
Report for the GNU Taler security audit in
Q2/Q3 2020

Version 1.1 from July 3, 2020

Code Blau GmbH
Eitel-Fritz-Str. 22
14129 Berlin

http://www.codeblau.de

2

Abstract

This is the report for our source code audit of GNU Taler, specifically
the exchange and auditor components. The first part of the audit was
performed in April 2020 and focused on coding bugs. The second half
of the audit went from end of May till end of June 2020 and focused
on the mathematics and crypto soundness and the correctness of the
auditor.

contact: Code Blau GmbH

eMail: contact@codeblau.de

fon: +49.30.65004524

fax: +49.30.55145804

adress: Eitel-Fritz-Str. 22

loc: 14129 Berlin

url: http://www.codeblau.de

[c o d e b l a u]
security concepts

mailto:contact@codeblau.de
http://www.codeblau.de/

3

Contents

1 Management Summary 4

1.1 General impressions . 4

I Code audit results 5

2 Issues in the exchange 5

2.1 6147: buffer too small in TALER_amount2s . 5

2.2 6193: memset for clearing key material . 6

2.3 6195: integer overflow in deserialize_denomination_key 6

3 Issues in the auditor 7

3.1 What to check for? . 7

3.2 6416: Same coin_pub with multiple denom_sigs . 9

4 Issues in GNUNET 10

4.1 6146: GNUNET_STRINGS_absolute_time_to_string is not thread-safe 10

4.2 6149: GNUNET_CRYPTO_eddsa_key_create_from_file is a really bad API 10

4.3 6152: Using GNUNET_memcmp for comparing public keys 11

4.4 6154: Integer overflow in GNUNET_STRINGS_buffer_fill 11

5 General remarks on the code 13

II Recommendations 14

6 More specs and documentation 14

7 Protocol change: API for uniformly distributed seeds 14

8 Reduce code complexity 16

8.1 Reduce global variables . 16

8.2 Callbacks, type punning . 16

8.3 Initializing structs with memset . 16

8.4 NULL pointer handling . 17

8.5 Hidden security assumptions . 18

8.6 Get rid of boolean function arguments . 18

9 Structural Recommendation 20

9.1 Least privilege . 20

9.2 File system access . 20

9.3 Avoid dlopen . 20

9.4 Reduce reliance on PostgreSQL . 21

A List of findings 22

[c o d e b l a u]
security concepts

4

1 Management Summary

Code Blau was invited to do a source code audit and design review on the
exchange and auditor parts of implementation of the GNU Taler payment
system. The scope of the audit was the exchange and auditor component.
Third party libraries originally were not in scope, but it was necessary to
add some of the core libraries such as GNUNET to it.

The design and implementation of the software looked sound to us. We found
several coding issues, but they were easily rectified and present no long-term
obstacle.

The code is generally well written and follows deliberate security decisions
that were adhered to throughout the code base. While we have some sugges-
tions for improvements, the general code quality leaves little to be desired.

The code complexity is driven up by the ambitions design goals of GNU Taler,
including anonymous payments and taxability, that go beyond the design
goals of previously attempted systems. We applaud these goals and believe
the code complexity to be a necessary evil to achieve them.

1.1 General impressions

We generally tell our customers: Be innovative in what you do, not how you
do it. GNU Taler is a shining example for this approach.

GNU Taler relies on proven technology only. It is very innovative in what it
tries to achieve, but conservative in how it achieves it. The interactions are
done via simple web services, the database is a PostgreSQL, the cryptographic
instruments are Chaum blind signatures, Diffie-Hellman and ed25519. All of
these are well-understood, in particular the risks associated with them.

Several decisions were a trade-off, however, and an argument could be made
for choosing differently. We list those in the recommendations section of
this report.

We were impressed by the responsiveness of the developers. Our bugs were
generally fixed within 30 minutes or at most a few hours.

Compared to other projects of comparable ambition, the component selec-
tion of GNU Taler was done very conservatively. The selected components
are either developed in-house or selected deliberately as to introduce as few
other dependencies. All of the selected dependencies have a good security
and quality track record.

[c o d e b l a u]
security concepts

5

Part I

Code audit results
The following sections contain a selection of the issues that we have found
during the code audit1. They reflect the kind of issues we have have found
in the code base: mostly small issues which are easy to fix (and have been
fixed).

2 Issues in the exchange

2.1 6147: buffer too small in TALER_amount2s

Note, this issue 6147 has already been resolved.

TALER_amount2s prints a monetary amount into a string buffer, including
the value itself, an optional fraction part, and the name of the currency.
The buffer size is large enough to handle 32-bit values, but we are actually
printing 64-bit values. It should be increased.

In src/util/amount.c:

624 const char *

625 TALER_amount2s (const struct TALER_Amount *amount)

626 {

627 /* 12 is sufficient for a uint32_t value in decimal; 3 is for ":.\0" */

628 static GNUNET_THREAD_LOCAL char result[TALER_AMOUNT_FRAC_LEN

629 + TALER_CURRENCY_LEN + 3 + 12];

We are not printing a uint32_t, we are printing a 64-bit value.

