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Résumé :

Les nouveaux protocoles de réseautage et
cryptographiques peuvent considérablement
améliorer les systemes de paiement
électroniques en ligne. Le présent mémoire
porte sur la conception, la mise en ceuvre et
'analyse sécuritaire du GNU Taler, un systéme
de paiement respectueux de la vie privée congu
pour étre pratigue pour [utilisation en ligne
comme méthode de (micro-)paiement, et en
méme temps socialement et moralement
responsable.

La base technique du GNU Taler peut étre di a
I'e cash de David Chaum. Notre travail va au-
dela de Tle-cash de Chaum avec un
changement efficace, et la nouvelle notion de
transparence des revenus garantissant que les
marchands ne peuvent recevoir de maniére
fiable un paiement d'un payeur non fiable que
lorsque leurs revenus du paiement est visible
aux autorités fiscales.

La transparence des revenus est obtenue grace
a lintroduction d'un protocole d’actualisation
donnant lieu a un changement anonyme pour
un jeton partiellement dépensé sans avoir
besoin de lintroduction d'une évasion fiscale
échappatoire. De plus, nous démontrons la
sécurité prouvable de la transparence anonyme

de nos revenus e-cash, qui concerne en plus

lanonymat habituel et les propriétés
infalsifiables de l'e-cash, ainsi que Ila
conservation formelle des fonds et Ia

transparence des revenus.

Notre mise en ceuvre du GNU Taler est utilisable
par des utilisateurs non experts et s’intéegre a
I'architecture du web moderne. Notre plateforme
de paiement aborde une série de questions
pratiques telles que la prodigue des conseils aux
clients, le mode de remboursement, l'intégration
avec les banques et les cheques “know-your-
customer (KYC)”, ainsi que les exigences de
sécurité et de fiabilité de la plateforme web. Sur
une seule machine, nous réalisons des taux
d'opérations qui rivalisent avec ceux des
processeurs de cartes de crédit

commerciaux globaux.

Pendant que les crypto-monnaies basées sur la
preuve de travail a linstar de Bitcoin doivent
encore étre mises a I'échelle pour servir de
substituant aux systémes de paiement établis,
d’autres systemes plus efficaces basés sur les
blockchains avec des algorithmes de consensus
plus classiques pourraient avoir des applications
prometteurs dans le secteur financier. Nous
faisons dans la conception, la mise en ceuvre et
'analyse de la Byzantine Set Union Consensus,
un protocole de Byzantine consensus qui
s’accorde sur un (Super-)ensemble d’éléments a
la fois, au lieu d'accepter en séquence les
éléments individuels sur un ensemble. Byzantine
Set consensus peut étre utilisé comme
composante de base pour des chaines de blocs
de permissions, ou (a linstar du style Nakamoto
consensus) des blocs entiers d’opérations sont
convenus a la fois d'augmenter le taux
d’opération.
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Abstract:

We describe the design and implementation of
GNU Taler, an electronic payment system based
on an extension of Chaumian online e-cash with
efficient change. In addition to anonymity for
customers, it provides the novel notion of
income transparency, which guarantees that
merchants can reliably receive a payment from
an untrusted payer only when their income from
the payment is visible to tax authorities.

Income transparency is achieved by the
introduction of a refresh protocol, which gives
anonymous change for a partially spent coin
without introducing a tax evasion loophole. In
addition to income transparency, the refresh
protocol can be used to implement Camenisch-
style atomic swaps, and to preserve anonymity
in the presence of protocol aborts and crash
faults with data loss by participants.

Furthermore, we show the provable security of
our income-transparent anonymous e-cash,
which, in addition to the usual anonymity and
unforgeability properties of e-cash, also formally
models conservation of funds and income
transparency.

Our implementation of GNU Taler is usable by
non-expert users and integrates with the
modern Web architecture. Our payment
platform addresses a range of practical issues,
such as tipping customers, providing refunds,
integrating with banks and know-your-customer
(KYC) checks, as well as Web platform security
and reliability requirements.

On a single machine, we achieve transaction
rates that rival those of global, commercial credit
card processors.

We increase the robustness of the exchange—the
component that keeps bank money in escrow in
exchange for e-cash—by adding an auditor
component, which verifies the correct operation of
the system and allows to detect a compromise or
misbehavior of the exchange early.

Just like bank accounts have reason to exist
besides bank notes, e-cash only serves as part of
a whole payment system stack. Distributed
ledgers have recently gained immense popularity
as potential replacement for parts of the traditional
financial industry. While cryptocurrencies based
on proof-of-work such as Bitcoin have yet to scale
to be useful as a replacement for established
payment systems,

other more efficient systems based on
blockchains with more classical consensus
algorithms might still have promising applications
in the financial industry.

We design, implement and analyze the
performance of Byzantine Set Union Consensus
(BSC), a Byzantine consensus protocol that
agrees on a (super-)set of elements at once,
instead of sequentially agreeing on the individual
elements of a set. While BSC is interesting in
itself, it can also be used as a building block for
permissioned blockchains, where—just like in
Nakamoto-style consensus—whole blocks of
transactions are agreed upon at once, increasing
the transaction rate.
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1. Introduction

New networking and cryptographic protocols can substantially improve elec-
tronic online payment systems. This thesis is about the design, implementation
and security analysis of GNU Taler"} a privacy-friendly payment system that is
designed to be practical for usage as an online (micro-)payment method, and at
the same time socially and ethically responsible.

Payment systems can generally be divided into two types: Register-based and
value-based [Rik17]. A register-based system associates value with identities (e.g.,
bank account balances with customers), while a value-based system associates
value with typically anonymous, digital or physical tokens (such as cash or
prepaid credit cards). In practice, these two types of systems are combined, as
different layers have different (and often conflicting) requirements: the payment
system used to pay for a cappuccino in a coffee shop is most likely not suitable to
buy real estate. Value-based payment systems typically provide more anonymity
and convenience but also more risk to consumers (as they are responsible to secure
the values they hold), while register-based systems shift risks to the payment
service provider who has to authenticate consumers and ensure the integrity of
the register.

This thesis covers both categories of payment systems:

e We explain GNU Taler, a design and implementation of a value-based
payment system, discussing in-depth how to create a practical, privacy-
preserving and secure (micro-)payment protocol that integrates nicely with
the modern web. Our value-based payment protocol can in principle operate
on top of any existing register-based system.

e For register-based payment systems, we present a new Byzantine consensus
protocol. Consensus protocols are a key component of virtually all robust,
distributed, register-based systems, as they facilitate agreement on a trans-
action leger. Our Byzantine set union consensus (BSC) protocol can be used
to achieve consensus in a decentralized and robust manner that tolerates a
fraction of actively malicious participants. Our BSC protocol asymptotically
speeds up the implementation of such transaction ledgers, compared to
classic Byzantine consensus protocols.

GNU Taler is an official package of the GNU project?], and the BSC protocol

Thttps://taler.net/
2https://gnu.org/
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1. Introduction

was implemented in the CONSENSUS subsystem of the GNUnet framework ]
Our free software implementations are freely available from the GNU mirrors.

1.1. Design Goals for GNU Taler

The design of payment systems shapes economies and societies [£5I13} |Dal16].
Payment systems with high transaction costs create an economic burden. Predom-
inantly cash-based societies provide some degree of anonymity for their citizens,
but can fail to provide a sound foundation for taxation, facilitate corruption
[SB17] and thus risk creating weak governments. On the other hand, systems
with too much surveillance eliminate personal freedom.

As the Internet has no standardized payment system, especially not one that is
capable of quickly, efficiently and securely settling small transactions (so-called
micropayments), the majority of content on the web is financed by advertisements.
As a result, advertising (and by implication, collecting data on users) has been a
dominant business model on the Internet. This has not only resulted in a loss of
independence of publishers—who need to cater to the needs of advertisers—but
also in a situation where micro-targeted ads are so wide-spread, that they have
been suspected to have influenced multiple major elections [Per17]. Ads are also
a vector for malware [Pro+o7]. Due to the prevalence of ad blockers, ads are also
not guaranteed to be a sustainable business model.

In the world of online payments, credit cards and a sprawling number of
smaller, proprietary payment processors are currently dominant, and market
shares vary widely between different countries [Ady16; LMS16]. The resulting
fragmentation again increases social costs: online shops can either choose to
invest in implementing many proprietary protocols, or only implement the most
popular ones, thereby reinforcing the dominance of a handful of proprietary
payment systems.

Considering these and other social implications of payment systems, we started
the development of GNU Taler with a set of high-level design goals that fit our
social agenda. They are ranked by the importance we give to them, and when
a trade-off must be made, the one that supports the more highly ranked goal is
preferred:

1. GNU Taler must be implemented as free software.

Free refers to “free as in free speech”, as opposed to “free as in free beer”.
More specifically, the four essential freedoms of free software [Stao2] must
be respected, namely users must have the freedom to (1) run the software,
(2) study and modify it, (3) redistribute copies, and (4) distribute copies of
the modified version.

For merchants this prevents vendor lock-in, as another payment provider can
take over, should the current one provide inadequate quality of service. As

3https://gnunet.org
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the software of the payment provider itself is free, smaller or disadvantaged
countries or organizations can run the payment system without being
controlled by a foreign company. Customers benefit from this freedom,
as the wallet software can be made to run on a variety of platforms, and
user-hostile features such as tracking or telemetry could easily be removed
from wallet software.

This rules out the mandatory usage of specialized hardware such as smart
cards or other hardware security modules, as the software they run cannot
be modified by the user. These components can, however, be voluntarily
used by merchants, customers or payment processors to increase their
operational security.

. GNU Taler must protect the privacy of buyers.

Privacy should be guaranteed via technical measures, as opposed to mere
policies. Especially with micropayments for online content, a disproportion-
ate amount of rather private data about buyers would be revealed, if the
payment system does not have privacy protections.

In legislations with data protection regulations (such as the recently intro-
duced GDPR in Europe [VV17]), merchants benefit from this as well, as
no data breach of customers can happen if this information is, by design,
not collected in the first place. Obviously some private data, such as the
shipping address for a physical delivery, must still be collected according to
business needs.

The security of the payment systems also benefits from this, as the model
shifts from authentication of customers to mere authorization of payments.
This approach rules out whole classes of attacks such as phishing [Gar+o7]
or credit card fraud [SD10].

. GNU Taler must enable the state to tax income and crack down on illegal
business activities.

As a payment system must still be legal to operate and use, it must comply
with these requirements. Furthermore, we consider levying of taxes as
beneficial to society.

. GNU Taler must prevent payment fraud.

This imposes requirements on the security of the system, as well as on the
general design, as payment fraud can also happen through misleading user
interface design or the lack of cryptographic evidence for certain processes.

. GNU Taler must only disclose the minimal amount of information nec-
essary.

The reason behind this goal is similar to (2). The privacy of buyers is given
priority, but other parties such as merchants still benefit from it, for example,
by keeping details about the merchant’s financials hidden from competitors.
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6. GNU Taler must be usable.

Specifically it must be usable for non-expert customers. Usability also
applies to the integration with merchants, and informs choices about the
architecture, such as encapsulating procedures that require cryptographic
operations into an isolated component with a simple APL

7. GNU Taler must be efficient.

Approaches such as proof-of-work are ruled out by this requirement. Effi-
ciency is necessary for GNU Taler to be used for micropayments.

8. GNU Taler must avoid single points of failure.

While the design we present later is rather centralized, avoiding single
points of failure is still a goal. This manifests in architectural choices such
as the isolation of certain components, and auditing procedures.

9. GNU Taler must foster competition.

It must be relatively easy for competitors to join the systems. While the
barriers for this in traditional financial systems are rather high, the technical
burden for new competitors to join must be minimized. Another design
choice that supports this is to split the whole system into smaller compo-
nents that can be operated, developed and improved upon independently,
instead of having one completely monolithic system.

1.2. Features of Value-based Payment Systems

There are many different possible features that have been proposed for value-
based (sometimes called token-based) payment systems in the past. While we
will discuss existing work on e-cash in more detail in Section we will begin
by a brief summary of the possible features that value-based payment systems
could provide, and clarify which high-level features we chose to adopt for GNU
Taler.

1.2.1. Offline vs Online Payments

Anonymous digital cash schemes since Chaum [Cha83|] were frequently designed
to allow the merchant to be offline during the transaction, by providing a means
to deanonymize customers involved in double-spending, typically by encoding
the customer’s identity into their coins in a way that makes it only possible to
decode the identity with two spending transcripts.

This approach is problematic in practice, as customers that restore a wallet
from backup might accidentally double-spend and would then face punishment
for it. Enforcing punishment for double-spenders can be rather difficult as well,
since the double-spender might have signed up with a false identity or might
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already have fled to another country, and a large number of merchants might
already have been defrauded with the same coins.

Should the issuer of e-cash be compromised, an attacker could issue coins that
fail to identify a culprit or even blame somebody else when they are double-spent.
In an offline e-cash system, the detection of such an event is greatly delayed
compared to systems with online spending, which can immediately detect when
more coins are spent than were issued.

Thus, in GNU Taler, we decided that all coins must be immediately deposited
online during a purchase. Only either a merchant or a customer needs to be
online, since one of the two can forward messages to the payment service provider
for the other.

1.2.2. Change and Divisibility

Customers do not always have the right set of coins available to exactly cover
the amount to be paid to a merchant. With physical cash, the store would give
the customer change. For e-cash, the situation is more complex, as the customer
would have to make sure that the change has not already been spent, does not
violate their anonymity and the merchant does not have a digital “copy” of the
change tokens that the merchant can spend before the customer. Note that it
would be unwise to always withdraw the correct amount of e-cash directly before
a purchase, as it creates a temporal correlation between the non-anonymous
withdrawal event and the spending event.

Most modern e-cash schemes instead deal with exact spending by providing
divisibility of coins, where the customer can decide to only spend part of a coin.
A significant chunk of the e-cash literature has been concerned with developing
schemes that allow the individual, divided parts of a coin to be unlinkable (thus
preserving anonymity) and to optimize the storage costs for wallets and the
communication cost of withdrawals.

The current state of the art for divisible e-cash [PST17] achieves constant-time
withdrawal and wallet storage cost for coins that can be split into an arbitrary
but fixed (as a system parameter) number of pieces. A continuous “chunk” of
the smallest pieces of a coin can be spent with constant-time communication
complexity.

While this sounds attractive in theory, these results are mostly of academic
interest, as the storage and/or computational complexity for the party that is
checking for double spending of coins remains enormous: each smallest piece of
every coin needs to be recorded and checked individually. When paying $10.00
with a coin that supports division into cent pieces, 1000 individual coin pieces
must be checked for double spending and recorded, possibliy in compressed
form to trade storage costs for more computation.

For GNU Taler, we use a rather simple and practical approach, made possible
by requiring participants to be online during spending: coins can be fractionally
spent without having divisible, unlinkable parts. The remaining value on a coin
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that was spend (and thus revealed) can be used to withdraw fresh, unlinkable
coins. The protocol to obtain change takes additional measures to ensure that it
cannot be misused to facilitate untaxed transactions. Giving change for e-cash
has been proposed before [BGKogs; TWo1], but to the best of our knowledge, the
idea of income-transparent change is novel.

1.2.3. Anonymity Control

Some proposed e-cash protocols contain mechanisms to allow selective deanonymiza-
tion of transactions for scenarios involving crime [ST9g], specifically blackmailing
and tax evasion.

Unfortunately this does not really work as a countermeasure against blackmail-
ing in practice. As noted in the paper that initially described such a mechanism
for blind signatures [SPCos||, a blackmailer could simply request to be paid di-
rectly with plain, blindly signed coins, and thereby completely circumvent the
threat of revocable anonymity.

GNU Taler provides income transparency as a measure against tax evasion.
We furthermore describe a different approach in a blackmailing scenario in
Section which we believe is more practical in dissuading blackmailers in
practice.

1.2.4. User Suspension

Anonymous user suspension [ASM11] has been proposed as another mechanism
to punish users suspected in illicit activities by preventing then from making
further transactions until the suspension is lifted. Anonymous suspension is
based on transactions; the user involved in a particular transaction is suspended,
but their identity is not revealed.

While the approach is interesting, it is not practical, as it requires a single
permanent key pair to be associated with each user. If a user claims they lost
their private key and requests a new key pair, their suspension would be effec-
tively lifted. Suspending users from a dominant payment system is also socially
problematic, as excluding them from most commercial activities would likely be
a disproportionate and cruel punishment.

1.2.5. Transferability

Transferability is a feature of certain e-cash systems that allows transfer of e-cash
between two parties without breaking anonymity properties [FPVog]. Contem-
porary systems that offer this type of disintermediation attract criminal activ-
ity [Ric16].

GNU Taler specifically provides roughly the opposite of this property, namely
income transparency, to guarantee that e-cash is not easily abused for tax evasion.
Mutually trusting users, however, can share ownership of a coin.

6
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1.2.6. Atomic Swaps

Atomic swaps (often called “fair exchange” in the e-cash literature) are a feature
of some e-cash systems that allows e-cash to be exchanged against some service
or (digital) product, with a trusted third party ensuring that the payee receives
the payment if and only if they correctly provided the merchandise.

GNU Taler supports Camenisch-style atomic swaps [CLMo7]|, as explained in

Section

1.2.7. Refunds

GNU Taler allows merchants to provide refunds to customers during a limited
time after the coins for the payment were deposited. The merchant signs a
statement that effectively allows the customer to reclaim a previously spent coin.
Customers can request anonymous change for the reclaimed amount.

