cryptology 20.1 (2007), pp. 3–37 (cit. on
p. 41).

[KM10] Neal Koblitz and Alfred Menezes. “The brave new world of bo-
dacious assumptions in cryptography”. In: Notices of the American
Mathematical Society 57.3 (2010), pp. 357–365 (cit. on p. 41).

[KM15] Neal Koblitz and Alfred J Menezes. “The random oracle model:
a twenty-year retrospective”. In: Designs, Codes and Cryptography
77.2-3 (2015), pp. 587–610 (cit. on pp. 42, 155).

[KMM98] Kim Potter Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. “The
SecureRing Protocols for Securing Group Communication”. In: Pro-
ceedings of the Thirty-First Annual Hawaii International Conference on
System Sciences - Volume 3. HICSS ’98. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 317–. url: http://dx.doi.org/10.
1109/HICSS.1998.656294 (cit. on p. 128).

171

https://doi.org/10.1007/978-3-642-36334-4_20
http://www.theguardian.com/money/2015/jul/27/cap-on-card-fees-retailers
http://www.theguardian.com/money/2015/jul/27/cap-on-card-fees-retailers
https://cosmos.network/whitepaper
https://rfc-editor.org/rfc/rfc5869.txt
http://dx.doi.org/10.1109/HICSS.1998.656294
http://dx.doi.org/10.1109/HICSS.1998.656294

Bibliography

[Kot+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement,
and Edmund Wong. “Zyzzyva: Speculative Byzantine Fault Toler-
ance”. In: Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles. SOSP ’07. Stevenson, Washington, USA:
ACM, 2007, pp. 45–58. url: http://doi.acm.org/10.1145/
1294261.1294267 (cit. on pp. 125, 128).

[Kwo14] Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall.
2014 (cit. on p. 34).

[Lev17] Karen EC Levy. “Book-smart, not street-smart: blockchain-based
smart contracts and the social workings of law”. In: Engaging Science,
Technology, and Society 3 (2017), pp. 1–15 (cit. on p. 35).

[LI16] Jason Luu and Edward J Imwinkelried. “The challenge of Bitcoin
pseudo-anonymity to computer forensics”. In: Criminal Law Bulletin
52.1 (2016) (cit. on p. 15).

[Lin17] Yehuda Lindell. “How to simulate it–a tutorial on the simulation
proof technique”. In: Tutorials on the Foundations of Cryptography.
Springer, 2017, pp. 277–346 (cit. on p. 42).

[LMS16] Sebastian Lupu, Melisande Mual, and Mees van Stiphout. “Ecom-
merce Payment Methods Report 2016”. In: (2016) (cit. on p. 2).

[Lom+11] Victor Lomne, A Dehaboui, Philippe Maurine, L Torres, and M
Robert. “Side channel attacks”. In: Security trends for FPGAS. Springer,
2011, pp. 47–72 (cit. on p. 42).

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine
generals problem”. In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 4.3 (1982), pp. 382–401 (cit. on p. 126).

[MA10] Steven J. Murdoch and Ross Anderson. “Verified by Visa and Mas-
tercard Securecode: Or, How Not to Design Authentication”. In:
Proceedings of the 14th International Conference on Financial Cryptogra-
phy and Data Security. FC’10. Tenerife, Spain: Springer-Verlag, 2010,
pp. 336–342. url: https://www.cl.cam.ac.uk/~rja14/
Papers/fc10vbvsecurecode.pdf (cit. on p. 38).

[MA14] Stephen Murdoch and Ross Anderson. “Security Protocols and
Evidence: Where Many Payment Systems Fail”. In: Financial Cryp-
tography and Data Security. 2014 (cit. on p. 28).

[Man10] N.G. Mankiw. Macroeconomics, 7th Edition. Worth Publishers, 2010

(cit. on p. 157).

[Mär15] Patrick Märtens. Practical Compact E-Cash with Arbitrary Wallet Size.
Cryptology ePrint Archive, Report 2015/086. http://eprint.
iacr.org/2015/086. 2015 (cit. on p. 31).

172

http://doi.acm.org/10.1145/1294261.1294267
http://doi.acm.org/10.1145/1294261.1294267
https://www.cl.cam.ac.uk/~rja14/Papers/fc10vbvsecurecode.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/fc10vbvsecurecode.pdf
http://eprint.iacr.org/2015/086
http://eprint.iacr.org/2015/086

[Mei+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko,
Damon McCoy, Geoffrey M Voelker, and Stefan Savage. “A fistful of
bitcoins: characterizing payments among men with no names”. In:
Proceedings of the 2013 conference on Internet measurement conference.
ACM. 2013, pp. 127–140 (cit. on p. 15).

[Mil+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
“The Honey Badger of BFT Protocols”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
CCS ’16. Vienna, Austria: ACM, 2016, pp. 31–42. url: http://doi.
acm.org/10.1145/2976749.2978399 (cit. on p. 128).

[ML14] Andrew Miller and Joseph J LaViola Jr. Anonymous byzantine con-
sensus from moderately-hard puzzles: A model for bitcoin. Tech. rep.
CS-TR-14-01. University of Central Florida, Apr. 2014 (cit. on p. 154).

[MMR14] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. “Signature-
free Asynchronous Byzantine Consensus with t < n/3 and O(n2)
Messages”. In: Proceedings of the 2014 ACM Symposium on Principles
of Distributed Computing. PODC ’14. Paris, France: ACM, 2014, pp. 2–
9. url: http://doi.acm.org/10.1145/2611462.2611468
(cit. on p. 127).

[MP13] Michael Mitzenmacher and Rasmus Pagh. “Simple Multi-Party Set
Reconciliation”. In: arXiv preprint arXiv:1311.2037 (2013) (cit. on
p. 134).

[MTZ03] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. “Set reconcili-
ation with nearly optimal communication complexity”. In: Informa-
tion Theory, IEEE Transactions on 49.9 (2003), pp. 2213–2218 (cit. on
p. 131).

[Mul+13] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner,
Sebastian Schrittwieser, Edgar Weippl, and FC Wien. “Fast and
reliable browser identification with javascript engine fingerprinting”.
In: Web 2.0 Workshop on Security and Privacy (W2SP). Vol. 5. Citeseer.
2013 (cit. on p. 101).

[MWV00] Navneet Malpani, Jennifer L. Welch, and Nitin Vaidya. “Leader
Election Algorithms for Mobile Ad Hoc Networks”. In: Proceedings
of the 4th International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications. DIALM ’00. Boston, Mas-
sachusetts, USA: ACM, 2000, pp. 96–103. url: http://doi.acm.
org/10.1145/345848.345871 (cit. on p. 127).

[Nak08] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”.
In: Consulted 1.2012 (2008), p. 28 (cit. on pp. 33, 154).

[Nei94] Gil Neiger. “Distributed consensus revisited”. In: Information Pro-
cessing Letters 49.4 (1994), pp. 195–201 (cit. on p. 127).

