quickjs-tart

quickjs-based runtime for wallet-core logic
Log | Files | Refs | README | LICENSE

ecp.c (117841B)


      1 /*
      2  *  Elliptic curves over GF(p): generic functions
      3  *
      4  *  Copyright The Mbed TLS Contributors
      5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
      6  */
      7 
      8 /*
      9  * References:
     10  *
     11  * SEC1 https://www.secg.org/sec1-v2.pdf
     12  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
     13  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
     14  * RFC 4492 for the related TLS structures and constants
     15  * - https://www.rfc-editor.org/rfc/rfc4492
     16  * RFC 7748 for the Curve448 and Curve25519 curve definitions
     17  * - https://www.rfc-editor.org/rfc/rfc7748
     18  *
     19  * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
     20  *
     21  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
     22  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
     23  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
     24  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
     25  *
     26  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
     27  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
     28  *     ePrint Archive, 2004, vol. 2004, p. 342.
     29  *     <http://eprint.iacr.org/2004/342.pdf>
     30  */
     31 
     32 #include "common.h"
     33 
     34 /**
     35  * \brief Function level alternative implementation.
     36  *
     37  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
     38  * replace certain functions in this module. The alternative implementations are
     39  * typically hardware accelerators and need to activate the hardware before the
     40  * computation starts and deactivate it after it finishes. The
     41  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
     42  * this purpose.
     43  *
     44  * To preserve the correct functionality the following conditions must hold:
     45  *
     46  * - The alternative implementation must be activated by
     47  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
     48  *   called.
     49  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
     50  *   implementation is activated.
     51  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
     52  *   implementation is activated.
     53  * - Public functions must not return while the alternative implementation is
     54  *   activated.
     55  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
     56  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
     57  *   \endcode ensures that the alternative implementation supports the current
     58  *   group.
     59  */
     60 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
     61 #endif
     62 
     63 #if defined(MBEDTLS_ECP_LIGHT)
     64 
     65 #include "mbedtls/ecp.h"
     66 #include "mbedtls/threading.h"
     67 #include "mbedtls/platform_util.h"
     68 #include "mbedtls/error.h"
     69 
     70 #include "bn_mul.h"
     71 #include "ecp_invasive.h"
     72 
     73 #include <string.h>
     74 
     75 #if !defined(MBEDTLS_ECP_ALT)
     76 
     77 #include "mbedtls/platform.h"
     78 
     79 #include "ecp_internal_alt.h"
     80 
     81 #if defined(MBEDTLS_SELF_TEST)
     82 /*
     83  * Counts of point addition and doubling, and field multiplications.
     84  * Used to test resistance of point multiplication to simple timing attacks.
     85  */
     86 #if defined(MBEDTLS_ECP_C)
     87 static unsigned long add_count, dbl_count;
     88 #endif /* MBEDTLS_ECP_C */
     89 static unsigned long mul_count;
     90 #endif
     91 
     92 #if defined(MBEDTLS_ECP_RESTARTABLE)
     93 /*
     94  * Maximum number of "basic operations" to be done in a row.
     95  *
     96  * Default value 0 means that ECC operations will not yield.
     97  * Note that regardless of the value of ecp_max_ops, always at
     98  * least one step is performed before yielding.
     99  *
    100  * Setting ecp_max_ops=1 can be suitable for testing purposes
    101  * as it will interrupt computation at all possible points.
    102  */
    103 static unsigned ecp_max_ops = 0;
    104 
    105 /*
    106  * Set ecp_max_ops
    107  */
    108 void mbedtls_ecp_set_max_ops(unsigned max_ops)
    109 {
    110     ecp_max_ops = max_ops;
    111 }
    112 
    113 /*
    114  * Check if restart is enabled
    115  */
    116 int mbedtls_ecp_restart_is_enabled(void)
    117 {
    118     return ecp_max_ops != 0;
    119 }
    120 
    121 /*
    122  * Restart sub-context for ecp_mul_comb()
    123  */
    124 struct mbedtls_ecp_restart_mul {
    125     mbedtls_ecp_point R;    /* current intermediate result                  */
    126     size_t i;               /* current index in various loops, 0 outside    */
    127     mbedtls_ecp_point *T;   /* table for precomputed points                 */
    128     unsigned char T_size;   /* number of points in table T                  */
    129     enum {                  /* what were we doing last time we returned?    */
    130         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
    131         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
    132         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
    133         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
    134         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
    135         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
    136         ecp_rsm_final_norm,     /* do the final normalization               */
    137     } state;
    138 };
    139 
    140 /*
    141  * Init restart_mul sub-context
    142  */
    143 static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
    144 {
    145     mbedtls_ecp_point_init(&ctx->R);
    146     ctx->i = 0;
    147     ctx->T = NULL;
    148     ctx->T_size = 0;
    149     ctx->state = ecp_rsm_init;
    150 }
    151 
    152 /*
    153  * Free the components of a restart_mul sub-context
    154  */
    155 static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
    156 {
    157     unsigned char i;
    158 
    159     if (ctx == NULL) {
    160         return;
    161     }
    162 
    163     mbedtls_ecp_point_free(&ctx->R);
    164 
    165     if (ctx->T != NULL) {
    166         for (i = 0; i < ctx->T_size; i++) {
    167             mbedtls_ecp_point_free(ctx->T + i);
    168         }
    169         mbedtls_free(ctx->T);
    170     }
    171 
    172     ecp_restart_rsm_init(ctx);
    173 }
    174 
    175 /*
    176  * Restart context for ecp_muladd()
    177  */
    178 struct mbedtls_ecp_restart_muladd {
    179     mbedtls_ecp_point mP;       /* mP value                             */
    180     mbedtls_ecp_point R;        /* R intermediate result                */
    181     enum {                      /* what should we do next?              */
    182         ecp_rsma_mul1 = 0,      /* first multiplication                 */
    183         ecp_rsma_mul2,          /* second multiplication                */
    184         ecp_rsma_add,           /* addition                             */
    185         ecp_rsma_norm,          /* normalization                        */
    186     } state;
    187 };
    188 
    189 /*
    190  * Init restart_muladd sub-context
    191  */
    192 static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
    193 {
    194     mbedtls_ecp_point_init(&ctx->mP);
    195     mbedtls_ecp_point_init(&ctx->R);
    196     ctx->state = ecp_rsma_mul1;
    197 }
    198 
    199 /*
    200  * Free the components of a restart_muladd sub-context
    201  */
    202 static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
    203 {
    204     if (ctx == NULL) {
    205         return;
    206     }
    207 
    208     mbedtls_ecp_point_free(&ctx->mP);
    209     mbedtls_ecp_point_free(&ctx->R);
    210 
    211     ecp_restart_ma_init(ctx);
    212 }
    213 
    214 /*
    215  * Initialize a restart context
    216  */
    217 void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
    218 {
    219     ctx->ops_done = 0;
    220     ctx->depth = 0;
    221     ctx->rsm = NULL;
    222     ctx->ma = NULL;
    223 }
    224 
    225 /*
    226  * Free the components of a restart context
    227  */
    228 void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
    229 {
    230     if (ctx == NULL) {
    231         return;
    232     }
    233 
    234     ecp_restart_rsm_free(ctx->rsm);
    235     mbedtls_free(ctx->rsm);
    236 
    237     ecp_restart_ma_free(ctx->ma);
    238     mbedtls_free(ctx->ma);
    239 
    240     mbedtls_ecp_restart_init(ctx);
    241 }
    242 
    243 /*
    244  * Check if we can do the next step
    245  */
    246 int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
    247                              mbedtls_ecp_restart_ctx *rs_ctx,
    248                              unsigned ops)
    249 {
    250     if (rs_ctx != NULL && ecp_max_ops != 0) {
    251         /* scale depending on curve size: the chosen reference is 256-bit,
    252          * and multiplication is quadratic. Round to the closest integer. */
    253         if (grp->pbits >= 512) {
    254             ops *= 4;
    255         } else if (grp->pbits >= 384) {
    256             ops *= 2;
    257         }
    258 
    259         /* Avoid infinite loops: always allow first step.
    260          * Because of that, however, it's not generally true
    261          * that ops_done <= ecp_max_ops, so the check
    262          * ops_done > ecp_max_ops below is mandatory. */
    263         if ((rs_ctx->ops_done != 0) &&
    264             (rs_ctx->ops_done > ecp_max_ops ||
    265              ops > ecp_max_ops - rs_ctx->ops_done)) {
    266             return MBEDTLS_ERR_ECP_IN_PROGRESS;
    267         }
    268 
    269         /* update running count */
    270         rs_ctx->ops_done += ops;
    271     }
    272 
    273     return 0;
    274 }
    275 
    276 /* Call this when entering a function that needs its own sub-context */
    277 #define ECP_RS_ENTER(SUB)   do {                                      \
    278         /* reset ops count for this call if top-level */                    \
    279         if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
    280         rs_ctx->ops_done = 0;                                           \
    281                                                                         \
    282         /* set up our own sub-context if needed */                          \
    283         if (mbedtls_ecp_restart_is_enabled() &&                             \
    284             rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
    285         {                                                                   \
    286             rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
    287             if (rs_ctx->SUB == NULL)                                       \
    288             return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
    289                                                                       \
    290             ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
    291         }                                                                   \
    292 } while (0)
    293 
    294 /* Call this when leaving a function that needs its own sub-context */
    295 #define ECP_RS_LEAVE(SUB)   do {                                      \
    296         /* clear our sub-context when not in progress (done or error) */    \
    297         if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
    298             ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
    299         {                                                                   \
    300             ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
    301             mbedtls_free(rs_ctx->SUB);                                    \
    302             rs_ctx->SUB = NULL;                                             \
    303         }                                                                   \
    304                                                                         \
    305         if (rs_ctx != NULL)                                                \
    306         rs_ctx->depth--;                                                \
    307 } while (0)
    308 
    309 #else /* MBEDTLS_ECP_RESTARTABLE */
    310 
    311 #define ECP_RS_ENTER(sub)     (void) rs_ctx;
    312 #define ECP_RS_LEAVE(sub)     (void) rs_ctx;
    313 
    314 #endif /* MBEDTLS_ECP_RESTARTABLE */
    315 
    316 #if defined(MBEDTLS_ECP_C)
    317 static void mpi_init_many(mbedtls_mpi *arr, size_t size)
    318 {
    319     while (size--) {
    320         mbedtls_mpi_init(arr++);
    321     }
    322 }
    323 
    324 static void mpi_free_many(mbedtls_mpi *arr, size_t size)
    325 {
    326     while (size--) {
    327         mbedtls_mpi_free(arr++);
    328     }
    329 }
    330 #endif /* MBEDTLS_ECP_C */
    331 
    332 /*
    333  * List of supported curves:
    334  *  - internal ID
    335  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
    336  *  - size in bits
    337  *  - readable name
    338  *
    339  * Curves are listed in order: largest curves first, and for a given size,
    340  * fastest curves first.