639 char tail[TALER_AMOUNT_FRAC_LEN + 1];

640

641 amount_to_tail (&norm,

642 tail);

643 GNUNET_snprintf (result,

644 sizeof (result),

645 "%s:%llu.%s",

646 norm.currency,

647 (unsigned long long) norm.value,

648 tail);

The printing itself will abort if the value does not fit into the buffer, so no
buffer overflow vulnerability here.

However, a utility function like this should be able to print the full value
range.

1The full list given in the Appendix A

[c o d e b l a u]
security concepts

https://bugs.gnunet.org/view.php?id=0006147

6

2.2 6193: memset for clearing key material

Note, this issue 6193 has already been resolved.

In exchange/src/lib/exchange_api_refresh_common.c:

65 /* Finally, clean up a bit...

66 (NOTE: compilers might optimize this away, so this is

67 not providing any strong assurances that the key material

68 is purged.) */

69 memset (md,

70 0,

71 sizeof (struct MeltData));

glibc now has a function called explicit_bzero for this (since version 2.25
from Feb 2017).

2.3 6195: integer overflow in deserialize_denomination_key

Note, this issue 6195 has already been resolved.

In exchange/src/lib/exchange_api_refresh_common.c:

269 memcpy (&be,

270 buf,

271 sizeof (uint32_t));

272 pbuf_size = ntohl (be);

273 if (size < sizeof (uint32_t) + pbuf_size)

If 32-bit platforms are supported, the addition in line 273 can cause arith-
metic overflow, leading to the range check not triggering and a potential
out of bounds memory read (maybe even convertible into a Heartbleed sit-
uation):

279 dk->rsa_public_key

280 = GNUNET_CRYPTO_rsa_public_key_decode (&buf[sizeof (uint32_t)],

281 pbuf_size);

[c o d e b l a u]
security concepts

https://bugs.gnunet.org/view.php?id=0006193
https://bugs.gnunet.org/view.php?id=0006195

7

3 Issues in the auditor

3.1 What to check for?

The role of the auditor is to verify the correctness of the transactions per-
formed by the exchange. But what checks should the auditor exactly per-
form?

There is no reference document available defining and describing the partic-
ular checks to be performed by the auditor, other than the C implementation
itself. In contrast, for the exchange we have at least the PhD thesis of Flo-
rian Dold from 2019 – even when the current version of Taler deviates from
it slightly – which defines the algorithms and transactions performed by the
exchange, customers and merchants.

Nevertheless, we can verify the presence of a large number of sensible tests
in the auditor implemented in separate programs:

taler-helper-auditor-aggregation

• arithmetic inconsistencies

– disagreement in fee for deposit be-
tween auditor and exchange db

– disagreement in fee for melt be-
tween auditor and exchange db

– disagreement in fee for refund be-
tween auditor and exchange db

– aggregation of fee is negative

– aggregation (contribution): Ex-
pected coin contributions differ:
coin value without fee, total de-
posit without refunds

– wire out fee is negative

• coin arithmetic inconsistencies

– refund (merchant) is negative

– refund (balance) is negative

– spend > value

• coin denomination signature invalid

• start date before previous end date

• end date after next start date

• wire out inconsistencies in amount

• row inconsistencies

– wire account given is malformed

– h(wire) does not match wire

– failed to compute hash of given wire
data

– database contains wrong hash code
for wire details

– no transaction history for coin
claimed in aggregation

– could not get coin details for coin
claimed in aggregation

– could not find denomination key for
coin claimed in aggregation

– coin denomination signature invalid

– target of outgoing wire transfer do
not match hash of wire from deposit

– date given in aggregate does not
match wire transfer date

– wire fee signature invalid at given
time

– specified wire address lacks method

– wire fee unavailable for given time

taler-helper-auditor-coins

• emergency on denomination over loss

– value of coins deposited exceed
value of coins issued

• emergency on number of coins, num mis-
match

• arithmetic inconsistencies

– melt contribution vs. fee

– melt (cost)

– refund fee

• row inconsistencies

– revocation signature invalid

– denomination key not found

[c o d e b l a u]
security concepts

https://taler.net/papers/thesis-dold-phd-2019.pdf
https://taler.net/papers/thesis-dold-phd-2019.pdf

8

– denomination key for fresh coin un-
known to auditor

– denomination key for dirty coin un-
known to auditor

– denomination key for deposited coin
unknown to auditor

• coin validity in known_coin, by checking
denomination signatures

• coin validity in melt, by checking signatures

• refresh hanging, zero reveals (harmless)

• verify deposit signature

• verify refund signature

• recoup, check coin

• recoup, check signature

• recoup, denomination not revoked

taler-helper-auditor-deposits

This program only performs the following check: deposit confirmation miss-
ing.

