
Preliminary response to the

GNU Taler security audit in Q2/Q3 2020

Christian Grothoff Florian Dold

July 3, 2020

1 Abstract

This is the preliminary response to the source code audit report CodeBlau created for GNU
Taler in Q2/Q3 2020. A final response with more details is expected later this year.

2 Management Summary

We thank CodeBlau for their detailed report and thorough analysis. We are particularly
impressed that they reported issues against components that were not even in-scope, and also
that they found an interesting new corner case we had not previously considered. Finally, we
also find several of their architectural recommendations to strengthen security to be worthwhile,
and while some were already on our long-term roadmap, we will reprioritize our roadmap given
their recommendations.

Given our extensive discussions with CodeBlau, we also have the impression that they
really took the time to understand the system, and look forward to working with CodeBlau as
a competent auditor for GNU Taler in the future.

3 Issues in the exchange

We agree with the issues CodeBlau discovered and both parties believe that they have all been
addressed.

4 Issues in the auditor

We appreciate CodeBlau’s extensive list of checks the Taler auditor performs, which was pre-
viously not documented adequately by us. We agree that the auditor still needs more compre-
hensive documentation.

As for issue #6416, we agree with the analysis and the proposed fix, even if the implications
are not fully clear. It has not yet been implemented as we want to carefully review all of the
SQL statements implicated in the resolution and ensure we fully understand the implications.

1



5 ISSUES IN GNUNET 2

5 Issues in GNUnet

We agree with the issues CodeBlau discovered and both parties believe that they have all been
addressed.

6 General remarks on the code

We understand that writing the code in another programming language may make certain
checks for the auditor less work to implement. However, our choice of C is based on the
advantages that make it superior to contemporary languages for our use case: relatively low
complexity of the language (compared to C++); availability of mature compilers, static and
dynamic analysis tools; predictable performance; access to stable and battle-tested libraries;
and future-proofness due to portability to older systems as well as new platforms.

We believe creating a parallel implementation in other languages would provide advantages,
especially with respect to avoiding “the implementation is the specification”-style issues. How-
ever, given limited resources will not make this a priority.

We disagree that all modern software development has embraced the idea that memory
errors are to be handled in ways other than terminating or restarting the process. Many
programming languages (Erlang, Java) hardly offer any other means of handling out-of-memory
situations than to terminate the process. We also insist that Taler does handle out-of-memory
as it does have code that terminates the process (we do not simply ignore the return value
from malloc() or other allocation functions!). We simply consider that terminating the process
(which is run by a hypervisor that will restart the service) is the correct way to handle out-
of-memory situations. We also have limits in place that should prevent attackers from causing
large amounts of memory to be consumed, and also have code to automatically preemptively
restart the process to guard against memory exhaustion from memory fragmentation. Finally,
a common problem with abrupt termination may be corrupted files. However, the code mostly
only reads from files and limits writing to the Postgres database. Hence, there is no possibility
of corrupt files being left behind even in the case of abnormal termination.

7 More specs and documentation code

We agree with the recommendation that the documentation should be improved, and will try
to improve it along the lines recommended by CodeBlau.

8 Protocol change: API for uniformly distributed seeds

We agree with the suggestion, have made the necessary changes, and both parties believe that
the suggestion has been implemented.

9 Reduce code complexity

9.1 Reduce global variables

While we do not disagree with the general goal to have few global variables, we also believe
that there are cases where global variables make sense.



9 REDUCE CODE COMPLEXITY 3

We have already tried to minimize the scope of variables. The remaining few global variables
are largely “read-only” configuration data. The report does not point out specific instances
that would be particularly beneficial to eliminate. As we continue to work on the code, we will
of course evaluate whether the removal of a particular global variable would make the code
cleaner.

Also, we want to point out that all global variables we introduce in the exchange are
indicated with a prefix TEH in the code, so they are easy to identify as such.

9.2 Callbacks, type p(r)unning

We understand that higher order functions in C can be confusing, but this is also a common
pattern to enable code re-use and asynchronous execution which is essential for network ap-
plications. We do not believe that we use callbacks excessively. Rewriting the code in another
language may indeed make this part easier to understand, alas would have other disadvantages
as pointed out previously.