    341  *
    342  * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
    343  */
    344 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
    345 {
    346 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
    347     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
    348 #endif
    349 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
    350     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
    351 #endif
    352 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
    353     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
    354 #endif
    355 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
    356     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
    357 #endif
    358 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
    359     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
    360 #endif
    361 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
    362     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
    363 #endif
    364 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
    365     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
    366 #endif
    367 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
    368     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
    369 #endif
    370 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
    371     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
    372 #endif
    373 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
    374     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
    375 #endif
    376 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
    377     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
    378 #endif
    379 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
    380     { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
    381 #endif
    382 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
    383     { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
    384 #endif
    385     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
    386 };
    387 
    388 #define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
    389     sizeof(ecp_supported_curves[0])
    390 
    391 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
    392 
    393 /*
    394  * List of supported curves and associated info
    395  */
    396 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
    397 {
    398     return ecp_supported_curves;
    399 }
    400 
    401 /*
    402  * List of supported curves, group ID only
    403  */
    404 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
    405 {
    406     static int init_done = 0;
    407 
    408     if (!init_done) {
    409         size_t i = 0;
    410         const mbedtls_ecp_curve_info *curve_info;
    411 
    412         for (curve_info = mbedtls_ecp_curve_list();
    413              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
    414              curve_info++) {
    415             ecp_supported_grp_id[i++] = curve_info->grp_id;
    416         }
    417         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
    418 
    419         init_done = 1;
    420     }
    421 
    422     return ecp_supported_grp_id;
    423 }
    424 
    425 /*
    426  * Get the curve info for the internal identifier
    427  */
    428 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
    429 {
    430     const mbedtls_ecp_curve_info *curve_info;
    431 
    432     for (curve_info = mbedtls_ecp_curve_list();
    433          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
    434          curve_info++) {
    435         if (curve_info->grp_id == grp_id) {
    436             return curve_info;
    437         }
    438     }
    439 
    440     return NULL;
    441 }
    442 
    443 /*
    444  * Get the curve info from the TLS identifier
    445  */
    446 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
    447 {
    448     const mbedtls_ecp_curve_info *curve_info;
    449 
    450     for (curve_info = mbedtls_ecp_curve_list();
    451          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
    452          curve_info++) {
    453         if (curve_info->tls_id == tls_id) {
    454             return curve_info;
    455         }
    456     }
    457 
    458     return NULL;
    459 }
    460 
    461 /*
    462  * Get the curve info from the name
    463  */
    464 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
    465 {
    466     const mbedtls_ecp_curve_info *curve_info;
    467 
    468     if (name == NULL) {
    469         return NULL;
    470     }
    471 
    472     for (curve_info = mbedtls_ecp_curve_list();
    473          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
    474          curve_info++) {
    475         if (strcmp(curve_info->name, name) == 0) {
    476             return curve_info;
    477         }
    478     }
    479 
    480     return NULL;
    481 }
    482 
    483 /*
    484  * Get the type of a curve
    485  */
    486 mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
    487 {
    488     if (grp->G.X.p == NULL) {
    489         return MBEDTLS_ECP_TYPE_NONE;
    490     }
    491 
    492     if (grp->G.Y.p == NULL) {
    493         return MBEDTLS_ECP_TYPE_MONTGOMERY;
    494     } else {
    495         return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
    496     }
    497 }
    498 
    499 /*
    500  * Initialize (the components of) a point
    501  */
    502 void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
    503 {
    504     mbedtls_mpi_init(&pt->X);
    505     mbedtls_mpi_init(&pt->Y);
    506     mbedtls_mpi_init(&pt->Z);
    507 }
    508 
    509 /*
    510  * Initialize (the components of) a group
    511  */
    512 void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
    513 {
    514     grp->id = MBEDTLS_ECP_DP_NONE;
    515     mbedtls_mpi_init(&grp->P);
    516     mbedtls_mpi_init(&grp->A);
    517     mbedtls_mpi_init(&grp->B);
    518     mbedtls_ecp_point_init(&grp->G);
    519     mbedtls_mpi_init(&grp->N);
    520     grp->pbits = 0;
    521     grp->nbits = 0;
    522     grp->h = 0;
    523     grp->modp = NULL;
    524     grp->t_pre = NULL;
    525     grp->t_post = NULL;
    526     grp->t_data = NULL;
    527     grp->T = NULL;
    528     grp->T_size = 0;
    529 }
    530 
    531 /*
    532  * Initialize (the components of) a key pair
    533  */
    534 void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
    535 {
    536     mbedtls_ecp_group_init(&key->grp);
    537     mbedtls_mpi_init(&key->d);
    538     mbedtls_ecp_point_init(&key->Q);
    539 }
    540 
    541 /*
    542  * Unallocate (the components of) a point
    543  */
    544 void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
    545 {
    546     if (pt == NULL) {
    547         return;
    548     }
    549 
    550     mbedtls_mpi_free(&(pt->X));
    551     mbedtls_mpi_free(&(pt->Y));
    552     mbedtls_mpi_free(&(pt->Z));
    553 }
    554 
    555 /*
    556  * Check that the comb table (grp->T) is static initialized.
    557  */
    558 static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
    559 {
    560 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
    561     return grp->T != NULL && grp->T_size == 0;
    562 #else
    563     (void) grp;
    564     return 0;
    565 #endif
    566 }
    567 
    568 /*
    569  * Unallocate (the components of) a group
    570  */
    571 void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
    572 {
    573     size_t i;
    574 
    575     if (grp == NULL) {
    576         return;
    577     }
    578 
    579     if (grp->h != 1) {
    580         mbedtls_mpi_free(&grp->A);
    581         mbedtls_mpi_free(&grp->B);
    582         mbedtls_ecp_point_free(&grp->G);
    583 
    584 #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
    585         mbedtls_mpi_free(&grp->N);
    586         mbedtls_mpi_free(&grp->P);
    587 #endif
    588     }
    589 
    590     if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
    591         for (i = 0; i < grp->T_size; i++) {
    592             mbedtls_ecp_point_free(&grp->T[i]);
    593         }
    594         mbedtls_free(grp->T);
    595     }
    596 
    597     mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
    598 }
    599 
    600 /*
    601  * Unallocate (the components of) a key pair
    602  */
    603 void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
    604 {
    605     if (key == NULL) {
    606         return;
    607     }
    608 
    609     mbedtls_ecp_group_free(&key->grp);
    610     mbedtls_mpi_free(&key->d);
    611     mbedtls_ecp_point_free(&key->Q);
    612 }
    613 
    614 /*
    615  * Copy the contents of a point
    616  */
    617 int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
    618 {
    619     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    620     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
    621     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
    622     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
    623 
    624 cleanup:
    625     return ret;
    626 }
    627 
    628 /*
    629  * Copy the contents of a group object
    630  */
    631 int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
    632 {
    633     return mbedtls_ecp_group_load(dst, src->id);
    634 }
    635 
    636 /*
    637  * Set point to zero
    638  */
    639 int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
    640 {
    641     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    642     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
    643     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
    644     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
    645 
    646 cleanup:
    647     return ret;
    648 }
    649 
    650 /*
    651  * Tell if a point is zero
    652  */
    653 int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
    654 {
    655     return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
    656 }
    657 
    658 /*
    659  * Compare two points lazily
    660  */
    661 int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
    662                           const mbedtls_ecp_point *Q)
    663 {
    664     if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
    665         mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
    666         mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
    667         return 0;
    668     }
    669 
    670     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    671 }
    672 
    673 /*
    674  * Import a non-zero point from ASCII strings
    675  */
    676 int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
    677                                   const char *x, const char *y)
    678 {
    679     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    680     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
    681     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
    682     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
    683 
    684 cleanup:
    685     return ret;
    686 }
    687 
    688 /*
    689  * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
    690  */
    691 int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
    692                                    const mbedtls_ecp_point *P,
    693                                    int format, size_t *olen,
    694                                    unsigned char *buf, size_t buflen)
    695 {
    696     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
    697     size_t plen;
    698     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
    699         format != MBEDTLS_ECP_PF_COMPRESSED) {
    700         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    701     }
    702 
    703     plen = mbedtls_mpi_size(&grp->P);
    704 
    705 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
    706     (void) format; /* Montgomery curves always use the same point format */
    707     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
    708         *olen = plen;
    709         if (buflen < *olen) {
    710             return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
    711         }
    712 
    713         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
    714     }
    715 #endif
    716 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
    717     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
    718         /*
    719          * Common case: P == 0
    720          */
    721         if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
    722             if (buflen < 1) {
    723                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
    724             }
    725 
    726             buf[0] = 0x00;
    727             *olen = 1;
    728 
    729             return 0;
    730         }
    731 
    732         if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
    733             *olen = 2 * plen + 1;
    734 
    735             if (buflen < *olen) {
    736                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
    737             }
    738 
    739             buf[0] = 0x04;
    740             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
    741             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
    742         } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
    743             *olen = plen + 1;
    744 
    745             if (buflen < *olen) {
    746                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
    747             }
    748 
    749             buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
    750             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
    751         }
    752     }
    753 #endif
    754 
    755 cleanup:
    756     return ret;
    757 }
    758 
    759 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
    760 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
    761                                    const mbedtls_mpi *X,
    762                                    mbedtls_mpi *Y,
    763                                    int parity_bit);
    764 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
    765 
    766 /*
    767  * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
    768  */
    769 int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
    770                                   mbedtls_ecp_point *pt,
    771                                   const unsigned char *buf, size_t ilen)
    772 {
    773     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
    774     size_t plen;
    775     if (ilen < 1) {
    776         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    777     }
    778 
    779     plen = mbedtls_mpi_size(&grp->P);
    780 
    781 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
    782     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
    783         if (plen != ilen) {
    784             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    785         }
    786 
    787         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
    788         mbedtls_mpi_free(&pt->Y);
    789 
    790         if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
    791             /* Set most significant bit to 0 as prescribed in RFC7748 ยง5 */
    792             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
    793         }
    794 
    795         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
    796     }
    797 #endif
    798 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
    799     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
    800         if (buf[0] == 0x00) {
    801             if (ilen == 1) {
    802                 return mbedtls_ecp_set_zero(pt);
    803             } else {
    804                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    805             }
    806         }
    807 
    808         if (ilen < 1 + plen) {
    809             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    810         }
    811 
    812         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
    813         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
    814 
    815         if (buf[0] == 0x04) {
    816             /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
    817             if (ilen != 1 + plen * 2) {
    818                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    819             }
    820             return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
    821         } else if (buf[0] == 0x02 || buf[0] == 0x03) {
    822             /* format == MBEDTLS_ECP_PF_COMPRESSED */
    823             if (ilen != 1 + plen) {
    824                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    825             }
    826             return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
    827                                            (buf[0] & 1));
    828         } else {
    829             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    830         }
    831     }
    832 #endif
    833 
    834 cleanup:
    835     return ret;
    836 }
    837 
    838 /*
    839  * Import a point from a TLS ECPoint record (RFC 4492)
    840  *      struct {
    841  *          opaque point <1..2^8-1>;
    842  *      } ECPoint;
    843  */
    844 int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
    845                                mbedtls_ecp_point *pt,
    846                                const unsigned char **buf, size_t buf_len)
    847 {
    848     unsigned char data_len;
    849     const unsigned char *buf_start;
    850     /*
    851      * We must have at least two bytes (1 for length, at least one for data)
    852      */
    853     if (buf_len < 2) {
    854         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    855     }
    856 
    857     data_len = *(*buf)++;
    858     if (data_len < 1 || data_len > buf_len - 1) {
    859         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    860     }
    861 
    862     /*
    863      * Save buffer start for read_binary and update buf
    864      */
    865     buf_start = *buf;
    866     *buf += data_len;
    867 
    868     return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
    869 }
    870 
    871 /*
    872  * Export a point as a TLS ECPoint record (RFC 4492)
    873  *      struct {
    874  *          opaque point <1..2^8-1>;
    875  *      } ECPoint;
    876  */
    877 int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
    878                                 int format, size_t *olen,
    879                                 unsigned char *buf, size_t blen)
    880 {
    881     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    882     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
    883         format != MBEDTLS_ECP_PF_COMPRESSED) {
    884         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    885     }
    886 
    887     /*
    888      * buffer length must be at least one, for our length byte
    889      */
    890     if (blen < 1) {
    891         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    892     }
    893 
    894     if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
    895                                               olen, buf + 1, blen - 1)) != 0) {
    896         return ret;
    897     }
    898 
    899     /*
    900      * write length to the first byte and update total length
    901      */
    902     buf[0] = (unsigned char) *olen;
    903     ++*olen;
    904 
    905     return 0;
    906 }
    907 
    908 /*
    909  * Set a group from an ECParameters record (RFC 4492)
    910  */
    911 int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
    912                                const unsigned char **buf, size_t len)
    913 {
    914     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    915     mbedtls_ecp_group_id grp_id;
    916     if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
    917         return ret;
    918     }
    919 
    920     return mbedtls_ecp_group_load(grp, grp_id);
    921 }
    922 
    923 /*
    924  * Read a group id from an ECParameters record (RFC 4492) and convert it to
    925  * mbedtls_ecp_group_id.
    926  */
    927 int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
    928                                   const unsigned char **buf, size_t len)
    929 {
    930     uint16_t tls_id;
    931     const mbedtls_ecp_curve_info *curve_info;
    932     /*
    933      * We expect at least three bytes (see below)
    934      */
    935     if (len < 3) {
    936         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    937     }
    938 
    939     /*
    940      * First byte is curve_type; only named_curve is handled
    941      */
    942     if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
    943         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    944     }
    945 
    946     /*
    947      * Next two bytes are the namedcurve value
    948      */
    949     tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
    950     *buf += 2;
    951 
    952     if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
    953         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
    954     }
    955 
    956     *grp = curve_info->grp_id;
    957 
    958     return 0;
    959 }
    960 
    961 /*
    962  * Write the ECParameters record corresponding to a group (RFC 4492)
    963  */
    964 int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
    965                                 unsigned char *buf, size_t blen)
    966 {
    967     const mbedtls_ecp_curve_info *curve_info;
    968     if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
    969         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    970     }
    971 
    972     /*
    973      * We are going to write 3 bytes (see below)
    974      */
    975     *olen = 3;
    976     if (blen < *olen) {
    977         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
    978     }
    979 
    980     /*
    981      * First byte is curve_type, always named_curve
    982      */
    983     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
    984 
    985     /*
    986      * Next two bytes are the namedcurve value
    987      */
    988     MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
    989 
    990     return 0;
    991 }
    992 
    993 /*
    994  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
    995  * See the documentation of struct mbedtls_ecp_group.
    996  *
    997  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
    998  */
    999 static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
   1000 {
   1001     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1002 
   1003     if (grp->modp == NULL) {
   1004         return mbedtls_mpi_mod_mpi(N, N, &grp->P);
   1005     }
   1006 
   1007     /* N->s < 0 is a much faster test, which fails only if N is 0 */
   1008     if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
   1009         mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
   1010         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   1011     }
   1012 
   1013     MBEDTLS_MPI_CHK(grp->modp(N));
   1014 
   1015     /* N->s < 0 is a much faster test, which fails only if N is 0 */
   1016     while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
   1017         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
   1018     }
   1019 
   1020     while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
   1021         /* we known P, N and the result are positive */
   1022         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
   1023     }
   1024 
   1025 cleanup:
   1026     return ret;
   1027 }
   1028 
   1029 /*
   1030  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
   1031  *
   1032  * In order to guarantee that, we need to ensure that operands of
   1033  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
   1034  * bring the result back to this range.