In the discussion of issue 6413 it is pointed out by the developers that other,
deposit-related checks are performed with other tools, for instance coin_pub
and coin_sub are checked in taler-helper-auditor-coins. We recommend to
add comments to the code for taler-helper-auditor-deposits to point to
those locations.

Similarly, potential checks regarding refunds are performed in various places,
but there is no particular helper program to check only refund related issues.

taler-helper-auditor-reserves

• report arithmetic inconsistency

– closing aggregation fee

– global escrow balance

• denomination key validity withdraw incon-
sistencies

• bad signature losses in withdraw

• bad signature losses in recoup

• bad signature losses in recoup-master

• reserve balance, insufficient, losses and
gains

• reserve balance, summary wrong

• reserve not closed after expiration time

• could not determine closing fee

• denomination key not found for withdraw

• denomination key not in revocation set for
recoup

• closing-fee unavailable

• target account not verified, auditor does not
know reserve

• target account does not match origin ac-
count

taler-helper-auditor-wire

• check pending

• wire missing

• execution date mismatch

• wire out consistency

• wire transfer not made (yet?)

• receiver account mismatch

• wire amount does not match

• justification for wire transfer not found

• duplicate subject hash

• duplicate wire offset

• incoming wire transfer claimed by exchange
not found

• wire subject does not match

• wire amount does not match

• debit account url does not match

• execution date mismatch

• closing fee above total amount

[c o d e b l a u]
security concepts

https://bugs.gnunet.org/view.php?id=6413

9

3.2 6416: Same coin_pub with multiple denom_sigs

Note: This issue filed under category “auditor”, as it was found while
reading the code of the auditor. However, it should be considered as in
issue with the exchange.

Taler uses a cache for fast lookups of coin_pub → (denom_pub, denom_sig) —
the table known_coins. The table is populated via TEH_DB_know_coin_transaction
before deposit, melt and recoup operations, i.e. independent of the outcome
of those operations.

Consider the scenario where the same coin_pub is signed with different de-
nomination keys. The first usage of one of those coins would lock the de-
nomination value in the known_coins table. However, it is not clear what
would happen if the same coin_pub than is used later with a different (but
also validly signed) denomination for any of the operations.

We have not come up with a particular attack to the advantage of a customer
(i.e. gain profit). But maybe leaving the exchange in a confused state that
the auditor might notice and complain about could lead to DoS?

We suggest to have the pair (coin_pub, denom_h) as an index for the table
known_coins and allow multiple entries with the same coin_pub in it.

[c o d e b l a u]
security concepts

10

4 Issues in GNUNET

4.1 6146: GNUNET_STRINGS_absolute_time_to_string is not

thread-safe

GNUNET_STRINGS_absolute_time_to_string is not thread-safe. It returns a pointer
to a static buffer, which is the same for all callers.

If two threads call it simultaneously, the two callers will clobber each other’s
output into the buffer and return a garbled value.

Recommendation: add a GNUNET_STRINGS_absolute_time_to_string_r func-
tion that additionally takes a buffer and a buffer size as arguments.

Note, this issue 6146 has already been resolved.

4.2 6149: GNUNET_CRYPTO_eddsa_key_create_from_file is

a really bad API

72 /**

73 * Create a new private key by reading it from a file. If the

74 * files does not exist, create a new key and write it to the

75 * file. Caller must free return value. Note that this function

76 * can not guarantee that another process might not be trying

77 * the same operation on the same file at the same time.

78 * If the contents of the file

79 * are invalid the old file is deleted and a fresh key is

80 * created.

From an ops perspective this means that the exchange needs write access to
the key. This is not good.

From a reliability perspective it means this code must deal with several po-
tential race conditions, which makes it very complicated and potentially
dangerous.

The API is bad, but the implementation is worse: It uses access(), which
even its own man page warns against because it creates race conditions.

In the discussion about this bug it was mentioned that GNU Taler already
comes with a helper program to replace keys. We therefore recommend re-
moving this code altogether and relying on that helper.

Note, this issue 6149 has already been resolved.

[c o d e b l a u]
security concepts

https://bugs.gnunet.org/view.php?id=0006146
https://bugs.gnunet.org/view.php?id=0006149

11

4.3 6152: Using GNUNET_memcmp for comparing public
keys

The exchange code uses GNUNET_memcmp, which is a dangerous API because
the size is implicit.

GNUNET_memcmp looks like this:

1123 #define GNUNET_memcmp(a, b) \

1124 ({ \

1125 const typeof (*b) * _a = (a); \

1126 const typeof (*a) * _b = (b); \

1127 memcmp (_a, _b, sizeof(*a)); \

1128 })

This carries several risks.

1. if a is a pointer to an array, only the first element is compared.

2. the first two lines are apparently meant to assert that a and b are
pointers to the same type, but in C pointers to different types are
assignable. In some cases you’d get a compiler warning, but not in all.

3. If we are comparing crypto material, we might be introducing a timing
side channel because memcmp will abort after the first unmatched
byte.