While this is a rather simple extension, we are not aware of any other e-cash
system that supports refunds.

1.3. User Experience and Performance

For adoption of a payment system, the user experience is critical. Thus, before
diving into how GNU Taler is implemented, we begin by showing how GNU Taler
looks from the perspective of an end user in the context of web payments, in a
desktop browser (Chromium).

To use GNU Taler, the user must first install a browser extension (Figure |1.1)).
Once installed, the user can open a pop-up window by clicking on the Taler logo,
to see the initially empty wallet balance (Figure [1.2).

The customer logs into their online bank—a simple demo bank in our case-
to withdraw digital cash from their bank account into their wallet (Figures
and [1.4). Our demo uses Kupos as an imaginary currency. Before the user is
asked to confirm, they are given the option to view details about or change the
default exchange provider, the GNU Taler payment service provider (Figure [1.5).

With a real bank, a second factor (such as a mobile TAN) would now be
requested from the user. Our demo instead asks the user to solve a simple
CAPTCHA (Figure [1.6). The amount withdrawn—minus withdrawal fees—is
now available as e-cash in the wallet (Figure [1.7).

The customer can now go to an online shop to spend their digital cash. We've
implemented a shop that sells single chapters from Richard Stallman’s essay
collection “Free Software, Free Society” [Stao2|| (Figure [1.8). The user selects an
essay, and is then immediately presented with a confirmation page rendered by
the wallet (Figure[1.9). After paying, the user can immediately read the article
(Figure [1.10).

Our benchmarks, discussed in Chapter |4 show that a single machine can
support around 1000 payments per second, and our implementation is easily
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Figure 1.1.: The user is prompted to install the wallet.
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Figure 1.2.: The wallet popup shows an empty balance.

amenable to further scaling.

The extra computation required in the customer’s wallet is in the order of a few
hundred milliseconds even on typical mobile or tablet devices, and thus barely
noticeable.

1.4. The Technical Foundation: Anonymous E-Cash

GNU Taler is based on anonymous e-cash. Anonymous e-cash was invented
by David Chaum in the 1980s [Cha83]. The idea behind Chaumian e-cash is
both simple and ingenious, and can be best illustrated with the carbon paper|
analogy: A long, random serial number is generated, for example, by throwing
a die a few dozen times, and written on a piece of paper. A carbon paper is
placed on top, with the pigmented side facing down, and both pieces of paper

4Carbon paper is a paper coated with pigment (originally carbon) on one side. When put
face-down between two sheets of normal paper, the pressure from writing with a pen or
typewriter on the first layer causes pigment to be deposited on the paper beneath, allowing a
copy to be made.
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Figure 1.8.: Landing page of a store that sells essays.
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Figure 1.10.: Essay successfully purchased by the user.

are put into an opaque envelope. The envelope is now sealed and brought to a
bank. The bank draws a signature on the outside of the envelope, which presses
through to the piece of paper with the serial number. In exchange for the signed
envelope, the bank deducts a fixed amount (say five dollars) from the customer’s
bank account. Under the (admittedly rather strong) assumption that the bank’s
signature cannot be forged, the signed piece of paper with the serial number is
now an untraceable bank note worth five dollars, as the bank signed it without
seeing the serial number inside the envelope! Since the signed paper can be easily
copied, merchants that accept it as payment must check the bank’s signature, call
the bank and transmit the serial number. The bank keeps a register of all serial
numbers that have been used as payment before. If the serial number is already
in the bank’s register, the bank informs the merchant about the attempted double
spending, and the merchant then rejects the payment.

The digital analogue of this process is called a blind signature, where the signer
knows that it gave a digital signature, but does not know the contents of the
message that it signed.

In this document, we use coin to refer to a token of value in an e-cash system.
Note that the analogy of a coin does not always hold up, as certain types of
operations possible in some e-cash schemes, such as partial spending, divisibility,
etc., do not transfer to physical coins.

We have the following security and correctness properties for GNU Taler
(formally defined in Chapter [3)):

o Anonymity guarantees that transactions cannot be correlated with with-
drawals or other transactions made by the same customer.

o Unforgeability guarantees that users cannot spend more e-cash than they
withdrew.

e Conservation guarantees that customers do not lose money due to inter-
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rupted protocols or malicious merchants; they can always obtain anonymous
change or a proof of successful spending.

e Income transparency guarantees that mutually distrusting parties are unable
to reliably transfer e-cash between them without the income of participants
being visible to tax auditors.

While anonymity and unforgeability are common properties of e-cash, we are
not aware of any other treatments of income transparency and conservation.

1.5. Distributed Ledgers

The main purpose of blockchains, including those implementing cryptocurrencies,
is to maintain a distributed ledger that holds state, together with rules on how
this state can be updated. The name “blockchain” derives from its structure:
A list of updates (“transactions”) is bundled into a so-called block, and each
block contains a hash of the previous block. Cryptocurrencies use blockchains to
remember the amount of currency controlled by a particular account (= private
key). Thus, while cryptocurrencies use the term “coin” (creating potentially
misleading associations with cash), they actually realize a decentralized register-
based payment system with the blockchain storing the registerf| using private
keys to authenticate account owners.

Cryptocurrencies based on blockchains gained immense popularity over the
last years on the promise of a universal, global and decentralized payment sys-
tem that is independent from country boundaries and legislations. In practice,
however, current incarnations of these technologies can only handle a handful of
transactions, have high transaction fees and are surprisingly centralized [BS15;
Boh+15]. Bitcoin, the most popular cryptocurrency, can handle around 3-7 trans-
actions per second, globally. While there are various plans to make blockchains
more scalable [GM16], there is no concrete evidence that any of them will work
without further sacrificing decentralization.

1.5.1. Consensus in Decentralized Blockchains

In decentralized blockchains, multiple parties must agree on the current state of
the ledger by agreeing on a “head” of the chain of blocks. How to advance this
head to include new transactions is thus a critical design choice.

5Anonymous cryotocurrencies such as ZeroCash [Ben+14] have special accounts (called shielded
addresses) that can “hide” their balance, and require the owner to prove in zero-knowledge
that their balance is sufficient for a transaction. As such, anonymous transactions in these
systems (which are typically only a small subset of all transactions) are closer to value-
based systems. However, currently only a small percentage (= 5%) of all funds in ZCash,
the most widely used anonymous cryptocurrency, belong to shielded addresses (https:
//explorer.zcha.in/statistics/value).
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With proof-of-work blockchains such as Bitcoin, each block contains the solution
to a computationally expensive puzzle that is derived from the contents of the
block. The block that, together with its ancestors, contains the most expensive
accumulated work (and respects the rules of the blockchain with regards to what
transactions are valid) is considered the head of the chain. All participants of
the network can “mine” a block by collecting transactions and trying to solve
the corresponding computational puzzle. Successful miners are rewarded with
a mining reward and transaction fees. This type of agreement on a ledger is
also called “Nakamoto Consensus”, after the inventor of Bitcoin. The result of
the agreement is not final: if a branch originating from an earlier block of the
chain accumulates more work, it becomes the canonical head. While this type of
consensus has some attractive properties—there is no fixed set of members, and
remains secure as long as an adversary has less than 1/4 of computational power
[ES18]—it consumes a huge amount of energy to provide for computation of the
proof-of-work puzzles.

After Bitcoin popularized the concept of blockchains, alternative consensus
mechanisms were proposed to replace or augment proof-of-work. In proof-of-
stake blockchains, a single node is selected as a validator. The validator must
provide a safety deposit (the “stake”), and if any misbehavior is detected, the
safety deposit is destroyed. If the validator behaves correctly, they earn transaction
fees and get back their safety deposit. Currently proof-of-stake protocols are still
in development, and often require falling back to other consensus mechanisms in
certain situations.

1.5.2. Permissioned Blockchains

Permissioned blockchains have a known, relatively small set of participants, and
can rely on more traditional and cheaper consensus algorithms. When resilience
against actively malicious members is required, a so-called Byzantine consensus
protocol must be used. Byzantine consensus protocols typically agree on a single
value at once.

In Chapter |5| we introduce a Byzantine consensus algorithm that can be used to
agree directly on a (super-)set of all transaction that honest peers proposed. This
allows for implementations of permissioned blockchains where transactions are
accumulated into blocks, and the transactions within a block are agreed upon in
a way that’s asymptotically faster than agreeing on every transaction sequentially.

This protocol could be used in the future to implement an efficient and robust
implementation of the register-based layer of a payment system, with GNU Taler
e-cash as the value-based layer above it.

1.5.3. Blockchains and GNU Taler

Blockchains today fail to satisfy most of our design goals for payment systems.
While most blockchains are implemented as free software, they often manage to
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both fail to adequately protect the privacy of buyers and to enable the state to
crack down on illegal activities: With most non-permissioned blockchains, the
transaction history of all participants is publicly available, creating serious privacy
risks [Mei+13} Jaw+18|]. At the same time, as accounts are simply private keys,
states have a hard time tracking down users [LI16]. Design variations that do
offer reasonable privacy generally have even more atrocious performance charac-
teristics and create additional traceability problems for law enforcement [Ben+14].
Additionally, blockchain-based cryptocurrencies suffer from usability and perfor-
mance problems.

With our BSC protocol, we focus on improving the performance of the consen-
sus protocol for permissioned blockchains. Permissioned blockchains can be given
rules that enforce Know-Your-Customer (KYC) and Anti-Money-Laundering
(AML) regulations [SWP16]. When deployed in the context of centrally-banked
fiat currencies, such a permissioned blockchain can then effectively recreate the
semantics of a classical distributed banking system. As mentioned before, GNU
Taler’s value-based protocol can be integrated with any kind of register-based
banking—including those based on blockchains—improving performance and
privacy for value-based transactions.

1.6. Key Contributions

We claim the following key contributions for this thesis:

e We design, implement and analyze an efficient Byzantine consensus protocol
on set structures that allows an optimized implementation of distributed
transaction ledgers.

e We introduce the notion of income transparency for e-cash, with an instanti-
ation in Chaum-style e-cash and proofs.

e We design the GNU Taler payment system under consideration of practical
aspects of e-cash including aborts, network failures, refunds, multi-coin
payments, faults from wallet synchronization and their effects on anonymity;
showing the necessity of a refresh operation.

e We propose a modification to our protocol that provides protection against
certain blackmailing and kidnapping scenarios.

e We design and implement the seamless, native integration of e-cash into the
web architecture, and discuss security and privacy aspects of this integration.

e We implemented the GNU Taler payment system and evaluate its perfor-
mance.
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1.7. Roadmap

Chapter [2| describes the high-level design of GNU Taler, and compares it to
payment systems found in the academic literature and real-world usage. Chapter
first gives a gentle introduction to provable security (which can be skipped by
readers with a background in cryptography), and then defines security properties
for income-transparent, anonymous e-cash. The cryptographic protocols for GNU
Taler are defined in detail, and proofs are given that our protocols satisfy the
security properties defined earlier. In Chapter [¢ the implementation of GNU
Taler is described, and the performance and scalability is evaluated. Chapter
is about the design, implementation and evaluation of our Byzantine set union
consensus protocol. Chapter [p| discusses future work and missing pieces to deploy
GNU Taler in production. Chapter [7] concludes with an outlook on the potential
impact and practical relevance of this work.
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2. GNU Taler, an Income-Transparent
Anonymous E-Cash System

This chapter gives a high-level overview of the design of GNU Taler, based
on the requirements discussed in Chapter |1, The cryptographic protocols and
security properties are described and analyzed in detail in Chapter 3} A complete
implementation with focus on of Web payments is discussed in Chapter

2.1. Design of GNU Taler

GNU Taler is based on the idea of Chaumian e-cash [Cha83], with some differ-
ences and additions explained in the following sections. Other variants and ex-
tensions of anonymous e-cash and blind signatures are discussed in Section [2.3.1]

2.1.1. Entities and Trust Model
GNU Taler consists of the following entities (see [2.1):

o The exchanges serve as payment service provider for a financial transaction
between a customer and a merchant. They hold bank money in escrow in
exchange for anonymous digital coins.

o The customers keep e-cash in their electronic wallets.

e The merchants accept digital coins in exchange for digital or physical goods
and services. The digital coins can be deposited with the exchange, in
exchange for bank money.

e The banks receive wire transfer instructions from customers and exchanges.
A customer, merchant and exchange involved in one GNU Taler payment
do not need to have accounts with the same bank, as long as wire transfers
can be made between the respective banks.

e The auditors, typically run by trusted financial regulators, monitor the
behavior of exchanges to assure customers and merchants that exchanges
operate correctly.

In GNU Taler, the exchanges can be separate entities from the banks. This
fosters competition between exchanges, and allows Taler to be deployed in an
environment with legacy banks that do not support Taler directly.
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verify
Exchange |«——| Auditor

spend coins

Customer > Merchant

Figure 2.1.: High-level overview of the different components of GNU Taler, banks
are omitted.

If a customer wants to pay a merchant, the customer needs to hold coins at an
exchange that the merchant trusts. To make the selection of trusted exchanges
simpler, merchants and customers can choose to automatically trust all exchanges
audited by a certain auditor.

The exchange is trusted to hold funds of its customers in escrow and to make
payments to merchants when digital coins are deposited. Customer and merchant
can have assurances about the exchange’s liquidity and operation though the
auditor, which would typically be run by financial regulators or other trusted
third parties.

2.1.2. System Assumptions

We assume that an anonymous, bi-directional communication channel]is used
for all communication between the customer and the merchant, as well as for
obtaining unlinkable change for partially spent coins from the exchange and for
retrieving the exchange’s public keys used in verifying and blindly signing coins.
The withdrawal protocol, on the other hand, does not require an anonymous
channel to preserve the anonymity of electronic coins.

During withdrawal, the exchange knows the identity of the withdrawing
customer, as there are laws, or bank policies, that limit the amount of cash that
an individual customer can withdraw in a given time period [Bad1s; Reu1s].
GNU Taler is thus only anonymous with respect to payments. While the exchange
does know their customer (KYC), it is unable to link the known identity of the

TAn anonymization layer like Tor [DMSo4] can provide a practical approximation of such a
communication channel, but does not provide perfect anonymity [Joh+13].
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customer that withdrew anonymous digital coins to the purchase performed later
at the merchant.

While customers can make untraceable digital cash payments, the exchange will
always learn the merchants” identity, which is necessary to credit their accounts.
This information can also be used for taxation, and GNU Taler deliberately
exposes these events as anchors for tax audits on merchants” income. Note that
while GNU Taler enables taxation, it does not implement any automatic taxation.

GNU Taler assumes that each participant has full control over their system?
We assume the contact information of the exchange is known to both customer
and merchant from the start, and the customer can authenticate the merchant,
for example, by using X.509 certificates [Yee13]. A GNU Taler merchant is
expected to deliver the service or goods to the customer upon receiving payment.
The customer can seek legal relief to achieve this, as the customer receives
cryptographic evidence of the contract and the associated payment.

2.1.3. Reserves

A reserve refers to a customer’s non-anonymous funds at an exchange, identi-
tied by a reserve public key. Suppose a customer wants to convert money into
anonymized digital coins. To do that, the customer first creates a reserve pri-
vate/public key pair, and then transfers money via their bank to the exchange.
The wire transfer instruction to the bank must include the reserve public key. To
withdraw coins from a reserve, the customer authenticates themselves using the
corresponding reserve private key.

Typically, each wire transfer is made with a fresh reserve public key and thus
creates a new reserve, but making another wire transfer with the same reserve
public key simply adds funds to the existing reserve. Even after all funds have
been withdrawn from a reserve, customers should keep the reserve key pair until
all coins from the corresponding reserve have been spent, as in the event of a
denomination key revocation (see Section the customer needs this key to
recover coins of revoked denominations.

The exchange automatically transfers back to the customer’s bank account any
funds that have been left in a reserve for an extended amount of time, allowing
customers that lost their reserve private key to eventually recover their funds. If
a wire transfer to the exchange does not include a valid reserve public key, the
exchange transfers the money back to the sender.

Instead of requiring the customer to manually generate reserve key pairs and
copy them onto a wire transfer form, banks can offer tight integration with the
GNU Taler wallet software. In this scenario, the bank’s website or banking app
provides a “withdraw to GNU Taler wallet” action. After selecting this action,

2Full control goes both ways: it gives the customer the freedom to run their own software, but
also means that the behavior of fraudulent customers cannot be restricted by simpler technical
means such as keeping balances on tamper-proof smart cards, and thus can lead to an overall
more complex system.
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the user is asked to choose the amount to withdraw from their bank account
into the wallet. The bank then instructs the GNU Taler wallet software to create
record of the corresponding reserve; this request contains the anticipated amount,
the reserve key pair and the URL of the exchange to be used. When invoked
by the bank, the wallet asks the customer to select an exchange and to confirm
the reserve creation. The exchange chosen by the customer must support the
wire transfer method used by the bank, which will be automatically checked by
the wallet. Typically, an exchange is already selected by default, as banks can
suggest a default exchange provider to the wallet, and additionally wallets have
a pre-defined list of trusted exchange providers. Subsequently, the wallet hands
the reserve public key and the bank account information of the selected exchange
back to the bank. The bank—typically after asking for a second authentication
factor from the customer—will then trigger a wire transfer to the exchange with
the information obtained from the wallet.