   1035  *
   1036  * The following macros are shortcuts for doing that.
   1037  */
   1038 
   1039 /*
   1040  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
   1041  */
   1042 #if defined(MBEDTLS_SELF_TEST)
   1043 #define INC_MUL_COUNT   mul_count++;
   1044 #else
   1045 #define INC_MUL_COUNT
   1046 #endif
   1047 
   1048 #define MOD_MUL(N)                                                    \
   1049     do                                                                  \
   1050     {                                                                   \
   1051         MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
   1052         INC_MUL_COUNT                                                   \
   1053     } while (0)
   1054 
   1055 static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
   1056                                       mbedtls_mpi *X,
   1057                                       const mbedtls_mpi *A,
   1058                                       const mbedtls_mpi *B)
   1059 {
   1060     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1061     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
   1062     MOD_MUL(*X);
   1063 cleanup:
   1064     return ret;
   1065 }
   1066 
   1067 /*
   1068  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
   1069  * N->s < 0 is a very fast test, which fails only if N is 0
   1070  */
   1071 #define MOD_SUB(N)                                                          \
   1072     do {                                                                      \
   1073         while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \
   1074         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \
   1075     } while (0)
   1076 
   1077 MBEDTLS_MAYBE_UNUSED
   1078 static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
   1079                                       mbedtls_mpi *X,
   1080                                       const mbedtls_mpi *A,
   1081                                       const mbedtls_mpi *B)
   1082 {
   1083     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1084     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
   1085     MOD_SUB(X);
   1086 cleanup:
   1087     return ret;
   1088 }
   1089 
   1090 /*
   1091  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
   1092  * We known P, N and the result are positive, so sub_abs is correct, and
   1093  * a bit faster.
   1094  */
   1095 #define MOD_ADD(N)                                                   \
   1096     while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \
   1097     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
   1098 
   1099 static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
   1100                                       mbedtls_mpi *X,
   1101                                       const mbedtls_mpi *A,
   1102                                       const mbedtls_mpi *B)
   1103 {
   1104     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1105     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
   1106     MOD_ADD(X);
   1107 cleanup:
   1108     return ret;
   1109 }
   1110 
   1111 MBEDTLS_MAYBE_UNUSED
   1112 static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
   1113                                           mbedtls_mpi *X,
   1114                                           const mbedtls_mpi *A,
   1115                                           mbedtls_mpi_uint c)
   1116 {
   1117     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1118 
   1119     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
   1120     MOD_ADD(X);
   1121 cleanup:
   1122     return ret;
   1123 }
   1124 
   1125 MBEDTLS_MAYBE_UNUSED
   1126 static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
   1127                                           mbedtls_mpi *X,
   1128                                           const mbedtls_mpi *A,
   1129                                           mbedtls_mpi_uint c)
   1130 {
   1131     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1132 
   1133     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
   1134     MOD_SUB(X);
   1135 cleanup:
   1136     return ret;
   1137 }
   1138 
   1139 #define MPI_ECP_SUB_INT(X, A, c)             \
   1140     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
   1141 
   1142 MBEDTLS_MAYBE_UNUSED
   1143 static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
   1144                                           mbedtls_mpi *X,
   1145                                           size_t count)
   1146 {
   1147     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1148     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
   1149     MOD_ADD(X);
   1150 cleanup:
   1151     return ret;
   1152 }
   1153 
   1154 /*
   1155  * Macro wrappers around ECP modular arithmetic
   1156  *
   1157  * Currently, these wrappers are defined via the bignum module.
   1158  */
   1159 
   1160 #define MPI_ECP_ADD(X, A, B)                                                  \
   1161     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
   1162 
   1163 #define MPI_ECP_SUB(X, A, B)                                                  \
   1164     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
   1165 
   1166 #define MPI_ECP_MUL(X, A, B)                                                  \
   1167     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
   1168 
   1169 #define MPI_ECP_SQR(X, A)                                                     \
   1170     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
   1171 
   1172 #define MPI_ECP_MUL_INT(X, A, c)                                              \
   1173     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
   1174 
   1175 #define MPI_ECP_INV(dst, src)                                                 \
   1176     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
   1177 
   1178 #define MPI_ECP_MOV(X, A)                                                     \
   1179     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
   1180 
   1181 #define MPI_ECP_SHIFT_L(X, count)                                             \
   1182     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
   1183 
   1184 #define MPI_ECP_LSET(X, c)                                                    \
   1185     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
   1186 
   1187 #define MPI_ECP_CMP_INT(X, c)                                                 \
   1188     mbedtls_mpi_cmp_int(X, c)
   1189 
   1190 #define MPI_ECP_CMP(X, Y)                                                     \
   1191     mbedtls_mpi_cmp_mpi(X, Y)
   1192 
   1193 /* Needs f_rng, p_rng to be defined. */
   1194 #define MPI_ECP_RAND(X)                                                       \
   1195     MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
   1196 
   1197 /* Conditional negation
   1198  * Needs grp and a temporary MPI tmp to be defined. */
   1199 #define MPI_ECP_COND_NEG(X, cond)                                        \
   1200     do                                                                     \
   1201     {                                                                      \
   1202         unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \
   1203         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \
   1204         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \
   1205                                                      nonzero & cond)); \
   1206     } while (0)
   1207 
   1208 #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
   1209 
   1210 #define MPI_ECP_VALID(X)                      \
   1211     ((X)->p != NULL)
   1212 
   1213 #define MPI_ECP_COND_ASSIGN(X, Y, cond)       \
   1214     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
   1215 
   1216 #define MPI_ECP_COND_SWAP(X, Y, cond)       \
   1217     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
   1218 
   1219 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   1220 
   1221 /*
   1222  * Computes the right-hand side of the Short Weierstrass equation
   1223  * RHS = X^3 + A X + B
   1224  */
   1225 static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
   1226                       mbedtls_mpi *rhs,
   1227                       const mbedtls_mpi *X)
   1228 {
   1229     int ret;
   1230 
   1231     /* Compute X^3 + A X + B as X (X^2 + A) + B */
   1232     MPI_ECP_SQR(rhs, X);
   1233 
   1234     /* Special case for A = -3 */
   1235     if (mbedtls_ecp_group_a_is_minus_3(grp)) {
   1236         MPI_ECP_SUB_INT(rhs, rhs, 3);
   1237     } else {
   1238         MPI_ECP_ADD(rhs, rhs, &grp->A);
   1239     }
   1240 
   1241     MPI_ECP_MUL(rhs, rhs, X);
   1242     MPI_ECP_ADD(rhs, rhs, &grp->B);
   1243 
   1244 cleanup:
   1245     return ret;
   1246 }
   1247 
   1248 /*
   1249  * Derive Y from X and a parity bit
   1250  */
   1251 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
   1252                                    const mbedtls_mpi *X,
   1253                                    mbedtls_mpi *Y,
   1254                                    int parity_bit)
   1255 {
   1256     /* w = y^2 = x^3 + ax + b
   1257      * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)
   1258      *
   1259      * Note: this method for extracting square root does not validate that w
   1260      * was indeed a square so this function will return garbage in Y if X
   1261      * does not correspond to a point on the curve.
   1262      */
   1263 
   1264     /* Check prerequisite p = 3 mod 4 */
   1265     if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
   1266         mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
   1267         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   1268     }
   1269 
   1270     int ret;
   1271     mbedtls_mpi exp;
   1272     mbedtls_mpi_init(&exp);
   1273 
   1274     /* use Y to store intermediate result, actually w above */
   1275     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
   1276 
   1277     /* w = y^2 */ /* Y contains y^2 intermediate result */
   1278     /* exp = ((p+1)/4) */
   1279     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
   1280     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
   1281     /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */
   1282     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
   1283 
   1284     /* check parity bit match or else invert Y */
   1285     /* This quick inversion implementation is valid because Y != 0 for all
   1286      * Short Weierstrass curves supported by mbedtls, as each supported curve
   1287      * has an order that is a large prime, so each supported curve does not
   1288      * have any point of order 2, and a point with Y == 0 would be of order 2 */
   1289     if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
   1290         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
   1291     }
   1292 
   1293 cleanup:
   1294 
   1295     mbedtls_mpi_free(&exp);
   1296     return ret;
   1297 }
   1298 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   1299 
   1300 #if defined(MBEDTLS_ECP_C)
   1301 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   1302 /*
   1303  * For curves in short Weierstrass form, we do all the internal operations in
   1304  * Jacobian coordinates.
   1305  *
   1306  * For multiplication, we'll use a comb method with countermeasures against
   1307  * SPA, hence timing attacks.
   1308  */
   1309 
   1310 /*
   1311  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
   1312  * Cost: 1N := 1I + 3M + 1S
   1313  */
   1314 static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
   1315 {
   1316     if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
   1317         return 0;
   1318     }
   1319 
   1320 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
   1321     if (mbedtls_internal_ecp_grp_capable(grp)) {
   1322         return mbedtls_internal_ecp_normalize_jac(grp, pt);
   1323     }
   1324 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
   1325 
   1326 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
   1327     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   1328 #else
   1329     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1330     mbedtls_mpi T;
   1331     mbedtls_mpi_init(&T);
   1332 
   1333     MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */
   1334     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */
   1335     MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */
   1336     MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */
   1337     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */
   1338 
   1339     MPI_ECP_LSET(&pt->Z, 1);
   1340 
   1341 cleanup:
   1342 
   1343     mbedtls_mpi_free(&T);
   1344 
   1345     return ret;
   1346 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
   1347 }
   1348 
   1349 /*
   1350  * Normalize jacobian coordinates of an array of (pointers to) points,
   1351  * using Montgomery's trick to perform only one inversion mod P.
   1352  * (See for example Cohen's "A Course in Computational Algebraic Number
   1353  * Theory", Algorithm 10.3.4.)
   1354  *
   1355  * Warning: fails (returning an error) if one of the points is zero!
   1356  * This should never happen, see choice of w in ecp_mul_comb().
   1357  *
   1358  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
   1359  */
   1360 static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
   1361                                   mbedtls_ecp_point *T[], size_t T_size)
   1362 {
   1363     if (T_size < 2) {
   1364         return ecp_normalize_jac(grp, *T);
   1365     }
   1366 
   1367 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
   1368     if (mbedtls_internal_ecp_grp_capable(grp)) {
   1369         return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
   1370     }
   1371 #endif
   1372 
   1373 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
   1374     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   1375 #else
   1376     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1377     size_t i;
   1378     mbedtls_mpi *c, t;
   1379 
   1380     if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
   1381         return MBEDTLS_ERR_ECP_ALLOC_FAILED;
   1382     }
   1383 
   1384     mbedtls_mpi_init(&t);
   1385 
   1386     mpi_init_many(c, T_size);
   1387     /*
   1388      * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1
   1389      */
   1390     MPI_ECP_MOV(&c[0], &T[0]->Z);
   1391     for (i = 1; i < T_size; i++) {
   1392         MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
   1393     }
   1394 
   1395     /*
   1396      * c[n] = 1 / (Z_0 * ... * Z_n) mod P
   1397      */
   1398     MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
   1399 
   1400     for (i = T_size - 1;; i--) {
   1401         /* At the start of iteration i (note that i decrements), we have
   1402          * - c[j] = Z_0 * .... * Z_j        for j  < i,
   1403          * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,
   1404          *
   1405          * This is maintained via
   1406          * - c[i-1] <- c[i] * Z_i
   1407          *
   1408          * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
   1409          * to do the actual normalization. For i==0, we already have
   1410          * c[0] = 1 / Z_0.
   1411          */
   1412 
   1413         if (i > 0) {
   1414             /* Compute 1/Z_i and establish invariant for the next iteration. */
   1415             MPI_ECP_MUL(&t,      &c[i], &c[i-1]);
   1416             MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
   1417         } else {
   1418             MPI_ECP_MOV(&t, &c[0]);
   1419         }
   1420 
   1421         /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
   1422         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
   1423         MPI_ECP_SQR(&t,       &t);
   1424         MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
   1425         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
   1426 
   1427         /*
   1428          * Post-precessing: reclaim some memory by shrinking coordinates
   1429          * - not storing Z (always 1)
   1430          * - shrinking other coordinates, but still keeping the same number of
   1431          *   limbs as P, as otherwise it will too likely be regrown too fast.