Note, this issue 6152 has already been resolved.

4.4 6154: Integer overflow in GNUNET_STRINGS_buffer_fill

65 GNUNET_STRINGS_buffer_fill (char *buffer,

66 size_t size,

67 unsigned int count, ...)

68 {

69 size_t needed;

70 va_list ap;

71

72 needed = 0;

73 va_start (ap, count);

74 while (count > 0)

75 {

76 const char *s = va_arg (ap, const char *);

77 size_t slen = strlen (s) + 1;

78

79 GNUNET_assert (slen <= size - needed);

The arithmetic can overflow here. That could only happen if the caller is
trying to trick you, so it’s a matter of defense in depth. But maybe the
caller was attacked and the attacker gained enough control to trick this

[c o d e b l a u]
security concepts

https://bugs.gnunet.org/view.php?id=0006152

12

function and not to gain code execution immediately. In that case, this bug
would give her code execution.

Note, this issue 6154 has already been resolved.

[c o d e b l a u]
security concepts

https://bugs.gnunet.org/view.php?id=0006154

13

5 General remarks on the code

We want to close the part about the code audit with some general remarks
on the code of GNU Taler.

The programming language of choice for GNU Taler is plain C, but the code
uses patterns from more modern languages, like abstractly iterating over the
elements in a container.

Clearly, having this abstraction is good, and iterating is a common operation.
But the code loses what little type safety C provides by passing function C type safety

pointers and void* around.

We were also unhappy that the approach to handling out of memory errors Resource exhaustion handling

was to assume it does not happen and abort the program if it does. That
approach was common in the 1990ies but modern software development has
embraced the idea that code will handle all errors gracefully, clean up after
itself, and signal failure via error codes. In fact, the 3rd party json library
the code uses adheres to this standard. But GNU Taler itself does not.

With such an error handling the code size will grow, but auditing can become Error handling

easier – the audit just has to check whether every statement has proper error
handling, and statements without error handling are immediately suspect.
We also want to point out that other server software, such as PostgresSQL
on which GNU Taler relies on, perform full error handling but still restart
after a crash (per default).

The reliability and auditability of C code has historically suffered from global Global variables

variables and lack of namespaces. It is hard to reason about code when the
state is kept in global variables and all function calls could in theory modify
the global state. That means you always have to keep the whole code in mind
to make any statements about what the code actually does.

GNU Taler suffers from this problem, too, but to a lesser degree. GNU Taler
keeps state in global variables but declares most of them static, which limits
their visibility to the current compilation unit. The auditor no longer needs
to consider the whole source code for side effects, only the current source
code file.

[c o d e b l a u]
security concepts

14

Part II

Recommendations

6 More specs and documentation

During the audit of the exchange code it became clear how valuable the PhD
thesis of Florian Dold is. It led to our understanding the cryptography and
the protocols and served as a guide for the audit of the implementation of
the exchange.

However, while there is documentation available of the REST-API’s, and
guides for installation and administration of the auditor, a real specification
document is missing.

We believe that the whole Taler project would benefit, if it could provide a
complete specification of all components, including the auditor. This should
include - amongst the existing descriptions of the cryptographic algorithms
and protocols - a complete state diagram of all states of a coin, the denom-
inations, the transitions based on the protocols etc.

Having such a complete state diagram

• future changes to the protocol can be easier proposed, explained and
reasoned about

• implementations in other programming language can be derived,

• invariants between transitions formulated and corresponding checks
implemented

• the particular states and transitions can be referred to from within
the implementation of any of the components

7 Protocol change: API for uniformly distributed
seeds

Note: this is was reported as feature request 6181 and has been imple-
mented in version 0.8 of GNU Taler.

One implicit assumption in the GNU Taler system is the uniformly random
distribution of all public keys, for coins and reserves. The likelihood that
two customers generate the same ED25519-keypair for their coins must be
negligible. In other words, there is an implicit assumption about the quality
of the PRNG’s on each of the customer’s devices.

However, history shows that this is assumption is false in reality: F.e., due
to a severe bug introduced by Debian into their openssl package in 20082,
2see https://www.debian.org/security/2008/dsa-1571

[c o d e b l a u]
security concepts

https://taler.net/papers/thesis-dold-phd-2019.pdf
https://taler.net/papers/thesis-dold-phd-2019.pdf
https://bugs.gnunet.org/view.php?id=6181
https://www.debian.org/security/2008/dsa-1571

15

customers of GNU Taler back then would very probably have had plenty of
collisions of those coins. They would have withdrawn them from the ex-
change successfully (and thereby moving money from their banks to the
reserve and paying fees), but not everybody would be able to use them af-
terwards because of detected ”double-spending”. And it seems that there is
not much the customer could do about this right now.

This is not per se a security problem for the exchange, but certainly an issue
for the acceptance of the GNU Taler system for customers and merchants. And
as we boldly assume that 300M Europeans are soon going to use GNU Taler,
creating billions of coins a year on systems with unknown entropy of their
PRNG’s, the key distribution will be unknown and probably non-uniform.