When the customer’s bank does not offer tight integration with GNU Taler, the
customer can still manually instruct their wallet to create a reserve. The public
key must then be included in a bank transaction to the exchange. When the
customer’s banking app supports pre-filling wire transfer details from a URL
or a QR code, the wallet can generate such a URL or QR code that includes the
pre-filled bank account details of the exchange as well as the reserve public key.
The customer clicks on this link or scans the QR code to invoke their banking
app with pre-filled transaction details. Since there currently is no standardized
format for pre-filled wire transfer details, we are proposing the payto:// URI
format explained in Section currently under review for acceptance as an
IETF Internet Standard.

2.1.4. Coins and Denominations

Unlike plain Chaumian e-cash, where a coin just contains a serial number, a coin
in Taler is a public/private key pair where the private key is only known to the
owner of the coin.

A coin derives its financial value from a blind signature on the coin’s public
key. The exchange has multiple denomination key pairs available for blind-signing
coins of different financial values. Other approaches for representing different
denominations are discussed in Section

Denomination keys have an expiration date, before which any coins signed
with it must be spent or exchanged into newer coins using the refresh protocol
explained in Section This allows the exchange to eventually discard records
of old transactions, thus limiting the records that the exchange must retain
and search to detect double-spending attempts. If a denomination’s private
key were to be compromised, the exchange can detect this once more coins are
redeemed than the total that was signed into existence using that denomination
key. Should such an incident occur, the exchange can allow authentic customers
to redeem their unspent coins that were signed with the compromised private
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key, while refusing further deposits involving coins signed by the compromised
denomination key (see Section [2.2.1). As a result, the financial damage of losing a
private signing key is limited to at most the amount originally signed with that
key, and denomination key rotation can be used to bound that risk.

To prevent the exchange from deanonymizing users by signing each coin with
a fresh denomination key, exchanges publicly announce their denomination keys
in advance with validity periods that imply sufficiently strong anonymity sets.
These announcements are expected to be signed with an offline long-term private
master signing key of the exchange and the auditor. Customers should obtain these
announcements using an anonymous communication channel.

After a coin is issued, the customer is the only entity that knows the private key
of the coin, making them the owner of the coin. Due to the use of blind signatures,
the exchange does not learn the public key during the withdrawal process. If the
private key is shared with others, they become co-owners of the coin. Knowledge
of the private key of the coin and the signature over the coin’s public key by an
exchange’s denomination key enables spending the coin.

2.1.5. Partial Spending and Unlinkable Change

Customers are not required to have exact change ready when making a payment.
In fact, it should be encouraged to withdraw a larger amount of e-cash beforehand,
as this blurs the correlation between the non-anonymous withdrawal event and
the anonymous spending event, increasing the anonymity set.

A customer spends a coin at a merchant by cryptographically signing a deposit
permission with the coin’s private key. A deposit permission contains the hash of
the contract terms, i.e., the details of the purchase agreement between the customer
and merchant. Coins can be partially spent, and a deposit permission specifies
the fraction of the coin’s value to be paid to the merchant. As digital coins are
trivial to copy, the merchant must immediately deposit them with the exchange,
in order to get a deposit confirmation or an error that indicates double spending.

When a coin is used in a completed or attempted/aborted payment, the coin’s
public key is revealed to the merchant/exchange, and further payments with
the remaining amount would be linkable to the first spending event. To obtain
unlinkable change for a partially spent (or otherwise revealed coin), GNU Taler
introduces a refresh protocol. The refresh protocol allows the customer to obtain
new coins for the remaining amount on a coin. The old coin is marked as spent
after it has been refreshed into new coins. Using blind signatures to withdraw
the refreshed coins makes them unlinkable from the old coin.

2.1.6. Refreshing and Taxability

One goal of GNU Taler is to make merchants” income transparent to state auditors,
so that income can be taxed appropriately. Naively implemented, however, a
simple refresh protocol could be used to evade taxes: the payee of an untaxed
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transaction would generate the private keys for the coins that result from refresh-
ing a (partially spent) old coin, and send the corresponding public keys to the
payer. The payer would execute the refresh protocol, provide the payee’s coin
public keys for blind signing, and provide the signatures to the payee, who would
now have exclusive control over the coins.

To remedy this, the refresh protocol introduces a link threat: coins are refreshed
in such a way that the owner of the old coin can always obtain the private key and
exchange’s signature on the new coins resulting from refreshes, using a separate
linking protocol. This introduces a threat to merchants that try to obtain untaxed
income. Until the coins are finally deposited at the exchange, the customer can
always re-gain ownership of them and could deposit them before the merchant
gets a chance to do so. This disincentivizes the circulation of unreported income
among untrusted parties in the system.

In our implementation of the refresh and linking protocols, there is a non-
negligible success chance (%, depending on system parameter x, typically > 3)
for attempts to cheat during the refresh protocol, resulting in refreshed coins
that cannot be recovered from the old coin via the linking protocol. Cheating
during refresh, however, is still not profitable, as an unsuccessful attempt results
in completely losing the amount that was intended to be refreshed.

For purposes of anti-money-laundering and taxation, a more detailed audit of
the merchant’s transactions can be desirable. A government tax authority can
request the merchant to reveal the business agreement details that match the
contract terms hash recorded with the exchange. If a merchant is not able to
provide theses values, they can be subjected to financial penalties by the state in
relation to the amount transferred by the traditional currency transfer.

2.1.7. Transactions vs. Sharing

Sharing—in contrast to a transaction—happens when mutually trusted parties
simultaneously have access to the private keys and signatures on coins. Sharing is
not considered a transaction, as subsequently both parties have equal control over
the funds. A useful application for sharing are peer-to-peer payments between
mutually trusting parties, such as families and friends.

2.1.8. Aggregation

For each payment, the merchant can specify a deadline before which the exchange
must issue a wire transfer to the merchant’s bank account. Before this deadline
occurs, multiple payments from deposited coins to the same merchant can be ag-
gregated into one bigger payment. This reduces transaction costs from underlying
banking systems, which often charge a fixed fee per transaction. To incentivize
merchants to choose a longer wire transfer deadline, the exchange can charge the
merchant a fee per aggregated wire transfer.
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2.1.9. Refunds

The aggregation period also opens the opportunity for cheap refunds. If a customer
is not happy with their product, the merchant can instruct the exchange to give
the customer a refund before the wire transfer deadline has occurred. This
effectively “undoes” the deposit of the coin, and restores the available amount
left on it. The refresh protocol is then used by the customer on the coins involved
in a refund, so that payments remain unlinkable.

2.1.10. Fees

In order to subsidize the operation of the exchange and enable a sustainable
business model, the exchange can charge fees for most operations. For withdrawal,
refreshing, deposit and refunds, the fee is dependent on the denomination, as
different denominations might have different key sizes, security and storage
requirements.

Most payment systems hide fees from the customer by putting them to the
merchant. This is also possible with Taler. As different exchanges (and denomina-
tions) can charge different fees, the merchant can specify a maximum amount of
fees it is willing to cover. Fees exceeding this amount must be explicitly paid by
the customer.

Another consideration for fees is the prevention of denial-of-service attacks.
To make “useless” operations, such as repeated refreshing on coins (causing the
exchange to use relatively expensive storage), unattractive to an adversary, these
operations must charge a fee. Again, for every refresh following a payment, the
merchant can cover the costs up to a limit set by the merchant, effectively hiding
the fees from the customer.

Yet another type of fee are the wire transfer fees, which are charged by the
exchange for every wire transfer to a merchant in order to compensate for the cost
of making a transaction in the underlying bank system. The wire transfer fees
encourage merchants to choose longer aggregation periods, as the fee is charged
per transaction and independant of the amount.

Merchants can also specify the maximum wire fee they are willing to cover
for customers, along with an amortization rate for the wire fees. In case the
wire fees for a payment exceed the merchant’s chosen maximum, the customer
must additionally pay the excess fee divided by the amortization rate. The
merchant should set amortization rate to the expected number of transactions per
wire transfer aggregation window. This allows the merchant to adjust the total
expected amount that it needs to pay for wire fees.

2.1.11. The Withdraw Loophole and Tipping

The withdraw protocol can be (ab)used to illicitly transfer money, when the
receiver generates the coin’s secret key, and gives the public key to the party
executing the withdraw protocol. We call this the “withdraw loophole”. This
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is only possible for one “hop”, as money can still not circulate among mutually
distrusted parties, due to the properties of the refresh protocol.

A “benevolent” use of the withdraw loophole is tipping, where merchants give
small rewards to customers (for example, for filling out a survey or installing an
application), without any contractual obligations or digitally signed agreement.

Fixing the Withdraw Loophole

In order to discourage the usage of the withdraw loophole for untaxed payments,
the following approach would be possible: Normal withdraw operations and
unregistered reserves are disabled, except for special tip reserves that are regis-
tered by the merchant as part of a tipping campaign. Customers are required
to pre-register at the exchange and obtain a special withdraw key pair against
a small safety deposit. Customer obtain new coins via a refresh operation from
the withdraw key to a new coin. If customers want to abuse Taler for untaxed
payments, they either need to risk losing money by lying during the execution of
the refresh protocol, or share their reserve private key with the payee. In order to
discourage the latter, the exchanges gives the safety deposit to the first participant
who reports the corresponding private key as being used in an illicit transaction,
and requires a new safety deposit before the customer is allowed to withdraw
again.

However since the withdraw loophole allows only one additional “payment”
(without any cryptographic evidence that can be used in disputes) before the
coin must be deposited, these additional mitigations might not even be justified
considering their additional cost.

2.2. Auditing

The auditor is a component of GNU Taler which would typically be deployed by
a financial regulator, fulfilling the following functionality:

e It regularly examines the exchange’s database and bank transaction history
to detect discrepancies.

e It accepts samples of certain protocol responses that merchants received
from an audited exchange, to verify that what the exchange signed corre-
sponds to what it stored in its database.

o It certifies exchanges that fulfill the operational and financial requirements
demanded by regulators.

e It regularly runs anonymous checks to ensure that the required protocol
endpoints of the exchange are available.

¢ In some deployment scenarios, merchants need to pre-register with ex-
changes to fulfill know-your-customer (KYC) requirements. The auditor
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provides a list of certified exchanges to merchants, to which the merchant
then can automatically KYC-register.

e It provides customers with an interface to submit cryptographic proof that
an exchange misbehaved. If a customer claims that the exchange denies
service, it can execute a request on behalf of the customer.

2.2.1. Exchange Compromise Modes

The exchange is an attractive target for hackers and insider threats. We now
discuss different ways that the exchange can be compromised, how to reduce the
likelihood of such a compromise, and how to detect and react to such an event if
it happens.

Compromise of Denomination Keys and Revocation

When a denomination key pair is compromised, an attacker can “print money”
by using it to sign coins of that denomination. An exchange (or its auditor) can
detect this when the number of deposits for a certain denomination exceed the
number of withdrawals for that same denomination.

We allow the exchange to revoke denomination keys, and wallets periodically
check for such revocations. We call a coin of a revoked denomination a revoked
coin. If a denomination key has been revoked, the wallets use the payback protocol
to recover funds from coins of revoked denominations. Once a denomination is
revoked, new coins of this denomination can’t be withdrawn or used as the target
denomination for a refresh operation. A revoked coin cannot be spent, and can
only be refreshed if its public key was recorded in the exchange’s database (as
spending/refresh operations) before it was revoked.

The following cases are possible for payback:

1. The revoked coin has never been seen by the exchange before, but the
customer can prove via a withdraw protocol transcript and blinding factor
that the coin resulted from a legitimate withdrawal from a reserve. In this
case, the exchange credits the reserve that was used to withdraw the coin
with the value of the revoked coin.

2. The coin has been partially spent. In this case, the exchange allows the
remaining amount on the coin to be refreshed into fresh coins of non-
revoked denominations.

3. The revoked coin Cr has never been seen by the exchange before, was
obtained via the refresh protocol, and the exchange has an existing record
of either a deposit or refresh for the ancestor coin C4 that was refreshed
into the revoked coin Cg. If the customer can prove this by showing a
corresponding refresh protocol transcript and blinding factors, the exchange
credits the remaining value of Cr on Cy4. It is explicitly permitted for C»y
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to be revoked as well. The customer can then obtain back their funds by
refreshing C4.

These rules limit the maximum financial damage that the exchange can incur
from a compromised denomination key D to 2nv, with n being the maximum
number of D-coins simultaneously in circulation and v the financial value of a
single D-coin. Say denomination D was withdrawn by legitimate users n times.
As soon as the exchange sees more than n pairwise different D-coins, it must
immediately revoke D. An attacker can thus at most gain nv by either refreshing
into other non-revoked denominations or spending the forged D-coins. The
legitimate users can then request a payback for their coins, resulting in a total
financial damage of at most 2nv.

With one rare exception, the payback protocol does not negatively impact the
anonymity of customers. We show this by looking at the three different cases
for payback on a revoked coin. Specifically, in case (1), the coin obtained from
the credited reserve is blindly signed, in case (2) the refresh protocol guarantees
unlinkability of the non-revoked change, and in case (3) the revoked coin Cg is
assumed to be fresh. If Cr from case (3) has been seen by a merchant before in an
aborted /unfinished transaction, this transaction would be linkable to transactions
on C4. Thus, anonymity is not preserved when an aborted transaction coincides
with revoked denomination, which should be rare in practice.

Unlike most other operations, the payback protocol does not incur any transac-
tion fees. The primary use of the protocol is to limit the financial loss in cases
where an audit reveals that the exchange’s private keys were compromised, and
to automatically pay back balances held in a customers” wallet if an exchange
ever goes out of business.

To limit the damage of a compromise, the exchange can employ a hardware se-
curity module that contains the denomination secret keys, and is pre-programmed
with a limit on the number of signatures it can produce. This might be mandated
by certain auditors, who will also audit the operational security of an exchange
as part of the certification process.

Compromise of Signing Keys

When a signing key is compromised, the attacker can pretend to be a merchant
and forge deposit confirmations. To forge a deposit confirmation, the attacker
also needs to get a customer to sign a contract from the adversary (which should
include the adversary’s banking details) with a valid coin. The attack here is that
the customer is allowed to have spent the coin already. Thus, a deposit of the
resulting deposit permission would result in a rejection from the exchange due to
double spending. By forging the deposit confirmation using the compromised
signing key, the attacker can thus claim in court that they properly deposited the
coin first and demand payment from the exchange.

We note that indeed an evil exchange could simply fail to record deposit
permissions in its database and then fail to execute them. Thus, given a merchant
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presenting a deposit confirmation, we need a way to establish whether this
is a case of an evil exchange that should be compelled to pay, or a case of a
compromised signing key and where payouts (and thus financial damage to the
exchange) can legitimately be limited.

To limit the financial damage of a compromised signing key, merchants must
be required to work with auditors to perform a probabilistic deposit auditing of
the exchange. Here, the goal is to help detect the compromise of a signing
key by making sure that the exchange does indeed properly record deposit
confirmations. However, double-checking with the auditor if every deposit
confirmation is recorded in the exchange’s database would be too expensive and
time-consuming. Fortunately, a probabilistic method where merchants only send
a small fraction of their deposit confirmations to the auditor suffices. Then, if
the auditor sees a deposit confirmation that is not recorded in the exchange’s
database (possibly after performing the next synchronization with the exchange’s
database), it signals the exchange that the signing key has been compromised.

At this point, the signing key must be revoked and the exchange will be
required to investigate the security of its systems and address the issue before
resuming normal operations.

Still, at this point various actors (including the attacker) could still step forward
with deposit confirmations signed by the revoked key and claim that the exchange
owes them for their deposits. Simply revoking a signing key cannot lift the ex-
change’s payment obligations, and the attacker could have signed an unlimited
number of such deposit confirmations with the compromised key. However, in
contrast to honest merchants, the attacker will not have participated proportionally
in the auditor’s probabilistic deposit auditing scheme for those deposit confirma-
tions: in that case, the key compromise would have been detected and the key
revoked.

The exchange must still pay all deposit permissions it signed for coins that were
not double-spent. However, for all coins where multiple merchants claim that they
have a deposit confirmation, the exchange will pay the merchants proportionate
to the fraction of the coins that they reported to the auditor as part of probabilistic
deposit auditing. For example, if 1% of deposits must be reported to the auditor
according to the protocol, a merchant might be paid at most say 100+X times the
number of reported deposits where X > 0 serves to ensure proper payout despite
the probabilistic nature of the reporting. As a result, honest merchants have an
incentive to correctly report the deposit confirmations to the auditor.

Given this scheme, the attacker can only report a small number of deposit
confirmations to the auditor before triggering the signing key compromise de-
tection. Suppose again that 1% of deposit confirmations are reported by honest
merchants, then the attacker can only expect to submit 100 deposit permissions
created by the compromised signing key before being detected. The attacker’s
expected financial benefit from the key compromise would then be the value of
(100 + X) - 100 deposit permissions.

Thus, the financial benefit to the attacker can be limited by probabilistic deposit
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auditing, and honest merchants have proper incentives to participate in the
process.

Compromise of the Database

If an adversary would be able to modify the exchange, this would be detected
rather quickly by the auditor, provided that the database has appropriate integrity
mechanisms. An attacker could also prevent database updates to block the record-
ing of spend operations, and then double spend. This is effectively equivalent to
the compromise of signing keys, and can be detected with the same strategies.

Compromise of the Master Key

If the master key was compromised, an attacker could de-anonymize customers by
announcing different sets of denomination keys to each of them. If the exchange
was audited, this would be detected quickly, as these denominations will not be
signed by auditors.