173

http://doi.acm.org/10.1145/2976749.2978399
http://doi.acm.org/10.1145/2976749.2978399
http://doi.acm.org/10.1145/2611462.2611468
http://doi.acm.org/10.1145/345848.345871
http://doi.acm.org/10.1145/345848.345871

Bibliography

[Oka95] Tatsuaki Okamoto. “An Efficient Divisible Electronic Cash Scheme”.
In: Advances in Cryptology — CRYPT0’ 95: 15th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA, August
27–31, 1995 Proceedings. Ed. by Don Coppersmith. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1995, pp. 438–451. url: https:
//doi.org/10.1007/3-540-44750-4_35 (cit. on p. 29).

[Oka98] Chris Okasaki. Purely Functional Data Structures. New York, NY,
USA: Cambridge University Press, 1998 (cit. on p. 150).

[PB17] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart
contracts. White paper. 2017 (cit. on p. 37).

[PD16] Joseph Poon and Thaddeus Dryja. “The bitcoin lightning network:
Scalable off-chain instant payments”. In: draft version 0.5 (2016), p. 14

(cit. on p. 36).

[Ped91] Torben Pryds Pedersen. “A threshold cryptosystem without a trusted
party”. In: Advances in Cryptology—EUROCRYPT’91. Springer. 1991,
pp. 522–526 (cit. on p. 152).

[Ped96] Torben P Pedersen. “Electronic payments of small amounts”. In:
International Workshop on Security Protocols. Springer. 1996, pp. 59–68

(cit. on p. 36).

[Per17] Nathaniel Persily. “The 2016 US Election: Can democracy survive
the internet?” In: Journal of democracy 28.2 (2017), pp. 63–76 (cit. on
p. 2).

[Pet05] RA Peters. “A Secure Bulletin Board”. Master’s Thesis. Technische
Universiteit Eindhoven, 2005 (cit. on p. 151).

[PG14] B. Polot and C. Grothoff. “CADET: Confidential ad-hoc decentral-
ized end-to-end transport”. In: 2014 13th Annual Mediterranean Ad
Hoc Networking Workshop (MED-HOC-NET). June 2014, pp. 71–78

(cit. on pp. 139, 142, 146).

[Poi05] David Pointcheval. “Provable security for public key schemes”. In:
Contemporary cryptology. Springer, 2005, pp. 133–190 (cit. on pp. 41,
42).

[Pro+07] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang,
Nagendra Modadugu, et al. “The Ghost in the Browser: Analysis of
Web-based Malware.” In: HotBots 7 (2007), pp. 4–4 (cit. on p. 2).

[PS00] David Pointcheval and Jacques Stern. “Security arguments for dig-
ital signatures and blind signatures”. In: Journal of cryptology 13.3
(2000), pp. 361–396 (cit. on p. 30).

174

https://doi.org/10.1007/3-540-44750-4_35
https://doi.org/10.1007/3-540-44750-4_35

[PS96] David Pointcheval and Jacques Stern. “Provably secure blind sig-
nature schemes”. In: Advances in Cryptology — ASIACRYPT ’96:
International Conference on the Theory and Applications of Cryptology
and Information Security Kyongju, Korea, November 3–7, 1996 Pro-
ceedings. Ed. by Kwangjo Kim and Tsutomu Matsumoto. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 252–265. url:
https://doi.org/10.1007/BFb0034852 (cit. on p. 30).

[PST17] David Pointcheval, Olivier Sanders, and Jacques Traoré. “Cut Down
the Tree to Achieve Constant Complexity in Divisible E-cash”. In:
Public-Key Cryptography – PKC 2017: 20th IACR International Confer-
ence on Practice and Theory in Public-Key Cryptography, Amsterdam, The
Netherlands, March 28-31, 2017, Proceedings, Part I. Ed. by Serge Fehr.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 61–90. url:
https://doi.org/10.1007/978-3-662-54365-8_4 (cit. on
pp. 5, 30, 32, 46, 55).

[PZ11] Christian Paquin and Greg Zaverucha. “U-prove cryptographic
specification v1. 1”. In: Technical Report, Microsoft Corporation (2011)
(cit. on p. 156).

[RD08] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246. Aug. 2008. url: https://rfc-
editor.org/rfc/rfc5246.txt (cit. on p. 77).

[Rei95] Michael K. Reiter. “The Rampart Toolkit for Building High-Integrity
Services”. In: Selected Papers from the International Workshop on Theory
and Practice in Distributed Systems. London, UK, UK: Springer-Verlag,
1995, pp. 99–110. url: http://dl.acm.org/citation.cfm?
id=647369.723763 (cit. on p. 128).

[Reu15] Reuters. Greek council recommends 60 euro limit on ATM withdrawals
from Tuesday. http://www.reuters.com/article/2015/06/
28/eurozone- greece- limits- idUSA8N0Z302P20150628.
June 2015 (cit. on p. 18).

[RH13] Fergal Reid and Martin Harrigan. “An analysis of anonymity in the
bitcoin system”. In: Security and privacy in social networks. Springer,
2013, pp. 197–223 (cit. on p. 35).

[Ric16] Jean-Loup Richet. “Extortion on the internet: the rise of crypto-
ransomware”. In: Harvard (2016) (cit. on p. 6).

[Rik17] Sveriges Riksbank. The Riksbank’s e-krona project. 2017 (cit. on pp. 1,
159).

[Riv04] Ronald L Rivest. “Peppercoin micropayments”. In: Financial Cryp-
tography. Springer. 2004, pp. 2–8 (cit. on p. 35).

175

https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/978-3-662-54365-8_4
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc5246.txt
http://dl.acm.org/citation.cfm?id=647369.723763
http://dl.acm.org/citation.cfm?id=647369.723763
http://www.reuters.com/article/2015/06/28/eurozone-greece-limits-idUSA8N0Z302P20150628
http://www.reuters.com/article/2015/06/28/eurozone-greece-limits-idUSA8N0Z302P20150628

Bibliography

[ROH16] Wessel Reijers, Fiachra O’Brolcháin, and Paul Haynes. “Governance
in blockchain technologies & social contract theories”. In: Ledger 1

(2016), pp. 134–151 (cit. on p. 35).

[Run11] Guy Rundle. The humble credit card is now a political tool. http:
//www.crikey.com.au/2011/10/25/rundle- humble-
credit-card-now-a-political-tool-just-ask-wikileaks/.
Oct. 2011 (cit. on p. 37).

[Rup+13] Andy Rupp, Gesine Hinterwälder, Foteini Baldimtsi, and Christof
Paar. “P4R: Privacy-preserving pre-payments with refunds for trans-
portation systems”. In: International Conference on Financial Cryptog-
raphy and Data Security. Springer. 2013, pp. 205–212 (cit. on p. 30).