As a potential remedy, an exchange could offer an additional API-endpoint
/seed (GET) to provide random seeds (32bytes maybe) for the wallet software
to use as a seed when generating coins. This would establish two things:

1. The exchange would guarantee (and become responsible) to provide
uniformly distributed seeds for all customers.

2. The exchange could then statistically/rightfully argue to not accept
any claims of collisions of coins.

Note that, depending on the requirements from the regulator, an auditor
might also be able to evaluate the entropy of the PRNG of the exchange.

[c o d e b l a u]
security concepts

16

8 Reduce code complexity

The most important measure of code complexity is how much context you
need to see whether a piece of code is correct or not.

The GNU Taler code base presents several opportunities in this regard.

8.1 Reduce global variables

If a piece of code calls a function, and gives it two arguments, and those
arguments pose no security risk, the auditor can usually skip looking into
the function.

Not so if there is global state!

Therefore we recommend getting rid of global state, and passing state around
explicitly, using const where possible to indicate read-only access to the
state.

Note that more modern programming languages like C++ offer more expres-
siveness in the form of mutable.

8.2 Callbacks, type punning

GNU Taler is based on GNUNET, which uses callbacks extensively.

Since the C language does not support C++ templates, these callbacks are
operating on void * data types, which negates the type safety mechanisms
of C.

Note that we have seen no actual bugs in this area. We still make this rec-
ommendation because it took us more time to verify correctness of the code
than it otherwise would have.

8.3 Initializing structs with memset

The code uses many structs, which are then initialized field by field in the
code. The auditor then needs to look at the struct to see if any field was
missed, and look for alignment padding that could leak stack data.

We recommend always memsetting structs first.

Note that this applies only to structs allocated on the stack, as GNUNET_malloc
does include an implicit memset. We recommend renaming the macro to
GNUNET_malloc_init0 or so to make that obvious to the casual code reader.

An argument can be made that not having a memset allows the compiler
to warn about referencing uninitialized members. However, we consider it
more important to have the code be obviously correct. As a compromise we
suggest introducing a memset but allow it to be removed by the preprocessor,

[c o d e b l a u]
security concepts

17

so that a special non-default build mode without memset can be done to get
the advantage of the compiler warnings.

If there is a choice between gaining something long-term at the expense of
making the code less obvious, we recommend always choosing to make the
code obvious. In our experience, the long-term disadvantages of non-obvious
code outweigh any other advantages eventually, and it is much harder to
make code more obvious retroactively.

8.4 NULL pointer handling

One of the most popular patterns to deal with error handling in C is to first
initialize all local pointers to NULL, then do the work in the function body,
including allocation attempts, and then have unified cleanup code in the
end after a label called error: or fail:

The C programming language helps establish this pattern by explicitly stat-
ing that free(NULL) is legal and does nothing. That simplifies the cleanup
code enormously. A typical example would look like this:

short* do_something(char* s,int i) {

char* ibuf = NULL; // initialize to NULL

short* res = NULL;

if (asprintf(&ibuf, "i is %d\n", i) == -1)

goto fail;

if (strlen(ibuf) > 10)

goto fail;

res = malloc((strlen(ibuf)+1) * 2);

if (!res)

goto fail;

{

size_t i;

for (i=0; ibuf[i]!=0; ++i)

res[i] = ibuf[i];

res[i] = 0;

}

return res;

fail: // fail handles all modes of failure

free(res);

free(ibuf);

return NULL;

}

This pattern is easy to write and easy to verify.

[c o d e b l a u]
security concepts

18

The GNU Taler source code does not use free, it uses GNUNET_free instead.
GNUNET_free will abort the program if the pointer argument was NULL. That
may seem like a good idea at first, but it basically moves the logic that was in
free upwards to all callers, which now need to check for NULL before calling
GNUNET_free. In that sense, it is an anti-abstraction. It does not reduce but
actually increase complexity for the caller.

We note that this has led to error handling code paths being hand written
for each potential failure case, and not having a common unified ”goto
fail” cleanup area that will handle all failures3. This drastically increases
the work needed by the developer to write the code, and by the auditor
to verify correctness of the code, and it creates opportunities for copy and
paste bugs.

We recommend against this practice and would like to point out the massive
success the ”goto fail” pattern has been in practice in other projects.

Some projects have rules against using goto. In those projects, a similar pat-
tern can be established using do { ... } while (0); and then using break;
instead of goto fail; to leave the pseudo loop.

8.5 Hidden security assumptions

The code has hidden security assumptions, such as that memory allocations
will be limited by a hidden maximum allocation size in the abstraction layer
around it. However, this only works if the abstraction layer is used.

The json parser is a third party library that does not use the abstraction
layer, and therefore can violate this assumption.