2.2.2. Cryptographic Proof

We use the term “proof” in many places as the protocol provides cryptographic
proofs of which parties behave correctly or incorrectly. However, as [MA14]
point out, in practice financial systems need to provide evidence that holds up in
courts. Taler’s implementation is designed to export evidence and upholds the
core principles described in [MA14]. In particular, in providing the cryptographic
proofs as evidence none of the participants have to disclose their core secrets.

2.2.3. Perfect Crime Scenarios

GNU Taler can be slightly modified to thwart blackmailing or kidnapping at-
tempts by criminals who intend to use the anonymity properties of the system
and demand to be paid ransom in anonymous e-cash.

Our modification incurs a slight penalty on the latency for customers during
normal use and requires slightly more data to be stored in the exchange’s database,
and thus should only be used in deployments where resistance against perfect
crime scenarios is necessary. A payment system for a school cafeteria likely does
not need these extra measures.

The following modifications are made:

1. Coins can now only be used in either a transaction or in a refresh operations,
not a mix of both. Effectively, the customer’s wallet then needs to use the
refresh protocol to prepare exact change before a transaction is made, and
that transaction is made with exact change.

This change is necessary to preserve anonymity in face of the second
modification, but increases storage requirements and latency.
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2. The payback protocol is changed so that a coin obtained via refreshing must
be recovered differently when revoked: to recover a revoked coin obtained
via refreshing, the customer needs to show the transcripts for the chain of
all refresh operations and the initial withdrawal operation (including the
blinding factor). Refreshes on revoked coins are not allowed anymore.

After an attacker has been paid ransom, the exchange simply revokes all
currently offered denominations and registers a new set of denomination with
the auditor. Reserves used to pay the attacker are marked as blocked in the
exchange’s database. Normal users can use the payback protocol to obtain back
the money they’ve previously had in revoked denominations. The attacker can
try to recover funds via the (now modified) payback protocol, but this attempt
will not be successful, as the initial reserve is blocked. The criminal could also try
to spend the e-cash anonymously before it is revoked, but this is likely difficult
for large amounts, and furthermore due to income transparency all transactions
made between the payment of the ransom and the revocation can be traced back
to merchants that might be complicit in laundering the ransom payment.

Honest customers can always use the payback protocol to transfer the funds
to the initial reserve. Due to modification (1), unlinkability of transactions is not
affected, as only coins that were purely used for refreshing can now be correlated.

We believe that our approach is more practical than the approaches based
on tracing, since in a scheme with tracing, the attacker can always ask for a
plain blind signature. With our approach, the attacker will always lose funds
that they cannot immediately spend. Unfortunately our approach is limited to a
kidnapping scenario, and not applicable in those blackmail scenarios where the
attacker can do damage after they find out that their funds have been erased.

2.3. Related Work

2.3.1. Anonymous E-Cash

Chaum’s seminal paper [Cha83] introduced blind signatures and demonstrated
how to use them for online e-cash. Later work [Cha+89; CFNgo|] introduced
offline spending, where additional information is encoded into coins in such a
way that double spending reveals the culprit’s identity.

Okamoto [Okags] introduced the first efficient offline e-cash scheme with divis-
ibility, a feature that allows a single coin to be spent in parts. With Okamoto’s
protocol, different spending operations that used parts of the same coin were
linkable. An unlinkable version of divisible e-cash was first presented by Ca-
nard [CGo7].

Camenisch’s compact e-cash [CHLo5] allows wallets with 2 coins to be stored
and withdrawn with storage, computation and computational costs in O(¢). Each
coin in the wallet, however, still needs to be spent separately.
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The protocol that can currently be considered the state-of-the-art for efficient
offline e-cash was introduced by Pointcheval et al. [PST17]. It allows constant-
time withdrawal of a divisible coin, and constant-time spending of a continuous
“chunk” of a coin. While the pre-determined number of divisions of a coin is
independent from the storage, bandwidth and computational complexity of the
wallet, the exchange needs to check for double-spending at the finest granularity.
Thus, highly divisible coins incur large storage and computational costs for the
exchange.

An e-cash system with multiple denominations with different financial values
was proposed by Canard and Gouget [CGHo6| in the context of a divisible coupon
system.

One of the earliest mentions of an explicit change protocol can be found
in [BGKo5]. Ian Goldberg’s HINDE system is another design that allows the
merchant to provide change, but the mechanism could be abused to hide income
from taxationP| Another online e-cash protocol with change was proposed by
Tracz [TWo1]. The use of an anonymous change protocol (called a “refund”
in their context) for fractional payments has also been suggested for a public
transit fees payment system [Rup+13]. Change protocols for offline e-cash were
recently proposed [BY18]. To the best of our knowledge, no change protocol with
protections against tax evasion has been proposed so far, and all change protocols
suggested so far can be (ab)used to make a payment into another wallet.

Transferable e-cash allows the transfer of funds between customers without
using the exchange as in intermediary [FPVog].

Chaum also proposed wallets with observers [CPg2] as a mechanism against
double spending. The observer is a tamper-proof hardware security module that
prevents double-spending, while at the same time being unable to de-anonymize
the user.

Various works propose mechanisms to selectively de-anonymize customers or
transactions that are suspected of criminal activities [SPCos} Dav+97]. Another
approach suspends customers that were involved in a particular transaction,
while keeping the customer anonymous [ASM11].

One of the first formal treatments of the provable security of e-cash was given in
[Damoy]. The first complete security definition for blind signatures was given by
Pointcheval [PSg6] and applied to RSA signatures later [PSoo]. While the security
proof of RSA signatures requires the random oracle model, many blind signature
schemes are provably secure in the standard model [IL13} |[PST17]. While most
literature provides only “human-verified” security arguments, the security of a
simple e-cash scheme has been successfully modeled in ProVerif [DKL15], albeit
only in the symbolic model.

3Description based on personal communication. HINDE was never published, but supposedly
publicly discussed at Financial Crypto '98.
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Implementations

DigiCash was the first commercial implementation of Chaum’s e-cash. It ulti-
mately failed to be widely adopted, and the company filed for bankruptcy in
1998. Some details of the implementation are available [Schg§]. In addition to
Chaum’s infamously paranoid management style [Anogg], reasons for DigiCash’s
failure could have been the following;:

e DigiCash did not allow account-less operations. To use DigiCash, customers
had to sign up with a bank that natively supports DigiCash.

e DigiCash did not support change or partial spending, negating a lot of the
convenience and security of e-cash by requiring frequent withdrawals from
the customer’s bank account.

e The technology used by DigiCash was protected by patents, which stifled
innovation from competitors.

e Chaum’s published design does not clearly limit the financial damage an
exchange might suffer from the disclosure of its private online signing key.

To our knowledge, the only publicly available effort to implement anonymous
e-cash is Opencoin [DPWo8]. However, Opencoin is neither actively developed
nor used, and it is not clear to what degree the implementation is even complete.
Only a partial description of the Opencoin protocol is available to date.

Representing Denominations

For GNU Taler, we chose to represent denominations of different values by a
different public key for every denomination, together with a mapping from public
key to financial value and auxiliary information about fees and expiration dates.
This approach has the advantage that coins of higher denominations can be
signed by denominations with a larger key size.

Schoenmakers [Schg8] proposes an optimized implementation of multiple
denomination that specifically works with RSA keys, which encodes the denomi-
nation in the public exponent e of the RSA public key, while the modulus N stays
the same for all denominations. An advantage of this scheme is the reduced size
of the public keys for a set of denominations. As this encoding is specific to RSA,
it would be difficult for future versions of this protocol to switch to different blind
signature primitives. More importantly, factoring N would lead to a compromise
of all denominations instead of just one.

Partially blind signatures can be used to represent multiple denominations by
blindly signing the coin’s serial number and including the financial value of the
coin in the common information seen by both the signer and signee [AOoo0].

The compact e-cash scheme of Martens [Mari5] allows constant-time with-
drawal of wallets with an arbitrary number of coins, as long as the number of
coins is smaller than some system parameter. This approach effectively dispenses
with the need to have different denominations.
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Implementation. Is there an implementation? Is it proprietary (P), experi-
mental (E), or free software (FS).

Offline Spending Can spending happen offline with delayed detection
of double spenders, or is double spending detected immediately during
spending?

Safe abort/backup. Is anonymity preserved in the presence of interrupted
operations or restoration from backups? Inherently conflicts with offline
double spending detection in all approaches that we are aware of. We
specify “v” also for schemes that do not explicitly treat aborts/backup, but
would allow a safe implementation when aborts/backups happen.

Key expiration. We specify “?” for schemes that do not explicitly discuss
key expiration, but do not fundamentally conflict with the concept.

Income transparency. We specify “v” if income transparency is supported,

“X” if some feature of the scheme conflicts with income transparency and “?”

if it might be possible to add income transparency.

No trusted setup. In a trusted setup, some parameters and cryptographic
keys are generated by a trusted third party. A compromise of the trusted
setup phase can mean loss of anonymity.

Storage for wallet/exchange. The expected storage for coins adding up to
arbitrary value 7 is specified, with some reasonable upper bound for n.

Change/Divisibility. Can customers pay without possessing exact change?
If so, is it handled by giving change online (Onl.) or by divisible coins that
support offline operation (Off.)?

Receipts & Refunds. The customer either can prove that they payed for a
contract, or they can get their (unlinkable) money back. Also merchants
can issue refunds for completed transactions. These operations must not
introduce linkability or otherwise compromise the customer’s anonymity.



2.3. Related Work

2.3.2. Blockchains

The term “blockchain” refers to a wide variety of protocols and systems con-
cerned with maintaining a ledger—typically involving financial transactions—in
a distributed and decentralized mannerf

The first and most prominent system that would be categorized as a “blockchain”
todayp] is Bitcoin [Nako8]|, published by an individual or group under the alias
“Satoshi Nakamoto”. The document timestamping service described in [HSgo]
could be seen as an even earlier blockchain that predates Bitcoin by about 13
years and is still in use today.

As the name implies, blockchains are made up of a chain of blocks, each block
containing updates to the ledger and the hash code of its predecessor block. The
chain terminates in a “genesis block” that determines the initial state of the ledger.

Some of the most important decisions for the design of blockchains are the
following:

e The consensus mechanism, which determines how the participants agree on
the current state of the ledger.

In the simplest possible blockchain, a trusted authority would validate
transactions and publish new blocks as the head of the chain. In order
to increase fault tolerance, multiple trusted authorities can use Byzantine
consensus to agree on transactions. With classical Byzantine consensus
protocols, this makes the system robust with a malicious minority of up to
1/3 of nodes. While fast and appropriate for some applications, classical
Byzantine consensus only works with a known set of participants and does
not scale well to many nodes.

Bitcoin instead uses Proof-of-Work (PoW) consensus, where the head of the
chain that determines the current ledger state is chosen as the block that
provably took the most “work” to construct, including the accumulated
work of ancestor blocks. The work consists of finding a hash preimage
n||c, where ¢ are the contents of the block and 7 is a nonce, such that the
hash H(n||c) ends with a certain number of zeroes (as determined by the
difficulty derived from previous blocks). Under the random oracle, the
only way to find such a nonce is by trial-and-error. This nonce proves to
a verifier that the creator of the block spent computational resources to
construct it, and the correctness is easily verified by computing H(#n||c). The
creator of a block is rewarded with a mining reward and transaction fees
for transactions within the block.

PoW consensus is not final: an adversary with enough computational power
can create an alternate chain branching off an earlier block. Once this
alternative, longer chain is published, the state represented by the earlier
branch is discarded. This creates a potential for financial fraud, where

4Even though there is a centralization tendency from various sources in practice [Wal1g].
5The paper that introduces Bitcoin does not mention the term “blockchain”
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an earlier transaction is reversed by publishing an alternate history that
does not contain it. While it was originally believed that PoW consensus
process is resistant against attackers that have less than a 51% majority
of computational power, closer analysis has shown that a 21% majority
sufficies [ES18].

A major advantage of PoW consensus is that the participants need not be
known beforehand, and that Sybil attacks are impossible since consensus
decisions are only dependent on the available computational power, and
not on the number of participants.

In practice, PoW consensus is rather slow: Bitcoin can currently support 3-7
transactions per second on a global scale. Some efforts have been made to
improve Bitcoin’s efficiency [Eya+16; |Vukis], but overall POW consensus
needs to balance speed against security.

Proof-of-Stake (PoS) is a different type of consensus protocol for blockchains,
which intends to securely reach consensus without depleting scarce re-
sources such as energy for computation [BGM16; Kwo14]. Blocks are
created by randomly selected validators, which obtain a reward for serving
as a validator. To avoid Sybil attacks and create economic incentives for
good behavior, the probability to get selected as a validator is proportional
to one’s wealth on the respective blockchain. Realizing PoS has some practi-
cal challenges with respect to economic incentives: As blocks do not take
work to create, validators can potentially benefit from creating forks, instead
of validating on just one chain.

Algorand [Gil+17] avoids some of the problems with PoW consensus by
combining some of the ideas of PoW with classical Byzantine consensus
protocols. Their proposed system does not have any incentives for valida-
tors.

Avalance [Tea18] has been proposed as a scalable Byzantine Consensus
algorithm for use with blockchains. It is based on a gossip protocol and is
only shown to work in the synchronous model.

Membership and visibility. Blockchains such as Bitcoin or Ethereum with
public membership and public visibility are called permissionless blockchains.
Opposed to that, permissioned blockchains have been proposed for usage in
banking, health and asset tracking applications [And+18].

Monetary policy and wealth accumulation. Blockchains that are used as
cryptocurrencies come with their own monetary policy. In the case of
Bitcoin, the currency supply is limited, and due to difficulty increase in
mining the currency is deflationary. Other cryptocurrencies such as duniteﬁ
have been proposed with built-in rules for inflation, and a basic income
mechanism for participants.

6See https://duniter.org/.
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e Expressivity of transactions. Transactions in Bitcoin are small programs
in a stack-based programming language that are guaranteed to terminate.
Ethereum [Woo14] takes this idea further and allows smart contracts with
Turing-complete computation and access to external oracles.

e Governance. Blockchain governance [ROH16; Levi7] is a topic that received
relatively little attention so far. As blockchains interact with existing legal
and social systems across national borders, different sources of “truth” must
be reconciled.

Furthermore, consensus is not just internal to the operation of blockchains,
but also external in the development of the technology. Currently small
groups of developers create the rules for the operation of blockchains, and
likewise have the power to change them. There is currently very little
research on social and technological processes to find a “meta-consensus”
on the rules that govern such systems, and how these rules can be adapted
and changed in a consensus process.

e Anonymity and Zero-Knowledge Proofs. Bitcoin transactions are only
pseudoymous, the full transaction history is publicly available and leads
to reduced anonymity in practice [RH13|]. Tumblers [Bon+14; Hei+17] are
an approach to increase the anonymity in Bitcoin-style cryptocurrencies by
creating additional transactions to cover up the real owner and sources of
funds. While newer tumblers such as TumbleBit [Hei+17] provide rather
strong security guarantees, mixing incurs transaction costs.

Some cryptocurrencies have direct support for anonymous transactions
[Sun+17]. ZeroCash [Ben+14] uses zero-knowledge proofs to hide the
sender, receiver and amount of a transaction. While ZeroCash currently
relies on a trusted setup for unforgeability of its currency, more recent pro-
posals dispense with that requirement [Ben+18; Wah+18]. As the anonymity
provided by ZeroCash facilitates tax evasion and use in other crimes, an ad-
ditional, optional layer for privacy-preserving policy for taxation, spending
limits and identity escrow has been proposed [GGM16].

Practical guidance on what kind of blockchain is appropriate for an application,
and if a blockchain is required in the first place, can be found in [WG17].

2.3.3. Approaches to Micropayments

Micropayments refer to payments of very small value. Microtransactions would
not be feasible in traditional payment systems due to high transaction costs,
which might even exceed that value that is to be transferred.

Peppercoin

Peppercoin [Rivo4] is a microdonation protocol. The main idea of the protocol
is to reduce transaction costs by minimizing the number of transactions that
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are processed directly by the exchange. Instead of always paying, the customer
“gambles” with the merchant for each microdonation. Only if the merchant
wins, the microdonation is upgraded to a macropayment to be deposited at the
exchange. Peppercoin does not provide customer-anonymity. The proposed
statistical method by which exchanges detect fraudulent cooperation between
customers and merchants at the expense of the exchange not only creates legal
risks for the exchange, but would also require that the exchange learns about
microdonations where the merchant did not get upgraded to a macropayment. It
is therefore unclear how Peppercoin would actually reduce the computational
burden on the exchange.

Tick Payments

Tick payments were proposed by Pedersen [Ped9g6] as a general technique to
amortize the cost for small, recurring payments to the same payee. The payer
tirst makes an up-front deposit as one larger payment that involves the payment
processor. To make a micropayment, the payer sends a message to the payee that
authorizes the payee to claim a fraction of this deposit. Each further micropayment
simply increases the fraction of the deposit that can be claimed, and only requires
communication between payer and payee. The payee only needs to show the last
message received from the payer to the payment processor in order to receive the
accumulated amounts received through tick payments.

Payment Channels and Lightning Network

The Lightning Network [PD16] is a proposed payment system that is meant to
run on top of Bitcoin and enable faster, cheaper (micro-)transactions. It is based
on establishing payment channels between Bitcoin nodes. A payment channel
is essentially a tick payment where the deposit and settlement happens on a
blockchain. The goal of the Lightning network is to route a payment between two
arbitrary nodes by finding a path that connects the two routes through payment
channels. The protocol is designed in such a way that a node on the path between
the initial sender and final receiver can only receive a payment on a payment
channel if it correctly forwards it to the next node.

