quickjs-tart

quickjs-based runtime for wallet-core logic
Log | Files | Refs | README | LICENSE

crypto_values.h (122592B)


      1 /**
      2  * \file psa/crypto_values.h
      3  *
      4  * \brief PSA cryptography module: macros to build and analyze integer values.
      5  *
      6  * \note This file may not be included directly. Applications must
      7  * include psa/crypto.h. Drivers must include the appropriate driver
      8  * header file.
      9  *
     10  * This file contains portable definitions of macros to build and analyze
     11  * values of integral types that encode properties of cryptographic keys,
     12  * designations of cryptographic algorithms, and error codes returned by
     13  * the library.
     14  *
     15  * Note that many of the constants defined in this file are embedded in
     16  * the persistent key store, as part of key metadata (including usage
     17  * policies). As a consequence, they must not be changed (unless the storage
     18  * format version changes).
     19  *
     20  * This header file only defines preprocessor macros.
     21  */
     22 /*
     23  *  Copyright The Mbed TLS Contributors
     24  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
     25  */
     26 
     27 #ifndef PSA_CRYPTO_VALUES_H
     28 #define PSA_CRYPTO_VALUES_H
     29 #include "mbedtls/private_access.h"
     30 
     31 /** \defgroup error Error codes
     32  * @{
     33  */
     34 
     35 /* PSA error codes */
     36 
     37 /* Error codes are standardized across PSA domains (framework, crypto, storage,
     38  * etc.). Do not change the values in this section or even the expansions
     39  * of each macro: it must be possible to `#include` both this header
     40  * and some other PSA component's headers in the same C source,
     41  * which will lead to duplicate definitions of the `PSA_SUCCESS` and
     42  * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
     43  * to the same sequence of tokens.
     44  *
     45  * If you must add a new
     46  * value, check with the Arm PSA framework group to pick one that other
     47  * domains aren't already using. */
     48 
     49 /* Tell uncrustify not to touch the constant definitions, otherwise
     50  * it might change the spacing to something that is not PSA-compliant
     51  * (e.g. adding a space after casts).
     52  *
     53  * *INDENT-OFF*
     54  */
     55 
     56 /** The action was completed successfully. */
     57 #define PSA_SUCCESS ((psa_status_t)0)
     58 
     59 /** An error occurred that does not correspond to any defined
     60  * failure cause.
     61  *
     62  * Implementations may use this error code if none of the other standard
     63  * error codes are applicable. */
     64 #define PSA_ERROR_GENERIC_ERROR         ((psa_status_t)-132)
     65 
     66 /** The requested operation or a parameter is not supported
     67  * by this implementation.
     68  *
     69  * Implementations should return this error code when an enumeration
     70  * parameter such as a key type, algorithm, etc. is not recognized.
     71  * If a combination of parameters is recognized and identified as
     72  * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
     73 #define PSA_ERROR_NOT_SUPPORTED         ((psa_status_t)-134)
     74 
     75 /** The requested action is denied by a policy.
     76  *
     77  * Implementations should return this error code when the parameters
     78  * are recognized as valid and supported, and a policy explicitly
     79  * denies the requested operation.
     80  *
     81  * If a subset of the parameters of a function call identify a
     82  * forbidden operation, and another subset of the parameters are
     83  * not valid or not supported, it is unspecified whether the function
     84  * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
     85  * #PSA_ERROR_INVALID_ARGUMENT. */
     86 #define PSA_ERROR_NOT_PERMITTED         ((psa_status_t)-133)
     87 
     88 /** An output buffer is too small.
     89  *
     90  * Applications can call the \c PSA_xxx_SIZE macro listed in the function
     91  * description to determine a sufficient buffer size.
     92  *
     93  * Implementations should preferably return this error code only
     94  * in cases when performing the operation with a larger output
     95  * buffer would succeed. However implementations may return this
     96  * error if a function has invalid or unsupported parameters in addition
     97  * to the parameters that determine the necessary output buffer size. */
     98 #define PSA_ERROR_BUFFER_TOO_SMALL      ((psa_status_t)-138)
     99 
    100 /** Asking for an item that already exists
    101  *
    102  * Implementations should return this error, when attempting
    103  * to write an item (like a key) that already exists. */
    104 #define PSA_ERROR_ALREADY_EXISTS        ((psa_status_t)-139)
    105 
    106 /** Asking for an item that doesn't exist
    107  *
    108  * Implementations should return this error, if a requested item (like
    109  * a key) does not exist. */
    110 #define PSA_ERROR_DOES_NOT_EXIST        ((psa_status_t)-140)
    111 
    112 /** The requested action cannot be performed in the current state.
    113  *
    114  * Multipart operations return this error when one of the
    115  * functions is called out of sequence. Refer to the function
    116  * descriptions for permitted sequencing of functions.
    117  *
    118  * Implementations shall not return this error code to indicate
    119  * that a key either exists or not,
    120  * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
    121  * as applicable.
    122  *
    123  * Implementations shall not return this error code to indicate that a
    124  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
    125  * instead. */
    126 #define PSA_ERROR_BAD_STATE             ((psa_status_t)-137)
    127 
    128 /** The parameters passed to the function are invalid.
    129  *
    130  * Implementations may return this error any time a parameter or
    131  * combination of parameters are recognized as invalid.
    132  *
    133  * Implementations shall not return this error code to indicate that a
    134  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
    135  * instead.
    136  */
    137 #define PSA_ERROR_INVALID_ARGUMENT      ((psa_status_t)-135)
    138 
    139 /** There is not enough runtime memory.
    140  *
    141  * If the action is carried out across multiple security realms, this
    142  * error can refer to available memory in any of the security realms. */
    143 #define PSA_ERROR_INSUFFICIENT_MEMORY   ((psa_status_t)-141)
    144 
    145 /** There is not enough persistent storage.
    146  *
    147  * Functions that modify the key storage return this error code if
    148  * there is insufficient storage space on the host media. In addition,
    149  * many functions that do not otherwise access storage may return this
    150  * error code if the implementation requires a mandatory log entry for
    151  * the requested action and the log storage space is full. */
    152 #define PSA_ERROR_INSUFFICIENT_STORAGE  ((psa_status_t)-142)
    153 
    154 /** There was a communication failure inside the implementation.
    155  *
    156  * This can indicate a communication failure between the application
    157  * and an external cryptoprocessor or between the cryptoprocessor and
    158  * an external volatile or persistent memory. A communication failure
    159  * may be transient or permanent depending on the cause.
    160  *
    161  * \warning If a function returns this error, it is undetermined
    162  * whether the requested action has completed or not. Implementations
    163  * should return #PSA_SUCCESS on successful completion whenever
    164  * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
    165  * if the requested action was completed successfully in an external
    166  * cryptoprocessor but there was a breakdown of communication before
    167  * the cryptoprocessor could report the status to the application.
    168  */
    169 #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
    170 
    171 /** There was a storage failure that may have led to data loss.
    172  *
    173  * This error indicates that some persistent storage is corrupted.
    174  * It should not be used for a corruption of volatile memory
    175  * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
    176  * between the cryptoprocessor and its external storage (use
    177  * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
    178  * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
    179  *
    180  * Note that a storage failure does not indicate that any data that was
    181  * previously read is invalid. However this previously read data may no
    182  * longer be readable from storage.
    183  *
    184  * When a storage failure occurs, it is no longer possible to ensure
    185  * the global integrity of the keystore. Depending on the global
    186  * integrity guarantees offered by the implementation, access to other
    187  * data may or may not fail even if the data is still readable but
    188  * its integrity cannot be guaranteed.
    189  *
    190  * Implementations should only use this error code to report a
    191  * permanent storage corruption. However application writers should
    192  * keep in mind that transient errors while reading the storage may be
    193  * reported using this error code. */
    194 #define PSA_ERROR_STORAGE_FAILURE       ((psa_status_t)-146)
    195 
    196 /** A hardware failure was detected.
    197  *
    198  * A hardware failure may be transient or permanent depending on the
    199  * cause. */
    200 #define PSA_ERROR_HARDWARE_FAILURE      ((psa_status_t)-147)
    201 
    202 /** A tampering attempt was detected.
    203  *
    204  * If an application receives this error code, there is no guarantee
    205  * that previously accessed or computed data was correct and remains
    206  * confidential. Applications should not perform any security function
    207  * and should enter a safe failure state.
    208  *
    209  * Implementations may return this error code if they detect an invalid
    210  * state that cannot happen during normal operation and that indicates
    211  * that the implementation's security guarantees no longer hold. Depending
    212  * on the implementation architecture and on its security and safety goals,
    213  * the implementation may forcibly terminate the application.
    214  *
    215  * This error code is intended as a last resort when a security breach
    216  * is detected and it is unsure whether the keystore data is still
    217  * protected. Implementations shall only return this error code
    218  * to report an alarm from a tampering detector, to indicate that
    219  * the confidentiality of stored data can no longer be guaranteed,
    220  * or to indicate that the integrity of previously returned data is now
    221  * considered compromised. Implementations shall not use this error code
    222  * to indicate a hardware failure that merely makes it impossible to
    223  * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
    224  * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
    225  * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
    226  * instead).
    227  *
    228  * This error indicates an attack against the application. Implementations
    229  * shall not return this error code as a consequence of the behavior of
    230  * the application itself. */
    231 #define PSA_ERROR_CORRUPTION_DETECTED    ((psa_status_t)-151)
    232 
    233 /** There is not enough entropy to generate random data needed
    234  * for the requested action.
    235  *
    236  * This error indicates a failure of a hardware random generator.
    237  * Application writers should note that this error can be returned not
    238  * only by functions whose purpose is to generate random data, such
    239  * as key, IV or nonce generation, but also by functions that execute
    240  * an algorithm with a randomized result, as well as functions that
    241  * use randomization of intermediate computations as a countermeasure
    242  * to certain attacks.
    243  *
    244  * Implementations should avoid returning this error after psa_crypto_init()
    245  * has succeeded. Implementations should generate sufficient
    246  * entropy during initialization and subsequently use a cryptographically
    247  * secure pseudorandom generator (PRNG). However implementations may return
    248  * this error at any time if a policy requires the PRNG to be reseeded
    249  * during normal operation. */
    250 #define PSA_ERROR_INSUFFICIENT_ENTROPY  ((psa_status_t)-148)
    251 
    252 /** The signature, MAC or hash is incorrect.
    253  *
    254  * Verification functions return this error if the verification
    255  * calculations completed successfully, and the value to be verified
    256  * was determined to be incorrect.
    257  *
    258  * If the value to verify has an invalid size, implementations may return
    259  * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
    260 #define PSA_ERROR_INVALID_SIGNATURE     ((psa_status_t)-149)
    261 
    262 /** The decrypted padding is incorrect.
    263  *
    264  * \warning In some protocols, when decrypting data, it is essential that
    265  * the behavior of the application does not depend on whether the padding
    266  * is correct, down to precise timing. Applications should prefer
    267  * protocols that use authenticated encryption rather than plain
    268  * encryption. If the application must perform a decryption of
    269  * unauthenticated data, the application writer should take care not
    270  * to reveal whether the padding is invalid.
    271  *
    272  * Implementations should strive to make valid and invalid padding
    273  * as close as possible to indistinguishable to an external observer.
    274  * In particular, the timing of a decryption operation should not
    275  * depend on the validity of the padding. */
    276 #define PSA_ERROR_INVALID_PADDING       ((psa_status_t)-150)
    277 
    278 /** Return this error when there's insufficient data when attempting
    279  * to read from a resource. */
    280 #define PSA_ERROR_INSUFFICIENT_DATA     ((psa_status_t)-143)
    281 
    282 /** This can be returned if a function can no longer operate correctly.
    283  * For example, if an essential initialization operation failed or
    284  * a mutex operation failed. */
    285 #define PSA_ERROR_SERVICE_FAILURE       ((psa_status_t)-144)
    286 
    287 /** The key identifier is not valid. See also :ref:\`key-handles\`.
    288  */
    289 #define PSA_ERROR_INVALID_HANDLE        ((psa_status_t)-136)
    290 
    291 /** Stored data has been corrupted.
    292  *
    293  * This error indicates that some persistent storage has suffered corruption.
    294  * It does not indicate the following situations, which have specific error
    295  * codes:
    296  *
    297  * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
    298  * - A communication error between the cryptoprocessor and its external
    299  *   storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
    300  * - When the storage is in a valid state but is full - use
    301  *   #PSA_ERROR_INSUFFICIENT_STORAGE.
    302  * - When the storage fails for other reasons - use
    303  *   #PSA_ERROR_STORAGE_FAILURE.
    304  * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
    305  *
    306  * \note A storage corruption does not indicate that any data that was
    307  * previously read is invalid. However this previously read data might no
    308  * longer be readable from storage.
    309  *
    310  * When a storage failure occurs, it is no longer possible to ensure the
    311  * global integrity of the keystore.
    312  */
    313 #define PSA_ERROR_DATA_CORRUPT          ((psa_status_t)-152)
    314 
    315 /** Data read from storage is not valid for the implementation.