9.3 Initializing structs with memset

Using memset() first prevents compiler (or valgrind) warnings about using uninitialized mem-
ory, possibly hiding bugs. We also do use struct initialization in many cases.

The GNUnet-wrappers are generally designed to be “safer” or “stricter” variants of the cor-
responding libc functions, and not merely “the same”. Hence we do not believe that renaming
GNUNET malloc is indicated.

The argument that memset()ing first makes the code inherently more obvious also seems
fallacious, as it would commonly result in dead stores, which can confuse developers and
produce false-positive warnings from static analysis tools.

9.4 NULL pointer handling

The problem with the “goto fail” style error handling is that it rarely results in specific error
handling where diagnostics are created that are specific to the error. Using this style of
programming encourages developers to create simplistic error handling, which can result in
inappropriate error handling logic and also makes it harder to attribute errors to the specific
cause.

However, we have no prohibition on using this style of error handling either: if it is ap-
propriate, develpers should make a case-by-case decision as to how to best handle a specific
error.

We have made some first changes to how GNUNET free() works in response to the report,
and will discuss further changes with the GNUnet development team.

9.5 Hidden security assumptions

We disagree that the assumptions stated are “hidden”, as (1) the Taler code has its own checks
to warrant that the requirements of the GNUNET malloc() API are satisfied (so enforcement
is not limited to the abstraction layer), and (2) the maximum allocation size limit is quite
clearly specified in the GNUnet documentation. Also, the GNUnet-functions are not merely



10 STRUCTURAL RECOMMENDATION 4

an abstraction layer for portability, but they provided extended semantics that we rely upon.
So it is not like it is possible to swap this layer and expect anything to continue to work.

When we use the libjansson library, it is understood that it does not use the GNUnet
operations, and the code is careful about this distinction.

9.6 Get rid of boolean function arguments

We agree that this can make the code more readable, and have in some places already changed
the code in this way.

10 Structural Recommendation

10.1 Least privilege

It is wrong to say that GNU Taler has “no work done” on privilege separation. For example,
the taler-exchange-dbinit tool is the only tool that requires CREATE, ALTER and DROP
rights on database tables, thus enusring that the “main” process does not need these rights.

We also already had the taler-exchange-keyup tool responsible for initializing keys. In
response to the audit, we already changed the GNUnet API to make sure that tools do not
create keys as a side-effect of trying to read non-existent key files.

We agree with the recommendation on further privilege separation for access to crypto-
graphic keys, and intend to implement this in the near future.

10.2 File system access

The auditor helpers actually only read from the file system, only the LaTeX invocation to
compile the final report to PDF inherently needs write access. We do not predict that we will
retool LaTeX. Also, the file system access is completely uncritical, as the auditor by design
runs on a system that is separate from the production exchange system.

Because that system will not have any crypto keys (not even the one of the auditor!),
CodeBlau is wrong to assume that reading from or writing to the file system represents a
security threat.

We have started to better document the operational requirements on running the auditor.

10.3 Avoid dlopen

Taler actually uses ltdlopen() from GNU libtool, which provides compiler flags to convert the
dynamic linkage into static linkage. For development, dynamic linkage has many advantages.

We plan to test and document how to build GNU Taler with only static linkage, and will
recommend this style of deployment for the Taler exchange for production.

10.4 Reduce reliance on PostgreSQL

CodeBlau’s suggestion to use an append-only transaction logging service in addition to the
PostgreSQL database is a reasonable suggestion for a production-grade deployment of GNU
Taler, as it would allow partial disaster recovery even in the presence of an attacker that has
gained write access to the exchange’s database.



10 STRUCTURAL RECOMMENDATION 5

We are currently still investigating whether the transaction logging should be implemented
directly by the exchange service, or via the database’s extensible replication mechanism. Any
implementation of such an append-only logging mechanism must be carefully designed to
ensure it does not negatively impact the exchange’s availability and does not interfere with
serializability of database transactions. As such we believe that transaction logging can only
be provided on a best-effort basis. Fortunately, even a best-effort append-only transaction
log would serve to limit the financial damage incurred by the exchange in an active database
compromise scenario.