We think that hidden security assumptions are a bad idea in general. If you
want to limit memory allocations, make that explicit by using memory pools.
These can also improve performance because you do not have to deallocate
every single allocation, you can just deallocate the whole pool. Memory pools
can also help prevent memory leaks.

8.6 Get rid of boolean function arguments

The code currently has several functions like this:

get_coin_transactions(foo, bar, buz, GNUNET_OK, buf);

get_coin_transactions(foo, bar, buz, GNUNET_NO, buf);

It improves the code readability to instead move the boolean value into the
function name:

get_coin_transactions_including_recoup(foo, bur, buz, buf);

get_coin_transactions_without_recoup(foo, bur, buz, buf);

3See check_transfers_get_response_ok for an example.

[c o d e b l a u]
security concepts

19

It can also make auditing the code easier, because now you don’t need to
skip the cases you were not interested in to begin with.

[c o d e b l a u]
security concepts

20

9 Structural Recommendation

9.1 Least privilege

One of the most important principles in security engineering is the Principle
of Least Privilege. Code should run only with the permissions it really needs,
and an effort should be made to reduce the permissions it needs, so it can
be run with the lowest privileges. If necessary, a process can be split up into
a part that requires higher privilege but does very little actual work, and
a part that requires less privilege but has most of the risky attack surface
(like parsing). This is called Privilege Separation.

GNU Taler has had no work done in that direction. For example, we found
code that tries to read a crypto key from disk, but if it finds no key, it will
generate a new key and write it to disk. That is good from a convenience
perspective, but it is bad from a least privilege perspective, because it means
the process needs to have write access to the file system. This is not a huge
security risk because being able to read the key is already a full compromise,
but it illustrates the problem.

Future work about privilege separation could make sure the generic service
has neither read nor write access to any crypto keys.

9.2 File system access

The auditor accesses the file system for reading and writing. Since the actual
data is in the database, we think it would make sense to remove all remaining
file system accesses in the code base.

Then, the auditor itself could run in an isolated sandbox with no filesys-
tem access at all, for example with chroot or more modern Linux container
technology like filesystem namespaces or Seccomp.

That would reduce the attack surface for an attacker who manages to take
over the auditor process.

The biggest risk for such an attacker would be reading the various crypto
keys, so this work would not be sufficient.

9.3 Avoid dlopen

This ties in with the previous point about file system access, but it worth
mentioning on its own.

We recommend against allowing loading code modules at run time.

It means an attacker who is able to place something in the filesystem might
be able to get it loaded as code.

It also means that during the dlopen some internal data structures of the
dynamic linker need to be mapped writable to the process, which exposes

[c o d e b l a u]
security concepts

21

unnecessary attack surface. See RELRO ELF hardening for details.

9.4 Reduce reliance on PostgreSQL

The code currently relies on PostgreSQL not just for data storage but also as
enforcement mechanism for security properties like preventing race condi-
tions via database transactions.

This is generally good security practice, but it also carries significant risk.
If an attacker manages to take over any service that has database access,
that service could potentially corrupt the state in the database.

We suggest having a ”plan B” in case an attacker manages to get into a
position that would have allowed write access to the database. We suggest
implementing a mechanism for append-only logging of all transactions to
a separate machine via an API that only allows one operation: append log
record. That way even an attacker with full access to the database cannot
retroactively corrupt the records up to the moment of intrusion.

The logging service itself could even use a mechanism like hash chaining to
implement a tamper-evident log file.