Experimental deployments of the Lightning network recently suffered heavily
from denial-of-service attacks.

BOLT [GM16] is an anonymous payment channel for ZeroCash, and is intended
to be used as a building block for a second-layer payment protocol like the
Lightning Network.

Side-chains

Side-chains are an alternative approach to improve the scalability of blockchains,
intended to be useful in conjunction with arbitrary smart contracts. The approach
currently developed by the Ethereum project is described in the Plasma white
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paper [PB17]. Side-chains are separate blockchains, possibly with different rules
and even consensus protocols than the main chain. Side-chains operate in parallel
to the main Ethereum chain, and regularly publish “pointers” to the current head
of the sidechain on the main chain. Funds can be moved from the main chain
to the side-chain, and subsequently be moved off the side-chain by performing
an “exit”, during which the main chain verifies claims to funds on the side-chain
according to the side-chain’s rules.

At the time of writing, Plasma is not yet implemented. Potential problems with
Plasma include the high costs of exits, lack of access to data needed to verify exit
claims, and associated potential for denial-of-service attacks.

2.3.4. Walled Garden Payment Systems

Walled garden payment systems offer ease of use by processing payments using
a trusted payment service provider. Here, the customer authenticates to the
trusted service, and instructs the payment provider to execute a transaction on
their behalf. In these payment systems, the provider basically acts like a bank
with accounts carrying balances for the various users. In contrast to traditional
banking systems, both customers and merchants are forced to have an account
with the same provider. Each user must take the effort to establish his identity
with a service provider to create an account. Merchants and customers obtain
the best interoperability in return for their account creation efforts if they start
with the biggest providers. As a result, there are a few dominating walled garden
providers, with AliPay, ApplePay, GooglePay, SamsungPay and PayPal being the
current oligopoly.

As with card payment systems, these oligopolies are politically dangerous [Run11],
and the lack of competition can result in excessive profit taking that may require
political solutions [Jon15] to the resulting market failure. The use of non-standard
proprietary interfaces to the payment processing service of these providers serves
to reinforce the customer lock-in.

2.3.5. Web Integration

Finally, we will discuss software solutions to web payments. We consider other
types of payments, including general payments and in particular hardware
solutions as out of scope for this thesis.

Web Payments API

The Web Payments APJ|is a JavaScript API offered by browsers, and currently still
under development. It allows merchant to offer a uniform checkout experience
across different payment systems. Unlike GNU Taler, the Web Payments API is

7Seehttps://www.w3.org/TR/payment-request/
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only concerned with aspects of the checkout process, such as display of a payment
request, selection of a shipping address and selection of a payment method.

Currently only basic-card is supported across popular browsers.

The Payment Handler AP]H supports the registration of user-defined payment
method handlers. Unfortunately the only way to add payment method handlers is
via an HTTPS URL. This leaks all information to the payment service provider and
precludes the implementation of privacy-preserving payment system handlers.

In order to integrate Taler as a payment method, browsers would need to either
offer Taler as a native, built-in payment method or allow an extension to register
web payment handlers.

The Web Payments Working Group discontinued work on a HTTP-based API
for machine-to-machine paymentsf]

Payment Pointers

Payment pointers are a proposed standard syntax for accounts that are able to
receive payments. Unlike payto:// URIs ( discussed in Section [4.2.1), payment
pointers do not follow the generic URI syntax and only specify a pointer to the
receiver’s bank account in form of a HTTPS URI Payment pointers do not specify
any mechanism for the payment, but instead direct the user’s browser to a website
to carry out the payment.

3-D Secure

3-D Secure is a complex and widely deployed protocol that is intended to add an
additional security layer on top of credit and debit card transactions.

The 3-D Secure protocol requires the use of inline frames on the HTML page
of the merchant for extended verification/authentication of the user. This makes
it hard or sometimes — such as when using a mobile browser — even impossible
to tell whether the inline frame is legitimate or an attempt to steal information
from the user.

Traditionally, merchants bear most of the financial risk, and a key “feature’
of the 3DS process compared to traditional card payments is to shift dispute
liability to the issuer of the card—who may then try to shift it to the customer
[MA10, §2.4]. Even in cases where the issuer or the merchant remain legally
first in line for liabilities, there are still risks customers incur from the card
dispute procedures, such as neither them nor the payment processor noticing
fraudulent transactions, or them noticing fraudulent transactions past the deadline
until which their bank would reimburse them. The customer also typically only
has a merchant-generated comment and the amount paid in their credit card
statement as a proof for the transaction. Thus, the use of credit cards online does
not generate any cryptographically verifiable electronic receipts for the customer,

7

8See https://www.w3.org/TR/payment-handler/
9See https://www.w3.org/TR/webpayments—-http-api/.
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which theoretically enables malicious merchants to later change the terms of the
contract.

Beyond these primary issues, customers face secondary risks of identity theft
from the personal details exposed by the authentication procedures. In this case,
even if the financial damages are ultimately covered by the bank, the customer
always has to deal with the procedure of notifying the bank in the first place. As a
result, customers must remain wary about using their cards, which limits their
online shopping [ibi1g, p. 50].

Other Proprietary Payment APIs

The Electronic Payment Standard URI scheme epspayment : is a proprietary/un-
registered URI scheme used by predominantly Austrian banks and merchants to
trigger payments from within websites on mobile devices. Merchants can register
an invoice with a central server. The user’s banking app is associated with the
epspayment URI scheme and will open to settle the invoice. It lies conceptually
between payto:// and taler:pay (see Section[4.1.5). A technical problem of
epspayment is that when a user has multiple bank accounts at different banks
that support epspayment, some platforms decide non-deterministically and
without asking the user which application to launch. Thus, a user with two
banking applications on their phone can often not chose which bank account is
used for the payment. If payto were widely supported, the problem of register-
ing/choosing bank accounts for payment methods could be centrally addressed
by the browser / operating system.

PayPal is a very popular, completely proprietary payment system provider. Its
offer-based API is similar in the level of abstraction to Taler’s reference merchant
backend APL

LaterPay is a proprietary payment system for online content as well as dona-
tions. It offers similar functionality to session-bound payments in Taler. LaterPay
does not provide any anonymity.
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3. Security of Income-Transparent
Anonymous E-Cash

We so far discussed Taler’s protocols and security properties only informally. In
this chapter, we model a slightly simplified version of the system that we have
implemented (see Chapter [4), make our desired security properties more precise,
and prove that our protocol instantiation satisfies those properties.

3.1. Introduction to Provable Security

Provable security [GM82; Poios; Shoo4; (Coroo] is a common approach for con-
structing formal arguments that support the security of a cryptographic protocol
with respect to specific security properties and underlying assumptions on cryp-
tographic primitives.

The adversary we consider is computationally bounded, i.e., the run time is
typically restricted to be polynomial in the security parameters (such as key
length) of the protocol.

Contrary to what the name might suggest, a protocol that is “provably secure’
is not necessarily secure in practice [KMo7; | Damo7y|]. Instead, provable security
results are typically based on reductions of the form “if there is an effective adver-
sary A against my protocol P, then I can use A to construct an effective adversary A’
against Q” where Q is a protocol or primitive that is assumed to be secure or
a computational problem that is assumed to be hard. The practical value of a
security proof depends on various factors:

7

e How well-studied is Q? Some branches of cryptography, for example, some
pairing-based constructions, rely on rather complex and exotic underlying
problems that are assumed to be hard (but might not be) [KM10].

e How tight is the reduction of Q to P? A security proof may only show that
if P can be solved in time T, the underlying problem Q can be solved (using
the hypothetical A) in time, e.g., f(T) = T?. In practice, this might mean
that for P to be secure, it needs to be deployed with a much larger key size
or security parameter than Q to be secure.

e What other assumptions are used in the reduction? A common and useful
but somewhat controversial assumption is the Random Oracle Model (ROM)
[BR93], where the usage of hash functions in a protocol is replaced with
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queries to a black box (called the Random Oracle), which is effectively
a trusted third party that returns a truly random value for each input.
Subsequent queries to the Random Oracle with the same value return the
same result. While many consider ROM a practical assumption [KM15;
BRo3], it has been shown that there exist carefully constructed protocols
that are secure under the ROM, but are insecure with any concrete hash
tunction [CGHog4]. It is an open question whether this result carries over to
practical protocols, or just certain classes of artificially constructed protocols
of theoretical interest.

Furthermore, a provably secure protocol does not always lend itself easily to a
secure implementation, since side channels and fault injection attacks [HTIg7;
Lom+11] are usually not modeled. Finally, the security properties stated might
not be sufficient or complete for the application.

For our purposes, we focus on game-based provable security [BRo6; Poios}
Shoog; GSM18|] as opposed to simulation-based provable security [GMR8g; Lin17]|,
which is another approach to provable security typically used for zero-knowledge
proofs and secure multiparty computation protocols.

3.1.1. Algorithms, Oracles and Games

In order to analyze the security of a protocol, the protocol and its desired security
properties against an adversary with specific capabilities must first be modeled
formally. This part is independent of a concrete instantiation of the protocol; the
protocol is only described on a syntactic level.

The possible operations of a protocol (i.e., the protocol syntax) are abstractly
defined as the signatures of algorithms. Later, the protocol will be instantiated
by providing a concrete implementation (formally a program for a probabilistic
Turing machine) of each algorithm. A typical public key signature scheme, for
example, might consist of the following algorithms:

e KeyGen(1%) — (sk, pk), a probabilistic algorithm which on input 1* gener-
ates a fresh key pair consisting of secret key sk of length A and and the
corresponding public key pk. Note that 1* is the unary representation of /\

e Sign(sk, m) — o, an algorithm that signs the bit string m with secret key sk
to output the signature o.

e Verify(pk,o,m) — b, an algorithm that determines whether ¢ is a valid
signature on m made with the secret key corresponding to the public key
pk. It outputs the flag b € {0,1} to indicate whether the signature was valid
(return value 1) or invalid (return value 0).

'This formality ensures that the size of the input of the Turing machine program implementing
the algorithm will be as least as big as the security parameter. Otherwise the run-time
complexity cannot be directly expressed in relation to the size of the input tape.
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The abstract syntax could be instantiated with various concrete signature proto-
cols.

In addition to the computational power given to the adversary, the capabilities
of the adversary are defined via oracles. The oracles can be thought of as the
APT|that is given to the adversary and allows the adversary to interact with the
environment it is running in. Unlike the algorithms, which the adversary has free
access to, the access to oracles is often restricted, and oracles can keep state that is
not accessible directly to the adversary. Oracles typically allow the adversary to
access information that it normally would not have direct access to, or to trigger
operations in the environment running the protocol.

Formally, oracles are an extension to the Turing machine that runs the adversary,
which allow the adversary to submit queries to interact with the environment
that is running the protocol.

For a signature scheme, the adversary could be given access to an OSign oracle,
which the adversary uses to make the system produce signatures, with secret
keys that the adversary does not have direct access to. Different definitions of
OSign lead to different capabilities of the adversary and thus to different security
properties later on:

e If the signing oracle OSign(m) is defined to take a message m and return a
signature ¢ on that message, the adversary gains the power to do chosen
message attacks.

e If OSign(-) was defined to return a pair (o, m) of a signature ¢ on a random
message m, the power of the adversary would be reduced to a known
message attack.

While oracles are used to describe the possible interactions with a system,
it is more convenient to describe complex, multi-round interactions involving
multiple parties as a special form of an algorithm, called an interactive protocol,
that takes the identifiers of communicating parties and their (private) inputs as
a parameter, and orchestrates the interaction between them. The adversary will
then have an oracle to start an instance of that particular interactive protocol and
(if desired by the security property being modeled) the ability to drop, modify or
inject messages in the interaction. The typically more cumbersome alternative
would be to introduce one algorithm and oracle for every individual interaction
step.

Security properties are defined via games, which are experiments that challenge
the adversary to act in a way that would break the desired security property.
Games usually consist multiple phases, starting with the setup phase where
the challenger generates the parameters (such as encryption keys) for the game.
In the subsequent query/response phase, the adversary is given some of the
parameters (typically including public keys but excluding secrets) from the setup

2In the modern sense of application programming interface (API), where some system exposes a
service with well-defined semantics.
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phase, and runs with access to oracles. The challengeP| answers oracle queries
during that phase. After the adversary’s program terminates, the challenger
invokes the adversary again with a challenge. The adversary must now compute
a final response to the challenger, sometimes with access to oracles. Depending
on the answer, the challenger decides if the adversary wins the game or not, i.e.,
the game returns 0 if the adversary loses and 1 if the adversary wins.

A game for the existential unforgeability of signatures could be formulated like
this:

ExpEUF(17):

1. (sk, pk) + KeyGen(1")

2. (o,m) + A9SEn()(pk)

(Run the adversary with input pk and access to the OSign oracle.)

3. If the adversary has called OSign(-) with m as argument, return 0.

4. Return Verify(pk, o, m).
Here the adversary is run once, with access to the signing oracle. Depending on
which definition of OSign is chosen, the game models existential unforgeability
under chosen message attack (EUF-CMA) or existential unforgeability under
known message attack (EUF-KMA)

The following modification to the game would model selective unforgeability
(SUF-CMA / SUE-KMA):
ExpSUE(11):

1. m <+ A()

2. (sk, pk) < KeyGen(1")

3. 0+ A95e0) (pk, m)

4. If the adversary has called OSign(-) with m as argument, return 0.

5. Return Verify(pk, o, m).
Here the adversary has to choose a message to forge a signature for before
knowing the message verification key.

After having defined the game, we can now define a security property based on
the probability of the adversary winning the game: we say that a signature scheme

is secure against existential unforgeability attacks if for every adversary A (i.e., a
polynomial-time probabilistic Turing machine program), the success probability

Pr |ExpBHF (1Y) =1

of A in the EUF game is negligible (i.e., grows less fast with A than the inverse of
any polynomial in A).

3The challenger is conceptually the party or environment that runs the game/experiment.
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Note that the EUF and SUF games are related in the following way: an adver-
sary against the SUF game can be easily transformed into an adversary against
the EUF game, while the converse does not necessarily hold.

Often security properties are defined in terms of the advantage of the adversary.
The advantage is a measure of how likely the adversary is to win against the real
cryptographic protocol, compared to a perfectly secure version of the protocol.
For example, let ExpiIT() be a game where the adversary has to guess the next
bit in the output of a pseudo-random number generator (PRNG). The idealized
functionality would be a real random number generator, where the adversary’s

chance of a correct guess is 1/2. Thus, the adversary’s advantage is
‘Pr [ExpilT()] - 1/2‘ :

Note that the definition of advantage depends on the game. The above definition,
for example, would not work if the adversary had a way to “voluntarily” lose the
game by querying an oracle in a forbidden way

3.1.2. Assumptions, Reductions and Game Hopping

The goal of a security proof is to transform an attacker against the protocol under
consideration into an attacker against the security of an underlying assumption.
Typical examples for common assumptions might be:

o the difficulty of the decisional/computational Diffie-Hellman problem
(nicely described by [Bong8])

e existential unforgeability under chosen message attack (EUF-CMA) of a
signature scheme [GMRS8S]

e indistinguishability against chosen-plaintext attacks (IND-CPA) of a sym-
metric encryption algorithm [Bel+98]

To construct a reduction from an adversary A against P to an adversary against
Q, it is necessary to specify a program R that both interacts as an adversary with
the challenger for Q, but at the same time acts as a challenger for the adversary
against P. Most importantly, R can chose how to respond to oracle queries from
the adversary, as long as R faithfully simulates a challenger for P. The reduction
must be efficient, i.e., R must still be a polynomial-time algorithm.

A well-known example for a non-trivial reduction proof is the security proof of
FDH-RSA signatures [Coroo].

In practice, reduction proofs are often complex and hard to verify. Game
hopping has become a popular technique to manage the complexity of security
proofs. The idea behind game hopping proofs is to make a sequence of small
modifications starting from initial game, until you arrive at a game where the
success probability for the adversary becomes obvious, for example, because the
winning state for the adversary becomes unreachable in the code that defines the
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final game, or because all values the adversary can observe to make a decision
are drawn from a truly random and uniform distribution. Each hop modifies the
game in a way such that the success probability of game G, and game G, is
negligibly close.

Useful techniques for hops are, for example:

e Bridging hops, where the game is syntactically changed but remains seman-
tically equivalent, i.e., Pr [G, = 1] = Pr[G, = 1].

¢ Indistinguishability hops, where some distribution is changed in a way that
an adversary that could distinguish between two adjacent games could be
turned into an adversary that distinguishes the two distributions. If the
success probability to distinguish between those two distributions is €, then
|Pr(G, =1]—-Pr[G, =1]| <€

e Hops based on small failure events. Here adjacent games proceed iden-
tically, until in one of the games a detectable failure event F (such as
an adversary visibly forging a signature) occurs. Both games most pro-
ceed the same if F does not occur. Then it is easy to show [Shoo4] that
|Pr[G,, = 1] — Pr[G, = 1]| < Pr|[F]

A tutorial introduction to game hopping is given by Shoup [Shoo4], while a
more formal treatment with a focus on “games as code” can be found in [BRo6].
A version of the FDH-RSA security proof based on game hopping was generated
with an automated theorem prover by Blanchet and Pointcheval [BPo6].