    316  *
    317  * This error indicates that some data read from storage does not have a valid
    318  * format. It does not indicate the following situations, which have specific
    319  * error codes:
    320  *
    321  * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
    322  * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
    323  * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
    324  *
    325  * This error is typically a result of either storage corruption on a
    326  * cleartext storage backend, or an attempt to read data that was
    327  * written by an incompatible version of the library.
    328  */
    329 #define PSA_ERROR_DATA_INVALID          ((psa_status_t)-153)
    330 
    331 /** The function that returns this status is defined as interruptible and
    332  *  still has work to do, thus the user should call the function again with the
    333  *  same operation context until it either returns #PSA_SUCCESS or any other
    334  *  error. This is not an error per se, more a notification of status.
    335  */
    336 #define PSA_OPERATION_INCOMPLETE           ((psa_status_t)-248)
    337 
    338 /* *INDENT-ON* */
    339 
    340 /**@}*/
    341 
    342 /** \defgroup crypto_types Key and algorithm types
    343  * @{
    344  */
    345 
    346 /* Note that key type values, including ECC family and DH group values, are
    347  * embedded in the persistent key store, as part of key metadata. As a
    348  * consequence, they must not be changed (unless the storage format version
    349  * changes).
    350  */
    351 
    352 /** An invalid key type value.
    353  *
    354  * Zero is not the encoding of any key type.
    355  */
    356 #define PSA_KEY_TYPE_NONE                           ((psa_key_type_t) 0x0000)
    357 
    358 /** Vendor-defined key type flag.
    359  *
    360  * Key types defined by this standard will never have the
    361  * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
    362  * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
    363  * respect the bitwise structure used by standard encodings whenever practical.
    364  */
    365 #define PSA_KEY_TYPE_VENDOR_FLAG                    ((psa_key_type_t) 0x8000)
    366 
    367 #define PSA_KEY_TYPE_CATEGORY_MASK                  ((psa_key_type_t) 0x7000)
    368 #define PSA_KEY_TYPE_CATEGORY_RAW                   ((psa_key_type_t) 0x1000)
    369 #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC             ((psa_key_type_t) 0x2000)
    370 #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY            ((psa_key_type_t) 0x4000)
    371 #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR              ((psa_key_type_t) 0x7000)
    372 
    373 #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR             ((psa_key_type_t) 0x3000)
    374 
    375 /** Whether a key type is vendor-defined.
    376  *
    377  * See also #PSA_KEY_TYPE_VENDOR_FLAG.
    378  */
    379 #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
    380     (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
    381 
    382 /** Whether a key type is an unstructured array of bytes.
    383  *
    384  * This encompasses both symmetric keys and non-key data.
    385  */
    386 #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
    387     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
    388      ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
    389 
    390 /** Whether a key type is asymmetric: either a key pair or a public key. */
    391 #define PSA_KEY_TYPE_IS_ASYMMETRIC(type)                                \
    392     (((type) & PSA_KEY_TYPE_CATEGORY_MASK                               \
    393       & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) ==                            \
    394      PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
    395 /** Whether a key type is the public part of a key pair. */
    396 #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type)                                \
    397     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
    398 /** Whether a key type is a key pair containing a private part and a public
    399  * part. */
    400 #define PSA_KEY_TYPE_IS_KEY_PAIR(type)                                   \
    401     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
    402 /** The key pair type corresponding to a public key type.
    403  *
    404  * You may also pass a key pair type as \p type, it will be left unchanged.
    405  *
    406  * \param type      A public key type or key pair type.
    407  *
    408  * \return          The corresponding key pair type.
    409  *                  If \p type is not a public key or a key pair,
    410  *                  the return value is undefined.
    411  */
    412 #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type)        \
    413     ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
    414 /** The public key type corresponding to a key pair type.
    415  *
    416  * You may also pass a public key type as \p type, it will be left unchanged.
    417  *
    418  * \param type      A public key type or key pair type.
    419  *
    420  * \return          The corresponding public key type.
    421  *                  If \p type is not a public key or a key pair,
    422  *                  the return value is undefined.
    423  */
    424 #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type)        \
    425     ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
    426 
    427 /** Raw data.
    428  *
    429  * A "key" of this type cannot be used for any cryptographic operation.
    430  * Applications may use this type to store arbitrary data in the keystore. */
    431 #define PSA_KEY_TYPE_RAW_DATA                       ((psa_key_type_t) 0x1001)
    432 
    433 /** HMAC key.
    434  *
    435  * The key policy determines which underlying hash algorithm the key can be
    436  * used for.
    437  *
    438  * HMAC keys should generally have the same size as the underlying hash.
    439  * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
    440  * \c alg is the HMAC algorithm or the underlying hash algorithm. */
    441 #define PSA_KEY_TYPE_HMAC                           ((psa_key_type_t) 0x1100)
    442 
    443 /** A secret for key derivation.
    444  *
    445  * This key type is for high-entropy secrets only. For low-entropy secrets,
    446  * #PSA_KEY_TYPE_PASSWORD should be used instead.
    447  *
    448  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
    449  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
    450  *
    451  * The key policy determines which key derivation algorithm the key
    452  * can be used for.
    453  */
    454 #define PSA_KEY_TYPE_DERIVE                         ((psa_key_type_t) 0x1200)
    455 
    456 /** A low-entropy secret for password hashing or key derivation.
    457  *
    458  * This key type is suitable for passwords and passphrases which are typically
    459  * intended to be memorizable by humans, and have a low entropy relative to
    460  * their size. It can be used for randomly generated or derived keys with
    461  * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
    462  * for such keys. It is not suitable for passwords with extremely low entropy,
    463  * such as numerical PINs.
    464  *
    465  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
    466  * key derivation algorithms. Algorithms that accept such an input were
    467  * designed to accept low-entropy secret and are known as password hashing or
    468  * key stretching algorithms.
    469  *
    470  * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
    471  * key derivation algorithms, as the algorithms that take such an input expect
    472  * it to be high-entropy.
    473  *
    474  * The key policy determines which key derivation algorithm the key can be
    475  * used for, among the permissible subset defined above.
    476  */
    477 #define PSA_KEY_TYPE_PASSWORD                       ((psa_key_type_t) 0x1203)
    478 
    479 /** A secret value that can be used to verify a password hash.
    480  *
    481  * The key policy determines which key derivation algorithm the key
    482  * can be used for, among the same permissible subset as for
    483  * #PSA_KEY_TYPE_PASSWORD.
    484  */
    485 #define PSA_KEY_TYPE_PASSWORD_HASH                  ((psa_key_type_t) 0x1205)
    486 
    487 /** A secret value that can be used in when computing a password hash.
    488  *
    489  * The key policy determines which key derivation algorithm the key
    490  * can be used for, among the subset of algorithms that can use pepper.
    491  */
    492 #define PSA_KEY_TYPE_PEPPER                         ((psa_key_type_t) 0x1206)
    493 
    494 /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
    495  *
    496  * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
    497  * 32 bytes (AES-256).
    498  */
    499 #define PSA_KEY_TYPE_AES                            ((psa_key_type_t) 0x2400)
    500 
    501 /** Key for a cipher, AEAD or MAC algorithm based on the
    502  * ARIA block cipher. */
    503 #define PSA_KEY_TYPE_ARIA                           ((psa_key_type_t) 0x2406)
    504 
    505 /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
    506  *
    507  * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
    508  * 192 bits (3-key 3DES).
    509  *
    510  * Note that single DES and 2-key 3DES are weak and strongly
    511  * deprecated and should only be used to decrypt legacy data. 3-key 3DES
    512  * is weak and deprecated and should only be used in legacy protocols.
    513  */
    514 #define PSA_KEY_TYPE_DES                            ((psa_key_type_t) 0x2301)
    515 
    516 /** Key for a cipher, AEAD or MAC algorithm based on the
    517  * Camellia block cipher. */
    518 #define PSA_KEY_TYPE_CAMELLIA                       ((psa_key_type_t) 0x2403)
    519 
    520 /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
    521  *
    522  * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
    523  *
    524  * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
    525  *       12-byte nonces.
    526  *
    527  * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
    528  *       with the initial counter value 1, you can process and discard a
    529  *       64-byte block before the real data.
    530  */
    531 #define PSA_KEY_TYPE_CHACHA20                       ((psa_key_type_t) 0x2004)
    532 
    533 /** RSA public key.
    534  *
    535  * The size of an RSA key is the bit size of the modulus.
    536  */
    537 #define PSA_KEY_TYPE_RSA_PUBLIC_KEY                 ((psa_key_type_t) 0x4001)
    538 /** RSA key pair (private and public key).
    539  *
    540  * The size of an RSA key is the bit size of the modulus.
    541  */
    542 #define PSA_KEY_TYPE_RSA_KEY_PAIR                   ((psa_key_type_t) 0x7001)
    543 /** Whether a key type is an RSA key (pair or public-only). */
    544 #define PSA_KEY_TYPE_IS_RSA(type)                                       \
    545     (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
    546 
    547 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE            ((psa_key_type_t) 0x4100)
    548 #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE              ((psa_key_type_t) 0x7100)
    549 #define PSA_KEY_TYPE_ECC_CURVE_MASK                 ((psa_key_type_t) 0x00ff)
    550 /** Elliptic curve key pair.
    551  *
    552  * The size of an elliptic curve key is the bit size associated with the curve,
    553  * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
    554  * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
    555  *
    556  * \param curve     A value of type ::psa_ecc_family_t that
    557  *                  identifies the ECC curve to be used.
    558  */
    559 #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve)         \
    560     (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
    561 /** Elliptic curve public key.
    562  *
    563  * The size of an elliptic curve public key is the same as the corresponding
    564  * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
    565  * `PSA_ECC_FAMILY_xxx` curve families).
    566  *
    567  * \param curve     A value of type ::psa_ecc_family_t that
    568  *                  identifies the ECC curve to be used.
    569  */
    570 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve)              \
    571     (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
    572 
    573 /** Whether a key type is an elliptic curve key (pair or public-only). */
    574 #define PSA_KEY_TYPE_IS_ECC(type)                                       \
    575     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
    576       ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
    577 /** Whether a key type is an elliptic curve key pair. */
    578 #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)                               \
    579     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
    580      PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
    581 /** Whether a key type is an elliptic curve public key. */
    582 #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type)                            \
    583     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
    584      PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
    585 
    586 /** Extract the curve from an elliptic curve key type. */
    587 #define PSA_KEY_TYPE_ECC_GET_FAMILY(type)                        \
    588     ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ?             \
    589                          ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
    590                          0))
    591 
    592 /** Check if the curve of given family is Weierstrass elliptic curve. */
    593 #define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
    594 
    595 /** SEC Koblitz curves over prime fields.
    596  *
    597  * This family comprises the following curves:
    598  * secp192k1, secp224k1, secp256k1.
    599  * They are defined in _Standards for Efficient Cryptography_,
    600  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
    601  * https://www.secg.org/sec2-v2.pdf
    602  *
    603  * \note For secp224k1, the bit-size is 225 (size of a private value).
    604  *
    605  * \note Mbed TLS only supports secp192k1 and secp256k1.
    606  */
    607 #define PSA_ECC_FAMILY_SECP_K1           ((psa_ecc_family_t) 0x17)
    608 
    609 /** SEC random curves over prime fields.
    610  *
    611  * This family comprises the following curves:
    612  * secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
    613  * They are defined in _Standards for Efficient Cryptography_,
    614  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
    615  * https://www.secg.org/sec2-v2.pdf
    616  */
    617 #define PSA_ECC_FAMILY_SECP_R1           ((psa_ecc_family_t) 0x12)
    618 /* SECP160R2 (SEC2 v1, obsolete, not supported in Mbed TLS) */
    619 #define PSA_ECC_FAMILY_SECP_R2           ((psa_ecc_family_t) 0x1b)
    620 
    621 /** SEC Koblitz curves over binary fields.
    622  *
    623  * This family comprises the following curves:
    624  * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
    625  * They are defined in _Standards for Efficient Cryptography_,
    626  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
    627  * https://www.secg.org/sec2-v2.pdf
    628  *
    629  * \note Mbed TLS does not support any curve in this family.
    630  */
    631 #define PSA_ECC_FAMILY_SECT_K1           ((psa_ecc_family_t) 0x27)
    632 
    633 /** SEC random curves over binary fields.
    634  *
    635  * This family comprises the following curves:
    636  * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
    637  * They are defined in _Standards for Efficient Cryptography_,
    638  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
    639  * https://www.secg.org/sec2-v2.pdf
    640  *
    641  * \note Mbed TLS does not support any curve in this family.
    642  */
    643 #define PSA_ECC_FAMILY_SECT_R1           ((psa_ecc_family_t) 0x22)
    644 
    645 /** SEC additional random curves over binary fields.
    646  *
    647  * This family comprises the following curve:
    648  * sect163r2.
    649  * It is defined in _Standards for Efficient Cryptography_,
    650  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
    651  * https://www.secg.org/sec2-v2.pdf
    652  *
    653  * \note Mbed TLS does not support any curve in this family.