[SB17] Sunny Kumar Singh and Kaushik Bhattacharya. “Does easy avail-
ability of cash affect corruption? Evidence from a panel of coun-
tries”. In: Economic Systems 41.2 (2017), pp. 236–247 (cit. on p. 2).

[Sch98] Berry Schoenmakers. “Security Aspects of the Ecash(TM) Payment
System”. In: State of the Art in Applied Cryptography, Course on Com-
puter Security and Industrial Cryptography - Revised Lectures. Leuven,
Belgium: Springer-Verlag, 1998, pp. 338–352. url: http://dl.
acm.org/citation.cfm?id=647443.726912 (cit. on pp. 31,
32).

[SD10] Y Sahin and E Duman. “An overview of business domains where
fraud can take place, and a survey of various fraud detection tech-
niques”. In: Proceedings of the 1st international symposium on computing
in science and engineering, Aydin, Turkey. 2010 (cit. on p. 3).

[Sha79] Adi Shamir. “How to share a secret”. In: Communications of the ACM
22.11 (1979), pp. 612–613 (cit. on p. 152).

[Sho04] Victor Shoup. “Sequences of games: a tool for taming complexity
in security proofs.” In: IACR Cryptology ePrint Archive 2004 (2004),
p. 332 (cit. on pp. 41, 42, 46).

[SPC95] Markus Stadler, Jean-Marc Piveteau, and Jan Camenisch. “Fair blind
signatures”. In: International Conference on the Theory and Applications
of Cryptographic Techniques. Springer. 1995, pp. 209–219 (cit. on pp. 6,
30).

[ST99] Tomas Sander and Amnon Ta-Shma. “On Anonymous Electronic
Cash and Crime”. In: ISW’99. LNCS 1729. 1999, pp. 202–206 (cit. on
p. 6).

[Sta02] Richard Stallman. Free software, free society: Selected essays of Richard
M. Stallman. Lulu.com, 2002 (cit. on pp. 2, 7).

[SU17] Dominique Schröder and Dominique Unruh. “Security of blind
signatures revisited”. In: Journal of Cryptology 30.2 (2017), pp. 470–
494 (cit. on p. 59).

176

http://www.crikey.com.au/2011/10/25/rundle-humble-credit-card-now-a-political-tool-just-ask-wikileaks/
http://www.crikey.com.au/2011/10/25/rundle-humble-credit-card-now-a-political-tool-just-ask-wikileaks/
http://www.crikey.com.au/2011/10/25/rundle-humble-credit-card-now-a-political-tool-just-ask-wikileaks/
http://dl.acm.org/citation.cfm?id=647443.726912
http://dl.acm.org/citation.cfm?id=647443.726912

[Sun+17] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen.
“RingCT 2.0: a compact accumulator-based (linkable ring signa-
ture) protocol for blockchain cryptocurrency monero”. In: European
Symposium on Research in Computer Security. Springer. 2017, pp. 456–
474 (cit. on p. 35).

[SWP16] David Shrier, Weige Wu, and Alex Pentland. “Blockchain & in-
frastructure (identity, data security)”. In: Massachusetts Institute of
Technology-Connection Science 1.3 (2016) (cit. on p. 15).

[Syt+16] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nico-
las Gailly, Linus Gasser, Ismail Khoffi, Michael J. Fischer, and
Bryan Ford. Scalable Bias-Resistant Distributed Randomness. Cryp-
tology ePrint Archive, Report 2016/1067. http://eprint.iacr.
org/2016/1067, Accessed 22 Feb 2017. 2016 (cit. on p. 127).

[SZ15] Jared Saia and Mahdi Zamani. “Recent Results in Scalable Multi-
Party Computation”. In: SOFSEM 2015: Theory and Practice of Com-
puter Science: 41st International Conference on Current Trends in Theory
and Practice of Computer Science, Pec pod Sněžkou, Czech Republic, Jan-
uary 24-29, 2015. Proceedings. Ed. by Giuseppe F. Italiano, Tiziana
Margaria-Steffen, Jaroslav Pokorný, Jean-Jacques Quisquater, and
Roger Wattenhofer. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 24–44. url: https://doi.org/10.1007/978-3-662-
46078-8_3 (cit. on p. 151).

[TAS06] Niraj Tolia, David G Andersen, and Mahadev Satyanarayanan.
“Quantifying interactive user experience on thin clients”. In: Com-
puter 3 (2006), pp. 46–52 (cit. on p. 116).

[Tea18] Team Rocket. Snowflake to Avalanche: A Novel Metastable Consensus
Protocol Family for Cryptocurrencies. IPFS. 2018 (cit. on p. 34).

[Tot13] Sree Harsha Totakura. “Large Scale Distributed Evaluation of Peer-
to-Peer Protocols”. Master’s Thesis. Garching bei München: Tech-
nische Universität München, June 2013, p. 76 (cit. on p. 141).

[TRL12] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz.
“Theory and practice of bloom filters for distributed systems”. In:
Communications Surveys & Tutorials, IEEE 14.1 (2012), pp. 131–155

(cit. on p. 139).

[TW01] Robert Tracz and Konrad Wrona. “Fair Electronic Cash Withdrawal
and Change Return for Wireless Networks”. In: Proceedings of the 1st
International Workshop on Mobile Commerce. WMC ’01. Rome, Italy:
ACM, 2001, pp. 14–19. url: http://doi.acm.org/10.1145/
381461.381464 (cit. on pp. 6, 30, 32).

177

http://eprint.iacr.org/2016/1067
http://eprint.iacr.org/2016/1067
https://doi.org/10.1007/978-3-662-46078-8_3
https://doi.org/10.1007/978-3-662-46078-8_3
http://doi.acm.org/10.1145/381461.381464
http://doi.acm.org/10.1145/381461.381464

Bibliography

[Vuk15] Marko Vukolić. “The quest for scalable blockchain fabric: Proof-
of-work vs. BFT replication”. In: International Workshop on Open
Problems in Network Security. Springer. 2015, pp. 112–125 (cit. on
p. 34).

[VV17] Paul Voigt and Axel Von dem Bussche. The EU General Data Protec-
tion Regulation (GDPR). Vol. 18. Springer, 2017 (cit. on p. 3).

[Wah+18] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and
Michael Walfish. “Doubly-efficient zkSNARKs without trusted setup”.
In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE. 2018,
pp. 926–943 (cit. on p. 35).

[Wal19] Angela Walch. “Deconstructing’Decentralization’: Exploring the
Core Claim of Crypto Systems”. In: Crypto Assets: Legal and Monetary
Perspectives (OUP, forthcoming 2019) (2019) (cit. on p. 33).

[WG17] Karl Wüst and Arthur Gervais. “Do you need a Blockchain?” In:
IACR Cryptology ePrint Archive 2017 (2017), p. 375 (cit. on p. 35).