3.1.3. Notation

We prefix public and secret keys with pk and sk, and write x & Sto randomly
select an element x from the set S with uniform probability.

3.2. Model and Syntax for Taler

We consider a payment system with a single, static exchange and multiple,
dynamically created customers and merchants. The subset of the full Taler
protocol that we model includes withdrawing digital coins, spending them with
merchants and subsequently depositing them at the exchange, as well as obtaining
unlinkable change for partially spent coins with an online “refresh” protocol.
The exchange offers digital coins in multiple denominations, and every de-
nomination has an associated financial value; this mapping is not chosen by the
adversary but is a system parameter. We mostly ignore the denomination values
here, including their impact on anonymity, in keeping with existing literature
[CLMo7; PST17]. For anonymity, we believe this amounts to assuming that all
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customers have similar financial behavior. We note logarithmic storage, computa-
tion and bandwidth demands denominations distributed by powers of a fixed
constant, like two.

We do not model fees taken by the exchange. Reserves? are also omitted.
Instead of maintaining a reserve balance, withdrawals of different denominations
are tracked, effectively assuming every customer has unlimited funds.

Coins can be partially spent by specifying a fraction 0 < f < 1 of the total
value associated with the coin’s denomination. Unlinkable change below the
smallest denomination cannot be given. In practice the unspendable, residual
value should be seen as an additional fee charged by the exchange.

Spending multiple coins is modeled non-atomically: to spend (fractions of)
multiple coins, they must be spent one-by-one. The individual spend/deposit
operations are correlated by a unique identifier for the transaction. In practice,
this identifier is the hash transactionld = H(contractTerms) of the contract terms]
Contract terms include a nonce to make them unique, that merchant and customer
agreed upon. Note that this transaction identifier and the correlation between
multiple spend operations for one payment need not be disclosed to the exchange
(it might, however, be necessary to reveal during a detailed tax audit of the
merchant): When spending the i-th coin for the transaction with the identifier
transactionld, messages to the exchange would only contain H(i||transactionld).
This is preferable for merchants that might not want to disclose to the exchange the
individual prices of products they sell to customers, but only the total transaction
volume over time. For simplicity, we do not include this extra feature in our
model.

Our system model tracks the total amount (= financial value) of coins with-
drawn by each customer. Customers are identified by their public key pkCustomer.
Every customer’s wallet keeps track of the following data:

e wallet[pkCustomer| contains sets of the customer’s coin records, which indi-
vidually consist of the coin key pair, denomination and exchange’s signature.

e acceptedContracts[pkCustomer] contains the sets of transaction identifiers ac-
cepted by the customer during spending operations, together with coins
spent for it and their contributions 0 < f < 1.

e withdrawlds[pkCustomer| contains the withdraw identifiers of all withdraw
operations that were created for this customer.

e refreshlds[pkCustomer| contains the refresh identifiers of all refresh operations
that were created for this customer.

The exchange in our model keeps track of the following data:

+“Reserve” is Taler’s terminology for funds submitted to the exchange that can be converted to
digital coins.

5The contract terms are a digital representation of an individual offer for a certain product or
service the merchant sells for a certain price.
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e withdrawn|pkCustomer| contains the total amount withdrawn by each cus-
tomer, i.e., the sum of the financial value of the denominations for all coins
that were withdrawn by pkCustomer.

e The overspending database of the exchange is modeled by deposited[pkCoin]
and refreshed[pkCoin|, which record deposit and refresh operations respec-
tively on each coin. Note that since partial deposits and multiple refreshes
to smaller denominations are possible, one deposit and multiple refresh
operations can be recorded for a single coin.

We say that a coin is fresh if it appears in neither the deposited or refreshed lists
nor in acceptedContracts. We say that a coin is being overspent if recording an
operation in deposited or refreshed would cause the total spent value from both
lists to exceed the value of the coin’s denomination. Note that the adversary does
not have direct read or write access to these values; instead the adversary needs
to use the oracles (defined later) to interact with the system.

We parameterize our system with two security parameters: The general security
parameter A, and the refresh security parameter x. While A determines the length
of keys and thus the security level, using a larger x will only decrease the success
chance of malicious merchants conspiring with customers to obtain unreported
(and thus untaxable) income.

3.2.1. Algorithms

The Taler e-cash scheme is modeled by the following probabilisticﬂ polynomial-
time algorithms and interactive protocols. The notation P(Xj, ..., X,) stands
for a party P € {£,C, M} (Exchange, Customer and Merchant respectively)
in an interactive protocol, with Xj,..., X, being the (possibly private) inputs
contributed by the party to the protocol. Interactive protocols can access the state
maintained by party P.

While the adversary can freely execute the interactive protocols by creating
their own parties, the adversary is not given direct access to the private data of
parties maintained by the challenger in the security games we define later.

e ExchangeKeygen(1*,1%,D) +— (sksE, pksE): Algorithm executed to generate
keys for the exchange, with general security parameter A and refresh security
parameter x, both given as unary numbers. The denomination specification
D =dj,...,d, is a finite sequence of positive rational numbers that defines
the financial value of each generated denomination key pair. We henceforth
use D to refer to some appropriate denomination specification, but our
analysis is independent of a particular choice of ®.

The algorithm generates the exchange’s master signing key pair (skESig, pkESig)
and denomination secret and public keys (skDy, ...,skDy), (pkDy, ..., pkD,,).

®Our Taler instantiations are not necessarily probabilistic (except, e.g., key generation), but we
do not want to prohibit this for other instantiations
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We write D(pkD;), where D : {pkD;} — ® to look up the financial value of
denomination pkD;.

We collectively refer to the exchange’s secrets by sksE and to the exchange’s
public keys together with © by pksE.

CustomerKeygen(1%,1%) + (skCustomer, pkCustomer): Key generation algo-
rithm for customers with security parameters A and «.

MerchantKeygen(1*,1%) + (skMerchant, pkMerchant): Key generation algo-
rithm for merchants. Typically the same as CustomerKeygen.

WithdrawRequest (&€ (sksE, pkCustomer), C (skCustomer, pksE, pkD)) +— (Twr, wid):
Interactive protocol between the exchange and a customer that initiates with-
drawing a single coin of a particular denomination.

The customer obtains a withdraw identifier wid from the protocol execution
and stores it in withdrawlds|pkCustomer].

The WithdrawRequest protocol only initiates a withdrawal. The coin is only
obtained and stored in the customer’s wallet by executing the WithdrawPickup
protocol on the withdraw identifier wid.

The customer and exchange persistently store additional state (if required
by the instantiation) such that the customer can use WithdrawPickup to
complete withdrawal or to complete a previously interrupted or unfinished
withdrawal.

Returns a protocol transcript Tyyr of all messages exchanged between the
exchange and customer, as well as the withdraw identifier wid.

WithdrawPickup (€ (sksE, pkCustomer), C (skCustomer, pksE, wid)) +— (Twp, coin):
Interactive protocol between the exchange and a customer to obtain the coin
from a withdraw operation started with WithdrawRequest, identified by the
withdraw identifier wid.

The first time WithdrawPickup is run with a particular withdraw identifier wid,
the exchange increments withdrawn [pkCustomer] by D(pkD), where pkD is the
denomination requested in the corresponding WithdrawRequest execution.
How exactly pkD is restored depends on the particular instantiation.

The resulting coin
coin = (skCoin, pkCoin, pkD, coinCert),

consisting of secret key skCoin, public key pkCoin, denomination public key
pkD and certificate coinCert from the exchange, is stored in the customers
wallet wallet[pkCustomer].

Executing the WithdrawPickup protocol multiple times with the same cus-
tomer and the same withdraw identifier does not result in any change
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of the customer’s withdraw balance withdrawn|pkCustomer|, and results in
(re-)adding the same coin to the customer’s wallet.

Returns a protocol transcript Typ of all messages exchanged between the
exchange and customer.

Spend(transactionld, f, coin, pkMerchant) — depositPermission: Algorithm to
produce and sign a deposit permission depositPermission for a coin under
a particular transaction identifier. The fraction 0 < f < 1 determines the
fraction of the coin’s initial value that will be spent.

The contents of the deposit permission depend on the instantiation, but it
must be possible to derive the public coin identifier pkCoin from them.
Deposit (& (sksE, pkMerchant), M (skMerchant, pksE, depositPermission)) — Tp:
Interactive protocol between the exchange and a merchant.

From the deposit permission we obtain the pkCoin of the coin to be deposited.
If pkCoin is being overspent, the protocol is aborted with an error message
to the merchant.

On success, we add depositPermission to deposited|pkCoin].
Returns a protocol transcript 7p of all messages exchanged between the

exchange and merchant.

RefreshRequest (& (sksE), C(pkCustomer, pksE, coing, pkD,,)) — (7grg, rid) Inter-
active protocol between exchange and customer that initiates a refresh
of coing. Together with RefreshPickup, it allows the customer to convert
D(pkD,,) of the remaining value on coin

coing = (skCoing, pkCoing, pkDy, coinCert)

into a new, unlinkable coin coin, of denomination pkD,,.

Multiple refreshes on the same coin are allowed, but each run subtracts the
respective financial value of coin, from the remaining value of coiny.

The customer only records the refresh operation identifier rid in refreshlds[pkCustomer],

but does not yet obtain the new coin. To obtain the new coin, RefreshPickup
must be used.

Returns the protocol transcript Trgr and a refresh identifier rid.

RefreshPickup (€ (sksE, pkCustomer), C(skCustomer, pksE, rid)) — (Tgrp, coiny,):
Interactive protocol between exchange and customer to obtain the new
coin for a refresh operation previously started with RefreshRequest, identi-
tied by the refresh identifier rid.

The exchange learns the target denomination pkD,, and signed source coin
(pkCoing, pkDy, coinCerty). If the source coin is invalid, the exchange aborts
the protocol.
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The first time RefreshPickup is run for a particular refresh identifier, the
exchange records a refresh operation of value D(pkD,,) in refreshed[pkCoin].
If pkCoing is being overspent, the refresh operation is not recorded in
refreshed[pkCoing], the exchange sends the customer the protocol transcript
of the previous deposits and refreshes and aborts the protocol.

If the customer C plays honestly in RefreshRequest and RefreshPickup, the
unlinkable coin coin, they obtain as change will be stored in their wallet
wallet[pkCustomer|. If C is caught playing dishonestly, the RefreshPickup
protocol aborts.

An honest customer must be able to repeat a RefreshPickup with the same rid
multiple times and (re-)obtain the same coin, even if previous RefreshPickup
executions were aborted.

Returns a protocol transcript Trp.

e Link(&(sksE), C(skCustomer, pksE, coing)) — (7, (coiny,...,coin,)): Interac-
tive protocol between exchange and customer. If coing is a coin that was
refreshed, the customer can recompute all the coins obtained from previous
refreshes on coing, with data obtained from the exchange during the proto-
col. These coins are added to the customer’s wallet wallet[pkCustomer| and
returned together with the protocol transcript.

3.2.2. Oracles

We now specify how the adversary can interact with the system by defining
oracles. Oracles are queried by the adversary, and upon a query the challenger
will act according to the oracle’s specification. Note that the adversary for the
different security games is run with specific oracles, and does not necessarily
have access to all oracles simultaneously.

We refer to customers in the parameters to an oracle query simply by their
public key. The adversary needs the ability to refer to coins to trigger operations
such as spending and refresh, but to model anonymity we cannot give the
adversary access to the coins’ public keys directly. Therefore we allow the
adversary to use the (successful) transcripts of the withdraw, refresh and link
protocols to indirectly refer to coins. We refer to this as a coin handle H. Since
the execution of a link protocol results in a transcript 7 that can contain multiple
coins, the adversary needs to select a particular coin from the transcript via the
index i as H = (T,i). The respective oracle tries to find the coin that resulted
from the transcript given by the adversary. If the transcript has not been seen
before in the execution of a link, refresh or withdraw protocol; or the index for a
link transcript is invalid, the oracle returns an error to the adversary.

In oracles that trigger the execution of one of the interactive protocols defined
in Section we give the adversary the ability to actively control the com-
munication channels between the exchange, customers and merchants; i.e., the
adversary can effectively record, drop, modify and inject messages during the

51



3. Security of Income-Transparent Anonymous E-Cash

execution of the interactive protocol. Note that this allows the adversary to leave
the execution of an interactive protocol in an unfinished state, where one or more
parties are still waiting for messages. We use 7 to refer to a handle to interactive
protocols where the adversary can send and receive messages.

e OAddCustomer() — pkCustomer: Generates a key pair (skCustomer, pkCustomer)
using the CustomerKeygen algorithm, and sets

withdrawn|pkCustomer

acceptedContracts|{pkCustomer

[ J:
[ J:
wallet[pkCustomer] :
withdrawlds|[pkCustomer] :

[ J:

0
{
{
{
{

— N N

refreshlds|pkCustomer

Returns the public key of the newly created customer.

e OAddMerchant() — pkMerchant: Generate a key pair (skMerchant, pkMerchant)
using the MerchantKeygen algorithm.

Returns the public key of the newly created merchant.

e OSendMessage(Z, P, P,,m) + (): Send message m on the channel from
party P; to party P, in the execution of interactive protocol Z. The oracle
does not have a return value.

e OReceiveMessage(Z, P, P>) — m: Read message m in the channel from party
P; to party P, in the execution of interactive protocol Z. If no message is
queued in the channel, return m = 1.

e OWithdrawRequest(pkCustomer, pkD) — Z: Triggers the execution of the
WithdrawRequest protocol. the adversary full control of the communication
channels between customer and exchange.

e OWithdrawPickup(pkCustomer, pkD, T) +— I: Triggers the execution of the
WithdrawPickup protocol, additionally giving the adversary full control of
the communication channels between customer and exchange.

The customer and withdraw identifier wid are obtained from the WithdrawRequest
transcript 7.

e ORefreshRequest(#, pkD) — Z: Triggers the execution of the RefreshRequest
protocol with the coin identified by coin handle #, additionally giving the
adversary full control over the communication channels between customer
and exchange.

e ORefreshPickup(7) — Z: Triggers the execution of the RefreshPickup pro-
tocol, where the customer and refresh identifier rid are obtained from the
RefreshRequest protocol transcript 7.
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Additionally gives the adversary full control over the communication chan-
nels between customer and exchange.

OLink(H) — Z: Triggers the execution of the Link protocol for the coin
referenced by handle #, additionally giving the adversary full control over
the communication channels between customer and exchange.

OSpend(transactionld, pkCustomer, H, pkMerchant) +— depositPermission: Makes
a customer sign a deposit permission over a coin identified by handle H.
Returns the deposit permission on success, or L if H is not a coin handle
that identifies a coin.

Note that OSpend can be used to generate deposit permissions that, when
deposited, would result in an error due to overspending

Adds (transactionld, depositPermission) to acceptedContracts[pkCustomer].

OShare(#H, pkCustomer) +— (): Shares a coin (identified by handle ) with
the customer identified by pkCustomer, i.e., puts the coin identified by H
into wallet[pkCustomer]|. Intended to be used by the adversary in attempts to
violate income transparency. Does not have a return value.

Note that this trivially violates anonymity (by sharing with a corrupted
customer), thus the usage must be restricted in some games.

OCorruptCustomer(pkCustomer) —
(skCustomer, wallet[pkCustomer], acceptedContracts[pkCustomer],
refreshlds[pkCustomer]|, withdrawlds[pkCustomer]):

Used by the adversary to corrupt a customer, giving the adversary access to
the customer’s secret key, wallet, withdraw /refresh identifiers and accepted
contracts.

Permanently marks the customer as corrupted. There is nothing “spe-
cial” about corrupted customers, other than that the adversary has used
OCorruptCustomer on them in the past. The adversary cannot modify cor-
rupted customer’s wallets directly, and must use the oracle again to obtain
an updated view on the corrupted customer’s private data.

ODeposit(depositPermission) — Z: Triggers the execution of the Deposit pro-
tocol, additionally giving the adversary full control over the communication
channels between merchant and exchange.

Returns an error if the deposit permission is addressed to a merchant that
was not registered with OAddMerchant.

This oracle does not give the adversary new information, but is used to
model the situation where there might be multiple conflicting deposit per-
missions generated via Spend, but only a limited number can be deposited.
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We write OTALER for the set of all the oracles we just defined, and ONOSHARE :=
OTALER — OShare for all oracles except the share oracle.

The exchange does not need to be corrupted with an oracle. A corrupted
exchange is modeled by giving the adversary the appropriate oracles and the
exchange secret key from the exchange key generation.

If the adversary determines the exchange’s secret key during the setup, invoking
OWithdrawRequest, OWithdrawPickup, ORefreshRequest, ORefreshPickup or OLink
can be seen as the adversary playing the exchange. Since the adversary is an
active man-in-the-middle in these oracles, it can drop messages to the simulated
exchange and make up its own response. If the adversary calls these oracles with
a corrupted customer, the adversary plays as the customer.

3.3. Games

We now define four security games (anonymity, conservation, unforgeability and
income transparency) that are later used to define the security properties for Taler.
Similar to [BRo6] we assume that the game and adversary terminate in finite time,
and thus random choices made by the challenger and adversary can be taken
from a finite sample space.

All games except income transpacency return 1 to indicate that the adversary
has won and 0 to indicate that the adversary has lost. The income transparency
game returns 0 if the adversary has lost, and a positive “laundering ratio” if the
adversary won.