   1432          */
   1433         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
   1434         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
   1435 
   1436         MPI_ECP_LSET(&T[i]->Z, 1);
   1437 
   1438         if (i == 0) {
   1439             break;
   1440         }
   1441     }
   1442 
   1443 cleanup:
   1444 
   1445     mbedtls_mpi_free(&t);
   1446     mpi_free_many(c, T_size);
   1447     mbedtls_free(c);
   1448 
   1449     return ret;
   1450 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
   1451 }
   1452 
   1453 /*
   1454  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
   1455  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
   1456  */
   1457 static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
   1458                                mbedtls_ecp_point *Q,
   1459                                unsigned char inv)
   1460 {
   1461     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1462     mbedtls_mpi tmp;
   1463     mbedtls_mpi_init(&tmp);
   1464 
   1465     MPI_ECP_COND_NEG(&Q->Y, inv);
   1466 
   1467 cleanup:
   1468     mbedtls_mpi_free(&tmp);
   1469     return ret;
   1470 }
   1471 
   1472 /*
   1473  * Point doubling R = 2 P, Jacobian coordinates
   1474  *
   1475  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
   1476  *
   1477  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
   1478  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
   1479  *
   1480  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
   1481  *
   1482  * Cost: 1D := 3M + 4S          (A ==  0)
   1483  *             4M + 4S          (A == -3)
   1484  *             3M + 6S + 1a     otherwise
   1485  */
   1486 static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   1487                           const mbedtls_ecp_point *P,
   1488                           mbedtls_mpi tmp[4])
   1489 {
   1490 #if defined(MBEDTLS_SELF_TEST)
   1491     dbl_count++;
   1492 #endif
   1493 
   1494 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
   1495     if (mbedtls_internal_ecp_grp_capable(grp)) {
   1496         return mbedtls_internal_ecp_double_jac(grp, R, P);
   1497     }
   1498 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
   1499 
   1500 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
   1501     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   1502 #else
   1503     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1504 
   1505     /* Special case for A = -3 */
   1506     if (mbedtls_ecp_group_a_is_minus_3(grp)) {
   1507         /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
   1508         MPI_ECP_SQR(&tmp[1],  &P->Z);
   1509         MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);
   1510         MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);
   1511         MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);
   1512         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);
   1513     } else {
   1514         /* tmp[0] <- M = 3.X^2 + A.Z^4 */
   1515         MPI_ECP_SQR(&tmp[1],  &P->X);
   1516         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);
   1517 
   1518         /* Optimize away for "koblitz" curves with A = 0 */
   1519         if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
   1520             /* M += A.Z^4 */
   1521             MPI_ECP_SQR(&tmp[1],  &P->Z);
   1522             MPI_ECP_SQR(&tmp[2],  &tmp[1]);
   1523             MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);
   1524             MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);
   1525         }
   1526     }
   1527 
   1528     /* tmp[1] <- S = 4.X.Y^2 */
   1529     MPI_ECP_SQR(&tmp[2],  &P->Y);
   1530     MPI_ECP_SHIFT_L(&tmp[2],  1);
   1531     MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);
   1532     MPI_ECP_SHIFT_L(&tmp[1],  1);
   1533 
   1534     /* tmp[3] <- U = 8.Y^4 */
   1535     MPI_ECP_SQR(&tmp[3],  &tmp[2]);
   1536     MPI_ECP_SHIFT_L(&tmp[3],  1);
   1537 
   1538     /* tmp[2] <- T = M^2 - 2.S */
   1539     MPI_ECP_SQR(&tmp[2],  &tmp[0]);
   1540     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
   1541     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
   1542 
   1543     /* tmp[1] <- S = M(S - T) - U */
   1544     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);
   1545     MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);
   1546     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);
   1547 
   1548     /* tmp[3] <- U = 2.Y.Z */
   1549     MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);
   1550     MPI_ECP_SHIFT_L(&tmp[3],  1);
   1551 
   1552     /* Store results */
   1553     MPI_ECP_MOV(&R->X, &tmp[2]);
   1554     MPI_ECP_MOV(&R->Y, &tmp[1]);
   1555     MPI_ECP_MOV(&R->Z, &tmp[3]);
   1556 
   1557 cleanup:
   1558 
   1559     return ret;
   1560 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
   1561 }
   1562 
   1563 /*
   1564  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
   1565  *
   1566  * The coordinates of Q must be normalized (= affine),
   1567  * but those of P don't need to. R is not normalized.
   1568  *
   1569  * P,Q,R may alias, but only at the level of EC points: they must be either
   1570  * equal as pointers, or disjoint (including the coordinate data buffers).
   1571  * Fine-grained aliasing at the level of coordinates is not supported.
   1572  *
   1573  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
   1574  * None of these cases can happen as intermediate step in ecp_mul_comb():
   1575  * - at each step, P, Q and R are multiples of the base point, the factor
   1576  *   being less than its order, so none of them is zero;
   1577  * - Q is an odd multiple of the base point, P an even multiple,
   1578  *   due to the choice of precomputed points in the modified comb method.
   1579  * So branches for these cases do not leak secret information.
   1580  *
   1581  * Cost: 1A := 8M + 3S
   1582  */
   1583 static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   1584                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
   1585                          mbedtls_mpi tmp[4])
   1586 {
   1587 #if defined(MBEDTLS_SELF_TEST)
   1588     add_count++;
   1589 #endif
   1590 
   1591 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
   1592     if (mbedtls_internal_ecp_grp_capable(grp)) {
   1593         return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
   1594     }
   1595 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
   1596 
   1597 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
   1598     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   1599 #else
   1600     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1601 
   1602     /* NOTE: Aliasing between input and output is allowed, so one has to make
   1603      *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
   1604      *       longer read from. */
   1605     mbedtls_mpi * const X = &R->X;
   1606     mbedtls_mpi * const Y = &R->Y;
   1607     mbedtls_mpi * const Z = &R->Z;
   1608 
   1609     if (!MPI_ECP_VALID(&Q->Z)) {
   1610         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   1611     }
   1612 
   1613     /*
   1614      * Trivial cases: P == 0 or Q == 0 (case 1)
   1615      */
   1616     if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
   1617         return mbedtls_ecp_copy(R, Q);
   1618     }
   1619 
   1620     if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
   1621         return mbedtls_ecp_copy(R, P);
   1622     }
   1623 
   1624     /*
   1625      * Make sure Q coordinates are normalized
   1626      */
   1627     if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
   1628         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   1629     }
   1630 
   1631     MPI_ECP_SQR(&tmp[0], &P->Z);
   1632     MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
   1633     MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
   1634     MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
   1635     MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
   1636     MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
   1637 
   1638     /* Special cases (2) and (3) */
   1639     if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
   1640         if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
   1641             ret = ecp_double_jac(grp, R, P, tmp);
   1642             goto cleanup;
   1643         } else {
   1644             ret = mbedtls_ecp_set_zero(R);
   1645             goto cleanup;
   1646         }
   1647     }
   1648 
   1649     /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
   1650     MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);
   1651     MPI_ECP_SQR(&tmp[2],  &tmp[0]);
   1652     MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);
   1653     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);
   1654 
   1655     MPI_ECP_MOV(&tmp[0], &tmp[2]);
   1656     MPI_ECP_SHIFT_L(&tmp[0], 1);
   1657 
   1658     /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
   1659     MPI_ECP_SQR(X,        &tmp[1]);
   1660     MPI_ECP_SUB(X,        X,        &tmp[0]);
   1661     MPI_ECP_SUB(X,        X,        &tmp[3]);
   1662     MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);
   1663     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);
   1664     MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);
   1665     /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
   1666     MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);
   1667 
   1668 cleanup:
   1669 
   1670     return ret;
   1671 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
   1672 }
   1673 
   1674 /*
   1675  * Randomize jacobian coordinates:
   1676  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
   1677  * This is sort of the reverse operation of ecp_normalize_jac().
   1678  *
   1679  * This countermeasure was first suggested in [2].
   1680  */
   1681 static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
   1682                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
   1683 {
   1684 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
   1685     if (mbedtls_internal_ecp_grp_capable(grp)) {
   1686         return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
   1687     }
   1688 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
   1689 
   1690 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
   1691     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   1692 #else
   1693     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1694     mbedtls_mpi l;
   1695 
   1696     mbedtls_mpi_init(&l);
   1697 
   1698     /* Generate l such that 1 < l < p */
   1699     MPI_ECP_RAND(&l);
   1700 
   1701     /* Z' = l * Z */
   1702     MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);
   1703 
   1704     /* Y' = l * Y */
   1705     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
   1706 
   1707     /* X' = l^2 * X */
   1708     MPI_ECP_SQR(&l,       &l);
   1709     MPI_ECP_MUL(&pt->X,   &pt->X,     &l);
   1710 
   1711     /* Y'' = l^2 * Y' = l^3 * Y */
   1712     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
   1713 
   1714 cleanup:
   1715     mbedtls_mpi_free(&l);
   1716 
   1717     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
   1718         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
   1719     }
   1720     return ret;
   1721 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
   1722 }
   1723 
   1724 /*
   1725  * Check and define parameters used by the comb method (see below for details)
   1726  */
   1727 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
   1728 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
   1729 #endif
   1730 
   1731 /* d = ceil( n / w ) */
   1732 #define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
   1733 
   1734 /* number of precomputed points */
   1735 #define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
   1736 
   1737 /*
   1738  * Compute the representation of m that will be used with our comb method.
   1739  *
   1740  * The basic comb method is described in GECC 3.44 for example. We use a
   1741  * modified version that provides resistance to SPA by avoiding zero
   1742  * digits in the representation as in [3]. We modify the method further by
   1743  * requiring that all K_i be odd, which has the small cost that our
   1744  * representation uses one more K_i, due to carries, but saves on the size of
   1745  * the precomputed table.
   1746  *
   1747  * Summary of the comb method and its modifications:
   1748  *
   1749  * - The goal is to compute m*P for some w*d-bit integer m.
   1750  *
   1751  * - The basic comb method splits m into the w-bit integers
   1752  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
   1753  *   index has residue i modulo d, and computes m * P as
   1754  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
   1755  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
   1756  *
   1757  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
   1758  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
   1759  *   thereby successively converting it into a form where all summands
   1760  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
   1761  *
   1762  * - More generally, even if x[i+1] != 0, we can first transform the sum as
   1763  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
   1764  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
   1765  *   Performing and iterating this procedure for those x[i] that are even
   1766  *   (keeping track of carry), we can transform the original sum into one of the form
   1767  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
   1768  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
   1769  *   which is why we are only computing half of it in the first place in
   1770  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
   1771  *
   1772  * - For the sake of compactness, only the seven low-order bits of x[i]
   1773  *   are used to represent its absolute value (K_i in the paper), and the msb
   1774  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
   1775  *   if s_i == -1;
   1776  *
   1777  * Calling conventions:
   1778  * - x is an array of size d + 1
   1779  * - w is the size, ie number of teeth, of the comb, and must be between
   1780  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
   1781  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
   1782  *   (the result will be incorrect if these assumptions are not satisfied)
   1783  */
   1784 static void ecp_comb_recode_core(unsigned char x[], size_t d,
   1785                                  unsigned char w, const mbedtls_mpi *m)
   1786 {
   1787     size_t i, j;
   1788     unsigned char c, cc, adjust;
   1789 
   1790     memset(x, 0, d+1);
   1791 
   1792     /* First get the classical comb values (except for x_d = 0) */
   1793     for (i = 0; i < d; i++) {
   1794         for (j = 0; j < w; j++) {
   1795             x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
   1796         }
   1797     }
   1798 
   1799     /* Now make sure x_1 .. x_d are odd */
   1800     c = 0;
   1801     for (i = 1; i <= d; i++) {
   1802         /* Add carry and update it */
   1803         cc   = x[i] & c;
   1804         x[i] = x[i] ^ c;
   1805         c = cc;
   1806 
   1807         /* Adjust if needed, avoiding branches */
   1808         adjust = 1 - (x[i] & 0x01);
   1809         c   |= x[i] & (x[i-1] * adjust);
   1810         x[i] = x[i] ^ (x[i-1] * adjust);
   1811         x[i-1] |= adjust << 7;
   1812     }
   1813 }
   1814 
   1815 /*
   1816  * Precompute points for the adapted comb method
   1817  *
   1818  * Assumption: T must be able to hold 2^{w - 1} elements.
   1819  *
   1820  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
   1821  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
   1822  *
   1823  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
   1824  *
   1825  * Note: Even comb values (those where P would be omitted from the
   1826  *       sum defining T[i] above) are not needed in our adaption
   1827  *       the comb method. See ecp_comb_recode_core().
   1828  *
   1829  * This function currently works in four steps:
   1830  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
   1831  * (2) [norm_dbl] Normalization of coordinates of these T[i]
   1832  * (3) [add]      Computation of all T[i]
   1833  * (4) [norm_add] Normalization of all T[i]
   1834  *
   1835  * Step 1 can be interrupted but not the others; together with the final
   1836  * coordinate normalization they are the largest steps done at once, depending
   1837  * on the window size. Here are operation counts for P-256:
   1838  *
   1839  * step     (2)     (3)     (4)
   1840  * w = 5    142     165     208
   1841  * w = 4    136      77     160
   1842  * w = 3    130      33     136
   1843  * w = 2    124      11     124
   1844  *
   1845  * So if ECC operations are blocking for too long even with a low max_ops
   1846  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
   1847  * to minimize maximum blocking time.