[c o d e b l a u]
security concepts

https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro

22

A List of findings

Id
Pr
io
ri
ty

Se
ve
ri
ty

Ca
te
go
ry

Da
te
Su
bm
it
te
d

Su
m
m
ar
y

St
at
us

Re
so
lu
ti
on

61
46

no
rm
al

m
in
or

ex
ch
an
ge

20
20
-0
4-
02

Ta
le
r
ex
ch
an
ge
is
m
ul
ti
th
re
ad
ed
ye
t
us
es

GN
UN

ET
_S

TR
IN

GS
_a

bs
ol

ut
e_

ti
me

_t
o_

st
ri

ng
re
so
lv
ed

fi
xe
d

61
47

no
rm
al

tr
iv
ia
l

ex
ch
an
ge

20
20
-0
4-
02

bu
ff
er
to
o
sm
al
li
n
TA

LE
R_

am
ou

nt
2s

re
so
lv
ed

fi
xe
d

61
48

no
rm
al

tr
iv
ia
l

ex
ch
an
ge

20
20
-0
4-
02

TA
LE

R_
am

ou
nt

_n
or

ma
li

ze
is
O(
n)
w
he
re
O(
1)
w
ou
ld
ha
ve
su
ff
ic
ed

re
so
lv
ed

fi
xe
d

61
61

no
rm
al

fe
at
ur
e

ex
ch
an
ge

20
20
-0
4-
06

Su
gg
es
ti
on
:
Do
so
m
e
m
or
e
si
gn
at
ur
e
ch
ec
ks

co
nf
ir
m
ed

op
en

61
64

no
rm
al

m
in
or

ex
ch
an
ge

20
20
-0
4-
07

de
po

si
t_

cb
re
tu
rn
va
lu
e
(a
nd
co
de
)
ar
e
co
nf
us
in
g

re
so
lv
ed

fi
xe
d

61
70

no
rm
al

m
in
or

ex
ch
an
ge

20
20
-0
4-
08

co
nf
us
in
g
co
de
in

ve
ri

fy
_r

es
er

ve
_b

al
an

ce
re
so
lv
ed

fi
xe
d

61
71

no
rm
al

te
xt

ex
ch
an
ge

20
20
-0
4-
09

ty
po
in
js
on
di
ag
no
st
ic
m
es
sa
ge
in

wi
re

_o
ut

_c
b

re
so
lv
ed

fi
xe
d

61
72

no
rm
al

m
in
or

ex
ch
an
ge

20
20
-0
4-
09

A
re
32
-b
it
bu
ild
s
su
pp
or
te
d?

re
so
lv
ed

fi
xe
d

61
78

no
rm
al

tw
ea
k

ex
ch
an
ge

20
20
-0
4-
14

W
hy
do
w
e
ha
ve
le
ng
th
fi
el
ds
in
fi
xe
d-
le
ng
th
st
ru
ct
ur
es
?

fe
ed
ba
ck

op
en

61
81

no
rm
al

fe
at
ur
e

ex
ch
an
ge

20
20
-0
4-
15

Ex
ch
an
ge
sh
ou
ld
pr
ov
id
e
A
PI
fo
r
un
if
or
m
ly
di
st
ri
bu
te
d
se
ed
s

re
so
lv
ed

fi
xe
d

61
82

lo
w

te
xt

do
cu
m
en
ta
ti
on

20
20
-0
4-
15

Sp
ec
if
iy
th
e
de
ta
ils
fo
r
FD
H
in
GN
U
Ta
le
r

as
si
gn
ed

op
en

61
87

no
rm
al

tw
ea
k

ex
ch
an
ge

20
20
-0
4-
17

Re
du
nd
an
t
co
py
of

dk
i-

>i
ss

ue
.p

ro
pe

rt
ie

s.
fe

e_
de

po
si

t
re
so
lv
ed

fi
xe
d

61
88

no
ne

tw
ea
k

ex
ch
an
ge

20
20
-0
4-
17

Li
ft
bi
na
ry
ar
gu
m
en
ts
in
to
fu
nc
ti
on
na
m
es

co
nf
ir
m
ed

op
en

61
93

no
rm
al

m
in
or

ex
ch
an
ge

20
20
-0
4-
21

m
em
se
t
fo
r
cl
ea
ri
ng
ke
y
m
at
er
ia
l

re
so
lv
ed

fi
xe
d

61
94

no
rm
al

te
xt

ex
ch
an
ge

20
20
-0
4-
21

se
ri

al
iz

e_
de

no
mi

na
ti

on
_k

ey
NU
LL
ca
se
lo
ok
s
fi
sh
y

re
so
lv
ed

fi
xe
d

61
95

no
rm
al

m
aj
or

ex
ch
an
ge

20
20
-0
4-
21

in
te
ge
r
ov
er
fl
ow
in

de
se

ri
al

iz
e_

de
no

mi
na

ti
on

_k
ey

re
so
lv
ed

fi
xe
d

61
98

no
rm
al

m
in
or

ex
ch
an
ge

20
20
-0
4-
22

la
ng

ua
ge

_m
at

ch
es
ap
pe
ar
s
to
be
fu
nc
ti
on
al
ly
in
co
rr
ec
t

re
so
lv
ed

fi
xe
d

61
99

no
rm
al

tr
iv
ia
l

ex
ch
an
ge

20
20
-0
4-
22

lo
ad
in
g
th
e
te
rm
s
of
se
rv
ic
e
fi
le
s
in
to
m
em
or
y
se
em
s
w
as
te
fu
l

co
nf
ir
m
ed

op
en

62
00

no
rm
al

tw
ea
k

ex
ch
an
ge

20
20
-0
4-
22

po
st

gr
es

_g
et

_c
oi

n_
tr

an
sa

ct
io

ns
do
es
no
t
al
lo
w
fo
r
m
ul
ti
pl
e
de
po
si
t
tr
an
sa
ct
io
ns

re
so
lv
ed

fi
xe
d

62
13

lo
w

tr
iv
ia
l

ex
ch
an
ge

20
20
-0
4-
23

Be
tt
er
de
sc
ri
pt
io
n
of

TA
LE

R_
am

ou
nt

.f
ra

ct
io

n
re
so
lv
ed

fi
xe
d

62
14

lo
w

tw
ea
k

ex
ch
an
ge

20
20
-0
4-
23

Su
gg
es
ti
on
:
In
tr
od
uc
e
in
va
ri
an
ts
ch
ec
k
w
he
n
de
al
in
g
w
it
h
TA