    654  */
    655 #define PSA_ECC_FAMILY_SECT_R2           ((psa_ecc_family_t) 0x2b)
    656 
    657 /** Brainpool P random curves.
    658  *
    659  * This family comprises the following curves:
    660  * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
    661  * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
    662  * It is defined in RFC 5639.
    663  *
    664  * \note Mbed TLS only supports the 256-bit, 384-bit and 512-bit curves
    665  *       in this family.
    666  */
    667 #define PSA_ECC_FAMILY_BRAINPOOL_P_R1    ((psa_ecc_family_t) 0x30)
    668 
    669 /** Curve25519 and Curve448.
    670  *
    671  * This family comprises the following Montgomery curves:
    672  * - 255-bit: Bernstein et al.,
    673  *   _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
    674  *   The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
    675  * - 448-bit: Hamburg,
    676  *   _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
    677  *   The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
    678  */
    679 #define PSA_ECC_FAMILY_MONTGOMERY        ((psa_ecc_family_t) 0x41)
    680 
    681 /** The twisted Edwards curves Ed25519 and Ed448.
    682  *
    683  * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
    684  * #PSA_ALG_ED25519PH for the 255-bit curve,
    685  * #PSA_ALG_ED448PH for the 448-bit curve).
    686  *
    687  * This family comprises the following twisted Edwards curves:
    688  * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
    689  *   to Curve25519.
    690  *   Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
    691  * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
    692  *   to Curve448.
    693  *   Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
    694  *
    695  * \note Mbed TLS does not support Edwards curves yet.
    696  */
    697 #define PSA_ECC_FAMILY_TWISTED_EDWARDS   ((psa_ecc_family_t) 0x42)
    698 
    699 #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE             ((psa_key_type_t) 0x4200)
    700 #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE               ((psa_key_type_t) 0x7200)
    701 #define PSA_KEY_TYPE_DH_GROUP_MASK                  ((psa_key_type_t) 0x00ff)
    702 /** Diffie-Hellman key pair.
    703  *
    704  * \param group     A value of type ::psa_dh_family_t that identifies the
    705  *                  Diffie-Hellman group to be used.
    706  */
    707 #define PSA_KEY_TYPE_DH_KEY_PAIR(group)          \
    708     (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
    709 /** Diffie-Hellman public key.
    710  *
    711  * \param group     A value of type ::psa_dh_family_t that identifies the
    712  *                  Diffie-Hellman group to be used.
    713  */
    714 #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group)               \
    715     (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
    716 
    717 /** Whether a key type is a Diffie-Hellman key (pair or public-only). */
    718 #define PSA_KEY_TYPE_IS_DH(type)                                        \
    719     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
    720       ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
    721 /** Whether a key type is a Diffie-Hellman key pair. */
    722 #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type)                               \
    723     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
    724      PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
    725 /** Whether a key type is a Diffie-Hellman public key. */
    726 #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type)                            \
    727     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
    728      PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
    729 
    730 /** Extract the group from a Diffie-Hellman key type. */
    731 #define PSA_KEY_TYPE_DH_GET_FAMILY(type)                        \
    732     ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ?              \
    733                         ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) :  \
    734                         0))
    735 
    736 /** Diffie-Hellman groups defined in RFC 7919 Appendix A.
    737  *
    738  * This family includes groups with the following key sizes (in bits):
    739  * 2048, 3072, 4096, 6144, 8192. A given implementation may support
    740  * all of these sizes or only a subset.
    741  */
    742 #define PSA_DH_FAMILY_RFC7919            ((psa_dh_family_t) 0x03)
    743 
    744 #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type)      \
    745     (((type) >> 8) & 7)
    746 /** The block size of a block cipher.
    747  *
    748  * \param type  A cipher key type (value of type #psa_key_type_t).
    749  *
    750  * \return      The block size for a block cipher, or 1 for a stream cipher.
    751  *              The return value is undefined if \p type is not a supported
    752  *              cipher key type.
    753  *
    754  * \note It is possible to build stream cipher algorithms on top of a block
    755  *       cipher, for example CTR mode (#PSA_ALG_CTR).
    756  *       This macro only takes the key type into account, so it cannot be
    757  *       used to determine the size of the data that #psa_cipher_update()
    758  *       might buffer for future processing in general.
    759  *
    760  * \note This macro returns a compile-time constant if its argument is one.
    761  *
    762  * \warning This macro may evaluate its argument multiple times.
    763  */
    764 #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type)                                     \
    765     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
    766      1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) :                         \
    767         0u)
    768 
    769 /* Note that algorithm values are embedded in the persistent key store,
    770  * as part of key metadata. As a consequence, they must not be changed
    771  * (unless the storage format version changes).
    772  */
    773 
    774 /** Vendor-defined algorithm flag.
    775  *
    776  * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
    777  * bit set. Vendors who define additional algorithms must use an encoding with
    778  * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
    779  * used by standard encodings whenever practical.
    780  */
    781 #define PSA_ALG_VENDOR_FLAG                     ((psa_algorithm_t) 0x80000000)
    782 
    783 #define PSA_ALG_CATEGORY_MASK                   ((psa_algorithm_t) 0x7f000000)
    784 #define PSA_ALG_CATEGORY_HASH                   ((psa_algorithm_t) 0x02000000)
    785 #define PSA_ALG_CATEGORY_MAC                    ((psa_algorithm_t) 0x03000000)
    786 #define PSA_ALG_CATEGORY_CIPHER                 ((psa_algorithm_t) 0x04000000)
    787 #define PSA_ALG_CATEGORY_AEAD                   ((psa_algorithm_t) 0x05000000)
    788 #define PSA_ALG_CATEGORY_SIGN                   ((psa_algorithm_t) 0x06000000)
    789 #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION  ((psa_algorithm_t) 0x07000000)
    790 #define PSA_ALG_CATEGORY_KEY_DERIVATION         ((psa_algorithm_t) 0x08000000)
    791 #define PSA_ALG_CATEGORY_KEY_AGREEMENT          ((psa_algorithm_t) 0x09000000)
    792 
    793 /** Whether an algorithm is vendor-defined.
    794  *
    795  * See also #PSA_ALG_VENDOR_FLAG.
    796  */
    797 #define PSA_ALG_IS_VENDOR_DEFINED(alg)                                  \
    798     (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
    799 
    800 /** Whether the specified algorithm is a hash algorithm.
    801  *
    802  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    803  *
    804  * \return 1 if \p alg is a hash algorithm, 0 otherwise.
    805  *         This macro may return either 0 or 1 if \p alg is not a supported
    806  *         algorithm identifier.
    807  */
    808 #define PSA_ALG_IS_HASH(alg)                                            \
    809     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
    810 
    811 /** Whether the specified algorithm is a MAC algorithm.
    812  *
    813  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    814  *
    815  * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
    816  *         This macro may return either 0 or 1 if \p alg is not a supported
    817  *         algorithm identifier.
    818  */
    819 #define PSA_ALG_IS_MAC(alg)                                             \
    820     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
    821 
    822 /** Whether the specified algorithm is a symmetric cipher algorithm.
    823  *
    824  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    825  *
    826  * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
    827  *         This macro may return either 0 or 1 if \p alg is not a supported
    828  *         algorithm identifier.
    829  */
    830 #define PSA_ALG_IS_CIPHER(alg)                                          \
    831     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
    832 
    833 /** Whether the specified algorithm is an authenticated encryption
    834  * with associated data (AEAD) algorithm.
    835  *
    836  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    837  *
    838  * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
    839  *         This macro may return either 0 or 1 if \p alg is not a supported
    840  *         algorithm identifier.
    841  */
    842 #define PSA_ALG_IS_AEAD(alg)                                            \
    843     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
    844 
    845 /** Whether the specified algorithm is an asymmetric signature algorithm,
    846  * also known as public-key signature algorithm.
    847  *
    848  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    849  *
    850  * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
    851  *         This macro may return either 0 or 1 if \p alg is not a supported
    852  *         algorithm identifier.
    853  */
    854 #define PSA_ALG_IS_SIGN(alg)                                            \
    855     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
    856 
    857 /** Whether the specified algorithm is an asymmetric encryption algorithm,
    858  * also known as public-key encryption algorithm.
    859  *
    860  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    861  *
    862  * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
    863  *         This macro may return either 0 or 1 if \p alg is not a supported
    864  *         algorithm identifier.
    865  */
    866 #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg)                           \
    867     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
    868 
    869 /** Whether the specified algorithm is a key agreement algorithm.
    870  *
    871  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    872  *
    873  * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
    874  *         This macro may return either 0 or 1 if \p alg is not a supported
    875  *         algorithm identifier.
    876  */
    877 #define PSA_ALG_IS_KEY_AGREEMENT(alg)                                   \
    878     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
    879 
    880 /** Whether the specified algorithm is a key derivation algorithm.
    881  *
    882  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    883  *
    884  * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
    885  *         This macro may return either 0 or 1 if \p alg is not a supported
    886  *         algorithm identifier.
    887  */
    888 #define PSA_ALG_IS_KEY_DERIVATION(alg)                                  \
    889     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
    890 
    891 /** Whether the specified algorithm is a key stretching / password hashing
    892  * algorithm.
    893  *
    894  * A key stretching / password hashing algorithm is a key derivation algorithm
    895  * that is suitable for use with a low-entropy secret such as a password.
    896  * Equivalently, it's a key derivation algorithm that uses a
    897  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
    898  *
    899  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
    900  *
    901  * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
    902  *         otherwise. This macro may return either 0 or 1 if \p alg is not a
    903  *         supported algorithm identifier.
    904  */
    905 #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg)                                  \
    906     (PSA_ALG_IS_KEY_DERIVATION(alg) &&              \
    907      (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
    908 
    909 /** An invalid algorithm identifier value. */
    910 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
    911 #define PSA_ALG_NONE                            ((psa_algorithm_t)0)
    912 /* *INDENT-ON* */
    913 
    914 #define PSA_ALG_HASH_MASK                       ((psa_algorithm_t) 0x000000ff)
    915 /** MD5 */
    916 #define PSA_ALG_MD5                             ((psa_algorithm_t) 0x02000003)
    917 /** PSA_ALG_RIPEMD160 */
    918 #define PSA_ALG_RIPEMD160                       ((psa_algorithm_t) 0x02000004)
    919 /** SHA1 */
    920 #define PSA_ALG_SHA_1                           ((psa_algorithm_t) 0x02000005)
    921 /** SHA2-224 */
    922 #define PSA_ALG_SHA_224                         ((psa_algorithm_t) 0x02000008)
    923 /** SHA2-256 */
    924 #define PSA_ALG_SHA_256                         ((psa_algorithm_t) 0x02000009)
    925 /** SHA2-384 */
    926 #define PSA_ALG_SHA_384                         ((psa_algorithm_t) 0x0200000a)
    927 /** SHA2-512 */
    928 #define PSA_ALG_SHA_512                         ((psa_algorithm_t) 0x0200000b)
    929 /** SHA2-512/224 */
    930 #define PSA_ALG_SHA_512_224                     ((psa_algorithm_t) 0x0200000c)
    931 /** SHA2-512/256 */
    932 #define PSA_ALG_SHA_512_256                     ((psa_algorithm_t) 0x0200000d)
    933 /** SHA3-224 */
    934 #define PSA_ALG_SHA3_224                        ((psa_algorithm_t) 0x02000010)
    935 /** SHA3-256 */
    936 #define PSA_ALG_SHA3_256                        ((psa_algorithm_t) 0x02000011)
    937 /** SHA3-384 */
    938 #define PSA_ALG_SHA3_384                        ((psa_algorithm_t) 0x02000012)
    939 /** SHA3-512 */
    940 #define PSA_ALG_SHA3_512                        ((psa_algorithm_t) 0x02000013)
    941 /** The first 512 bits (64 bytes) of the SHAKE256 output.
    942  *
    943  * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
    944  * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
    945  * has the same output size and a (theoretically) higher security strength.
    946  */
    947 #define PSA_ALG_SHAKE256_512                    ((psa_algorithm_t) 0x02000015)
    948 
    949 /** In a hash-and-sign algorithm policy, allow any hash algorithm.
    950  *
    951  * This value may be used to form the algorithm usage field of a policy
    952  * for a signature algorithm that is parametrized by a hash. The key
    953  * may then be used to perform operations using the same signature
    954  * algorithm parametrized with any supported hash.
    955  *
    956  * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
    957  * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
    958  * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
    959  * Then you may create and use a key as follows:
    960  * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
    961  *   ```
    962  *   psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
    963  *   psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
    964  *   ```
    965  * - Import or generate key material.
    966  * - Call psa_sign_hash() or psa_verify_hash(), passing
    967  *   an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
    968  *   call to sign or verify a message may use a different hash.
    969  *   ```
    970  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
    971  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
    972  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
    973  *   ```
    974  *
    975  * This value may not be used to build other algorithms that are
    976  * parametrized over a hash. For any valid use of this macro to build
    977  * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
    978  *
    979  * This value may not be used to build an algorithm specification to
    980  * perform an operation. It is only valid to build policies.