   1848  */
   1849 static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
   1850                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
   1851                                unsigned char w, size_t d,
   1852                                mbedtls_ecp_restart_ctx *rs_ctx)
   1853 {
   1854     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   1855     unsigned char i;
   1856     size_t j = 0;
   1857     const unsigned char T_size = 1U << (w - 1);
   1858     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
   1859 
   1860     mbedtls_mpi tmp[4];
   1861 
   1862     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
   1863 
   1864 #if defined(MBEDTLS_ECP_RESTARTABLE)
   1865     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
   1866         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
   1867             goto dbl;
   1868         }
   1869         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
   1870             goto norm_dbl;
   1871         }
   1872         if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
   1873             goto add;
   1874         }
   1875         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
   1876             goto norm_add;
   1877         }
   1878     }
   1879 #else
   1880     (void) rs_ctx;
   1881 #endif
   1882 
   1883 #if defined(MBEDTLS_ECP_RESTARTABLE)
   1884     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
   1885         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
   1886 
   1887         /* initial state for the loop */
   1888         rs_ctx->rsm->i = 0;
   1889     }
   1890 
   1891 dbl:
   1892 #endif
   1893     /*
   1894      * Set T[0] = P and
   1895      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
   1896      */
   1897     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
   1898 
   1899 #if defined(MBEDTLS_ECP_RESTARTABLE)
   1900     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
   1901         j = rs_ctx->rsm->i;
   1902     } else
   1903 #endif
   1904     j = 0;
   1905 
   1906     for (; j < d * (w - 1); j++) {
   1907         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
   1908 
   1909         i = 1U << (j / d);
   1910         cur = T + i;
   1911 
   1912         if (j % d == 0) {
   1913             MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
   1914         }
   1915 
   1916         MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
   1917     }
   1918 
   1919 #if defined(MBEDTLS_ECP_RESTARTABLE)
   1920     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
   1921         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
   1922     }
   1923 
   1924 norm_dbl:
   1925 #endif
   1926     /*
   1927      * Normalize current elements in T to allow them to be used in
   1928      * ecp_add_mixed() below, which requires one normalized input.
   1929      *
   1930      * As T has holes, use an auxiliary array of pointers to elements in T.
   1931      *
   1932      */
   1933     j = 0;
   1934     for (i = 1; i < T_size; i <<= 1) {
   1935         TT[j++] = T + i;
   1936     }
   1937 
   1938     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
   1939 
   1940     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
   1941 
   1942 #if defined(MBEDTLS_ECP_RESTARTABLE)
   1943     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
   1944         rs_ctx->rsm->state = ecp_rsm_pre_add;
   1945     }
   1946 
   1947 add:
   1948 #endif
   1949     /*
   1950      * Compute the remaining ones using the minimal number of additions
   1951      * Be careful to update T[2^l] only after using it!
   1952      */
   1953     MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
   1954 
   1955     for (i = 1; i < T_size; i <<= 1) {
   1956         j = i;
   1957         while (j--) {
   1958             MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
   1959         }
   1960     }
   1961 
   1962 #if defined(MBEDTLS_ECP_RESTARTABLE)
   1963     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
   1964         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
   1965     }
   1966 
   1967 norm_add:
   1968 #endif
   1969     /*
   1970      * Normalize final elements in T. Even though there are no holes now, we
   1971      * still need the auxiliary array for homogeneity with the previous
   1972      * call. Also, skip T[0] which is already normalised, being a copy of P.
   1973      */
   1974     for (j = 0; j + 1 < T_size; j++) {
   1975         TT[j] = T + j + 1;
   1976     }
   1977 
   1978     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
   1979 
   1980     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
   1981 
   1982     /* Free Z coordinate (=1 after normalization) to save RAM.
   1983      * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
   1984      * since from this point onwards, they are only accessed indirectly
   1985      * via the getter function ecp_select_comb() which does set the
   1986      * target's Z coordinate to 1. */
   1987     for (i = 0; i < T_size; i++) {
   1988         mbedtls_mpi_free(&T[i].Z);
   1989     }
   1990 
   1991 cleanup:
   1992 
   1993     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
   1994 
   1995 #if defined(MBEDTLS_ECP_RESTARTABLE)
   1996     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
   1997         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
   1998         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
   1999             rs_ctx->rsm->i = j;
   2000         }
   2001     }
   2002 #endif
   2003 
   2004     return ret;
   2005 }
   2006 
   2007 /*
   2008  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
   2009  *
   2010  * See ecp_comb_recode_core() for background
   2011  */
   2012 static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2013                            const mbedtls_ecp_point T[], unsigned char T_size,
   2014                            unsigned char i)
   2015 {
   2016     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2017     unsigned char ii, j;
   2018 
   2019     /* Ignore the "sign" bit and scale down */
   2020     ii =  (i & 0x7Fu) >> 1;
   2021 
   2022     /* Read the whole table to thwart cache-based timing attacks */
   2023     for (j = 0; j < T_size; j++) {
   2024         MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
   2025         MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
   2026     }
   2027 
   2028     /* Safely invert result if i is "negative" */
   2029     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
   2030 
   2031     MPI_ECP_LSET(&R->Z, 1);
   2032 
   2033 cleanup:
   2034     return ret;
   2035 }
   2036 
   2037 /*
   2038  * Core multiplication algorithm for the (modified) comb method.
   2039  * This part is actually common with the basic comb method (GECC 3.44)
   2040  *
   2041  * Cost: d A + d D + 1 R
   2042  */
   2043 static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2044                              const mbedtls_ecp_point T[], unsigned char T_size,
   2045                              const unsigned char x[], size_t d,
   2046                              int (*f_rng)(void *, unsigned char *, size_t),
   2047                              void *p_rng,
   2048                              mbedtls_ecp_restart_ctx *rs_ctx)
   2049 {
   2050     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2051     mbedtls_ecp_point Txi;
   2052     mbedtls_mpi tmp[4];
   2053     size_t i;
   2054 
   2055     mbedtls_ecp_point_init(&Txi);
   2056     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
   2057 
   2058 #if !defined(MBEDTLS_ECP_RESTARTABLE)
   2059     (void) rs_ctx;
   2060 #endif
   2061 
   2062 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2063     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
   2064         rs_ctx->rsm->state != ecp_rsm_comb_core) {
   2065         rs_ctx->rsm->i = 0;
   2066         rs_ctx->rsm->state = ecp_rsm_comb_core;
   2067     }
   2068 
   2069     /* new 'if' instead of nested for the sake of the 'else' branch */
   2070     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
   2071         /* restore current index (R already pointing to rs_ctx->rsm->R) */
   2072         i = rs_ctx->rsm->i;
   2073     } else
   2074 #endif
   2075     {
   2076         /* Start with a non-zero point and randomize its coordinates */
   2077         i = d;
   2078         MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
   2079         if (f_rng != 0) {
   2080             MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
   2081         }
   2082     }
   2083 
   2084     while (i != 0) {
   2085         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
   2086         --i;
   2087 
   2088         MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
   2089         MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
   2090         MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
   2091     }
   2092 
   2093 cleanup:
   2094 
   2095     mbedtls_ecp_point_free(&Txi);
   2096     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
   2097 
   2098 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2099     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
   2100         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
   2101         rs_ctx->rsm->i = i;
   2102         /* no need to save R, already pointing to rs_ctx->rsm->R */
   2103     }
   2104 #endif
   2105 
   2106     return ret;
   2107 }
   2108 
   2109 /*
   2110  * Recode the scalar to get constant-time comb multiplication
   2111  *
   2112  * As the actual scalar recoding needs an odd scalar as a starting point,
   2113  * this wrapper ensures that by replacing m by N - m if necessary, and
   2114  * informs the caller that the result of multiplication will be negated.
   2115  *
   2116  * This works because we only support large prime order for Short Weierstrass
   2117  * curves, so N is always odd hence either m or N - m is.
   2118  *
   2119  * See ecp_comb_recode_core() for background.
   2120  */
   2121 static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
   2122                                   const mbedtls_mpi *m,
   2123                                   unsigned char k[COMB_MAX_D + 1],
   2124                                   size_t d,
   2125                                   unsigned char w,
   2126                                   unsigned char *parity_trick)
   2127 {
   2128     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2129     mbedtls_mpi M, mm;
   2130 
   2131     mbedtls_mpi_init(&M);
   2132     mbedtls_mpi_init(&mm);
   2133 
   2134     /* N is always odd (see above), just make extra sure */
   2135     if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
   2136         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   2137     }
   2138 
   2139     /* do we need the parity trick? */
   2140     *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
   2141 
   2142     /* execute parity fix in constant time */
   2143     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
   2144     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
   2145     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
   2146 
   2147     /* actual scalar recoding */
   2148     ecp_comb_recode_core(k, d, w, &M);
   2149 
   2150 cleanup:
   2151     mbedtls_mpi_free(&mm);
   2152     mbedtls_mpi_free(&M);
   2153 
   2154     return ret;
   2155 }
   2156 
   2157 /*
   2158  * Perform comb multiplication (for short Weierstrass curves)
   2159  * once the auxiliary table has been pre-computed.
   2160  *
   2161  * Scalar recoding may use a parity trick that makes us compute -m * P,
   2162  * if that is the case we'll need to recover m * P at the end.
   2163  */
   2164 static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
   2165                                       mbedtls_ecp_point *R,
   2166                                       const mbedtls_mpi *m,
   2167                                       const mbedtls_ecp_point *T,
   2168                                       unsigned char T_size,
   2169                                       unsigned char w,
   2170                                       size_t d,
   2171                                       int (*f_rng)(void *, unsigned char *, size_t),
   2172                                       void *p_rng,
   2173                                       mbedtls_ecp_restart_ctx *rs_ctx)
   2174 {
   2175     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2176     unsigned char parity_trick;
   2177     unsigned char k[COMB_MAX_D + 1];
   2178     mbedtls_ecp_point *RR = R;
   2179 
   2180 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2181     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
   2182         RR = &rs_ctx->rsm->R;
   2183 
   2184         if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
   2185             goto final_norm;
   2186         }
   2187     }
   2188 #endif
   2189 
   2190     MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
   2191                                            &parity_trick));
   2192     MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
   2193                                       f_rng, p_rng, rs_ctx));
   2194     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
   2195 
   2196 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2197     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
   2198         rs_ctx->rsm->state = ecp_rsm_final_norm;
   2199     }
   2200 
   2201 final_norm:
   2202     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
   2203 #endif
   2204     /*
   2205      * Knowledge of the jacobian coordinates may leak the last few bits of the
   2206      * scalar [1], and since our MPI implementation isn't constant-flow,
   2207      * inversion (used for coordinate normalization) may leak the full value
   2208      * of its input via side-channels [2].
   2209      *
   2210      * [1] https://eprint.iacr.org/2003/191
   2211      * [2] https://eprint.iacr.org/2020/055
   2212      *
   2213      * Avoid the leak by randomizing coordinates before we normalize them.
   2214      */
   2215     if (f_rng != 0) {
   2216         MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
   2217     }
   2218 
   2219     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
   2220 
   2221 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2222     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
   2223         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
   2224     }
   2225 #endif
   2226 
   2227 cleanup:
   2228     return ret;
   2229 }
   2230 
   2231 /*
   2232  * Pick window size based on curve size and whether we optimize for base point
   2233  */
   2234 static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
   2235                                           unsigned char p_eq_g)
   2236 {
   2237     unsigned char w;
   2238 
   2239     /*
   2240      * Minimize the number of multiplications, that is minimize
   2241      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
   2242      * (see costs of the various parts, with 1S = 1M)
   2243      */
   2244     w = grp->nbits >= 384 ? 5 : 4;
   2245 
   2246     /*
   2247      * If P == G, pre-compute a bit more, since this may be re-used later.
   2248      * Just adding one avoids upping the cost of the first mul too much,
   2249      * and the memory cost too.
   2250      */
   2251     if (p_eq_g) {
   2252         w++;
   2253     }
   2254 
   2255     /*
   2256      * If static comb table may not be used (!p_eq_g) or static comb table does
   2257      * not exists, make sure w is within bounds.
   2258      * (The last test is useful only for very small curves in the test suite.)
   2259      *
   2260      * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
   2261      * static comb table, because the size of static comb table is fixed when
   2262      * it is generated.
   2263      */
   2264 #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
   2265     if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
   2266         w = MBEDTLS_ECP_WINDOW_SIZE;
   2267     }
   2268 #endif
   2269     if (w >= grp->nbits) {
   2270         w = 2;
   2271     }
   2272 
   2273     return w;
   2274 }
   2275 
   2276 /*
   2277  * Multiplication using the comb method - for curves in short Weierstrass form
   2278  *
   2279  * This function is mainly responsible for administrative work:
   2280  * - managing the restart context if enabled
   2281  * - managing the table of precomputed points (passed between the below two
   2282  *   functions): allocation, computation, ownership transfer, freeing.
   2283  *
   2284  * It delegates the actual arithmetic work to:
   2285  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
   2286  *
   2287  * See comments on ecp_comb_recode_core() regarding the computation strategy.