LE
R_

EX
CH

AN
GE

DB
_T

ra
ns

ac
ti

on
Li

st
re
so
lv
ed

fi
xe
d

62
15

no
rm
al

tr
iv
ia
l

ex
ch
an
ge

20
20
-0
4-
23

co
nf
us
in
g/
w
ro
ng
ov
er
fl
ow
ch
ec
k
in

TA
LE

R_
st

ri
ng

_t
o_

am
ou

nt
re
so
lv
ed

fi
xe
d

62
18

no
rm
al

tw
ea
k

ex
ch
an
ge

20
20
-0
4-
23

in
te
ge
r
ov
er
fl
ow
in

bu
ff

er
_w

ri
te

_u
rl

en
co

de
re
so
lv
ed

fi
xe
d

62
19

no
rm
al

m
in
or

ex
ch
an
ge

20
20
-0
4-
23

in
te
ge
r
ov
er
fl
ow
in

ca
lc

ul
at

e_
ar

gu
me

nt
_l

en
gt

h
re
so
lv
ed

fi
xe
d

63
73

no
rm
al

tw
ea
k

ex
ch
an
ge

20
20
-0
6-
10

Si
m
pl
if
y
ch

ec
k_

fo
r_

de
no

mi
na

ti
on

_k
ey
by
m
ak
in
g
de

no
mi

na
ti

on
_k

ey
_l

oo
ku

p_
by

_h
as

h
De

no
mi

na
ti

on
Ke

yU
se

as
si
gn
ed

op
en

64
13

no
rm
al

tw
ea
k

au
di
to
r

20
20
-0
6-
24

No
t
en
ou
gh
ch
ec
ks
fo
r
de
po
si
ts

as
si
gn
ed

op
en

64
14

no
rm
al

te
xt

au
di
to
r

20
20
-0
6-
24

No
ch
ec
ks
fo
r
re
fu
nd
s
ta
bl
e
im
pl
em
en
te
d

as
si
gn
ed

op
en

64
16

no
rm
al

m
in
or

au
di
to
r

20
20
-0
6-
25

Sa
m
e
co

in
_p

ub
w
it
h
m
ul
ti
pl
e
de

no
m_

si
gs
-
a
pr
ob
le
m
?

as
si
gn
ed

op
en

[c o d e b l a u]
security concepts

https://bugs.gnunet.org/view.php?id=6146
https://bugs.gnunet.org/view.php?id=6147
https://bugs.gnunet.org/view.php?id=6148
https://bugs.gnunet.org/view.php?id=6161
https://bugs.gnunet.org/view.php?id=6164
https://bugs.gnunet.org/view.php?id=6170
https://bugs.gnunet.org/view.php?id=6171
https://bugs.gnunet.org/view.php?id=6172
https://bugs.gnunet.org/view.php?id=6178
https://bugs.gnunet.org/view.php?id=6181
https://bugs.gnunet.org/view.php?id=6182
https://bugs.gnunet.org/view.php?id=6187
https://bugs.gnunet.org/view.php?id=6188
https://bugs.gnunet.org/view.php?id=6193
https://bugs.gnunet.org/view.php?id=6194
https://bugs.gnunet.org/view.php?id=6195
https://bugs.gnunet.org/view.php?id=6198
https://bugs.gnunet.org/view.php?id=6199
https://bugs.gnunet.org/view.php?id=6200
https://bugs.gnunet.org/view.php?id=6213
https://bugs.gnunet.org/view.php?id=6214
https://bugs.gnunet.org/view.php?id=6215
https://bugs.gnunet.org/view.php?id=6218
https://bugs.gnunet.org/view.php?id=6219
https://bugs.gnunet.org/view.php?id=6373
https://bugs.gnunet.org/view.php?id=6413
https://bugs.gnunet.org/view.php?id=6414
https://bugs.gnunet.org/view.php?id=6416

	Management Summary
	General impressions

	I Code audit results
	Issues in the exchange
	6147: buffer too small in TALER_amount2s
	6193: memset for clearing key material
	6195: integer overflow in deserialize_denomination_key

	Issues in the auditor
	What to check for?
	6416: Same coin_pub with multiple denom_sigs

	Issues in GNUNET
	6146: GNUNET_STRINGS_absolute_time_to_string is not thread-safe
	6149: GNUNET_CRYPTO_eddsa_key_create_from_file is a really bad API
	6152: Using GNUNET_memcmp for comparing public keys
	6154: Integer overflow in GNUNET_STRINGS_buffer_fill

	General remarks on the code

	II Recommendations
	More specs and documentation
	Protocol change: API for uniformly distributed seeds
	Reduce code complexity
	Reduce global variables
	Callbacks, type punning
	Initializing structs with memset
	NULL pointer handling
	Hidden security assumptions
	Get rid of boolean function arguments

	Structural Recommendation
	Least privilege
	File system access
	Avoid dlopen
	Reduce reliance on PostgreSQL

	List of findings