    981  */
    982 #define PSA_ALG_ANY_HASH                        ((psa_algorithm_t) 0x020000ff)
    983 
    984 #define PSA_ALG_MAC_SUBCATEGORY_MASK            ((psa_algorithm_t) 0x00c00000)
    985 #define PSA_ALG_HMAC_BASE                       ((psa_algorithm_t) 0x03800000)
    986 /** Macro to build an HMAC algorithm.
    987  *
    988  * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
    989  *
    990  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
    991  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
    992  *
    993  * \return              The corresponding HMAC algorithm.
    994  * \return              Unspecified if \p hash_alg is not a supported
    995  *                      hash algorithm.
    996  */
    997 #define PSA_ALG_HMAC(hash_alg)                                  \
    998     (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
    999 
   1000 #define PSA_ALG_HMAC_GET_HASH(hmac_alg)                             \
   1001     (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
   1002 
   1003 /** Whether the specified algorithm is an HMAC algorithm.
   1004  *
   1005  * HMAC is a family of MAC algorithms that are based on a hash function.
   1006  *
   1007  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1008  *
   1009  * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
   1010  *         This macro may return either 0 or 1 if \p alg is not a supported
   1011  *         algorithm identifier.
   1012  */
   1013 #define PSA_ALG_IS_HMAC(alg)                                            \
   1014     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
   1015      PSA_ALG_HMAC_BASE)
   1016 
   1017 /* In the encoding of a MAC algorithm, the bits corresponding to
   1018  * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
   1019  * truncated. As an exception, the value 0 means the untruncated algorithm,
   1020  * whatever its length is. The length is encoded in 6 bits, so it can
   1021  * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
   1022  * to full length is correctly encoded as 0 and any non-trivial truncation
   1023  * is correctly encoded as a value between 1 and 63. */
   1024 #define PSA_ALG_MAC_TRUNCATION_MASK             ((psa_algorithm_t) 0x003f0000)
   1025 #define PSA_MAC_TRUNCATION_OFFSET 16
   1026 
   1027 /* In the encoding of a MAC algorithm, the bit corresponding to
   1028  * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
   1029  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
   1030  * algorithm policy can be used with any algorithm corresponding to the
   1031  * same base class and having a (potentially truncated) MAC length greater or
   1032  * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
   1033 #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG   ((psa_algorithm_t) 0x00008000)
   1034 
   1035 /** Macro to build a truncated MAC algorithm.
   1036  *
   1037  * A truncated MAC algorithm is identical to the corresponding MAC
   1038  * algorithm except that the MAC value for the truncated algorithm
   1039  * consists of only the first \p mac_length bytes of the MAC value
   1040  * for the untruncated algorithm.
   1041  *
   1042  * \note    This macro may allow constructing algorithm identifiers that
   1043  *          are not valid, either because the specified length is larger
   1044  *          than the untruncated MAC or because the specified length is
   1045  *          smaller than permitted by the implementation.
   1046  *
   1047  * \note    It is implementation-defined whether a truncated MAC that
   1048  *          is truncated to the same length as the MAC of the untruncated
   1049  *          algorithm is considered identical to the untruncated algorithm
   1050  *          for policy comparison purposes.
   1051  *
   1052  * \param mac_alg       A MAC algorithm identifier (value of type
   1053  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
   1054  *                      is true). This may be a truncated or untruncated
   1055  *                      MAC algorithm.
   1056  * \param mac_length    Desired length of the truncated MAC in bytes.
   1057  *                      This must be at most the full length of the MAC
   1058  *                      and must be at least an implementation-specified
   1059  *                      minimum. The implementation-specified minimum
   1060  *                      shall not be zero.
   1061  *
   1062  * \return              The corresponding MAC algorithm with the specified
   1063  *                      length.
   1064  * \return              Unspecified if \p mac_alg is not a supported
   1065  *                      MAC algorithm or if \p mac_length is too small or
   1066  *                      too large for the specified MAC algorithm.
   1067  */
   1068 #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length)              \
   1069     (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |               \
   1070                     PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) |   \
   1071      ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
   1072 
   1073 /** Macro to build the base MAC algorithm corresponding to a truncated
   1074  * MAC algorithm.
   1075  *
   1076  * \param mac_alg       A MAC algorithm identifier (value of type
   1077  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
   1078  *                      is true). This may be a truncated or untruncated
   1079  *                      MAC algorithm.
   1080  *
   1081  * \return              The corresponding base MAC algorithm.
   1082  * \return              Unspecified if \p mac_alg is not a supported
   1083  *                      MAC algorithm.
   1084  */
   1085 #define PSA_ALG_FULL_LENGTH_MAC(mac_alg)                        \
   1086     ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |                \
   1087                    PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
   1088 
   1089 /** Length to which a MAC algorithm is truncated.
   1090  *
   1091  * \param mac_alg       A MAC algorithm identifier (value of type
   1092  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
   1093  *                      is true).
   1094  *
   1095  * \return              Length of the truncated MAC in bytes.
   1096  * \return              0 if \p mac_alg is a non-truncated MAC algorithm.
   1097  * \return              Unspecified if \p mac_alg is not a supported
   1098  *                      MAC algorithm.
   1099  */
   1100 #define PSA_MAC_TRUNCATED_LENGTH(mac_alg)                               \
   1101     (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
   1102 
   1103 /** Macro to build a MAC minimum-MAC-length wildcard algorithm.
   1104  *
   1105  * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
   1106  * sharing the same base algorithm, and where the (potentially truncated) MAC
   1107  * length of the specific algorithm is equal to or larger then the wildcard
   1108  * algorithm's minimum MAC length.
   1109  *
   1110  * \note    When setting the minimum required MAC length to less than the
   1111  *          smallest MAC length allowed by the base algorithm, this effectively
   1112  *          becomes an 'any-MAC-length-allowed' policy for that base algorithm.
   1113  *
   1114  * \param mac_alg         A MAC algorithm identifier (value of type
   1115  *                        #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
   1116  *                        is true).
   1117  * \param min_mac_length  Desired minimum length of the message authentication
   1118  *                        code in bytes. This must be at most the untruncated
   1119  *                        length of the MAC and must be at least 1.
   1120  *
   1121  * \return                The corresponding MAC wildcard algorithm with the
   1122  *                        specified minimum length.
   1123  * \return                Unspecified if \p mac_alg is not a supported MAC
   1124  *                        algorithm or if \p min_mac_length is less than 1 or
   1125  *                        too large for the specified MAC algorithm.
   1126  */
   1127 #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length)   \
   1128     (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) |              \
   1129      PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
   1130 
   1131 #define PSA_ALG_CIPHER_MAC_BASE                 ((psa_algorithm_t) 0x03c00000)
   1132 /** The CBC-MAC construction over a block cipher
   1133  *
   1134  * \warning CBC-MAC is insecure in many cases.
   1135  * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
   1136  */
   1137 #define PSA_ALG_CBC_MAC                         ((psa_algorithm_t) 0x03c00100)
   1138 /** The CMAC construction over a block cipher */
   1139 #define PSA_ALG_CMAC                            ((psa_algorithm_t) 0x03c00200)
   1140 
   1141 /** Whether the specified algorithm is a MAC algorithm based on a block cipher.
   1142  *
   1143  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1144  *
   1145  * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
   1146  *         This macro may return either 0 or 1 if \p alg is not a supported
   1147  *         algorithm identifier.
   1148  */
   1149 #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg)                                \
   1150     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
   1151      PSA_ALG_CIPHER_MAC_BASE)
   1152 
   1153 #define PSA_ALG_CIPHER_STREAM_FLAG              ((psa_algorithm_t) 0x00800000)
   1154 #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG          ((psa_algorithm_t) 0x00400000)
   1155 
   1156 /** Whether the specified algorithm is a stream cipher.
   1157  *
   1158  * A stream cipher is a symmetric cipher that encrypts or decrypts messages
   1159  * by applying a bitwise-xor with a stream of bytes that is generated
   1160  * from a key.
   1161  *
   1162  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1163  *
   1164  * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
   1165  *         This macro may return either 0 or 1 if \p alg is not a supported
   1166  *         algorithm identifier or if it is not a symmetric cipher algorithm.
   1167  */
   1168 #define PSA_ALG_IS_STREAM_CIPHER(alg)            \
   1169     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
   1170      (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
   1171 
   1172 /** The stream cipher mode of a stream cipher algorithm.
   1173  *
   1174  * The underlying stream cipher is determined by the key type.
   1175  * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
   1176  */
   1177 #define PSA_ALG_STREAM_CIPHER                   ((psa_algorithm_t) 0x04800100)
   1178 
   1179 /** The CTR stream cipher mode.
   1180  *
   1181  * CTR is a stream cipher which is built from a block cipher.
   1182  * The underlying block cipher is determined by the key type.
   1183  * For example, to use AES-128-CTR, use this algorithm with
   1184  * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
   1185  */
   1186 #define PSA_ALG_CTR                             ((psa_algorithm_t) 0x04c01000)
   1187 
   1188 /** The CFB stream cipher mode.
   1189  *
   1190  * The underlying block cipher is determined by the key type.
   1191  */
   1192 #define PSA_ALG_CFB                             ((psa_algorithm_t) 0x04c01100)
   1193 
   1194 /** The OFB stream cipher mode.
   1195  *
   1196  * The underlying block cipher is determined by the key type.
   1197  */
   1198 #define PSA_ALG_OFB                             ((psa_algorithm_t) 0x04c01200)
   1199 
   1200 /** The XTS cipher mode.
   1201  *
   1202  * XTS is a cipher mode which is built from a block cipher. It requires at
   1203  * least one full block of input, but beyond this minimum the input
   1204  * does not need to be a whole number of blocks.
   1205  */
   1206 #define PSA_ALG_XTS                             ((psa_algorithm_t) 0x0440ff00)
   1207 
   1208 /** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
   1209  *
   1210  * \warning ECB mode does not protect the confidentiality of the encrypted data
   1211  * except in extremely narrow circumstances. It is recommended that applications
   1212  * only use ECB if they need to construct an operating mode that the
   1213  * implementation does not provide. Implementations are encouraged to provide
   1214  * the modes that applications need in preference to supporting direct access
   1215  * to ECB.
   1216  *
   1217  * The underlying block cipher is determined by the key type.
   1218  *
   1219  * This symmetric cipher mode can only be used with messages whose lengths are a
   1220  * multiple of the block size of the chosen block cipher.
   1221  *
   1222  * ECB mode does not accept an initialization vector (IV). When using a
   1223  * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
   1224  * and psa_cipher_set_iv() must not be called.
   1225  */
   1226 #define PSA_ALG_ECB_NO_PADDING                  ((psa_algorithm_t) 0x04404400)
   1227 
   1228 /** The CBC block cipher chaining mode, with no padding.
   1229  *
   1230  * The underlying block cipher is determined by the key type.
   1231  *
   1232  * This symmetric cipher mode can only be used with messages whose lengths
   1233  * are whole number of blocks for the chosen block cipher.
   1234  */
   1235 #define PSA_ALG_CBC_NO_PADDING                  ((psa_algorithm_t) 0x04404000)
   1236 
   1237 /** The CBC block cipher chaining mode with PKCS#7 padding.
   1238  *
   1239  * The underlying block cipher is determined by the key type.
   1240  *
   1241  * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
   1242  */
   1243 #define PSA_ALG_CBC_PKCS7                       ((psa_algorithm_t) 0x04404100)
   1244 
   1245 #define PSA_ALG_AEAD_FROM_BLOCK_FLAG            ((psa_algorithm_t) 0x00400000)
   1246 
   1247 /** Whether the specified algorithm is an AEAD mode on a block cipher.
   1248  *
   1249  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1250  *
   1251  * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
   1252  *         a block cipher, 0 otherwise.
   1253  *         This macro may return either 0 or 1 if \p alg is not a supported
   1254  *         algorithm identifier.
   1255  */
   1256 #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg)    \
   1257     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
   1258      (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
   1259 
   1260 /** The CCM authenticated encryption algorithm.
   1261  *
   1262  * The underlying block cipher is determined by the key type.
   1263  */
   1264 #define PSA_ALG_CCM                             ((psa_algorithm_t) 0x05500100)
   1265 
   1266 /** The CCM* cipher mode without authentication.
   1267  *
   1268  * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
   1269  * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
   1270  *
   1271  * The underlying block cipher is determined by the key type.
   1272  *
   1273  * Currently only 13-byte long IV's are supported.
   1274  */
   1275 #define PSA_ALG_CCM_STAR_NO_TAG                 ((psa_algorithm_t) 0x04c01300)
   1276 
   1277 /** The GCM authenticated encryption algorithm.
   1278  *
   1279  * The underlying block cipher is determined by the key type.
   1280  */
   1281 #define PSA_ALG_GCM                             ((psa_algorithm_t) 0x05500200)
   1282 
   1283 /** The Chacha20-Poly1305 AEAD algorithm.
   1284  *
   1285  * The ChaCha20_Poly1305 construction is defined in RFC 7539.
   1286  *
   1287  * Implementations must support 12-byte nonces, may support 8-byte nonces,
   1288  * and should reject other sizes.