   2288  */
   2289 static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2290                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
   2291                         int (*f_rng)(void *, unsigned char *, size_t),
   2292                         void *p_rng,
   2293                         mbedtls_ecp_restart_ctx *rs_ctx)
   2294 {
   2295     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2296     unsigned char w, p_eq_g, i;
   2297     size_t d;
   2298     unsigned char T_size = 0, T_ok = 0;
   2299     mbedtls_ecp_point *T = NULL;
   2300 
   2301     ECP_RS_ENTER(rsm);
   2302 
   2303     /* Is P the base point ? */
   2304 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
   2305     p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
   2306               MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
   2307 #else
   2308     p_eq_g = 0;
   2309 #endif
   2310 
   2311     /* Pick window size and deduce related sizes */
   2312     w = ecp_pick_window_size(grp, p_eq_g);
   2313     T_size = 1U << (w - 1);
   2314     d = (grp->nbits + w - 1) / w;
   2315 
   2316     /* Pre-computed table: do we have it already for the base point? */
   2317     if (p_eq_g && grp->T != NULL) {
   2318         /* second pointer to the same table, will be deleted on exit */
   2319         T = grp->T;
   2320         T_ok = 1;
   2321     } else
   2322 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2323     /* Pre-computed table: do we have one in progress? complete? */
   2324     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
   2325         /* transfer ownership of T from rsm to local function */
   2326         T = rs_ctx->rsm->T;
   2327         rs_ctx->rsm->T = NULL;
   2328         rs_ctx->rsm->T_size = 0;
   2329 
   2330         /* This effectively jumps to the call to mul_comb_after_precomp() */
   2331         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
   2332     } else
   2333 #endif
   2334     /* Allocate table if we didn't have any */
   2335     {
   2336         T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
   2337         if (T == NULL) {
   2338             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
   2339             goto cleanup;
   2340         }
   2341 
   2342         for (i = 0; i < T_size; i++) {
   2343             mbedtls_ecp_point_init(&T[i]);
   2344         }
   2345 
   2346         T_ok = 0;
   2347     }
   2348 
   2349     /* Compute table (or finish computing it) if not done already */
   2350     if (!T_ok) {
   2351         MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
   2352 
   2353         if (p_eq_g) {
   2354             /* almost transfer ownership of T to the group, but keep a copy of
   2355              * the pointer to use for calling the next function more easily */
   2356             grp->T = T;
   2357             grp->T_size = T_size;
   2358         }
   2359     }
   2360 
   2361     /* Actual comb multiplication using precomputed points */
   2362     MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
   2363                                                T, T_size, w, d,
   2364                                                f_rng, p_rng, rs_ctx));
   2365 
   2366 cleanup:
   2367 
   2368     /* does T belong to the group? */
   2369     if (T == grp->T) {
   2370         T = NULL;
   2371     }
   2372 
   2373     /* does T belong to the restart context? */
   2374 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2375     if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
   2376         /* transfer ownership of T from local function to rsm */
   2377         rs_ctx->rsm->T_size = T_size;
   2378         rs_ctx->rsm->T = T;
   2379         T = NULL;
   2380     }
   2381 #endif
   2382 
   2383     /* did T belong to us? then let's destroy it! */
   2384     if (T != NULL) {
   2385         for (i = 0; i < T_size; i++) {
   2386             mbedtls_ecp_point_free(&T[i]);
   2387         }
   2388         mbedtls_free(T);
   2389     }
   2390 
   2391     /* prevent caller from using invalid value */
   2392     int should_free_R = (ret != 0);
   2393 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2394     /* don't free R while in progress in case R == P */
   2395     if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
   2396         should_free_R = 0;
   2397     }
   2398 #endif
   2399     if (should_free_R) {
   2400         mbedtls_ecp_point_free(R);
   2401     }
   2402 
   2403     ECP_RS_LEAVE(rsm);
   2404 
   2405     return ret;
   2406 }
   2407 
   2408 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   2409 
   2410 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   2411 /*
   2412  * For Montgomery curves, we do all the internal arithmetic in projective
   2413  * coordinates. Import/export of points uses only the x coordinates, which is
   2414  * internally represented as X / Z.
   2415  *
   2416  * For scalar multiplication, we'll use a Montgomery ladder.
   2417  */
   2418 
   2419 /*
   2420  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
   2421  * Cost: 1M + 1I
   2422  */
   2423 static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
   2424 {
   2425 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
   2426     if (mbedtls_internal_ecp_grp_capable(grp)) {
   2427         return mbedtls_internal_ecp_normalize_mxz(grp, P);
   2428     }
   2429 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
   2430 
   2431 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
   2432     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   2433 #else
   2434     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2435     MPI_ECP_INV(&P->Z, &P->Z);
   2436     MPI_ECP_MUL(&P->X, &P->X, &P->Z);
   2437     MPI_ECP_LSET(&P->Z, 1);
   2438 
   2439 cleanup:
   2440     return ret;
   2441 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
   2442 }
   2443 
   2444 /*
   2445  * Randomize projective x/z coordinates:
   2446  * (X, Z) -> (l X, l Z) for random l
   2447  * This is sort of the reverse operation of ecp_normalize_mxz().
   2448  *
   2449  * This countermeasure was first suggested in [2].
   2450  * Cost: 2M
   2451  */
   2452 static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
   2453                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
   2454 {
   2455 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
   2456     if (mbedtls_internal_ecp_grp_capable(grp)) {
   2457         return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
   2458     }
   2459 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
   2460 
   2461 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
   2462     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   2463 #else
   2464     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2465     mbedtls_mpi l;
   2466     mbedtls_mpi_init(&l);
   2467 
   2468     /* Generate l such that 1 < l < p */
   2469     MPI_ECP_RAND(&l);
   2470 
   2471     MPI_ECP_MUL(&P->X, &P->X, &l);
   2472     MPI_ECP_MUL(&P->Z, &P->Z, &l);
   2473 
   2474 cleanup:
   2475     mbedtls_mpi_free(&l);
   2476 
   2477     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
   2478         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
   2479     }
   2480     return ret;
   2481 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
   2482 }
   2483 
   2484 /*
   2485  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
   2486  * for Montgomery curves in x/z coordinates.
   2487  *
   2488  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
   2489  * with
   2490  * d =  X1
   2491  * P = (X2, Z2)
   2492  * Q = (X3, Z3)
   2493  * R = (X4, Z4)
   2494  * S = (X5, Z5)
   2495  * and eliminating temporary variables tO, ..., t4.
   2496  *
   2497  * Cost: 5M + 4S
   2498  */
   2499 static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
   2500                               mbedtls_ecp_point *R, mbedtls_ecp_point *S,
   2501                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
   2502                               const mbedtls_mpi *d,
   2503                               mbedtls_mpi T[4])
   2504 {
   2505 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
   2506     if (mbedtls_internal_ecp_grp_capable(grp)) {
   2507         return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
   2508     }
   2509 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
   2510 
   2511 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
   2512     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   2513 #else
   2514     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2515 
   2516     MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */
   2517     MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */
   2518     MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */
   2519     MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */
   2520     MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */
   2521     MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */
   2522     MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */
   2523     MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */
   2524     MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */
   2525     MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */
   2526     MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */
   2527     MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */
   2528     MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */
   2529     MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */
   2530     MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */
   2531     MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */
   2532     MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */
   2533     MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
   2534 
   2535 cleanup:
   2536 
   2537     return ret;
   2538 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
   2539 }
   2540 
   2541 /*
   2542  * Multiplication with Montgomery ladder in x/z coordinates,
   2543  * for curves in Montgomery form
   2544  */
   2545 static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2546                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
   2547                        int (*f_rng)(void *, unsigned char *, size_t),
   2548                        void *p_rng)
   2549 {
   2550     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2551     size_t i;
   2552     unsigned char b;
   2553     mbedtls_ecp_point RP;
   2554     mbedtls_mpi PX;
   2555     mbedtls_mpi tmp[4];
   2556     mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
   2557 
   2558     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
   2559 
   2560     if (f_rng == NULL) {
   2561         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   2562     }
   2563 
   2564     /* Save PX and read from P before writing to R, in case P == R */
   2565     MPI_ECP_MOV(&PX, &P->X);
   2566     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
   2567 
   2568     /* Set R to zero in modified x/z coordinates */
   2569     MPI_ECP_LSET(&R->X, 1);
   2570     MPI_ECP_LSET(&R->Z, 0);
   2571     mbedtls_mpi_free(&R->Y);
   2572 
   2573     /* RP.X might be slightly larger than P, so reduce it */
   2574     MOD_ADD(&RP.X);
   2575 
   2576     /* Randomize coordinates of the starting point */
   2577     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
   2578 
   2579     /* Loop invariant: R = result so far, RP = R + P */
   2580     i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
   2581     while (i-- > 0) {
   2582         b = mbedtls_mpi_get_bit(m, i);
   2583         /*
   2584          *  if (b) R = 2R + P else R = 2R,
   2585          * which is:
   2586          *  if (b) double_add( RP, R, RP, R )
   2587          *  else   double_add( R, RP, R, RP )
   2588          * but using safe conditional swaps to avoid leaks
   2589          */
   2590         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
   2591         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
   2592         MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
   2593         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
   2594         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
   2595     }
   2596 
   2597     /*
   2598      * Knowledge of the projective coordinates may leak the last few bits of the
   2599      * scalar [1], and since our MPI implementation isn't constant-flow,
   2600      * inversion (used for coordinate normalization) may leak the full value
   2601      * of its input via side-channels [2].
   2602      *
   2603      * [1] https://eprint.iacr.org/2003/191
   2604      * [2] https://eprint.iacr.org/2020/055
   2605      *
   2606      * Avoid the leak by randomizing coordinates before we normalize them.
   2607      */
   2608     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
   2609     MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
   2610 
   2611 cleanup:
   2612     mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
   2613 
   2614     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
   2615     return ret;
   2616 }
   2617 
   2618 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
   2619 
   2620 /*
   2621  * Restartable multiplication R = m * P
   2622  *
   2623  * This internal function can be called without an RNG in case where we know
   2624  * the inputs are not sensitive.
   2625  */
   2626 static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2627                                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
   2628                                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
   2629                                         mbedtls_ecp_restart_ctx *rs_ctx)
   2630 {
   2631     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   2632 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
   2633     char is_grp_capable = 0;
   2634 #endif
   2635 
   2636 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2637     /* reset ops count for this call if top-level */
   2638     if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
   2639         rs_ctx->ops_done = 0;
   2640     }
   2641 #else
   2642     (void) rs_ctx;
   2643 #endif
   2644 
   2645 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
   2646     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
   2647         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
   2648     }
   2649 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
   2650 
   2651     int restarting = 0;
   2652 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2653     restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
   2654 #endif
   2655     /* skip argument check when restarting */
   2656     if (!restarting) {
   2657         /* check_privkey is free */
   2658         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
   2659 
   2660         /* Common sanity checks */
   2661         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
   2662         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
   2663     }
   2664 
   2665     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   2666 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   2667     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
   2668         MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
   2669     }
   2670 #endif
   2671 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   2672     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
   2673         MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
   2674     }
   2675 #endif
   2676 
   2677 cleanup:
   2678 
   2679 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
   2680     if (is_grp_capable) {
   2681         mbedtls_internal_ecp_free(grp);
   2682     }
   2683 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
   2684 
   2685 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2686     if (rs_ctx != NULL) {
   2687         rs_ctx->depth--;
   2688     }
   2689 #endif
   2690 
   2691     return ret;
   2692 }
   2693 
   2694 /*
   2695  * Restartable multiplication R = m * P
   2696  */
   2697 int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2698                                 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
   2699                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
   2700                                 mbedtls_ecp_restart_ctx *rs_ctx)
   2701 {
   2702     if (f_rng == NULL) {
   2703         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   2704     }
   2705 
   2706     return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
   2707 }
   2708 
   2709 /*
   2710  * Multiplication R = m * P
   2711  */
   2712 int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2713                     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
   2714                     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
   2715 {
   2716     return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
   2717 }
   2718 #endif /* MBEDTLS_ECP_C */
   2719 
   2720 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   2721 /*
   2722  * Check that an affine point is valid as a public key,
   2723  * short weierstrass curves (SEC1 3.2.3.1)
   2724  */
   2725 static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
   2726 {
   2727     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2728     mbedtls_mpi YY, RHS;
   2729 
   2730     /* pt coordinates must be normalized for our checks */
   2731     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
   2732         mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
   2733         mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
   2734         mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
   2735         return MBEDTLS_ERR_ECP_INVALID_KEY;
   2736     }
   2737 
   2738     mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
   2739 
   2740     /*
   2741      * YY = Y^2
   2742      * RHS = X^3 + A X + B
   2743      */
   2744     MPI_ECP_SQR(&YY,  &pt->Y);
   2745     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
   2746 
   2747     if (MPI_ECP_CMP(&YY, &RHS) != 0) {
   2748         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
   2749     }
   2750 
   2751 cleanup:
   2752 
   2753     mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
   2754 
   2755     return ret;
   2756 }
   2757 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   2758 
   2759 #if defined(MBEDTLS_ECP_C)
   2760 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   2761 /*
   2762  * R = m * P with shortcuts for m == 0, m == 1 and m == -1
   2763  * NOT constant-time - ONLY for short Weierstrass!