[Woo14] Gavin Wood. “Ethereum: A secure decentralised generalised trans-
action ledger”. In: Ethereum project yellow paper 151 (2014), pp. 1–32

(cit. on p. 35).

[WSG14] Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. “A
Censorship-Resistant, Privacy-Enhancing and Fully Decentralized
Name System”. In: Proceedings of the 13th International Conference
on Cryptology and Network Security - Volume 8813. New York, NY,
USA: Springer-Verlag New York, Inc., 2014, pp. 127–142. url: http:
//dx.doi.org/10.1007/978-3-319-12280-9_9 (cit. on
p. 154).

[Yee13] P. Yee. Updates to the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 6818 (Proposed
Standard). RFC. Fremont, CA, USA: RFC Editor, Jan. 2013. url:
https://www.rfc-editor.org/rfc/rfc6818.txt (cit. on
p. 19).

[Zak11] Alon Zakai. “Emscripten: an LLVM-to-JavaScript compiler”. In:
Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion.
ACM. 2011, pp. 301–312 (cit. on p. 99).

[Zha+18] Pingyuan Zhang, Han Jiang, Zhihua Zheng, Peichu Hu, and Qi-
uliang Xu. “A New Post-Quantum Blind Signature From Lattice
Assumptions”. In: IEEE Access 6 (2018), pp. 27251–27258 (cit. on
p. 155).

[ZSI13] Mark Zandi, Virendra Singh, and Justin Irving. “The impact of
electronic payments on economic growth”. In: Moody’s Analytics:
Economic and Consumer Credit Analytics 217 (2013) (cit. on p. 2).

178

http://dx.doi.org/10.1007/978-3-319-12280-9_9
http://dx.doi.org/10.1007/978-3-319-12280-9_9
https://www.rfc-editor.org/rfc/rfc6818.txt

A. Résumé en Français

Les nouveaux protocoles de réseautage et cryptographiques peuvent consid-
érablement améliorer les systèmes de paiement électroniques en ligne. Le présent
mémoire porte sur la conception, la mise en œuvre et l’analyse sécuritaire du
GNU Taler, un système de paiement respectueux de la vie privée conçu pour être
pratique pour l’utilisation en ligne comme méthode de (micro-)paiement, et en
même temps socialement et moralement responsable.

La base technique du GNU Taler peut être dû à l’e-cash de David Chaum.
Notre travail va au-delà de l’e-cash de Chaum avec un changement efficace, et
la nouvelle notion de transparence des revenus garantissant que les marchands
ne peuvent recevoir de manière fiable un paiement d’un payeur non fiable que
lorsque leurs revenus du paiement est visible aux autorités fiscales.

La transparence des revenus est obtenue grâce à l’introduction d’un proto-
cole d’actualisation donnant lieu à un changement anonyme pour un jeton
partiellement dépensé sans avoir besoin de l’introduction d’une évasion fiscale
échappatoire. En outre, le protocole d’actualisation peut être utilisé pour la mise
en œuvre des swaps atomiques de style Camenisch, et pour la préservation de
l’anonymat en présence d’annulation du protocole et d’erreurs de crash avec
perte de données par les participants. De plus, nous démontrons la sécurité
prouvable de la transparence anonyme de nos revenus e-cash, qui concerne en
plus l’anonymat habituel et les propriétés infalsifiables de l’e-cash, ainsi que la
conservation formelle des fonds et la transparence des revenus.

Notre mise en œuvre du GNU Taler est utilisable par des utilisateurs non-
experts et s’intègre à l’architecture du web moderne. Notre plateforme de
paiement aborde une série de questions pratiques telles que la prodigue des
conseils aux clients, le mode de remboursement, l’intégration avec les banques
et les chèques “know-your-customer (KYC)”, ainsi que les exigences de sécurité
et de fiabilité de la plateforme web. Sur une seule machine, nous réalisons
des taux d’opérations qui rivalisent avec ceux des processeurs de cartes de
crédit commerciaux globaux. Nous améliorons la robustesse des échanges -
la composante qui détient l’argent de banque en mains tierces en échange de
l’e-cash - en ajoutant une composante d’auditeur qui vérifie le fonctionnement
correct du système, et permet une détection tôt d’un compromis ou d’un mauvais
comportement de l’échange.

Tout comme les comptes bancaires ont raisons d’exister de même que les
billets de banque, l’e-cash ne sert que dans le cadre d’un empilement de sys-
tème de paiement. Les registres distribués ont récemment gagné une immense
popularité en tant que substituant potentiel des parties de l’industrie financière

179

A. Résumé en Français

traditionnelle.
Pendant que les crypto-monnaies basées sur la preuve de travail à l’instar

de Bitcoin doivent encore être mises à l’échelle pour servir de substituant aux
systèmes de paiement établis, d’autres systèmes plus efficaces basés sur les
Blockchains avec des algorithmes de consensus plus classiques pourraient avoir
des applications prometteurs dans le secteur financier. Nous faisons dans la
conception, la mise en œuvre et l’analyse de la Byzantine Set Union Consensus,
un protocole de Byzantine consensus qui s’accorde sur un (Super-)ensemble
d’éléments à la fois, au lieu d’accepter en séquence les éléments individuels sur
un ensemble. Byzantine Set consensus peut être utilisé comme composante de
base pour des chaînes de blocs de permissions, où (à l’instar du style Nakamoto
consensus) des blocs entiers d’opérations sont convenus à la fois d’augmenter le
taux d’opération.

Objectifs du GNU Taler

Nous avons entamé la conception du GNU Taler avec un ensemble d’objectifs de
conception de haut niveau. Ces objectifs sont classés par ordre de leur importance,
et lorsqu’un compromis doit être fait, celui qui apporte son soutien à l’objectif le
plus haut classé est préféré :

1. GNU Taler doit être mise en œuvre comme un logiciel libre. Le vocable
libre ici renvoie à “liberté, comme dans liberté d’expression” et non “gratuité,
comme dans bière gratuite”. Plus particulièrement, les quatre libertés
essentielles du logiciel libre doivent être respectées, notamment que les
utilisateurs doivent avoir la liberté (1) d’exécuter le logiciel, (2) l’étudier
et le modifier, (3) redistribuer des copies, et (4) distribuer des copies de la
version modifiée.

En ce qui concerne les marchands, cela empêche le verrouillage par le
fournisseur, car un autre fournisseur de paiement peut prendre le relais,
si l’actuel offre une qualité de service insuffisante. Comme le logiciel
de prestataire de paiement lui-même est libre, les plus petits pays ou
organisations défavorisés peuvent exécuter le système de paiement sans
besoin d’être contrôlés par une société étrangère. Les clients bénéficient de
cette liberté, car le portefeuille électronique peut être conçu pour fonctionner
sur une variété de platesformes, et des fonctionnalités hostiles à l’utilisateur
telles que le tracking ou la télémétrie pourrait facilement être supprimé du
portefeuille électronique.