   1289  *
   1290  * Implementations must support 16-byte tags and should reject other sizes.
   1291  */
   1292 #define PSA_ALG_CHACHA20_POLY1305               ((psa_algorithm_t) 0x05100500)
   1293 
   1294 /* In the encoding of an AEAD algorithm, the bits corresponding to
   1295  * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
   1296  * The constants for default lengths follow this encoding.
   1297  */
   1298 #define PSA_ALG_AEAD_TAG_LENGTH_MASK            ((psa_algorithm_t) 0x003f0000)
   1299 #define PSA_AEAD_TAG_LENGTH_OFFSET 16
   1300 
   1301 /* In the encoding of an AEAD algorithm, the bit corresponding to
   1302  * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
   1303  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
   1304  * algorithm policy can be used with any algorithm corresponding to the
   1305  * same base class and having a tag length greater than or equal to the one
   1306  * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
   1307 #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG  ((psa_algorithm_t) 0x00008000)
   1308 
   1309 /** Macro to build a shortened AEAD algorithm.
   1310  *
   1311  * A shortened AEAD algorithm is similar to the corresponding AEAD
   1312  * algorithm, but has an authentication tag that consists of fewer bytes.
   1313  * Depending on the algorithm, the tag length may affect the calculation
   1314  * of the ciphertext.
   1315  *
   1316  * \param aead_alg      An AEAD algorithm identifier (value of type
   1317  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
   1318  *                      is true).
   1319  * \param tag_length    Desired length of the authentication tag in bytes.
   1320  *
   1321  * \return              The corresponding AEAD algorithm with the specified
   1322  *                      length.
   1323  * \return              Unspecified if \p aead_alg is not a supported
   1324  *                      AEAD algorithm or if \p tag_length is not valid
   1325  *                      for the specified AEAD algorithm.
   1326  */
   1327 #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length)           \
   1328     (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK |                     \
   1329                      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) |         \
   1330      ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET &                      \
   1331         PSA_ALG_AEAD_TAG_LENGTH_MASK))
   1332 
   1333 /** Retrieve the tag length of a specified AEAD algorithm
   1334  *
   1335  * \param aead_alg      An AEAD algorithm identifier (value of type
   1336  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
   1337  *                      is true).
   1338  *
   1339  * \return              The tag length specified by the input algorithm.
   1340  * \return              Unspecified if \p aead_alg is not a supported
   1341  *                      AEAD algorithm.
   1342  */
   1343 #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg)                           \
   1344     (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >>                     \
   1345      PSA_AEAD_TAG_LENGTH_OFFSET)
   1346 
   1347 /** Calculate the corresponding AEAD algorithm with the default tag length.
   1348  *
   1349  * \param aead_alg      An AEAD algorithm (\c PSA_ALG_XXX value such that
   1350  *                      #PSA_ALG_IS_AEAD(\p aead_alg) is true).
   1351  *
   1352  * \return              The corresponding AEAD algorithm with the default
   1353  *                      tag length for that algorithm.
   1354  */
   1355 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg)                   \
   1356     (                                                                    \
   1357         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
   1358         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
   1359         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
   1360         0)
   1361 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref)         \
   1362     PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) ==                      \
   1363     PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ?                            \
   1364     ref :
   1365 
   1366 /** Macro to build an AEAD minimum-tag-length wildcard algorithm.
   1367  *
   1368  * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
   1369  * sharing the same base algorithm, and where the tag length of the specific
   1370  * algorithm is equal to or larger then the minimum tag length specified by the
   1371  * wildcard algorithm.
   1372  *
   1373  * \note    When setting the minimum required tag length to less than the
   1374  *          smallest tag length allowed by the base algorithm, this effectively
   1375  *          becomes an 'any-tag-length-allowed' policy for that base algorithm.
   1376  *
   1377  * \param aead_alg        An AEAD algorithm identifier (value of type
   1378  *                        #psa_algorithm_t such that
   1379  *                        #PSA_ALG_IS_AEAD(\p aead_alg) is true).
   1380  * \param min_tag_length  Desired minimum length of the authentication tag in
   1381  *                        bytes. This must be at least 1 and at most the largest
   1382  *                        allowed tag length of the algorithm.
   1383  *
   1384  * \return                The corresponding AEAD wildcard algorithm with the
   1385  *                        specified minimum length.
   1386  * \return                Unspecified if \p aead_alg is not a supported
   1387  *                        AEAD algorithm or if \p min_tag_length is less than 1
   1388  *                        or too large for the specified AEAD algorithm.
   1389  */
   1390 #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
   1391     (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) |            \
   1392      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
   1393 
   1394 #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE          ((psa_algorithm_t) 0x06000200)
   1395 /** RSA PKCS#1 v1.5 signature with hashing.
   1396  *
   1397  * This is the signature scheme defined by RFC 8017
   1398  * (PKCS#1: RSA Cryptography Specifications) under the name
   1399  * RSASSA-PKCS1-v1_5.
   1400  *
   1401  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1402  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1403  *                      This includes #PSA_ALG_ANY_HASH
   1404  *                      when specifying the algorithm in a usage policy.
   1405  *
   1406  * \return              The corresponding RSA PKCS#1 v1.5 signature algorithm.
   1407  * \return              Unspecified if \p hash_alg is not a supported
   1408  *                      hash algorithm.
   1409  */
   1410 #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)                             \
   1411     (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1412 /** Raw PKCS#1 v1.5 signature.
   1413  *
   1414  * The input to this algorithm is the DigestInfo structure used by
   1415  * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
   1416  * steps 3&ndash;6.
   1417  */
   1418 #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
   1419 #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg)                               \
   1420     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
   1421 
   1422 #define PSA_ALG_RSA_PSS_BASE               ((psa_algorithm_t) 0x06000300)
   1423 #define PSA_ALG_RSA_PSS_ANY_SALT_BASE      ((psa_algorithm_t) 0x06001300)
   1424 /** RSA PSS signature with hashing.
   1425  *
   1426  * This is the signature scheme defined by RFC 8017
   1427  * (PKCS#1: RSA Cryptography Specifications) under the name
   1428  * RSASSA-PSS, with the message generation function MGF1, and with
   1429  * a salt length equal to the length of the hash, or the largest
   1430  * possible salt length for the algorithm and key size if that is
   1431  * smaller than the hash length. The specified hash algorithm is
   1432  * used to hash the input message, to create the salted hash, and
   1433  * for the mask generation.
   1434  *
   1435  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1436  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1437  *                      This includes #PSA_ALG_ANY_HASH
   1438  *                      when specifying the algorithm in a usage policy.
   1439  *
   1440  * \return              The corresponding RSA PSS signature algorithm.
   1441  * \return              Unspecified if \p hash_alg is not a supported
   1442  *                      hash algorithm.
   1443  */
   1444 #define PSA_ALG_RSA_PSS(hash_alg)                               \
   1445     (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1446 
   1447 /** RSA PSS signature with hashing with relaxed verification.
   1448  *
   1449  * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
   1450  * but allows an arbitrary salt length (including \c 0) when verifying a
   1451  * signature.
   1452  *
   1453  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1454  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1455  *                      This includes #PSA_ALG_ANY_HASH
   1456  *                      when specifying the algorithm in a usage policy.
   1457  *
   1458  * \return              The corresponding RSA PSS signature algorithm.
   1459  * \return              Unspecified if \p hash_alg is not a supported
   1460  *                      hash algorithm.
   1461  */
   1462 #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg)                      \
   1463     (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1464 
   1465 /** Whether the specified algorithm is RSA PSS with standard salt.
   1466  *
   1467  * \param alg           An algorithm value or an algorithm policy wildcard.
   1468  *
   1469  * \return              1 if \p alg is of the form
   1470  *                      #PSA_ALG_RSA_PSS(\c hash_alg),
   1471  *                      where \c hash_alg is a hash algorithm or
   1472  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
   1473  *                      This macro may return either 0 or 1 if \p alg is not
   1474  *                      a supported algorithm identifier or policy.
   1475  */
   1476 #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg)                   \
   1477     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
   1478 
   1479 /** Whether the specified algorithm is RSA PSS with any salt.
   1480  *
   1481  * \param alg           An algorithm value or an algorithm policy wildcard.
   1482  *
   1483  * \return              1 if \p alg is of the form
   1484  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
   1485  *                      where \c hash_alg is a hash algorithm or
   1486  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
   1487  *                      This macro may return either 0 or 1 if \p alg is not
   1488  *                      a supported algorithm identifier or policy.
   1489  */
   1490 #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg)                                \
   1491     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
   1492 
   1493 /** Whether the specified algorithm is RSA PSS.
   1494  *
   1495  * This includes any of the RSA PSS algorithm variants, regardless of the
   1496  * constraints on salt length.
   1497  *
   1498  * \param alg           An algorithm value or an algorithm policy wildcard.
   1499  *
   1500  * \return              1 if \p alg is of the form
   1501  *                      #PSA_ALG_RSA_PSS(\c hash_alg) or
   1502  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
   1503  *                      where \c hash_alg is a hash algorithm or
   1504  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
   1505  *                      This macro may return either 0 or 1 if \p alg is not
   1506  *                      a supported algorithm identifier or policy.
   1507  */
   1508 #define PSA_ALG_IS_RSA_PSS(alg)                                 \
   1509     (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) ||                   \
   1510      PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
   1511 
   1512 #define PSA_ALG_ECDSA_BASE                      ((psa_algorithm_t) 0x06000600)
   1513 /** ECDSA signature with hashing.
   1514  *
   1515  * This is the ECDSA signature scheme defined by ANSI X9.62,
   1516  * with a random per-message secret number (*k*).
   1517  *
   1518  * The representation of the signature as a byte string consists of
   1519  * the concatenation of the signature values *r* and *s*. Each of
   1520  * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
   1521  * of the base point of the curve in octets. Each value is represented
   1522  * in big-endian order (most significant octet first).
   1523  *
   1524  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1525  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1526  *                      This includes #PSA_ALG_ANY_HASH
   1527  *                      when specifying the algorithm in a usage policy.
   1528  *
   1529  * \return              The corresponding ECDSA signature algorithm.
   1530  * \return              Unspecified if \p hash_alg is not a supported
   1531  *                      hash algorithm.
   1532  */
   1533 #define PSA_ALG_ECDSA(hash_alg)                                 \
   1534     (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1535 /** ECDSA signature without hashing.
   1536  *
   1537  * This is the same signature scheme as #PSA_ALG_ECDSA(), but
   1538  * without specifying a hash algorithm. This algorithm may only be
   1539  * used to sign or verify a sequence of bytes that should be an
   1540  * already-calculated hash. Note that the input is padded with
   1541  * zeros on the left or truncated on the left as required to fit
   1542  * the curve size.
   1543  */
   1544 #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
   1545 #define PSA_ALG_DETERMINISTIC_ECDSA_BASE        ((psa_algorithm_t) 0x06000700)
   1546 /** Deterministic ECDSA signature with hashing.
   1547  *
   1548  * This is the deterministic ECDSA signature scheme defined by RFC 6979.
   1549  *
   1550  * The representation of a signature is the same as with #PSA_ALG_ECDSA().
   1551  *
   1552  * Note that when this algorithm is used for verification, signatures
   1553  * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
   1554  * same private key are accepted. In other words,
   1555  * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
   1556  * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
   1557  *
   1558  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1559  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1560  *                      This includes #PSA_ALG_ANY_HASH
   1561  *                      when specifying the algorithm in a usage policy.
   1562  *
   1563  * \return              The corresponding deterministic ECDSA signature
   1564  *                      algorithm.
   1565  * \return              Unspecified if \p hash_alg is not a supported
   1566  *                      hash algorithm.
   1567  */
   1568 #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg)                           \
   1569     (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1570 #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG        ((psa_algorithm_t) 0x00000100)
   1571 #define PSA_ALG_IS_ECDSA(alg)                                           \
   1572     (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) ==  \
   1573      PSA_ALG_ECDSA_BASE)
   1574 #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)             \
   1575     (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
   1576 #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg)                             \
   1577     (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
   1578 #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg)                                \
   1579     (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
   1580 
   1581 /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
   1582  * using standard parameters.
   1583  *
   1584  * Contexts are not supported in the current version of this specification
   1585  * because there is no suitable signature interface that can take the
   1586  * context as a parameter. A future version of this specification may add
   1587  * suitable functions and extend this algorithm to support contexts.
   1588  *
   1589  * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
   1590  * In this specification, the following curves are supported:
   1591  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
   1592  *   in RFC 8032.
   1593  *   The curve is Edwards25519.
   1594  *   The hash function used internally is SHA-512.
   1595  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
   1596  *   in RFC 8032.
   1597  *   The curve is Edwards448.
   1598  *   The hash function used internally is the first 114 bytes of the
   1599  *   SHAKE256 output.
   1600  *
   1601  * This algorithm can be used with psa_sign_message() and
   1602  * psa_verify_message(). Since there is no prehashing, it cannot be used
   1603  * with psa_sign_hash() or psa_verify_hash().