   2764  */
   2765 static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
   2766                                      mbedtls_ecp_point *R,
   2767                                      const mbedtls_mpi *m,
   2768                                      const mbedtls_ecp_point *P,
   2769                                      mbedtls_ecp_restart_ctx *rs_ctx)
   2770 {
   2771     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2772     mbedtls_mpi tmp;
   2773     mbedtls_mpi_init(&tmp);
   2774 
   2775     if (mbedtls_mpi_cmp_int(m, 0) == 0) {
   2776         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
   2777         MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
   2778     } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
   2779         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
   2780         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
   2781     } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
   2782         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
   2783         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
   2784         MPI_ECP_NEG(&R->Y);
   2785     } else {
   2786         MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
   2787                                                      NULL, NULL, rs_ctx));
   2788     }
   2789 
   2790 cleanup:
   2791     mbedtls_mpi_free(&tmp);
   2792 
   2793     return ret;
   2794 }
   2795 
   2796 /*
   2797  * Restartable linear combination
   2798  * NOT constant-time
   2799  */
   2800 int mbedtls_ecp_muladd_restartable(
   2801     mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2802     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
   2803     const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
   2804     mbedtls_ecp_restart_ctx *rs_ctx)
   2805 {
   2806     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   2807     mbedtls_ecp_point mP;
   2808     mbedtls_ecp_point *pmP = &mP;
   2809     mbedtls_ecp_point *pR = R;
   2810     mbedtls_mpi tmp[4];
   2811 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
   2812     char is_grp_capable = 0;
   2813 #endif
   2814     if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
   2815         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   2816     }
   2817 
   2818     mbedtls_ecp_point_init(&mP);
   2819     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
   2820 
   2821     ECP_RS_ENTER(ma);
   2822 
   2823 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2824     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
   2825         /* redirect intermediate results to restart context */
   2826         pmP = &rs_ctx->ma->mP;
   2827         pR  = &rs_ctx->ma->R;
   2828 
   2829         /* jump to next operation */
   2830         if (rs_ctx->ma->state == ecp_rsma_mul2) {
   2831             goto mul2;
   2832         }
   2833         if (rs_ctx->ma->state == ecp_rsma_add) {
   2834             goto add;
   2835         }
   2836         if (rs_ctx->ma->state == ecp_rsma_norm) {
   2837             goto norm;
   2838         }
   2839     }
   2840 #endif /* MBEDTLS_ECP_RESTARTABLE */
   2841 
   2842     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
   2843 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2844     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
   2845         rs_ctx->ma->state = ecp_rsma_mul2;
   2846     }
   2847 
   2848 mul2:
   2849 #endif
   2850     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
   2851 
   2852 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
   2853     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
   2854         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
   2855     }
   2856 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
   2857 
   2858 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2859     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
   2860         rs_ctx->ma->state = ecp_rsma_add;
   2861     }
   2862 
   2863 add:
   2864 #endif
   2865     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
   2866     MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
   2867 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2868     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
   2869         rs_ctx->ma->state = ecp_rsma_norm;
   2870     }
   2871 
   2872 norm:
   2873 #endif
   2874     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
   2875     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
   2876 
   2877 #if defined(MBEDTLS_ECP_RESTARTABLE)
   2878     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
   2879         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
   2880     }
   2881 #endif
   2882 
   2883 cleanup:
   2884 
   2885     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
   2886 
   2887 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
   2888     if (is_grp_capable) {
   2889         mbedtls_internal_ecp_free(grp);
   2890     }
   2891 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
   2892 
   2893     mbedtls_ecp_point_free(&mP);
   2894 
   2895     ECP_RS_LEAVE(ma);
   2896 
   2897     return ret;
   2898 }
   2899 
   2900 /*
   2901  * Linear combination
   2902  * NOT constant-time
   2903  */
   2904 int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
   2905                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
   2906                        const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
   2907 {
   2908     return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
   2909 }
   2910 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   2911 #endif /* MBEDTLS_ECP_C */
   2912 
   2913 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   2914 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
   2915 #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
   2916 #define ECP_MPI_INIT_ARRAY(x)   \
   2917     ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
   2918 /*
   2919  * Constants for the two points other than 0, 1, -1 (mod p) in
   2920  * https://cr.yp.to/ecdh.html#validate
   2921  * See ecp_check_pubkey_x25519().
   2922  */
   2923 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
   2924     MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
   2925     MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
   2926     MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
   2927     MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
   2928 };
   2929 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
   2930     MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
   2931     MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
   2932     MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
   2933     MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
   2934 };
   2935 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
   2936     x25519_bad_point_1);
   2937 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
   2938     x25519_bad_point_2);
   2939 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
   2940 
   2941 /*
   2942  * Check that the input point is not one of the low-order points.
   2943  * This is recommended by the "May the Fourth" paper:
   2944  * https://eprint.iacr.org/2017/806.pdf
   2945  * Those points are never sent by an honest peer.
   2946  */
   2947 static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
   2948                                    const mbedtls_ecp_group_id grp_id)
   2949 {
   2950     int ret;
   2951     mbedtls_mpi XmP;
   2952 
   2953     mbedtls_mpi_init(&XmP);
   2954 
   2955     /* Reduce X mod P so that we only need to check values less than P.
   2956      * We know X < 2^256 so we can proceed by subtraction. */
   2957     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
   2958     while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
   2959         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
   2960     }
   2961 
   2962     /* Check against the known bad values that are less than P. For Curve448
   2963      * these are 0, 1 and -1. For Curve25519 we check the values less than P
   2964      * from the following list: https://cr.yp.to/ecdh.html#validate */
   2965     if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
   2966         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
   2967         goto cleanup;
   2968     }
   2969 
   2970 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
   2971     if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
   2972         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
   2973             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
   2974             goto cleanup;
   2975         }
   2976 
   2977         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
   2978             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
   2979             goto cleanup;
   2980         }
   2981     }
   2982 #else
   2983     (void) grp_id;
   2984 #endif
   2985 
   2986     /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
   2987     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
   2988     if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
   2989         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
   2990         goto cleanup;
   2991     }
   2992 
   2993     ret = 0;
   2994 
   2995 cleanup:
   2996     mbedtls_mpi_free(&XmP);
   2997 
   2998     return ret;
   2999 }
   3000 
   3001 /*
   3002  * Check validity of a public key for Montgomery curves with x-only schemes
   3003  */
   3004 static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
   3005 {
   3006     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
   3007     /* Allow any public value, if it's too big then we'll just reduce it mod p
   3008      * (RFC 7748 sec. 5 para. 3). */
   3009     if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
   3010         return MBEDTLS_ERR_ECP_INVALID_KEY;
   3011     }
   3012 
   3013     /* Implicit in all standards (as they don't consider negative numbers):
   3014      * X must be non-negative. This is normally ensured by the way it's
   3015      * encoded for transmission, but let's be extra sure. */
   3016     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
   3017         return MBEDTLS_ERR_ECP_INVALID_KEY;
   3018     }
   3019 
   3020     return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
   3021 }
   3022 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
   3023 
   3024 /*
   3025  * Check that a point is valid as a public key
   3026  */
   3027 int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
   3028                              const mbedtls_ecp_point *pt)
   3029 {
   3030     /* Must use affine coordinates */
   3031     if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
   3032         return MBEDTLS_ERR_ECP_INVALID_KEY;
   3033     }
   3034 
   3035 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3036     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
   3037         return ecp_check_pubkey_mx(grp, pt);
   3038     }
   3039 #endif
   3040 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3041     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
   3042         return ecp_check_pubkey_sw(grp, pt);
   3043     }
   3044 #endif
   3045     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   3046 }
   3047 
   3048 /*
   3049  * Check that an mbedtls_mpi is valid as a private key
   3050  */
   3051 int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
   3052                               const mbedtls_mpi *d)
   3053 {
   3054 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3055     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
   3056         /* see RFC 7748 sec. 5 para. 5 */
   3057         if (mbedtls_mpi_get_bit(d, 0) != 0 ||
   3058             mbedtls_mpi_get_bit(d, 1) != 0 ||
   3059             mbedtls_mpi_bitlen(d) != grp->nbits + 1) {  /* mbedtls_mpi_bitlen is one-based! */
   3060             return MBEDTLS_ERR_ECP_INVALID_KEY;
   3061         }
   3062 
   3063         /* see [Curve25519] page 5 */
   3064         if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
   3065             return MBEDTLS_ERR_ECP_INVALID_KEY;
   3066         }
   3067 
   3068         return 0;
   3069     }
   3070 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
   3071 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3072     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
   3073         /* see SEC1 3.2 */
   3074         if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
   3075             mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
   3076             return MBEDTLS_ERR_ECP_INVALID_KEY;
   3077         } else {
   3078             return 0;
   3079         }
   3080     }
   3081 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   3082 
   3083     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   3084 }
   3085 
   3086 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3087 MBEDTLS_STATIC_TESTABLE
   3088 int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
   3089                                mbedtls_mpi *d,
   3090                                int (*f_rng)(void *, unsigned char *, size_t),
   3091                                void *p_rng)
   3092 {
   3093     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   3094     size_t n_random_bytes = high_bit / 8 + 1;
   3095 
   3096     /* [Curve25519] page 5 */
   3097     /* Generate a (high_bit+1)-bit random number by generating just enough
   3098      * random bytes, then shifting out extra bits from the top (necessary
   3099      * when (high_bit+1) is not a multiple of 8). */
   3100     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
   3101                                             f_rng, p_rng));
   3102     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
   3103 
   3104     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
   3105 
   3106     /* Make sure the last two bits are unset for Curve448, three bits for
   3107        Curve25519 */
   3108     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
   3109     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
   3110     if (high_bit == 254) {
   3111         MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
   3112     }
   3113 
   3114 cleanup:
   3115     return ret;
   3116 }
   3117 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
   3118 
   3119 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3120 static int mbedtls_ecp_gen_privkey_sw(
   3121     const mbedtls_mpi *N, mbedtls_mpi *d,
   3122     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
   3123 {
   3124     int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
   3125     switch (ret) {
   3126         case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
   3127             return MBEDTLS_ERR_ECP_RANDOM_FAILED;
   3128         default:
   3129             return ret;
   3130     }
   3131 }
   3132 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   3133 
   3134 /*
   3135  * Generate a private key
   3136  */
   3137 int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
   3138                             mbedtls_mpi *d,
   3139                             int (*f_rng)(void *, unsigned char *, size_t),
   3140                             void *p_rng)
   3141 {
   3142 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3143     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
   3144         return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
   3145     }
   3146 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
   3147 
   3148 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3149     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
   3150         return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
   3151     }
   3152 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   3153 
   3154     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   3155 }
   3156 
   3157 #if defined(MBEDTLS_ECP_C)
   3158 /*
   3159  * Generate a keypair with configurable base point
   3160  */
   3161 int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
   3162                                  const mbedtls_ecp_point *G,
   3163                                  mbedtls_mpi *d, mbedtls_ecp_point *Q,
   3164                                  int (*f_rng)(void *, unsigned char *, size_t),
   3165                                  void *p_rng)
   3166 {
   3167     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   3168     MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
   3169     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
   3170 
   3171 cleanup:
   3172     return ret;
   3173 }
   3174 
   3175 /*
   3176  * Generate key pair, wrapper for conventional base point
   3177  */
   3178 int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
   3179                             mbedtls_mpi *d, mbedtls_ecp_point *Q,
   3180                             int (*f_rng)(void *, unsigned char *, size_t),
   3181                             void *p_rng)
   3182 {
   3183     return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
   3184 }
   3185 
   3186 /*
   3187  * Generate a keypair, prettier wrapper
   3188  */
   3189 int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
   3190                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
   3191 {
   3192     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   3193     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
   3194         return ret;
   3195     }
   3196 
   3197     return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
   3198 }
   3199 #endif /* MBEDTLS_ECP_C */
   3200 
   3201 int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
   3202                                mbedtls_ecp_keypair *key,
   3203                                const mbedtls_ecp_point *Q)
   3204 {
   3205     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   3206 
   3207     if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
   3208         /* Group not set yet */
   3209         if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
   3210             return ret;
   3211         }
   3212     } else if (key->grp.id != grp_id) {
   3213         /* Group mismatch */
   3214         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   3215     }
   3216     return mbedtls_ecp_copy(&key->Q, Q);
   3217 }
   3218 
   3219 
   3220 #define ECP_CURVE25519_KEY_SIZE 32
   3221 #define ECP_CURVE448_KEY_SIZE   56
   3222 /*
   3223  * Read a private key.