3.3.1. Anonymity

Intuitively, an adversary A (controlling the exchange and merchants) wins the
anonymity game if they have a non-negligible advantage in correlating spending
operations with the withdrawal or refresh operations that created a coin used in
the spending operation.

Let b be the bit that will determine the mapping between customers and spend
operations, which the adversary must guess.

We define a helper procedure

Refresh (& (sksE), C (pkCustomer, pksE, coing)) — R

that refreshes the whole remaining amount on coing with repeated application of
RefreshRequest and RefreshPickup using the smallest possible set of target denomi-
nations, and returns all protocol transcripts in .

Exp®{°" (1,15, b):
1. (sksE, pksE, skM, pkM) < A()

2. (pkCustomer,, pkCustomery, transactionldy, transactionld;, f) AONOSHARE()
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3. Select distinct fresh coins

coing € wallet[pkCustomer|

coiny € wallet[pkCustomer ]

Return 0 if either pkCustomery or pkCustomer; are not registered customers
with sufficient fresh coins.

4. Fori e {0,1} run

dp; < Spend(transactionld;, f, coin;_p, pkM)
Deposit(.A(), M(skM, pksE, dp;))
R; < Refresh(A(), C(pkCustomer;, pksE, coin;_;))

5. b «— AONOSHARE(%O, %1)

6. Return 0 if OSpend was used by the adversary on the coin handles for coing or
coiny or OCorruptCustomer was used on pkCustomer, or pkCustomer;.

7. If b = b’ return 1, otherwise return 0.

Note that unlike some other anonymity games defined in the literature (such as
[PST17]), our anonymity game always lets both customers spend in order to avoid
having to hide the missing coin in one customer’s wallet from the adversary.

3.3.2. Conservation

The adversary wins the conservation game if it can bring an honest customer
in a situation where the spendable financial value left in the user’s wallet plus
the value spent for transactions known to the customer is less than the value
withdrawn by the same customer through by the exchange.

In practice, this property is necessary to guarantee that aborted or partially
completed withdrawals, payments or refreshes, as well as other (transient) mis-
behavior from the exchange or merchant do not result in the customer losing
money.

Exp "™ (1%, 1%):
1. (sksE, pksE) < ExchangeKeygen(1*, 1%, M)
2. pkCustomer <— AONOSHARE (5l cF)
3. Return 0 if pkCustomer is a corrupted user.

4. Run WithdrawPickup for each withdraw identifier wid and RefreshPickup for
each refresh identifier rid that the user has recorded in withdrawlds and refreshlds.
Run Deposit for all deposit permissions in acceptedContracts.

5. Let vc be the total financial value left on valid coins in wallet[pkCustomer],
i.e.,, the denominated values minus the spend/refresh operations recorded
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in the exchange’s database. Let vg be the total financial value of contracts in
acceptedContracts[pkCustomer].

6. Return 1 if withdrawn[pkCustomer| > v¢ + vs.

Hence we ensure that:

e if a coin was spent, it was spent for a contract that the customer knows
about, i.e., in practice the customer could prove that they “own” what they
paid for,

e if a coin was refreshed, the customer “owns” the resulting coins, even if the
operation was aborted, and

e if the customer withdraws, they can always obtain a coin whenever the
exchange accounted for a withdrawal, even when protocol executions are
intermittently aborted.

Note that we do not give the adversary access to the OShare oracle, since that
would trivially allow the adversary to win the conservation game. In practice,
conservation only holds for customers that do not share coins with parties that
they do not fully trust.

3.3.3. Unforgeability

Intuitively, adversarial customers win if they can obtain more valid coins than
they legitimately withdraw.

Exp{;rge(l/\, 1%):
1. (skE, pkE) <+ ExchangeKeygen()
2. (Co,...,Cyp) + AOAL(pkExchange)

3. Return 0 if any C; is not of the form (skCoin, pkCoin, pkD, coinCert) or any
coinCert is not a valid signature by pkD on the respective pkCoin.

4. Return 1 if the sum of the unspent value of valid coins in Cy. .., Cy exceeds
the amount withdrawn by corrupted customers, return 0 otherwise.

3.3.4. Income Transparency

Intuitively, the adversary wins if coins are in exclusive control of corrupted
customers, but the exchange has no record of withdrawal or spending for them.
This presumes that the adversary cannot delete from non-corrupted customer’s
wallets, even though it can use oracles to force protocol interactions of non-
corrupted customers.

For practical e-cash systems, income transparency disincentivizes the emer-
gence of “black markets” among mutually distrusting customers, where currency
circulates without the transactions being visible. This is in contrast to some other
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proposed e-cash systems and cryptocurrencies, where disintermediation is an
explicit goal. The Link protocol introduces the threat of losing exclusive control
of coins (despite having the option to refresh them) that were received without
being visible as income to the exchange.

Expizcome(l)\, 1K):
1. (skE, pkE) < ExchangeKeygen()
2. (coiny,...,coiny) + AOAL(pkExchange)

(The coin; must be coins, including secret key and signature by the denomina-
tion, for the adversary to win. However these coins need not be present in any
honest or corrupted customer’s wallet.)

3. Augment the wallets of all non-corrupted customers with their transitive
closure using the Link protocol. Mark all remaining value on coins in wallets
of non-corrupted customers as spent in the exchange’s database.

4. Let L denote the sum of unspent value on valid coins in (coiny, ... coiny), after
accounting for the previous update of the exchange’s database. Also let w' be
the sum of coins withdrawn by corrupted customers. Then p := L — w' gives
the adversary’s untaxed income.

5. Let w be the sum of coins withdrawn by non-corrupted customers, and s be
the value marked as spent by non-corrupted customers, so that b := w — s
gives the coins lost during refresh, that is the losses incurred attempting to
hide income.

6. If b+ p # 0, return %, i.e., the laundering ratio for attempting to obtain

untaxed income. Otherwise return 0.

3.4. Security Definitions

We now give security definitions based upon the games defined in the previous
section. Recall that A is the general security parameter, and « is the security
parameter for income transparency. A polynomial-time adversary is implied to
be polynimial in A + x.

Definition 3.4.1 (Anonymity). We say that an e-cash scheme satisfies anonymity if
the success probability Pr [b & {0,1} : Exp%°"(14,1%,b) = 1} of the anonymity
game is negligibly close to 1/2 for any polynomial-time adversary .A.

Definition 3.4.2 (Conservation). We say that an e-cash scheme satisfies conserva-

tion if the success probability Pr [Exp®"*"?(14,1¥) = 1] of the conservation game

is negligible for any polynomial-time adversary .A.

Definition 3.4.3 (Unforgeability). We say that an e-cash scheme satisfies unforge-
ability if the success probability Pr [Exp&o B, 1F) = 1] of the unforgeability
game is negligible for any polynomial-time adversary .A.
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3. Security of Income-Transparent Anonymous E-Cash

Definition 3.4.4 (Strong Income Transparency). We say that an e-cash scheme sat-
isfies strong income transparency if the success probability Pr [Expiﬁmme (14,1%) # 0]
for the income transparency game is negligible for any polynomial-time adver-

sary A.

The adversary is said to win one execution of the strong income transparency
game if the game’s return value is non-zero, i.e., there was at least one successful
attempt to obtain untaxed income.

Definition 3.4.5 (Weak Income Transparency). We say that an e-cash scheme
satisfies weak income transparency if, for any polynomial-time adversary A, the
return value of the income transparency game satisfies

E [Expiﬂwme(ﬂ, 1")} < % (3.1)

In (3.1), the expectation runs over any probability space used by the adversary
and challenger.

For some instantiations, e.g., ones based on zero-knowledge proofs, x might be
a security parameter in the traditional sense. However for an e-cash scheme to be
useful in practice, the adversary does not need to have only negligible success
probability to win the income transparency game. It suffices that the financial
losses of the adversary in the game are a deterrent, after all our purpose of the
game is to characterize tax evasion.

Taler does not fulfill strong income transparency, since for Taler x must be
a small cut-and-choose parameter, as the complexity of our cut-and-choose
protocol grows linearly with k. Instead we show that Taler satisfies weak income
transparency, which is a statement about the adversary’s financial loss when
winning the game instead of the winning probability. The return-on-investment
(represented by the game’s return value) is bounded by 1/x.

We still characterize strong income transparency, since it might be useful for
other instantiations that provide more absolute guarantees.

3.5. Instantiation

We give an instantiation of our protocol syntax that is generic over a blind
signature scheme, a signature scheme, a combined signature scheme / key
exchange, a collision-resistant hash function and a pseudo-random function
family (PRF).

3.5.1. Generic Instantiation

Let BLINDSIGN be a blind signature scheme with the following syntax, where the
party S is the signer and R is the signature requester:
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KeyGengs(11) — (sk, pk) is the key generation algorithm for the signer of
the blind signature protocol.

Blindgs(S(sk), R(pk,m)) — (m,r) is a possibly interactive protocol to blind
a message m that is to be signed later. The result is a blinded message m
and a residual r that allows to unblind a blinded signature on m made by
sk.

Signgs(S(sk), R(m)) — 7 is an algorithm to sign a blinded message . The
result 7 is a blinded signature that must be unblinded using the r returned
from the corresponding blinding operation before verification.

UnblindSiggs(r,m, o) — o is an algorithm to unblind a blinded signature.

Verifygg (pk, m,0) +— b is an algorithm to check the validity of an unblinded
blind signature. Returns 1 if the signature ¢ was valid for m and 0 otherwise.

Note that this syntax excludes some blind signature protocols, such as those
with interactive/probabilistic verification or those without a “blinding factor”,
where the Blindgs and Signgg and UnblindSiggs would be merged into one interac-
tive signing protocol. Such blind signature protocols have already been used to
construct e-cash [CHLos].

We require the following two security properties for BLINDSIGN:

blindness: It should be computationally infeasible for a malicious signer
to decide which of two messages has been signed first in two executions
with an honest user. The corresponding game can be defined as in Abe
and Okamoto [AOoo], with the additional enhancement that the adversary
generates the signing key [SU17].

unforgeability: An adversary that requests k signatures with Signgg is unable
to produce k + 1 valid signatures with non-negligible probability.

For more generalized notions of the security of blind signatures see, e.g., [FSo9;
SU17|.

Let CoiNS1GNKx be combination of a signature scheme and key exchange
protocol:

KeyGenSeccgr (1) + sk is a secret key generation algorithm.
KeyGenPubcgg (sk) — pk produces the corresponding public key.
Signcsk (sk, m) — o produces a signature o over message .

Verifycsk (pk, m, o) — b is a signature verification algorithm. Returns 1 if
the signature ¢ is a valid signature on m by pk, and 0 otherwise.

Kxcsk (ski, pky) + x is a key exchange algorithm that computes the shared
secret x from secret key sk; and public key pk,.
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We occasionally need these key generation algorithms separately, but we usually
combine them into KeyGencgg (11) — (sk, pk).
We require the following security properties to hold for CoinS1GNKXx:

e unforgeability: The signature scheme (KeyGencgg, Signcsk, Verifycgx) must
satisfy existential unforgeability under chosen message attacks (EUF-CMA).

o key exchange completeness: Any probabilistic polynomial-time adversary
has only negligible chance to find a degenerate key pair (ska, pky) such
that for some honestly generated key pair (skg, pkg) < KeyGencgx (1) the
key exchange fails, that is Kexcsk(ska, pkg) # Kexcsk(skg, pka ), while the
adversary can still produce a pair (m, o) such that Verifygg(pky, m, o) = 1.

e key exchange security: The output of Kxcsx must be computationally indistin-
guishable from a random shared secret of the same length, for inputs that
have been generated with KeyGencgg.

Let S1oN = (KeyGeng, Signg, Verifyg) be a signature scheme that satisfies selective
unforgeability under chosen message attacks (SUF-CMA).

Let PRF be a pseudo-random function family and H : {0,1}* — {0,1}* a
collision-resistant hash function.

Using these primitives, we now instantiate the syntax of our income-transparent
e-cash scheme:

e ExchangeKeygen(1%,1%,D):
Generate the exchange’s signing key pair skESig <+ KeyGeng(1%).

For each element in the sequence ® = dj,...,d,, generate denomination
key pair (skD;, pkD;) < KeyGenpgg(11).

e CustomerKeygen(1*,1): Return key pair KeyGeng(1*).
e MerchantKeygen(1*,1): Return key pair KeyGeng(1*).

e WithdrawRequest(E (sksE, pkCustomer), C(skCustomer, pksE, pkD)):

Let skD be the exchange’s denomination secret key corresponding to pkD.

1. C generates coin key pair (skCoin, pkCoin) < KeyGencgx (1)
2. C runs (7, r) < Blindcsk (€ (skCoin), C(m)) with the exchange

The withdraw identifier is then

wid := (skCoin, pkCoin, 1, 1)

e WithdrawPickup(& (sksE, pkCustomer), C(skCustomer, pksE, wid)):

The customer looks up skCoin, pkCoin, pkD 71 and r via the withdraw identi-
fier wid.
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1. C runs o < Signgg(E(skD), C(m)) with the exchange
2. C unblinds the signature o < UnblindSiggs (7, 7, 71) and stores the coin
(skCoin, pkCoin, pkD, 0) in their wallet.

e Spend(transactionld, f, coin, pkMerchant): Let (skCoin, pkCoin, pkD, o¢) := coin.
The deposit permission is computed as
depositPermission := (pkCoin, op, m),
where

m := (pkCoin, pkD, sigmac, transactionld, f, pkMerchant)
0p < Signcgk (skCoin, m).
e Deposit(E (sksE, pkMerchant), M (skMerchant, pksE, depositPermission)): The mer-

chant sends depositPermission to the exchange.

The exchange checks that the deposit permission is well-formed and sets

(pkCoin, pkD, 0¢, 0p, transactionld, f, pkMerchant)) := depositPermission

The exchange checks the signature on the deposit permission and the
validity of the coin with
by := Verifycgx (pkCoin, op, m)
by := Verifyps(pkD, o¢, pkCoin)
and aborts of b1 = 0 or b, = 0.
The exchange aborts if spending f would result in overspending pkCoin
based on existing deposit/refresh records, and otherwise marks pkCoin as
spent for D(pkD).
e RefreshRequest (& (sksE, pkCustomer), C (skCustomer, pksE, coing, pkD,,) ):
Let skD, be the secret key corresponding to pkD,,.

We write
Blindzs (S (sk, skESig), R(R, skR, pk,m)) — (1,1, Tp.)

for a modified version of Blindgs where the signature requester R takes
all randomness from the sequence (PRF(R, "blind"||n)),-,, the messages
from the exchange are recorded in transcript 7., all messages sent by R
are signed with skR and all messages sent by & are signed with skESig.

Furthermore, we write
KeyGenggx (R, 1) = (sk, pk)

for a modified version of the key generation algorithm that takes random-

ness from the sequence (PRF(R, "key"||n)), -

For eachi € {1,...,«x}, the customer
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1. generates seed s; & {1,..., 1"}
generates transfer key pair (t;, T;) < KeyGen&gy (s;, 1)

N

computes transfer secret x; <— Kx(t;, pkCoing)

computes coin key pair (skCoin;, pkCoin;) +— KeyGen¥g (x;, 1)

LI Sl

and executes the modified blinding protocol
(3,71, T(Bx,i)) < Blindgg(E(skDy), C(x;, skCoing, pkD,,, pkCoin;))

with the exchange.

The customer stores the refresh identifier
rid := (COinOI kau/ {Si}/ {mi}/ {7’1'}, {7‘(3*,1') }) (32)

RefreshPickup (€ (sksE, pkCustomer), C(skCustomer, pksE, rid)) — 7: The cus-
tomer looks up the refresh identifier rid and recomputes the transfer key
pairs, transfer secrets and new coin key pairs.

Then customer sends the commitment 711 = (pkCoing, pkD,,, hic) together
with signature sig; < Signcgk (skCoing, 711) to the exchange, where

hr = H(Ty,...,Ty)
hm = H(ml,...,m;()
I’lc = H(hTHhm)

The exchange checks the signature sig;, and aborts if invalid. Otherwise,
depending on the commitment:

1. If the exchange did not see 7r; before, it marks pkCoin, as spent for
D(pkD,,), chooses a uniform random 0 < y < x, stores it, and sends
this choice in a signed message (1, sigy) to the customer, where sig, <
Signg (skESig, 7).

2. Otherwise, the exchange sends back the same 71, as it sent for the last
equivalent 77;.

The customer checks if 7, differs from a previously received 7t} for the same
request 711, and aborts if such a conflicting response was found. Otherwise,
the customer in response to 71, sends the reveal message

73 = Ty, Ty, (S1, -, Syy—1, 5941, - - -, Sk)
and signature
sigy < Signcsk (skCoing, (pkCoing, pkD,,, Ty ), Ty, Ty))

to the exchange. Note that sigy is not a signature over the full reveal
message, but is primarily used in the linking protocol for checks by the
customer.
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The exchange checks the signature sigy: and then computes for i # 1:

(t, T!) + KeyGenggx (s, 1%)
x} + Kx(t;, pkCoing)
(skCoin’, pkCoin!) < KeyGen’gx (x, 1)

,/T:: H(T{,..., ,;71,T7,T,;+1,...,T1€)

and simulates the blinding protocol with recorded transcripts (without
signing each message, as indicated by the dot (-) instead of a signing secret
key), obtaining

(m,, ], T;) < Blindjg(S(skDy,), R(x}, -, pkD,,, skCoin?))

and finally

ro. — — — —
h: = H(ml,...,mv_l,m,y,mvﬂ,...,mK)

c := H(hr|[h).