Cela exclut l’utilisation obligatoire du matériel informatique spécialisé tel
que les cartes électroniques ou d’autres hardware security modules, car le
logiciel qu’ils exécutent ne peut être modifié par l’utilisateur.

Cependant, ces composantes peuvent être volontairement utilisées par des
marchands, clients ou organismes de paiement dans le but d’améliorer leur

180

sécurité opérationnelle.

2. GNU Taler doit protéger la vie privée des acheteurs.

La protection de la vie privée devrait être garantie par des mesures tech-
niques, aux antipodes des simples politiques. Ceci particulièrement à l’aide
des micropaiements pour des contenus en ligne, une quantité disproportion-
née de données plutôt privées sur les acheteurs serait révélée, si le système
de paiement n’a pas de mécanisme de protection de la vie privée.

Dans les législations relatives à la protection des données (à l’instar du
GDPR récemment introduit en Europe), les marchands en profitent égale-
ment, car aucune violation des données des clients ne peut se produire si ces
informations ne sont pas collectées premièrement par conception. De toute
évidence, certaines données privées, telles l’adresse de livraison pour une
livraison physique, doivent toujours être collectées en fonction des besoins
de l’entreprise.

La sécurité des systèmes de paiement en profite également, car le modèle
passe de l’authentification des clients à la simple autorisation de paiement.
Cette approche exclut les classes entières d’attaques telles que l’hameçonnage
ou la fraude par carte de crédit.

3. GNU Taler doit permettre à l’État de procéder à l’imposition des revenus
et la répréhension des activités commerciales illégales.

Comme un système de paiement doit toujours être légal pour son fonction-
nement et utilisation, il doit se conformer aux exigences susmentionnées.
En outre, nous considérons que la perception des impôts est bénéfique pour
la société.

4. GNU Taler doit prévenir la fraude.

Cela impose des exigences sur la sécurité du système, ainsi que sur la
conception générale, car la fraude de paiement peut également se produire
par la conception illusoire de l’interface utilisateur, ou le manque de preuves
cryptographiques pour certains processus.

5. GNU Taler ne doit permettre uniquement que la divulgation de la quan-
tité minimale d’informations nécessaires.

La raison derrière cet objectif est semblable à (2). La vie privée des acheteurs
est prioritaire, mais d’autres parties à l’instar des marchands en profitent
encore, par exemple en conservant des détails sur leurs finances cachés aux
concurrents.

6. GNU Taler doit être utilisable.

Il doit particulièrement être utilisable pour des clients non-experts. Cette
utilité s’applique également à l’intégration avec les marchands, et ren-
seigne sur les choix concernant l’architecture, telles que les procédures

181

A. Résumé en Français

d’encapsulation requièrent des opérations cryptographiques dans une com-
posante isolée avec une simple API.

7. GNU Taler doit être efficace.

Les approches telles que la preuve de travail sont exclues par cette exi-
gence. L’efficacité est nécessaire pour que GNU Taler soit utilisé pour les
micropaiements.

8. GNU Taler doit éviter les points de défaillance uniques.

Alors que la conception à présenter plus tard est plutôt centralisée, son
objectif demeure d’éviter les points uniques de défaillance. Cela se manifeste
dans les choix architecturaux tels que l’isolement de certaines composantes
et procédures d’audit.

9. GNU Taler doit promouvoir la concurrence.

Le processus d’intégration des concurrents aux systèmes doit relativement
être facile. Alors que les obstacles à ces systèmes financiers traditionnels sont
assez nombreux, le fardeau technique d’adhésion aux nouveaux concurrents
doit être minimisé. Un autre choix de conception qui soutient ceci est de
diviser l’ensemble du système en de plus petites composantes pouvant être
exploitées, développées et améliorées indépendamment, au lieu d’avoir un
système complètement monolithique.

Byzantine Set Union Consensus

Le protocole de Byzantine Set Union Consensus que nous procédons à la con-
ception, la mise en œuvre et l’évaluation, offre une amélioration asymptotique
au-delà d’une mise en œuvre naïve à l’aide de la machine de duplication de l’État.

Pour des pairs n et un ensemble d’éléments m, la messagerie de notre protocole
est d’une complexité O(mn + n2) lorsqu’aucun pair ne montre le comportement
Byzantine. Lorsque les pairs f montrent un comportement Byzantine, la com-
plexité du message est O(mn f + k f n2), où k est le nombre d’éléments valides
exclusivement disponibles pour l’adversaire.

Nous démontrons comment k peut être délimité pour des applications pratiques
communes, puisqu’en général k est seulement délimité par la largeur disponible à
l’adversaire. En pratique, on s’attend à ce que k f soit significativement plus petit
que m. Ainsi, O(mn f + k f n2) est une amélioration par rapport à l’utilisation de
SMR-PBFT (duplication de la machine d’État avec la tolérance de faille Byzantine
pratique) qui aurait la complexité O(mn2) sous ces hypothèses.

Nous parvenons à ce résultat en combinant un protocole de Byzantine Con-
sensus existant au protocole de réconciliation efficace d’Eppstein. La même
construction s’applique également aux autres protocoles de consensus.

182

Contributions

Nous revendiquons les contributions clés ci-dessous dans le cadre ce mémoire :

• Nous procédons à la conception, la mise en œuvre et une analyse efficace
du Byzantine consensus protocol sur des structures définies permettant une
mise en œuvre optimisée des registres d’opérations distribuées.

• Nous introduisons la notion de transparence des revenus pour l’e-cash, avec
une instanciation en e-cash et des épreuves du style Chaum.

• Nous procédons à la conception du système de paiement GNU Taler en
tenant compte des aspects pratiques de l’e-cash, notamment les annulations,
les défaillances de réseau, les remboursements, les paiements multi-coin, les
défauts de synchronisation des portefeuilles et leurs effets sur l’anonymat;
montrant la nécessité d’une opération d’actualisation.

• Nous proposons une modification de notre protocole offrant une protection
contre certains scénarios de chantage et d’enlèvement.

• Nous procédons à la conception et la mise en œuvre d’une intégration
homogène et native de l’e-cash dans l’architecture du web, et discutons des
aspects de sécurité et de confidentialité de cette intégration.

• Nous avons mis en œuvre le système de paiement GNU Taler et avons
évalué ses performances.

183

B. dold-draft-payto ∗

Independent Stream F. Dold
Internet-Draft Taler Systems SA
Intended status: Informational C. Grothoff
Expires: October 19, 2019 BFH

April 17, 2019

The ’payto’ URI scheme for payments
draft-dold-payto-06

Abstract

This document defines the ’payto’ Uniform Resource Identifier (URI)
scheme for designating targets for payments.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 19, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

∗The most recent version of the draft can be found at https://datatracker.ietf.org/
doc/draft-dold-payto/.