   1604  *
   1605  * The signature format is the concatenation of R and S as defined by
   1606  * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
   1607  * string for Ed448).
   1608  */
   1609 #define PSA_ALG_PURE_EDDSA                      ((psa_algorithm_t) 0x06000800)
   1610 
   1611 #define PSA_ALG_HASH_EDDSA_BASE                 ((psa_algorithm_t) 0x06000900)
   1612 #define PSA_ALG_IS_HASH_EDDSA(alg)              \
   1613     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
   1614 
   1615 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
   1616  * using SHA-512 and the Edwards25519 curve.
   1617  *
   1618  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
   1619  *
   1620  * This algorithm is Ed25519 as specified in RFC 8032.
   1621  * The curve is Edwards25519.
   1622  * The prehash is SHA-512.
   1623  * The hash function used internally is SHA-512.
   1624  *
   1625  * This is a hash-and-sign algorithm: to calculate a signature,
   1626  * you can either:
   1627  * - call psa_sign_message() on the message;
   1628  * - or calculate the SHA-512 hash of the message
   1629  *   with psa_hash_compute()
   1630  *   or with a multi-part hash operation started with psa_hash_setup(),
   1631  *   using the hash algorithm #PSA_ALG_SHA_512,
   1632  *   then sign the calculated hash with psa_sign_hash().
   1633  * Verifying a signature is similar, using psa_verify_message() or
   1634  * psa_verify_hash() instead of the signature function.
   1635  */
   1636 #define PSA_ALG_ED25519PH                               \
   1637     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
   1638 
   1639 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
   1640  * using SHAKE256 and the Edwards448 curve.
   1641  *
   1642  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
   1643  *
   1644  * This algorithm is Ed448 as specified in RFC 8032.
   1645  * The curve is Edwards448.
   1646  * The prehash is the first 64 bytes of the SHAKE256 output.
   1647  * The hash function used internally is the first 114 bytes of the
   1648  * SHAKE256 output.
   1649  *
   1650  * This is a hash-and-sign algorithm: to calculate a signature,
   1651  * you can either:
   1652  * - call psa_sign_message() on the message;
   1653  * - or calculate the first 64 bytes of the SHAKE256 output of the message
   1654  *   with psa_hash_compute()
   1655  *   or with a multi-part hash operation started with psa_hash_setup(),
   1656  *   using the hash algorithm #PSA_ALG_SHAKE256_512,
   1657  *   then sign the calculated hash with psa_sign_hash().
   1658  * Verifying a signature is similar, using psa_verify_message() or
   1659  * psa_verify_hash() instead of the signature function.
   1660  */
   1661 #define PSA_ALG_ED448PH                                 \
   1662     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
   1663 
   1664 /* Default definition, to be overridden if the library is extended with
   1665  * more hash-and-sign algorithms that we want to keep out of this header
   1666  * file. */
   1667 #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
   1668 
   1669 /** Whether the specified algorithm is a signature algorithm that can be used
   1670  * with psa_sign_hash() and psa_verify_hash().
   1671  *
   1672  * This encompasses all strict hash-and-sign algorithms categorized by
   1673  * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
   1674  * paradigm more loosely:
   1675  * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
   1676  * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
   1677  *
   1678  * \param alg An algorithm identifier (value of type psa_algorithm_t).
   1679  *
   1680  * \return 1 if alg is a signature algorithm that can be used to sign a
   1681  *         hash. 0 if alg is a signature algorithm that can only be used
   1682  *         to sign a message. 0 if alg is not a signature algorithm.
   1683  *         This macro can return either 0 or 1 if alg is not a
   1684  *         supported algorithm identifier.
   1685  */
   1686 #define PSA_ALG_IS_SIGN_HASH(alg)                                       \
   1687     (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||    \
   1688      PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) ||             \
   1689      PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
   1690 
   1691 /** Whether the specified algorithm is a signature algorithm that can be used
   1692  * with psa_sign_message() and psa_verify_message().
   1693  *
   1694  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1695  *
   1696  * \return 1 if alg is a signature algorithm that can be used to sign a
   1697  *         message. 0 if \p alg is a signature algorithm that can only be used
   1698  *         to sign an already-calculated hash. 0 if \p alg is not a signature
   1699  *         algorithm. This macro can return either 0 or 1 if \p alg is not a
   1700  *         supported algorithm identifier.
   1701  */
   1702 #define PSA_ALG_IS_SIGN_MESSAGE(alg)                                    \
   1703     (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
   1704 
   1705 /** Whether the specified algorithm is a hash-and-sign algorithm.
   1706  *
   1707  * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
   1708  * structured in two parts: first the calculation of a hash in a way that
   1709  * does not depend on the key, then the calculation of a signature from the
   1710  * hash value and the key. Hash-and-sign algorithms encode the hash
   1711  * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
   1712  * to extract this algorithm.
   1713  *
   1714  * Thus, for a hash-and-sign algorithm,
   1715  * `psa_sign_message(key, alg, input, ...)` is equivalent to
   1716  * ```
   1717  * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
   1718  * psa_sign_hash(key, alg, hash, ..., signature, ...);
   1719  * ```
   1720  * Most usefully, separating the hash from the signature allows the hash
   1721  * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
   1722  * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
   1723  * calculating the hash and then calling psa_verify_hash().
   1724  *
   1725  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1726  *
   1727  * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
   1728  *         This macro may return either 0 or 1 if \p alg is not a supported
   1729  *         algorithm identifier.
   1730  */
   1731 #define PSA_ALG_IS_HASH_AND_SIGN(alg)                                   \
   1732     (PSA_ALG_IS_SIGN_HASH(alg) &&                                       \
   1733      ((alg) & PSA_ALG_HASH_MASK) != 0)
   1734 
   1735 /** Get the hash used by a hash-and-sign signature algorithm.
   1736  *
   1737  * A hash-and-sign algorithm is a signature algorithm which is
   1738  * composed of two phases: first a hashing phase which does not use
   1739  * the key and produces a hash of the input message, then a signing
   1740  * phase which only uses the hash and the key and not the message
   1741  * itself.
   1742  *
   1743  * \param alg   A signature algorithm (\c PSA_ALG_XXX value such that
   1744  *              #PSA_ALG_IS_SIGN(\p alg) is true).
   1745  *
   1746  * \return      The underlying hash algorithm if \p alg is a hash-and-sign
   1747  *              algorithm.
   1748  * \return      0 if \p alg is a signature algorithm that does not
   1749  *              follow the hash-and-sign structure.
   1750  * \return      Unspecified if \p alg is not a signature algorithm or
   1751  *              if it is not supported by the implementation.
   1752  */
   1753 #define PSA_ALG_SIGN_GET_HASH(alg)                                     \
   1754     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                                   \
   1755      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :             \
   1756      0)
   1757 
   1758 /** RSA PKCS#1 v1.5 encryption.
   1759  *
   1760  * \warning     Calling psa_asymmetric_decrypt() with this algorithm as a
   1761  *              parameter is considered an inherently dangerous function
   1762  *              (CWE-242). Unless it is used in a side channel free and safe
   1763  *              way (eg. implementing the TLS protocol as per 7.4.7.1 of
   1764  *              RFC 5246), the calling code is vulnerable.
   1765  *
   1766  */
   1767 #define PSA_ALG_RSA_PKCS1V15_CRYPT              ((psa_algorithm_t) 0x07000200)
   1768 
   1769 #define PSA_ALG_RSA_OAEP_BASE                   ((psa_algorithm_t) 0x07000300)
   1770 /** RSA OAEP encryption.
   1771  *
   1772  * This is the encryption scheme defined by RFC 8017
   1773  * (PKCS#1: RSA Cryptography Specifications) under the name
   1774  * RSAES-OAEP, with the message generation function MGF1.
   1775  *
   1776  * \param hash_alg      The hash algorithm (\c PSA_ALG_XXX value such that
   1777  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
   1778  *                      for MGF1.
   1779  *
   1780  * \return              The corresponding RSA OAEP encryption algorithm.
   1781  * \return              Unspecified if \p hash_alg is not a supported
   1782  *                      hash algorithm.
   1783  */
   1784 #define PSA_ALG_RSA_OAEP(hash_alg)                              \
   1785     (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1786 #define PSA_ALG_IS_RSA_OAEP(alg)                                \
   1787     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
   1788 #define PSA_ALG_RSA_OAEP_GET_HASH(alg)                          \
   1789     (PSA_ALG_IS_RSA_OAEP(alg) ?                                 \
   1790      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :      \
   1791      0)
   1792 
   1793 #define PSA_ALG_HKDF_BASE                       ((psa_algorithm_t) 0x08000100)
   1794 /** Macro to build an HKDF algorithm.
   1795  *
   1796  * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
   1797  *
   1798  * This key derivation algorithm uses the following inputs:
   1799  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
   1800  *   It is optional; if omitted, the derivation uses an empty salt.
   1801  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
   1802  * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
   1803  * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
   1804  * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
   1805  * starting to generate output.
   1806  *
   1807  *  \warning  HKDF processes the salt as follows: first hash it with hash_alg
   1808  *  if the salt is longer than the block size of the hash algorithm; then
   1809  *  pad with null bytes up to the block size. As a result, it is possible
   1810  *  for distinct salt inputs to result in the same outputs. To ensure
   1811  *  unique outputs, it is recommended to use a fixed length for salt values.
   1812  *
   1813  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1814  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1815  *
   1816  * \return              The corresponding HKDF algorithm.
   1817  * \return              Unspecified if \p hash_alg is not a supported
   1818  *                      hash algorithm.
   1819  */
   1820 #define PSA_ALG_HKDF(hash_alg)                                  \
   1821     (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1822 /** Whether the specified algorithm is an HKDF algorithm.
   1823  *
   1824  * HKDF is a family of key derivation algorithms that are based on a hash
   1825  * function and the HMAC construction.
   1826  *
   1827  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1828  *
   1829  * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
   1830  *         This macro may return either 0 or 1 if \c alg is not a supported
   1831  *         key derivation algorithm identifier.
   1832  */
   1833 #define PSA_ALG_IS_HKDF(alg)                            \
   1834     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
   1835 #define PSA_ALG_HKDF_GET_HASH(hkdf_alg)                         \
   1836     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
   1837 
   1838 #define PSA_ALG_HKDF_EXTRACT_BASE                       ((psa_algorithm_t) 0x08000400)
   1839 /** Macro to build an HKDF-Extract algorithm.
   1840  *
   1841  * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
   1842  * HKDF-Extract using HMAC-SHA-256.
   1843  *
   1844  * This key derivation algorithm uses the following inputs:
   1845  *  - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
   1846  *  - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
   1847  *    "extract" step.
   1848  * The inputs are mandatory and must be passed in the order above.
   1849  * Each input may only be passed once.
   1850  *
   1851  *  \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
   1852  *  should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
   1853  *  as a separate algorithm for the sake of protocols that use it as a
   1854  *  building block. It may also be a slight performance optimization
   1855  *  in applications that use HKDF with the same salt and key but many
   1856  *  different info strings.
   1857  *
   1858  *  \warning  HKDF processes the salt as follows: first hash it with hash_alg
   1859  *  if the salt is longer than the block size of the hash algorithm; then
   1860  *  pad with null bytes up to the block size. As a result, it is possible
   1861  *  for distinct salt inputs to result in the same outputs. To ensure
   1862  *  unique outputs, it is recommended to use a fixed length for salt values.
   1863  *
   1864  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1865  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1866  *
   1867  * \return              The corresponding HKDF-Extract algorithm.
   1868  * \return              Unspecified if \p hash_alg is not a supported
   1869  *                      hash algorithm.
   1870  */
   1871 #define PSA_ALG_HKDF_EXTRACT(hash_alg)                                  \
   1872     (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1873 /** Whether the specified algorithm is an HKDF-Extract algorithm.
   1874  *
   1875  * HKDF-Extract is a family of key derivation algorithms that are based
   1876  * on a hash function and the HMAC construction.
   1877  *
   1878  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1879  *
   1880  * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
   1881  *         This macro may return either 0 or 1 if \c alg is not a supported
   1882  *         key derivation algorithm identifier.
   1883  */
   1884 #define PSA_ALG_IS_HKDF_EXTRACT(alg)                            \
   1885     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
   1886 
   1887 #define PSA_ALG_HKDF_EXPAND_BASE                       ((psa_algorithm_t) 0x08000500)
   1888 /** Macro to build an HKDF-Expand algorithm.
   1889  *
   1890  * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
   1891  * HKDF-Expand using HMAC-SHA-256.
   1892  *
   1893  * This key derivation algorithm uses the following inputs:
   1894  *  - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
   1895  *  - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
   1896  *
   1897  *  The inputs are mandatory and must be passed in the order above.
   1898  *  Each input may only be passed once.
   1899  *
   1900  *  \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
   1901  *  should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
   1902  *  a separate algorithm for the sake of protocols that use it as a building
   1903  *  block. It may also be a slight performance optimization in applications
   1904  *  that use HKDF with the same salt and key but many different info strings.
   1905  *
   1906  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1907  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1908  *
   1909  * \return              The corresponding HKDF-Expand algorithm.