Now the exchange checks if hc = h, and aborts the protocol if the check
fails. Otherwise, the exchange sends a message back to C that the commit-
ment verification succeeded and includes the signature

T := Signgs(E(skDy,), C(7y)).

As a last step, the customer obtains the signature ¢, on the new coin’s
public key pkCoin, with

0y := UnblindSig(r,, pkCoin,, 7 ).

Thus, the new, unlinkable coin is coin, := (skCoin,, pkCoin,, pkD,,, o).
Link (& (sksE), C(skCustomer, pksE, coing)): The customer sends the public key
pkCoin, of coing to the exchange.

For each completed refresh on pkCoiny recorded in the exchange’s database,
the exchange sends the following data back to the customer: the signed
commit message (sigy, 711), the transfer public key T, the signature sigy,
the blinded signature 7,, and the transcript 7z, ,) of the customer’s and
exchange’s messages during the Blindzg protocol execution.

The following logic is repeated by the customer for each response:

1. Verify the signatures (both from pkESig and pkCoing) on the transcript
T(Bx,y), abort otherwise.

2. Verify that sig; is a valid signature on 71; by pkCoing, abort otherwise.
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3. Re-compute the transfer secret and the new coin’s key pair as

X < Kxcsk(skCoing, T )
(skCoin., pkCoin,, ) < KeyGengg (x, ).

4. Simulate the blinding protocol with the message transcript received
from the exchange to obtain (71,,7,).

5. Check that Verifycgg (pkCoing, pkD,,, skCoing, (7(ps,), 1y ), sigy ) indicates
a valid signature, abort otherwise.

6. Unblind the signature to obtain ¢, < UnblindSig(r-, pkCoin,,, o)
7. (Re-)add the coin (skCoin,, pkCoin,, pkD,, o) to the customer’s wallet.

3.5.2. Concrete Instantiation

We now give a concrete instantiation that is used in the implementation of GNU
Taler for the schemes BLINDSIGN, CoINSIGNKX and SIGN.

For BLINDSIGN, we use RSA-FDH blind signatures [Cha83; BR96]. From the
information-theoretic security of blinding, the computational blindness property
follows directly. For the unforgeability property, we additionally rely on the RSA-
KTI assumption as discussed in [Bel+03]. Note that since the blinding step in
RSA blind signatures is non-interactive, storage and verification of the transcript
is omitted in refresh and link.

We instantiate CoINS1GNKX with signatures and key exchange operations on
elliptic curves in Edwards form, where the same key is used for signatures and
the Diffie-Hellman key exchange operations. In practice, we use Ed25519 [Ber+12]
/ Curvez5519 [Bero6|] for A = 256. We caution that some other elliptic curve key
exchange implementation might not satisfy the completeness property that we
require, due to the lack of complete addition laws.

For S1GN, we use elliptic-curve signatures, concretely Ed25519. For the collision-
resistant hash function H we use SHA-512 [H306] and HKDF [KE10] as a PRE.

3.6. Proofs

We now give proofs for the security properties defined in Section [3.4] with the
generic instantiation of Taler.

3.6.1. Anonymity

Theorem 1. Assuming
e the blindness of BLINDSIGN,

o the unforgeability and key exchange security of COINSIGNKX, and
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e the collision resistance of H,
our instantiation satisfies anonymity.

Proof. We give a proof via a sequence of games Go(b), G1(b), G (b), where Go(b)
is the original anonymity game Exp?{*"(1%,1%,b). We show that the adversary
can distinguish between subsequent games with only negligible probability. Let
enc and exx be the advantage of an adversary for finding hash collisions and for
breaking the security of the key exchange, respectively.

We define G; by replacing the link oracle OLink with a modified version that
behaves the same as OLink, unless the adversary responds with link data that did
not occur in the transcript of a successful refresh operation, but despite of that
still passes the customer’s verification. In that case, the game is aborted instead.
Observe that in case this failure event happens, the adversary must have forged
a signature on sigz on values not signed by the customer, yielding an existential
forgery. Thus, |Pr [Go = 1] — Pr[G; = 1]| is negligible.

In G, the refresh oracle is modified so that the customer responds with value
drawn from a uniform random distribution D; for the y-th commitment instead
of using the key exchange function. We must handle the fact that 7y is chosen by
the adversary after seeing the commitments, so the challenger first makes a guess
7* and replaces only the 7*-th commitment with a uniform random value. If the
7 chosen by the adversary does not match 7*, then the challenger rewinds A to
the point where the refresh oracle was called. Note that we only replace the one
commitment that will not be opened to the adversary later.

Since ¥ < A and the security property of Kx guarantees that the adversary
cannot distinguish the result of a key exchange from randomness, the runtime
complexity of the challenger still stays polynomial in A. An adversary that
could with high probability choose a y that would cause a rewind, could also
distinguish randomness from the output of Kx.

We now show that |[Pr[G = 1] — Pr[Gy = 1]| < exx by defining a distinguish-
ing game G;.; for the key exchange as follows:

Gi2(b):
1. If b =0, set
Do := {(A, B,Kex(a,B)) | (a,A) + KeyGen(1"), (b, B) < KeyGen(1")}.
Otherwise, set

Dy := {(A,B,C) | (1, A) < KeyGen(1"), (b, B) — KeyGen(1"),C < {1,...,2"}}.

janon

2. Return Exp";"™" (b, Dy)

(Modified anonymity game where the y-th commitment in the refresh oracle
is drawn uniformly from D, (using rewinding). Technically, we need to
draw from D;, on withdraw for the coin secret key, write it to a table, look it
up on refresh and use the matching tuple, so that with b = 0 we perfectly
simulate G.)
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Depending on the coin flip b, we either simulate G; or G, perfectly for our ad-
versary A against G1. At the same time b determines whether A receives the result
of the key exchange or real randomness. Thus, |Pr [G; = 1] — Pr[G, = 1]| = exx
is exactly the advantage of G1..

We observe in G that as x, is uniform random and not learned by the adversary,
the generation of (skCoin,, pkCoin, ) and the execution of the blinding protocol
is equivalent (under the PRF assumption) to using the randomized algorithms
KeyGencgg and Blindps.

By the blindness of the BLINDSIGN scheme, the adversary is not able to distin-
guish blinded values from randomness. Thus, the adversary is unable to correlate
a Signgg operation in refresh or withdraw with the unblinded value observed
during Deposit.

We conclude the success probability for G, must be 1/2 and hence the success
probability for Exp°"(1%,x,b) is at most 1/2 + €(A), where € is a negligible
function. O

3.6.2. Conservation

Theorem 2. Assuming existential unforgeability (EUF-CMA) of CoINSIGNKX, our
instantiation satisfies conservation.

Proof. In honest executions, we have withdrawn|[pkCustomer] = vc + vg, i.e., the
coins withdrawn add up to the coins still available and the coins spent for known
transactions.

In order to win the conservation game, the adversary must increase withdrawn[pkCustomer]
or decrease vc or vg. An adversary can abort withdraw operations, thus causing
withdrawn[pkCustomer| to increase, while the customer does not obtain any coins.
However, in step |4, the customer obtains coins from interrupted withdraw opera-
tions. Similarly, for the refresh protocol, aborted RefreshRequest / RefreshPickup
operations that result in a coin’s remaining value being reduced are completed in
step

Thus, the only remaining option for the adversary is to decrease vc or vg with
the ORefreshPickup and ODeposit oracles, respectively.

Since the exchange verifies signatures made by the secret key of the coin that is
being spent/refreshed, the adversary must forge this signature or have access to
the coin’s secret key. As we do not give the adversary access to the sharing oracle,
it does not have direct access to any of the honest customer’s coin secret keys.

Thus, the adversary must either compute the coin’s secret key from observing
the coin’s public key (e.g., during a partial deposit operation), or forge signatures
directly. Both possibilities allow us to carry out a reduction against the unforge-
ability property of the CoiNSIGNKX scheme, by injecting the challenger’s public
key into one of the coins.

O
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3.6.3. Unforgeability

Theorem 3. Assuming the unforgeability of BLINDSIGN, our instantiation satisfies
unforgeability.

Proof. The adversary must have produced at least one coin that was not blindly
signed by the exchange. In order to carry out a reduction from this adversary to
a blind signature forgery, we inject the challenger’s public key into one randomly
chosen denomination. Since we do not have access to the corresponding secret key
of the challenger, signing operations for this denomination are replaced with calls
to the challenger’s signing oracle in OWithdrawPickup and ORefreshPickup. For n
denominations, an adversary against the unforgeability game would produce a
blind signature forgery with probability 1/n. O

3.6.4. Income Transparency

Theorem 4. Assuming
e the unforgeability of BLINDSIGN,
e the key exchange completeness of COINSIGNKX,
e the pseudo-random function property of PRF, and
e the collision resistance of H,

our instantiation satisfies weak income transparency.

Proof. We consider the directed forest on coins induced by the refresh protocol. It
follows from unforgeability that any coin must originate from some customer’s
withdraw in this graph. We may assume that all coiny, ..., coin; originate from
non-corrupted users, for some [ < 4.

For any i <[, there is a final refresh operation R; in which a non-corrupted user
could obtain the coin C’ consumed in the refresh via the linking protocol, but no
non-corrupted user could obtain the coin provided by the refresh, as otherwise
coin; gets marked as spent in step step [3} Set F:= {R; | i <[}.

During each R; € F, our adversary must have submitted a blinded coin and
transfer public key for which the linking protocol fails to produce the resulting
coin correctly, otherwise the coin would have been spent in step |3 In this case,
we consider several non-exclusive cases

1. the execution of the refresh protocol is incomplete,

2. the commitment for the 7y-th blinded coin and transfer public key is dishon-
est,

3. a commitment for a blinded coin and transfer public key other than the y-th
is dishonest,
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We show these to be exhaustive by assuming their converses all hold: As the
commitment is signed by skCoing, our key exchange completeness assumption of
CoinSiGNKXx applies to the coin public key. Any revealed values must match our
honestly computed commitments, as otherwise a collision in H would have been
found. We assumed the revealed -y-th transfer public key is honest. Hence our
key exchange completeness assumption of CoINSIGNKX yields Kexcgk(t,C') =
Kexcsk(c’, T) where T = KeyGenPubgi(t) is the transfer key, thus the customer
obtains the correct transfer secret. We assumed the refresh concluded and all
submissions besides the <y-th were honest, so the exchange correctly reveals the
signed blinded coin. We assumed the -y-th blinded coin is correct too, so customer
now re-compute the new coin correctly, violating R; € F.

We shall prove

p 1
E {m’lz 75@} == (3:3)

where the expectation runs over any probability space used by the adversary and
challenger.

We shall now consider executions of the income transparency game with an
optimal adversary with respect to maximizing %. Note that this is permissible
since we are not carring out a reduction, but are interested in the expectation of
the game’s return value.

As a reminder, if a refresh operation is initiated using a false commitment
that is detected by the exchange, then the new coin cannot be obtained, and
contributes to the lost coins b := w — s instead of the winnings p := L — w'. We
also note b + p gives the value of refreshes attempted with false commitments.
As these are non-negative, % is undefined if and only if p = 0 and b = 0, which
happens if and only if the adversary does not use false commitments, i.e., F = @.

We may now assume for optimality that .4 submits a false commitment for
at most one choice of v in any R; € F, as otherwise the refresh always fails.
Furthermore, for an optimal adversary we can exclude refreshes in F that are
incomplete, but that would be possible to complete successfully, as completing
such a refresh would only increase the adversaries winnings.

We emphasize that an adversary that loses an R; loses the coin that would have
resulted from it completely, while an optimal adversary who wins an R; should
not gamble again. Indeed, an adversary has no reason to touch its winnings from
an R;.

For any R;, there are x game runs identical up through the commitment phase
of R; and exhibiting different outcomes based on the challenger’s random choice
of . If v; is the financial value of the coin resulting from refresh operation R;
then one of the possible runs adds v; to p, while the remaining ¥ — 1 runs add v;
to b.

We define p; and b; to be these contributions summed over the x possible runs,
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ie.,

pPi = Ui
bi = (K — 1)01'

The adversary will succeed in 1/« runs (p; = v) and loses in (x — 1)/« runs
(pi = 0). Hence:

p 1 pi
E|——|F£Q| = —
[ZH‘P’ * ] ’P‘R,-ZepbiﬂLPi

1 v; Kk—1 0

= +

«|F| R;FO—l—vi K|F| g=pvi+0
1
==

which yields the equality (3.3).
As for F = @, the return value of the game must be 0, we conclude

; 1
E [Expizcomem/\’ 11()] < %

3.7. Discussion

3.7.1. Limitations

Not all features of our implementation are part of the security model and proofs.
In particular, the following features are left out of the formal discussion:

e Reserves. In our formal model, we effectively assume that every customer
has access to exactly one unlimited reserve.

e Offline and online keys. In our implementation, the exchange has one
offline master signing key, and online signing keys with a shorter live span.

e Refunds allow merchants to effectively “undo” a deposit operation be-
fore the exchange settles the transaction with the merchant. This simple
extension preserves unlinkability of payments through refresh.

e Timeouts. In practice, a merchant gives the customer a deadline until which
the payment for a contract must have been completed, potentially by using
multiple coins.

If a customer is unable to complete a payment (e.g., because they notice that
their coins are already spent after a restore from backup), a refund for this
partial payment can be requested from the merchant.
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Should the merchant become unavailable after a partially completed pay-
ment, there are two possibilities: Either the customer can deposit the coins
on behalf of the merchant to obtain proof of their on-time payment, which
can be used in a later arbitration if necessary. Alternatively, the customer
can ask the exchange to undo the partial payments, though this requires
the exchange to know (or learn from the customer) the exact amount to be
payed for the contract.

e The fees incurred for operations, the protocols for backup and synchroniza-
tion as well as other possible extensions like tick payments are not formally
modeled.

We note that customer tipping (see basically amounts to an execution of
the Withdraw protocol where the party that generates the coin keys and blinding
factors (in that case the merchant’s customer) is different from the party that
signs the withdraw request (the merchant with a “customer” key pair tied to the
merchant’s bank account). While this is desirable in some cases, we discussed in
how this “loophole” for a one-hop untaxed payment could be avoided.

3.7.2. Other Properties
Exculpability

Exculpability is a property of offline e-cash which guarantees that honest users
cannot be falsely blamed for misbehavior such as double spending. For online e-
cash it is not necessary, since coins are spent online with the exchange. In practice,
even offline e-cash systems that provide exculpability are often undesirable, since
hardware failures can result in unintentional overspending by honest users. If
a device crashes after an offline coin has been sent to the merchant but before
the write operation has been permanently recorded on the user’s device (e.g.,
because it was not yet flushed from the cache to a hard drive), the next payment
will cause a double spend, resulting in anonymity loss and a penalty for the
customer.

Fair Exchange

The Endorsed E-Cash system by Camenisch et al. [CLMo7|] allows for fair
exchange—sometimes called atomic swap in the context of cryptocurrencies—of
online or offline e-cash against digital goods. The online version of Camenisch’s
protocol does not protect the customer against loss of anonymity from linkability
of aborted fair exchanges.

Taler’s refresh protocol can be used for fair exchange of online e-cash against
digital goods, without any loss of anonymity due to linkability of aborted trans-
actions, with the following small extension: The customer asks the exchange to
lock coins to a merchant until a timeout. Until the timeout occurs, the exchange
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provides the merchant with a guarantee that these coins can only be spent with
this specific merchant, or not at all. The fair exchange exchanges the merchant’s
digital goods against the customer’s deposit permissions for the locked coins. On
aborted fair exchanges, the customer refreshes to obtain unlinkable coins.
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4.

Implementation of GNU Taler

This chapter describes the implementation of GNU Taler in detail. Concrete design
decisions, protocol details and our reference implementation are discussed.

We implemented the GNU Taler protocol in the context of a payment system
for the web, as shown in Figure The system was designed for real-world
usage with current web technologies and within existing financial systems.

The following technical goals and constraints influenced the design of the
concrete protocol and implementation:

The implementation should allow payments in browsers with hardened
security settings. In particular, it must be possible to make a payment
without executing JavaScript on a merchant’s website and without having
to store (session-)cookies or requiring a login.

Cryptographic evidence should be available to all parties in case of a dispute.

In addition to the guarantees provided by the GNU Taler protocol, the
implementation must take care to not introduce additional threats to security
and privacy. Features that trade privacy for convenience should be clearly
communicated to the user, and the user must have the choice to deactivate
them. Integration with the web should minimize the potential for additional
user tracking.

The integration for merchants must be simple. In particular, merchants
should not have to write code involving cryptographic operations or have
to manage Taler-specific secrets in their own application processes.

The web integration must not be specific to a single browser platform,
but instead must be able to use the lowest common denominator of what
is currently available. User experience enhancements supported for only
specific platforms are possible, but fallbacks must be provided for other
platforms.

URLs should be clean, user-friendly and must have the expected semantics
when sharing them with others or revisiting them after a session expired.

Multiple currencies must be supported. Conversion between different
currencies is out of scope.

The implementation should offer flexibility with regards to what context or
applications it can be used for. In particular, the implementation must make
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it possible to provide plugins for different underlying banking systems and
provide hooks to deal with different regulatory requirements.

e The implementation must be robust against network failures and crash
faults, and recover as gracefully as possible 