   3224  */
   3225 int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
   3226                          const unsigned char *buf, size_t buflen)
   3227 {
   3228     int ret = 0;
   3229 
   3230     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
   3231         return ret;
   3232     }
   3233 
   3234     ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
   3235 
   3236 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3237     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
   3238         /*
   3239          * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
   3240          */
   3241         if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
   3242             if (buflen != ECP_CURVE25519_KEY_SIZE) {
   3243                 return MBEDTLS_ERR_ECP_INVALID_KEY;
   3244             }
   3245 
   3246             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
   3247 
   3248             /* Set the three least significant bits to 0 */
   3249             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
   3250             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
   3251             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
   3252 
   3253             /* Set the most significant bit to 0 */
   3254             MBEDTLS_MPI_CHK(
   3255                 mbedtls_mpi_set_bit(&key->d,
   3256                                     ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
   3257                 );
   3258 
   3259             /* Set the second most significant bit to 1 */
   3260             MBEDTLS_MPI_CHK(
   3261                 mbedtls_mpi_set_bit(&key->d,
   3262                                     ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
   3263                 );
   3264         } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
   3265             if (buflen != ECP_CURVE448_KEY_SIZE) {
   3266                 return MBEDTLS_ERR_ECP_INVALID_KEY;
   3267             }
   3268 
   3269             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
   3270 
   3271             /* Set the two least significant bits to 0 */
   3272             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
   3273             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
   3274 
   3275             /* Set the most significant bit to 1 */
   3276             MBEDTLS_MPI_CHK(
   3277                 mbedtls_mpi_set_bit(&key->d,
   3278                                     ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
   3279                 );
   3280         }
   3281     }
   3282 #endif
   3283 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3284     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
   3285         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
   3286     }
   3287 #endif
   3288 
   3289     if (ret == 0) {
   3290         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
   3291     }
   3292 
   3293 cleanup:
   3294 
   3295     if (ret != 0) {
   3296         mbedtls_mpi_free(&key->d);
   3297     }
   3298 
   3299     return ret;
   3300 }
   3301 
   3302 /*
   3303  * Write a private key.
   3304  */
   3305 #if !defined MBEDTLS_DEPRECATED_REMOVED
   3306 int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
   3307                           unsigned char *buf, size_t buflen)
   3308 {
   3309     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   3310 
   3311 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3312     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
   3313         if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
   3314             if (buflen < ECP_CURVE25519_KEY_SIZE) {
   3315                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
   3316             }
   3317 
   3318         } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
   3319             if (buflen < ECP_CURVE448_KEY_SIZE) {
   3320                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
   3321             }
   3322         }
   3323         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
   3324     }
   3325 #endif
   3326 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3327     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
   3328         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
   3329     }
   3330 
   3331 #endif
   3332 cleanup:
   3333 
   3334     return ret;
   3335 }
   3336 #endif /* MBEDTLS_DEPRECATED_REMOVED */
   3337 
   3338 int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
   3339                               size_t *olen, unsigned char *buf, size_t buflen)
   3340 {
   3341     size_t len = (key->grp.nbits + 7) / 8;
   3342     if (len > buflen) {
   3343         /* For robustness, ensure *olen <= buflen even on error. */
   3344         *olen = 0;
   3345         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
   3346     }
   3347     *olen = len;
   3348 
   3349     /* Private key not set */
   3350     if (key->d.n == 0) {
   3351         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   3352     }
   3353 
   3354 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3355     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
   3356         return mbedtls_mpi_write_binary_le(&key->d, buf, len);
   3357     }
   3358 #endif
   3359 
   3360 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3361     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
   3362         return mbedtls_mpi_write_binary(&key->d, buf, len);
   3363     }
   3364 #endif
   3365 
   3366     /* Private key set but no recognized curve type? This shouldn't happen. */
   3367     return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   3368 }
   3369 
   3370 /*
   3371  * Write a public key.
   3372  */
   3373 int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
   3374                                  int format, size_t *olen,
   3375                                  unsigned char *buf, size_t buflen)
   3376 {
   3377     return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
   3378                                           format, olen, buf, buflen);
   3379 }
   3380 
   3381 
   3382 #if defined(MBEDTLS_ECP_C)
   3383 /*
   3384  * Check a public-private key pair
   3385  */
   3386 int mbedtls_ecp_check_pub_priv(
   3387     const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
   3388     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
   3389 {
   3390     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   3391     mbedtls_ecp_point Q;
   3392     mbedtls_ecp_group grp;
   3393     if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
   3394         pub->grp.id != prv->grp.id ||
   3395         mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
   3396         mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
   3397         mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
   3398         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   3399     }
   3400 
   3401     mbedtls_ecp_point_init(&Q);
   3402     mbedtls_ecp_group_init(&grp);
   3403 
   3404     /* mbedtls_ecp_mul() needs a non-const group... */
   3405     mbedtls_ecp_group_copy(&grp, &prv->grp);
   3406 
   3407     /* Also checks d is valid */
   3408     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
   3409 
   3410     if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
   3411         mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
   3412         mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
   3413         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
   3414         goto cleanup;
   3415     }
   3416 
   3417 cleanup:
   3418     mbedtls_ecp_point_free(&Q);
   3419     mbedtls_ecp_group_free(&grp);
   3420 
   3421     return ret;
   3422 }
   3423 
   3424 int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
   3425                                     int (*f_rng)(void *, unsigned char *, size_t),
   3426                                     void *p_rng)
   3427 {
   3428     return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
   3429                            f_rng, p_rng);
   3430 }
   3431 #endif /* MBEDTLS_ECP_C */
   3432 
   3433 mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
   3434     const mbedtls_ecp_keypair *key)
   3435 {
   3436     return key->grp.id;
   3437 }
   3438 
   3439 /*
   3440  * Export generic key-pair parameters.
   3441  */
   3442 int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
   3443                        mbedtls_mpi *d, mbedtls_ecp_point *Q)
   3444 {
   3445     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   3446 
   3447     if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
   3448         return ret;
   3449     }
   3450 
   3451     if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
   3452         return ret;
   3453     }
   3454 
   3455     if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
   3456         return ret;
   3457     }
   3458 
   3459     return 0;
   3460 }
   3461 
   3462 #if defined(MBEDTLS_SELF_TEST)
   3463 
   3464 #if defined(MBEDTLS_ECP_C)
   3465 /*
   3466  * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
   3467  *
   3468  * This is the linear congruential generator from numerical recipes,
   3469  * except we only use the low byte as the output. See
   3470  * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
   3471  */
   3472 static int self_test_rng(void *ctx, unsigned char *out, size_t len)
   3473 {
   3474     static uint32_t state = 42;
   3475 
   3476     (void) ctx;
   3477 
   3478     for (size_t i = 0; i < len; i++) {
   3479         state = state * 1664525u + 1013904223u;
   3480         out[i] = (unsigned char) state;
   3481     }
   3482 
   3483     return 0;
   3484 }
   3485 
   3486 /* Adjust the exponent to be a valid private point for the specified curve.
   3487  * This is sometimes necessary because we use a single set of exponents
   3488  * for all curves but the validity of values depends on the curve. */
   3489 static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
   3490                                      mbedtls_mpi *m)
   3491 {
   3492     int ret = 0;
   3493     switch (grp->id) {
   3494     /* If Curve25519 is available, then that's what we use for the
   3495      * Montgomery test, so we don't need the adjustment code. */
   3496 #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
   3497 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
   3498         case MBEDTLS_ECP_DP_CURVE448:
   3499             /* Move highest bit from 254 to N-1. Setting bit N-1 is
   3500              * necessary to enforce the highest-bit-set constraint. */
   3501             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
   3502             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
   3503             /* Copy second-highest bit from 253 to N-2. This is not
   3504              * necessary but improves the test variety a bit. */
   3505             MBEDTLS_MPI_CHK(
   3506                 mbedtls_mpi_set_bit(m, grp->nbits - 1,
   3507                                     mbedtls_mpi_get_bit(m, 253)));
   3508             break;
   3509 #endif
   3510 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
   3511         default:
   3512             /* Non-Montgomery curves and Curve25519 need no adjustment. */
   3513             (void) grp;
   3514             (void) m;
   3515             goto cleanup;
   3516     }
   3517 cleanup:
   3518     return ret;
   3519 }
   3520 
   3521 /* Calculate R = m.P for each m in exponents. Check that the number of
   3522  * basic operations doesn't depend on the value of m. */
   3523 static int self_test_point(int verbose,
   3524                            mbedtls_ecp_group *grp,
   3525                            mbedtls_ecp_point *R,
   3526                            mbedtls_mpi *m,
   3527                            const mbedtls_ecp_point *P,
   3528                            const char *const *exponents,
   3529                            size_t n_exponents)
   3530 {
   3531     int ret = 0;
   3532     size_t i = 0;
   3533     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
   3534     add_count = 0;
   3535     dbl_count = 0;
   3536     mul_count = 0;
   3537 
   3538     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
   3539     MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
   3540     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
   3541 
   3542     for (i = 1; i < n_exponents; i++) {
   3543         add_c_prev = add_count;
   3544         dbl_c_prev = dbl_count;
   3545         mul_c_prev = mul_count;
   3546         add_count = 0;
   3547         dbl_count = 0;
   3548         mul_count = 0;
   3549 
   3550         MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
   3551         MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
   3552         MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
   3553 
   3554         if (add_count != add_c_prev ||
   3555             dbl_count != dbl_c_prev ||
   3556             mul_count != mul_c_prev) {
   3557             ret = 1;
   3558             break;
   3559         }
   3560     }
   3561 
   3562 cleanup:
   3563     if (verbose != 0) {
   3564         if (ret != 0) {
   3565             mbedtls_printf("failed (%u)\n", (unsigned int) i);
   3566         } else {
   3567             mbedtls_printf("passed\n");
   3568         }
   3569     }
   3570     return ret;
   3571 }
   3572 #endif /* MBEDTLS_ECP_C */
   3573 
   3574 /*
   3575  * Checkup routine
   3576  */
   3577 int mbedtls_ecp_self_test(int verbose)
   3578 {
   3579 #if defined(MBEDTLS_ECP_C)
   3580     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
   3581     mbedtls_ecp_group grp;
   3582     mbedtls_ecp_point R, P;
   3583     mbedtls_mpi m;
   3584 
   3585 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3586     /* Exponents especially adapted for secp192k1, which has the lowest
   3587      * order n of all supported curves (secp192r1 is in a slightly larger
   3588      * field but the order of its base point is slightly smaller). */
   3589     const char *sw_exponents[] =
   3590     {
   3591         "000000000000000000000000000000000000000000000001", /* one */
   3592         "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
   3593         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
   3594         "400000000000000000000000000000000000000000000000", /* one and zeros */
   3595         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
   3596         "555555555555555555555555555555555555555555555555", /* 101010... */
   3597     };
   3598 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   3599 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3600     const char *m_exponents[] =
   3601     {
   3602         /* Valid private values for Curve25519. In a build with Curve448
   3603          * but not Curve25519, they will be adjusted in
   3604          * self_test_adjust_exponent(). */
   3605         "4000000000000000000000000000000000000000000000000000000000000000",
   3606         "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
   3607         "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
   3608         "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
   3609         "5555555555555555555555555555555555555555555555555555555555555550",
   3610         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
   3611     };
   3612 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
   3613 
   3614     mbedtls_ecp_group_init(&grp);
   3615     mbedtls_ecp_point_init(&R);
   3616     mbedtls_ecp_point_init(&P);
   3617     mbedtls_mpi_init(&m);
   3618 
   3619 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
   3620     /* Use secp192r1 if available, or any available curve */
   3621 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
   3622     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
   3623 #else
   3624     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
   3625 #endif
   3626 
   3627     if (verbose != 0) {
   3628         mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
   3629     }
   3630     /* Do a dummy multiplication first to trigger precomputation */
   3631     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
   3632     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
   3633     ret = self_test_point(verbose,
   3634                           &grp, &R, &m, &grp.G,
   3635                           sw_exponents,
   3636                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
   3637     if (ret != 0) {
   3638         goto cleanup;
   3639     }
   3640 
   3641     if (verbose != 0) {
   3642         mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
   3643     }
   3644     /* We computed P = 2G last time, use it */
   3645     ret = self_test_point(verbose,
   3646                           &grp, &R, &m, &P,
   3647                           sw_exponents,
   3648                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
   3649     if (ret != 0) {
   3650         goto cleanup;
   3651     }
   3652 
   3653     mbedtls_ecp_group_free(&grp);
   3654     mbedtls_ecp_point_free(&R);
   3655 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
   3656 
   3657 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
   3658     if (verbose != 0) {
   3659         mbedtls_printf("  ECP Montgomery test (constant op_count): ");
   3660     }
   3661 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
   3662     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
   3663 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
   3664     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
   3665 #else
   3666 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
   3667 #endif
   3668     ret = self_test_point(verbose,
   3669                           &grp, &R, &m, &grp.G,
   3670                           m_exponents,
   3671                           sizeof(m_exponents) / sizeof(m_exponents[0]));
   3672     if (ret != 0) {
   3673         goto cleanup;
   3674     }
   3675 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
   3676 
   3677 cleanup:
   3678 
   3679     if (ret < 0 && verbose != 0) {
   3680         mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
   3681     }
   3682 
   3683     mbedtls_ecp_group_free(&grp);
   3684     mbedtls_ecp_point_free(&R);
   3685     mbedtls_ecp_point_free(&P);
   3686     mbedtls_mpi_free(&m);
   3687 
   3688     if (verbose != 0) {
   3689         mbedtls_printf("\n");
   3690     }
   3691 
   3692     return ret;
   3693 #else /* MBEDTLS_ECP_C */
   3694     (void) verbose;
   3695     return 0;
   3696 #endif /* MBEDTLS_ECP_C */
   3697 }
   3698 
   3699 #endif /* MBEDTLS_SELF_TEST */
   3700 
   3701 #endif /* !MBEDTLS_ECP_ALT */
   3702 
   3703 #endif /* MBEDTLS_ECP_LIGHT */