   1910  * \return              Unspecified if \p hash_alg is not a supported
   1911  *                      hash algorithm.
   1912  */
   1913 #define PSA_ALG_HKDF_EXPAND(hash_alg)                                  \
   1914     (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1915 /** Whether the specified algorithm is an HKDF-Expand algorithm.
   1916  *
   1917  * HKDF-Expand is a family of key derivation algorithms that are based
   1918  * on a hash function and the HMAC construction.
   1919  *
   1920  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1921  *
   1922  * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
   1923  *         This macro may return either 0 or 1 if \c alg is not a supported
   1924  *         key derivation algorithm identifier.
   1925  */
   1926 #define PSA_ALG_IS_HKDF_EXPAND(alg)                            \
   1927     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
   1928 
   1929 /** Whether the specified algorithm is an HKDF or HKDF-Extract or
   1930  *  HKDF-Expand algorithm.
   1931  *
   1932  *
   1933  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1934  *
   1935  * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
   1936  *         This macro may return either 0 or 1 if \c alg is not a supported
   1937  *         key derivation algorithm identifier.
   1938  */
   1939 #define PSA_ALG_IS_ANY_HKDF(alg)                                   \
   1940     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE ||          \
   1941      ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE ||  \
   1942      ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
   1943 
   1944 #define PSA_ALG_TLS12_PRF_BASE                  ((psa_algorithm_t) 0x08000200)
   1945 /** Macro to build a TLS-1.2 PRF algorithm.
   1946  *
   1947  * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
   1948  * specified in Section 5 of RFC 5246. It is based on HMAC and can be
   1949  * used with either SHA-256 or SHA-384.
   1950  *
   1951  * This key derivation algorithm uses the following inputs, which must be
   1952  * passed in the order given here:
   1953  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
   1954  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
   1955  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
   1956  *
   1957  * For the application to TLS-1.2 key expansion, the seed is the
   1958  * concatenation of ServerHello.Random + ClientHello.Random,
   1959  * and the label is "key expansion".
   1960  *
   1961  * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
   1962  * TLS 1.2 PRF using HMAC-SHA-256.
   1963  *
   1964  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   1965  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   1966  *
   1967  * \return              The corresponding TLS-1.2 PRF algorithm.
   1968  * \return              Unspecified if \p hash_alg is not a supported
   1969  *                      hash algorithm.
   1970  */
   1971 #define PSA_ALG_TLS12_PRF(hash_alg)                                  \
   1972     (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   1973 
   1974 /** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
   1975  *
   1976  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   1977  *
   1978  * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
   1979  *         This macro may return either 0 or 1 if \c alg is not a supported
   1980  *         key derivation algorithm identifier.
   1981  */
   1982 #define PSA_ALG_IS_TLS12_PRF(alg)                                    \
   1983     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
   1984 #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg)                         \
   1985     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
   1986 
   1987 #define PSA_ALG_TLS12_PSK_TO_MS_BASE            ((psa_algorithm_t) 0x08000300)
   1988 /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
   1989  *
   1990  * In a pure-PSK handshake in TLS 1.2, the master secret is derived
   1991  * from the PreSharedKey (PSK) through the application of padding
   1992  * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
   1993  * The latter is based on HMAC and can be used with either SHA-256
   1994  * or SHA-384.
   1995  *
   1996  * This key derivation algorithm uses the following inputs, which must be
   1997  * passed in the order given here:
   1998  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
   1999  * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
   2000  *   computation of the premaster secret. This input is optional;
   2001  *   if omitted, it defaults to a string of null bytes with the same length
   2002  *   as the secret (PSK) input.
   2003  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
   2004  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
   2005  *
   2006  * For the application to TLS-1.2, the seed (which is
   2007  * forwarded to the TLS-1.2 PRF) is the concatenation of the
   2008  * ClientHello.Random + ServerHello.Random,
   2009  * the label is "master secret" or "extended master secret" and
   2010  * the other secret depends on the key exchange specified in the cipher suite:
   2011  * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
   2012  *   PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
   2013  * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
   2014  *   (RFC 5489, Section 2), the other secret should be the output of the
   2015  *   PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
   2016  *   The recommended way to pass this input is to use a key derivation
   2017  *   algorithm constructed as
   2018  *   PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
   2019  *   and to call psa_key_derivation_key_agreement(). Alternatively,
   2020  *   this input may be an output of `psa_raw_key_agreement()` passed with
   2021  *   psa_key_derivation_input_bytes(), or an equivalent input passed with
   2022  *   psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
   2023  * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
   2024  *   should be the 48-byte client challenge (the PreMasterSecret of
   2025  *   (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
   2026  *   a 46-byte random string chosen by the client. On the server, this is
   2027  *   typically an output of psa_asymmetric_decrypt() using
   2028  *   PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
   2029  *   with `psa_key_derivation_input_bytes()`.
   2030  *
   2031  * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
   2032  * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
   2033  *
   2034  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   2035  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   2036  *
   2037  * \return              The corresponding TLS-1.2 PSK to MS algorithm.
   2038  * \return              Unspecified if \p hash_alg is not a supported
   2039  *                      hash algorithm.
   2040  */
   2041 #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg)                                  \
   2042     (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   2043 
   2044 /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
   2045  *
   2046  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   2047  *
   2048  * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
   2049  *         This macro may return either 0 or 1 if \c alg is not a supported
   2050  *         key derivation algorithm identifier.
   2051  */
   2052 #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg)                                    \
   2053     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
   2054 #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg)                         \
   2055     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
   2056 
   2057 /* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
   2058  * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
   2059  * will use to derive the session secret, as defined by step 2 of
   2060  * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
   2061  * Uses PSA_ALG_SHA_256.
   2062  * This function takes a single input:
   2063  * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
   2064  * The only supported curve is secp256r1 (the 256-bit curve in
   2065  * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
   2066  * The output has to be read as a single chunk of 32 bytes, defined as
   2067  * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
   2068  */
   2069 #define PSA_ALG_TLS12_ECJPAKE_TO_PMS            ((psa_algorithm_t) 0x08000609)
   2070 
   2071 /* This flag indicates whether the key derivation algorithm is suitable for
   2072  * use on low-entropy secrets such as password - these algorithms are also
   2073  * known as key stretching or password hashing schemes. These are also the
   2074  * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
   2075  *
   2076  * Those algorithms cannot be combined with a key agreement algorithm.
   2077  */
   2078 #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG  ((psa_algorithm_t) 0x00800000)
   2079 
   2080 #define PSA_ALG_PBKDF2_HMAC_BASE                ((psa_algorithm_t) 0x08800100)
   2081 /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
   2082  *
   2083  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
   2084  * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
   2085  * HMAC with the specified hash.
   2086  * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
   2087  * using the PRF HMAC-SHA-256.
   2088  *
   2089  * This key derivation algorithm uses the following inputs, which must be
   2090  * provided in the following order:
   2091  * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
   2092  *   This input step must be used exactly once.
   2093  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
   2094  *   This input step must be used one or more times; if used several times, the
   2095  *   inputs will be concatenated. This can be used to build the final salt
   2096  *   from multiple sources, both public and secret (also known as pepper).
   2097  * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
   2098  *   This input step must be used exactly once.
   2099  *
   2100  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
   2101  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
   2102  *
   2103  * \return              The corresponding PBKDF2-HMAC-XXX algorithm.
   2104  * \return              Unspecified if \p hash_alg is not a supported
   2105  *                      hash algorithm.
   2106  */
   2107 #define PSA_ALG_PBKDF2_HMAC(hash_alg)                                  \
   2108     (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
   2109 
   2110 /** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
   2111  *
   2112  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   2113  *
   2114  * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
   2115  *         This macro may return either 0 or 1 if \c alg is not a supported
   2116  *         key derivation algorithm identifier.
   2117  */
   2118 #define PSA_ALG_IS_PBKDF2_HMAC(alg)                                    \
   2119     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
   2120 #define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg)                         \
   2121     (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
   2122 /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
   2123  *
   2124  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
   2125  * This macro specifies the PBKDF2 algorithm constructed using the
   2126  * AES-CMAC-PRF-128 PRF specified by RFC 4615.
   2127  *
   2128  * This key derivation algorithm uses the same inputs as
   2129  * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
   2130  */
   2131 #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128         ((psa_algorithm_t) 0x08800200)
   2132 
   2133 #define PSA_ALG_IS_PBKDF2(kdf_alg)                                      \
   2134     (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
   2135      ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
   2136 
   2137 #define PSA_ALG_KEY_DERIVATION_MASK             ((psa_algorithm_t) 0xfe00ffff)
   2138 #define PSA_ALG_KEY_AGREEMENT_MASK              ((psa_algorithm_t) 0xffff0000)
   2139 
   2140 /** Macro to build a combined algorithm that chains a key agreement with
   2141  * a key derivation.
   2142  *
   2143  * \param ka_alg        A key agreement algorithm (\c PSA_ALG_XXX value such
   2144  *                      that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
   2145  * \param kdf_alg       A key derivation algorithm (\c PSA_ALG_XXX value such
   2146  *                      that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
   2147  *
   2148  * \return              The corresponding key agreement and derivation
   2149  *                      algorithm.
   2150  * \return              Unspecified if \p ka_alg is not a supported
   2151  *                      key agreement algorithm or \p kdf_alg is not a
   2152  *                      supported key derivation algorithm.
   2153  */
   2154 #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg)  \
   2155     ((ka_alg) | (kdf_alg))
   2156 
   2157 #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg)                              \
   2158     (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
   2159 
   2160 #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg)                             \
   2161     (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
   2162 
   2163 /** Whether the specified algorithm is a raw key agreement algorithm.
   2164  *
   2165  * A raw key agreement algorithm is one that does not specify
   2166  * a key derivation function.
   2167  * Usually, raw key agreement algorithms are constructed directly with
   2168  * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
   2169  * constructed with #PSA_ALG_KEY_AGREEMENT().
   2170  *
   2171  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   2172  *
   2173  * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
   2174  *         This macro may return either 0 or 1 if \p alg is not a supported
   2175  *         algorithm identifier.
   2176  */
   2177 #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg)                               \
   2178     (PSA_ALG_IS_KEY_AGREEMENT(alg) &&                                   \
   2179      PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
   2180 
   2181 #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg)     \
   2182     ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
   2183 
   2184 /** The finite-field Diffie-Hellman (DH) key agreement algorithm.
   2185  *
   2186  * The shared secret produced by key agreement is
   2187  * `g^{ab}` in big-endian format.
   2188  * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
   2189  * in bits.
   2190  */
   2191 #define PSA_ALG_FFDH                            ((psa_algorithm_t) 0x09010000)
   2192 
   2193 /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
   2194  *
   2195  * This includes the raw finite field Diffie-Hellman algorithm as well as
   2196  * finite-field Diffie-Hellman followed by any supporter key derivation
   2197  * algorithm.
   2198  *
   2199  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   2200  *
   2201  * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
   2202  *         This macro may return either 0 or 1 if \c alg is not a supported
   2203  *         key agreement algorithm identifier.
   2204  */
   2205 #define PSA_ALG_IS_FFDH(alg) \
   2206     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
   2207 
   2208 /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
   2209  *
   2210  * The shared secret produced by key agreement is the x-coordinate of
   2211  * the shared secret point. It is always `ceiling(m / 8)` bytes long where
   2212  * `m` is the bit size associated with the curve, i.e. the bit size of the
   2213  * order of the curve's coordinate field. When `m` is not a multiple of 8,
   2214  * the byte containing the most significant bit of the shared secret
   2215  * is padded with zero bits. The byte order is either little-endian
   2216  * or big-endian depending on the curve type.
   2217  *
   2218  * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
   2219  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
   2220  *   in little-endian byte order.
   2221  *   The bit size is 448 for Curve448 and 255 for Curve25519.
   2222  * - For Weierstrass curves over prime fields (curve types
   2223  *   `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
   2224  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
   2225  *   in big-endian byte order.
   2226  *   The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
   2227  * - For Weierstrass curves over binary fields (curve types
   2228  *   `PSA_ECC_FAMILY_SECTXXX`),
   2229  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
   2230  *   in big-endian byte order.
   2231  *   The bit size is `m` for the field `F_{2^m}`.
   2232  */
   2233 #define PSA_ALG_ECDH                            ((psa_algorithm_t) 0x09020000)
   2234 
   2235 /** Whether the specified algorithm is an elliptic curve Diffie-Hellman
   2236  * algorithm.
   2237  *
   2238  * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
   2239  * elliptic curve Diffie-Hellman followed by any supporter key derivation
   2240  * algorithm.
   2241  *
   2242  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   2243  *
   2244  * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
   2245  *         0 otherwise.
   2246  *         This macro may return either 0 or 1 if \c alg is not a supported
   2247  *         key agreement algorithm identifier.
   2248  */
   2249 #define PSA_ALG_IS_ECDH(alg) \
   2250     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
   2251 
   2252 /** Whether the specified algorithm encoding is a wildcard.
   2253  *
   2254  * Wildcard values may only be used to set the usage algorithm field in
   2255  * a policy, not to perform an operation.