185

https://datatracker.ietf.org/doc/draft-dold-payto/
https://datatracker.ietf.org/doc/draft-dold-payto/

B. dold-draft-payto

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Syntax of a ’payto’ URL
3. Semantics
4. Examples
5. Generic Options
6. Internationalization and Character Encoding
7. Security Considerations
8. IANA Considerations

8.1. URI Scheme Registration
8.2. Payment Target Type Registry

8.2.1. ACH Bank Account
8.2.2. Business Identifier Code
8.2.3. International Bank Account Number
8.2.4. Unified Payments Interface
8.2.5. Bitcoin Address
8.2.6. Interledger Protocol Address

9. References
9.1. Normative References
9.2. Informational References

Authors’ Addresses

1. Introduction

This document defines the ’payto’ Uniform Resource Identifier (URI)
[RFC3986] scheme for designating transfer form data for payments. In
particular, it always identifies the target of a payment. A ’payto’
URL consists of a payment target type, a target identifier and
optional parameters such as an amount or a payment reference.

The interpretation of the target identifier is defined by the payment
target type, and typically represents either a bank account or an
(unsettled) transaction.

A unified URI scheme for all payment target types allows applications
to offer user interactions with URIs that represent payment targets,

186

simplifying the introduction of new payment systems and applications.

2. Syntax of a ’payto’ URL

This document uses the Augmented Backus-Naur Form (ABNF) of
[RFC5234].

payto-URI = "payto" "://" authority path-abempty ["?" opts]
opts = opt *("&" opt)
opt = (generic-opt / authority-specific-opt) "=" *(pchar)
generic-opt = "amount" / "receiver-name" / "sender-name" /

"message" / "instruction"
authority = ALPHA *(ALPHA / DIGIT / "-" / ".")
path-abempty = <path-abempty, see [RFC3986], Section 3.3>
pchar = <pchar, see [RFC3986], Appendix A.>

3. Semantics

The authority component of a payment URI identifies the payment
target type. The payment target types are defined in the "Payment
Target Types" registry, see Section 8.2. The path component of the
URI identifies the target for a payment as interpreted by the
respective payment target type. The query component of the URI can
provide additional parameters for a payment. Every payment method
SHOULD accept the options defined in generic-opt. The default
operation of applications that invoke a URI with the payto scheme
SHOULD be to launch an application (if available) associated with the
payment target type that can initiate a payment. If multiple
handlers are registered for the same payment target type, the user
SHOULD be able to choose which application to launch. This allows
users with multiple bank accounts (each accessed the respective
bank’s banking application) to choose which account to pay with. An
application SHOULD allow dereferencing a payto URI even if the
payment target type of that URI is not registered in the "Payment
Target Types" registry. Details of the payment MUST be taken from
the path and options given in the URI. The user SHOULD be allowed to
modify these details before confirming a payment.

4. Examples

payto://iban/DE75512108001245126199?amount=EUR:200.0&message=hello

INVALID (authority missing): payto:iban/12345

5. Generic Options

187

B. dold-draft-payto

Applications MUST accept URIs with options in any order. The
"amount" option MUST only occur at most once. Other options MAY be
allowed multiple times, with further restrictions depending on the
payment method. The following options SHOULD be understood by every
payment method.

amount: The amount to transfer, including currency information if
applicable. The format MUST be:

amount = [currency ":"] unit ["." fraction]
currency = 1*ALPHA
unit = 1*(DIGIT / ",")
fraction = 1*(DIGIT / ",")

The unit value MUST be smaller than 2^53. If present, the fraction
MUST consist of no more than 8 decimal digits. The use of commas is
optional for readability and they MUST be ignored.

receiver-name: Name of the entity that receives the payment
(creditor).

sender-name: Name of the entity that makes the payment (debtor).

message: A short message to identify the purpose of the payment,
which MAY be subject to lossy conversions (for example, due to
character set encoding limitations).

instruction: A short message giving instructions to the recipient,
which MUST NOT be subject to lossy conversions. Character set
limitations allowed for such instructions depend on the payment
method.

6. Internationalization and Character Encoding

Various payment systems use restricted character sets. An
application that processes ’payto’ URIs MUST convert characters that
are not allowed by the respective payment systems into allowable
character using either an encoding or a replacement table. This
conversion process MAY be lossy, except for the instruction field.

To avoid special encoding rules for the payment target identifier,
the userinfo component [RFC3986] is disallowed in payto URIs.
Instead, the payment target identifier is given as an option, where
encoding rules are uniform for all options.

188

7. Security Considerations

Interactive applications handling the payto URI scheme MUST NOT
initiate any financial transactions without prior review and
confirmation from the user, and MUST take measures to prevent
clickjacking [HMW12].

Unless a payto URI is received over a trusted, authenticated channel,
a user might not be able to identify the target of a payment. In
particular due to homographs [unicode-tr36], a payment target type
SHOULD NOT use human-readable names in combination with unicode in
the target account specification, as it could give the user the
illusion of being able to identify the target account from the URL.

To avoid unnecessary data collection, payment target types SHOULD NOT
include personally identifying information about the sender of a
payment that is not essential for an application to conduct a
payment.

8. IANA Considerations

8.1. URI Scheme Registration

The "payto" URI scheme is already registered in the "Provisional URI
Schemes" registry.

Scheme name: payto

Status: permanent

URI scheme syntax: See Section 2.

URI scheme semantics: See Section 3.

Applications/protocols that use this scheme name: payto URIs are
mainly used by financial software, as well as by interactive
applications (e.g. email clients, chat applications) that detect
payto URIs and allow the user to interact with them (e.g. make
them clickable)

Contact: grothoff@gnu.org

Change controller: grothoff@gnu.org

References: See References section of this document.

8.2. Payment Target Type Registry

189

B. dold-draft-payto

This document defines a registry for payment methods. The name of
the registry is "Payment Target Types".

The registry shall record for each entry:

o Name: The name of the payment target type (case insensitive ASCII
string, restricted to alphanumeric characters, dots and dashes)

o Description: A description of the payment target type, including
the semantics of the path in the URI if applicable.

o Example: At least one example URI to illustrate the payment target
type.

o Contact: The contact information of a person to contact for
further information

o References: Optionally, references describing the payment method
(such as an RFC) and method-specific options, or references
describing the payment system underlying the payment target type.

The registration policy for this registry is "expert review", as
described in [RFC5226]. The expert is appointed by the IETF
Indenpendent Stream Editor. The expert’s review SHOULD consider the
following criteria:

1. The proposed registry entry contains all mandatory information.

2. The description clearly defines the syntax and semantics of the
payment target and optional parameters if applicable.

3. Relevant references are provided if they are available.

4. The chosen name is appropriate for the payment target type, does
not conflict with well-known payment systems, and avoids
potential to confuse users.

5. The payment system underlying the payment target type is not
fundamentally incompatible with the general options (such as
positive decimal amounts) in this specification.

6. The payment target type is not a vendor-specific version of a
payment target type that could be described more generally by a
vendor-neutral payment target type.

7. The specification of the new payment target type remains within

190

the scope of payment transfer form data. In particular
specifying complete invoices is not in scope. Neither are
processing instructions to the payment processor or bank beyond a
simple payment.

8. The payment target and the options do not contain the payment
sender’s account details.

8.2.1. ACH Bank Account

o Name: ach

o Description: Automated Clearing House. The path consist of two
components, the routing number and the account number.

o Example: payto://ach/122000661/1234

o Contact: N/A

o References: [NACHA]

8.2.2. Business Identifier Code

o Name: bic

o Description: Business Identifier Code. The path consist of just a
BIC. This is used for wire transfers between banks. The registry
for BICs is provided by SWIFT. The path does not allow specifying
a bank account number.

o Example: payto://bic/SOGEDEFFXXX

o Contact: N/A

o References: [BIC]

8.2.3. International Bank Account Number

o Name: iban

o Description: International Bank Account Number (IBAN). Generally
the IBAN allows to unambiguously derive the the associated
Business Identifier Code (BIC). However, some legacy applications
process payments to the same IBAN differently based on the
specified BIC. Thus the path can either consist of a single
component (the IBAN) or two components (BIC and IBAN).

191

B. dold-draft-payto

o Example: payto://iban/DE75512108001245126199
payto://iban/SOGEDEFFXXX/DE75512108001245126199

o Contact: N/A

o References: [ISO20022]

8.2.4. Unified Payments Interface

o Name: upi

o Description: Unified Payment Interface. The path is an account
alias. The amount and receiver-name options are mandatory for
this payment target.

o Example: payto://upi/alice@example.com?receiver-
name=Alice&amount=INR:200

o Contact: N/A

o References: [UPILinking]

8.2.5. Bitcoin Address

o Name: bitcoin

o Description: Bitcoin protocol. The path is a "bitcoinaddress" as
per [BIP0021].

o Example: payto://bitcoin/12A1MyfXbW6RhdRAZEqofac5jCQQjwEPBu

o Contact: N/A

o References: [BIP0021]

8.2.6. Interledger Protocol Address

o Name: ilp

o Description: Interledger protocol. The path is an ILP address as
per [ILP-ADDR].

o Example: payto://ilp/g.acme.bob

o Contact: N/A

o References: [ILP-ADDR]

192

9. References

9.1. Normative References

[ISO20022]
International Organization for Standardization, "ISO 20022
Financial Services - Universal financial industry message
scheme", May 2013.

[NACHA] NACHA, "NACHA Operating Rules & Guidelines", January 2017.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, DOI 10.17487/RFC3986, January 2005,
<https://www.rfc-editor.org/info/rfc3986>.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<https://www.rfc-editor.org/info/rfc5226>.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234, January 2008.

[unicode-tr36]
Davis, M., Ed. and M. Suignard, "Unicode Technical Report
#36: Unicode Security Considerations", September 2014.

9.2. Informational References

[BIC] International Organization for Standardization, "ISO
9362:2014 Business Identifier Code (BIC)", March 2019,
<https://www.iso.org/standard/60390.html>.

[BIP0021] Schneider, N. and M. Corallo, "Bitcoin Improvement
Proposal 21", January 2012,
<https://en.bitcoin.it/wiki/BIP_0021>.

[HMW12] Huang, L., Moshchuk, A., Wang, H., Schecter, S., and C.
Jackson, "Clickjacking: Attacks and Defenses", January
2012, <https://www.usenix.org/system/files/conference/
usenixsecurity12/sec12-final39.pdf>.

[ILP-ADDR]
Interledger Team, "ILP Addresses - v2.0.0", September
2018, <https://interledger.org/rfcs/0015-ilp-addresses/>.

193

B. dold-draft-payto

[UPILinking]
National Payment Corporation of India, "Unified Payment
Interface - Common URL Specifications For Deep Linking And
Proximity Integration", May 2016,
<http://www.npci.org.in/documents/
UPILinkingSpecificationsVersion10draft.pdf>.

Authors’ Addresses

Florian Dold
Taler Systems SA
7, rue de Mondorf
Erpeldange L-5421
LU

Email: dold@taler.net

Christian Grothoff
BFH
Hoeheweg 80
Biel/Bienne CH-2501
CH

Email: christian.grothoff@bfh.ch

194

C. Coin Spending Simulation

The most recent version of this TypeScript program can be found in the repository
of the wallet reference implementation (https://git.taler.net/wallet-webex.
git/tree/contrib/coinsim.ts).
/∗

This f i l e i s part of GNU Taler
(C) 2018 GNUnet e .V.

GNU Taler i s f r e e software ; you can r e d i s t r i b u t e i t and/or modify i t under the
terms of the GNU General Publ ic License as published by the Free Software
Foundation ; e i t h e r vers ion 3 , or (a t your option) any l a t e r vers ion .

GNU Taler i s d i s t r i b u t e d in the hope t h a t i t w i l l be useful , but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE . See the GNU General Publ ic License f o r more d e t a i l s .

You should have rece ived a copy of the GNU General Publ ic License along with
GNU Taler ; see the f i l e COPYING. I f not , see <http ://www. gnu . org/ l i c e n s e s />
∗/

funct ion getRandomInt (min , max) {
re turn Math . f l o o r (Math . random () ∗ (max − min + 1)) + min ;

}

const denoms = [8 0 9 6 , 4096 , 2048 , 1024 , 512 , 256 , 128 , 64 , 32 , 16 , 8 , 4 , 2 , 1] ;

// mapping from denomination index to count
const wa l l e t = denoms . map (() => 0) ;

const trans_max = 5000 ;
const trans_min = 4 ;

const withdraw_max = 10000 ;

const num_transactions = p a r s e I n t (process . argv [2]) ;

// Refresh or withdraw operat ions
l e t ops = 0 ;
l e t ops_re f resh = 0 ;
l e t ops_withdraw = 0 ;
l e t ops_spend = 0 ;
l e t re f resh_output = 0 ;

func t ion withdraw (amount , i s _ r e f r e s h) {

195

https://git.taler.net/wallet-webex.git/tree/contrib/coinsim.ts
https://git.taler.net/wallet-webex.git/tree/contrib/coinsim.ts

C. Coin Spending Simulation

while (amount != 0) {
f o r (l e t i = 0 ; i < denoms . length ; i ++) {

l e t d = denoms [i] ;
i f (d <= amount) {

amount −= d ;
w al le t [i]++ ;
ops ++;
i f (! i s _ r e f r e s h) {

ops_withdraw ++;
} e l s e {

re f resh_output ++;
}
break ;

}
}

}
}

func t ion sp e n d S m a l l es t F i r s t (c o s t) {
while (c o s t != 0) {

f o r (l e t j = 0 ; j < denoms . length ; j ++) {
const k = denoms . length − j − 1 ;
const d = denoms [k] ;
const w = wa l l e t [k] ;
i f (w == 0) {

continue ;
}
i f (d <= c o s t) {

// spend
w al le t [k]−−;
c o s t −= d ;
ops ++;
ops_spend ++;
break ;

}
// p a r t i a l l y spend and then r e f r e s h
ops ++;
ops_spend ++;
l e t r = d − c o s t ;
ops_re f resh ++;
w al le t [k]−−;
withdraw (r , t rue) ;
c o s t = 0 ;

}
}

}

func t ion spendLarges tF i r s t (c o s t) {
while (c o s t != 0) {

f o r (l e t j = 0 ; j < denoms . length ; j ++) {
const d = denoms [j] ;
const w = wa l l e t [j] ;
i f (w == 0) {

196

continue ;
}
i f (d <= c o s t) {

// spend
w al le t [j]−−;
c o s t −= d ;
ops ++;
ops_spend ++;
break ;

}
// p a r t i a l l y spend and then r e f r e s h
ops ++;
ops_spend ++;
l e t r = d − c o s t ;
ops_re f resh ++;
w al le t [j]−−;
withdraw (r , t rue) ;
c o s t = 0 ;

}
}

}

func t ion spendHybrid (c o s t) {
f o r (l e t j = 0 ; j < denoms . length ; j ++) {

const k = denoms . length − j − 1 ;
const d = denoms [k] ;
const w = wa l l e t [k] ;
i f (w == 0) {

continue ;
}
i f (d < c o s t) {

continue ;
}
// p a r t i a l l y spend and then r e f r e s h
ops ++;
ops_spend ++;
l e t r = d − c o s t ;
ops_re f resh ++;
w al le t [k]−−;
withdraw (r , t rue) ;
c o s t = 0 ;

}

s p e n d Sm a l l e s t F i r s t (c o s t) ;
}

f o r (l e t i = 0 ; i < num_transactions ; i ++) {
// check e x i s t i n g wa l l e t balance
l e t balance = 0 ;
f o r (l e t j = 0 ; j < denoms . length ; j ++) {

balance += w al l e t [j] ∗ denoms [j]
}
// choose how much we want to spend

197

C. Coin Spending Simulation

l e t c o s t = getRandomInt (trans_min , trans_max) ;
i f (balance < c o s t) {

// we need to withdraw
l e t amount = getRandomInt (c o s t − balance , withdraw_max) ;
withdraw (amount , f a l s e) ;

}

// check t h a t we now have enough balance
balance = 0 ;
f o r (l e t j = 0 ; j < denoms . length ; j ++) {

balance += w al l e t [j] ∗ denoms [j]
}

i f (balance < c o s t) {
throw Error (" not enough balance ") ;

}

// now we spend
spendHybrid (c o s t) ;

}

console . log (" t o t a l ops " , ops / num_transactions) ;
console . log (" spend ops " , ops_spend / num_transactions) ;
console . log (" pure withdraw ops " , ops_withdraw / num_transactions) ;
console . log (" r e f r e s h (multi output) ops " , ops_re f resh / num_transactions) ;
console . log (" r e f r e s h output " , re f resh_output / ops_re f resh) ;

198

	Introduction
	Design Goals for GNU Taler
	Features of Value-based Payment Systems
	Offline vs Online Payments
	Change and Divisibility
	Anonymity Control
	User Suspension
	Transferability
	Atomic Swaps
	Refunds

	User Experience and Performance
	The Technical Foundation: Anonymous E-Cash
	Distributed Ledgers
	Consensus in Decentralized Blockchains
	Permissioned Blockchains
	Blockchains and GNU Taler

	Key Contributions
	Roadmap

	GNU Taler, an Income-Transparent Anonymous E-Cash System
	Design of GNU Taler
	Entities and Trust Model
	System Assumptions
	Reserves
	Coins and Denominations
	Partial Spending and Unlinkable Change
	Refreshing and Taxability
	Transactions vs. Sharing
	Aggregation
	Refunds
	Fees
	The Withdraw Loophole and Tipping

	Auditing
	Exchange Compromise Modes
	Cryptographic Proof
	Perfect Crime Scenarios

	Related Work
	Anonymous E-Cash
	Blockchains
	Approaches to Micropayments
	Walled Garden Payment Systems
	Web Integration

	Security of Income-Transparent Anonymous E-Cash
	Introduction to Provable Security
	Algorithms, Oracles and Games
	Assumptions, Reductions and Game Hopping
	Notation

	Model and Syntax for Taler
	Algorithms
	Oracles

	Games
	Anonymity
	Conservation
	Unforgeability
	Income Transparency

	Security Definitions
	Instantiation
	Generic Instantiation
	Concrete Instantiation

	Proofs
	Anonymity
	Conservation
	Unforgeability
	Income Transparency

	Discussion
	Limitations
	Other Properties

	Implementation of GNU Taler
	Overview
	Taler APIs
	Cryptographic Algorithms
	Entities and Public Key Infrastructure
	Payments
	Resource-based Web Payments
	Session-bound Payments and Sharing
	Embedded Content
	Contract Terms
	Refunds
	Tipping

	Bank Integration
	Wire Method Identifiers
	Demo Bank
	EBICS and SEPA
	Blockchain Integration

	Exchange
	Auditor
	Merchant Backend
	Processing payments
	Back Office APIs
	Example Merchant Frontends

	Wallet
	Optimizations
	Coin Selection
	Wallet Detection
	Backup and Synchronization
	Wallet Liquidation
	Wallet Signaling

	Cryptographic Protocols
	Preliminaries
	Withdrawing
	Payment transactions
	Refreshing and Linking
	Refunds

	Experimental results
	Hardware Setup
	Coins Per Transaction
	Transaction Rate and Scalability
	Latency

	Current Limitations and Future Improvements

	Byzantine Set-Union Consensus
	Introduction
	Background
	The FLP Impossibility Result
	Byzantine Consensus in the Partially Synchronous Model
	Gradecast
	ByzConsensus
	Set Reconciliation

	Our Approach
	Definition
	Byzantine Set-Union Consensus (BSC) Protocol

	Implementation
	The GNUnet Framework
	Set Reconciliation
	Set-Union Consensus
	Evaluating Malicious Behavior

	Experimental Results
	Bounded Set Reconciliation
	Byzantine Set Consensus

	Opportunities for Further Improving BSC
	Extension to Partial Synchrony
	Persistent Data Structures
	Fast Dissemination

	Application to SMC
	Bulletin Board for Electronic Voting
	Distributed Threshold Key Generation and Cooperative Decryption
	Electronic Voting with Homomorphic Encryption
	Other Applications of BSC

	Conclusions

	Future Work
	Conclusion
	Cryptocurrencies vs. Central-Bank-Issued Currencies
	Electronic Payments

	Bibliography
	Résumé en Français
	dold-draft-payto
	Coin Spending Simulation