   2256  *
   2257  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   2258  *
   2259  * \return 1 if \c alg is a wildcard algorithm encoding.
   2260  * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
   2261  *         an operation).
   2262  * \return This macro may return either 0 or 1 if \c alg is not a supported
   2263  *         algorithm identifier.
   2264  */
   2265 #define PSA_ALG_IS_WILDCARD(alg)                            \
   2266     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                        \
   2267      PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH :       \
   2268      PSA_ALG_IS_MAC(alg) ?                                  \
   2269      (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 :   \
   2270      PSA_ALG_IS_AEAD(alg) ?                                 \
   2271      (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 :  \
   2272      (alg) == PSA_ALG_ANY_HASH)
   2273 
   2274 /** Get the hash used by a composite algorithm.
   2275  *
   2276  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
   2277  *
   2278  * \return The underlying hash algorithm if alg is a composite algorithm that
   2279  * uses a hash algorithm.
   2280  *
   2281  * \return \c 0 if alg is not a composite algorithm that uses a hash.
   2282  */
   2283 #define PSA_ALG_GET_HASH(alg) \
   2284     (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
   2285 
   2286 /**@}*/
   2287 
   2288 /** \defgroup key_lifetimes Key lifetimes
   2289  * @{
   2290  */
   2291 
   2292 /* Note that location and persistence level values are embedded in the
   2293  * persistent key store, as part of key metadata. As a consequence, they
   2294  * must not be changed (unless the storage format version changes).
   2295  */
   2296 
   2297 /** The default lifetime for volatile keys.
   2298  *
   2299  * A volatile key only exists as long as the identifier to it is not destroyed.
   2300  * The key material is guaranteed to be erased on a power reset.
   2301  *
   2302  * A key with this lifetime is typically stored in the RAM area of the
   2303  * PSA Crypto subsystem. However this is an implementation choice.
   2304  * If an implementation stores data about the key in a non-volatile memory,
   2305  * it must release all the resources associated with the key and erase the
   2306  * key material if the calling application terminates.
   2307  */
   2308 #define PSA_KEY_LIFETIME_VOLATILE               ((psa_key_lifetime_t) 0x00000000)
   2309 
   2310 /** The default lifetime for persistent keys.
   2311  *
   2312  * A persistent key remains in storage until it is explicitly destroyed or
   2313  * until the corresponding storage area is wiped. This specification does
   2314  * not define any mechanism to wipe a storage area, but integrations may
   2315  * provide their own mechanism (for example to perform a factory reset,
   2316  * to prepare for device refurbishment, or to uninstall an application).
   2317  *
   2318  * This lifetime value is the default storage area for the calling
   2319  * application. Integrations of Mbed TLS may support other persistent lifetimes.
   2320  * See ::psa_key_lifetime_t for more information.
   2321  */
   2322 #define PSA_KEY_LIFETIME_PERSISTENT             ((psa_key_lifetime_t) 0x00000001)
   2323 
   2324 /** The persistence level of volatile keys.
   2325  *
   2326  * See ::psa_key_persistence_t for more information.
   2327  */
   2328 #define PSA_KEY_PERSISTENCE_VOLATILE            ((psa_key_persistence_t) 0x00)
   2329 
   2330 /** The default persistence level for persistent keys.
   2331  *
   2332  * See ::psa_key_persistence_t for more information.
   2333  */
   2334 #define PSA_KEY_PERSISTENCE_DEFAULT             ((psa_key_persistence_t) 0x01)
   2335 
   2336 /** A persistence level indicating that a key is never destroyed.
   2337  *
   2338  * See ::psa_key_persistence_t for more information.
   2339  */
   2340 #define PSA_KEY_PERSISTENCE_READ_ONLY           ((psa_key_persistence_t) 0xff)
   2341 
   2342 #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime)      \
   2343     ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
   2344 
   2345 #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime)      \
   2346     ((psa_key_location_t) ((lifetime) >> 8))
   2347 
   2348 /** Whether a key lifetime indicates that the key is volatile.
   2349  *
   2350  * A volatile key is automatically destroyed by the implementation when
   2351  * the application instance terminates. In particular, a volatile key
   2352  * is automatically destroyed on a power reset of the device.
   2353  *
   2354  * A key that is not volatile is persistent. Persistent keys are
   2355  * preserved until the application explicitly destroys them or until an
   2356  * implementation-specific device management event occurs (for example,
   2357  * a factory reset).
   2358  *
   2359  * \param lifetime      The lifetime value to query (value of type
   2360  *                      ::psa_key_lifetime_t).
   2361  *
   2362  * \return \c 1 if the key is volatile, otherwise \c 0.
   2363  */
   2364 #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)  \
   2365     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
   2366      PSA_KEY_PERSISTENCE_VOLATILE)
   2367 
   2368 /** Whether a key lifetime indicates that the key is read-only.
   2369  *
   2370  * Read-only keys cannot be created or destroyed through the PSA Crypto API.
   2371  * They must be created through platform-specific means that bypass the API.
   2372  *
   2373  * Some platforms may offer ways to destroy read-only keys. For example,
   2374  * consider a platform with multiple levels of privilege, where a
   2375  * low-privilege application can use a key but is not allowed to destroy
   2376  * it, and the platform exposes the key to the application with a read-only
   2377  * lifetime. High-privilege code can destroy the key even though the
   2378  * application sees the key as read-only.
   2379  *
   2380  * \param lifetime      The lifetime value to query (value of type
   2381  *                      ::psa_key_lifetime_t).
   2382  *
   2383  * \return \c 1 if the key is read-only, otherwise \c 0.
   2384  */
   2385 #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)  \
   2386     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
   2387      PSA_KEY_PERSISTENCE_READ_ONLY)
   2388 
   2389 /** Construct a lifetime from a persistence level and a location.
   2390  *
   2391  * \param persistence   The persistence level
   2392  *                      (value of type ::psa_key_persistence_t).
   2393  * \param location      The location indicator
   2394  *                      (value of type ::psa_key_location_t).
   2395  *
   2396  * \return The constructed lifetime value.
   2397  */
   2398 #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
   2399     ((location) << 8 | (persistence))
   2400 
   2401 /** The local storage area for persistent keys.
   2402  *
   2403  * This storage area is available on all systems that can store persistent
   2404  * keys without delegating the storage to a third-party cryptoprocessor.
   2405  *
   2406  * See ::psa_key_location_t for more information.
   2407  */
   2408 #define PSA_KEY_LOCATION_LOCAL_STORAGE          ((psa_key_location_t) 0x000000)
   2409 
   2410 #define PSA_KEY_LOCATION_VENDOR_FLAG            ((psa_key_location_t) 0x800000)
   2411 
   2412 /* Note that key identifier values are embedded in the
   2413  * persistent key store, as part of key metadata. As a consequence, they
   2414  * must not be changed (unless the storage format version changes).
   2415  */
   2416 
   2417 /** The null key identifier.
   2418  */
   2419 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
   2420 #define PSA_KEY_ID_NULL                         ((psa_key_id_t)0)
   2421 /* *INDENT-ON* */
   2422 /** The minimum value for a key identifier chosen by the application.
   2423  */
   2424 #define PSA_KEY_ID_USER_MIN                     ((psa_key_id_t) 0x00000001)
   2425 /** The maximum value for a key identifier chosen by the application.
   2426  */
   2427 #define PSA_KEY_ID_USER_MAX                     ((psa_key_id_t) 0x3fffffff)
   2428 /** The minimum value for a key identifier chosen by the implementation.
   2429  */
   2430 #define PSA_KEY_ID_VENDOR_MIN                   ((psa_key_id_t) 0x40000000)
   2431 /** The maximum value for a key identifier chosen by the implementation.
   2432  */
   2433 #define PSA_KEY_ID_VENDOR_MAX                   ((psa_key_id_t) 0x7fffffff)
   2434 
   2435 
   2436 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
   2437 
   2438 #define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
   2439 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
   2440 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
   2441 
   2442 /** Utility to initialize a key identifier at runtime.
   2443  *
   2444  * \param unused  Unused parameter.
   2445  * \param key_id  Identifier of the key.
   2446  */
   2447 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
   2448     unsigned int unused, psa_key_id_t key_id)
   2449 {
   2450     (void) unused;
   2451 
   2452     return key_id;
   2453 }
   2454 
   2455 /** Compare two key identifiers.
   2456  *
   2457  * \param id1 First key identifier.
   2458  * \param id2 Second key identifier.
   2459  *
   2460  * \return Non-zero if the two key identifier are equal, zero otherwise.
   2461  */
   2462 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
   2463                                            mbedtls_svc_key_id_t id2)
   2464 {
   2465     return id1 == id2;
   2466 }
   2467 
   2468 /** Check whether a key identifier is null.
   2469  *
   2470  * \param key Key identifier.
   2471  *
   2472  * \return Non-zero if the key identifier is null, zero otherwise.
   2473  */
   2474 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
   2475 {
   2476     return key == 0;
   2477 }
   2478 
   2479 #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
   2480 
   2481 #define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
   2482 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
   2483 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
   2484 
   2485 /** Utility to initialize a key identifier at runtime.
   2486  *
   2487  * \param owner_id Identifier of the key owner.
   2488  * \param key_id   Identifier of the key.
   2489  */
   2490 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
   2491     mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
   2492 {
   2493     return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
   2494                                    .MBEDTLS_PRIVATE(owner) = owner_id };
   2495 }
   2496 
   2497 /** Compare two key identifiers.
   2498  *
   2499  * \param id1 First key identifier.
   2500  * \param id2 Second key identifier.
   2501  *
   2502  * \return Non-zero if the two key identifier are equal, zero otherwise.
   2503  */
   2504 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
   2505                                            mbedtls_svc_key_id_t id2)
   2506 {
   2507     return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
   2508            mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
   2509 }
   2510 
   2511 /** Check whether a key identifier is null.
   2512  *
   2513  * \param key Key identifier.
   2514  *
   2515  * \return Non-zero if the key identifier is null, zero otherwise.
   2516  */
   2517 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
   2518 {
   2519     return key.MBEDTLS_PRIVATE(key_id) == 0;
   2520 }
   2521 
   2522 #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
   2523 
   2524 /**@}*/
   2525 
   2526 /** \defgroup policy Key policies
   2527  * @{
   2528  */
   2529 
   2530 /* Note that key usage flags are embedded in the
   2531  * persistent key store, as part of key metadata. As a consequence, they
   2532  * must not be changed (unless the storage format version changes).
   2533  */
   2534 
   2535 /** Whether the key may be exported.
   2536  *
   2537  * A public key or the public part of a key pair may always be exported
   2538  * regardless of the value of this permission flag.
   2539  *
   2540  * If a key does not have export permission, implementations shall not
   2541  * allow the key to be exported in plain form from the cryptoprocessor,
   2542  * whether through psa_export_key() or through a proprietary interface.
   2543  * The key may however be exportable in a wrapped form, i.e. in a form
   2544  * where it is encrypted by another key.
   2545  */
   2546 #define PSA_KEY_USAGE_EXPORT                    ((psa_key_usage_t) 0x00000001)
   2547 
   2548 /** Whether the key may be copied.
   2549  *
   2550  * This flag allows the use of psa_copy_key() to make a copy of the key
   2551  * with the same policy or a more restrictive policy.
   2552  *
   2553  * For lifetimes for which the key is located in a secure element which
   2554  * enforce the non-exportability of keys, copying a key outside the secure
   2555  * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
   2556  * Copying the key inside the secure element is permitted with just
   2557  * #PSA_KEY_USAGE_COPY if the secure element supports it.
   2558  * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
   2559  * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
   2560  * is sufficient to permit the copy.
   2561  */
   2562 #define PSA_KEY_USAGE_COPY                      ((psa_key_usage_t) 0x00000002)
   2563 
   2564 /** Whether the key may be used to encrypt a message.
   2565  *
   2566  * This flag allows the key to be used for a symmetric encryption operation,
   2567  * for an AEAD encryption-and-authentication operation,
   2568  * or for an asymmetric encryption operation,
   2569  * if otherwise permitted by the key's type and policy.
   2570  *
   2571  * For a key pair, this concerns the public key.
   2572  */
   2573 #define PSA_KEY_USAGE_ENCRYPT                   ((psa_key_usage_t) 0x00000100)
   2574 
   2575 /** Whether the key may be used to decrypt a message.
   2576  *
   2577  * This flag allows the key to be used for a symmetric decryption operation,
   2578  * for an AEAD decryption-and-verification operation,
   2579  * or for an asymmetric decryption operation,
   2580  * if otherwise permitted by the key's type and policy.
   2581  *
   2582  * For a key pair, this concerns the private key.
   2583  */
   2584 #define PSA_KEY_USAGE_DECRYPT                   ((psa_key_usage_t) 0x00000200)
   2585 
   2586 /** Whether the key may be used to sign a message.
   2587  *
   2588  * This flag allows the key to be used for a MAC calculation operation or for
   2589  * an asymmetric message signature operation, if otherwise permitted by the
   2590  * key’s type and policy.
   2591  *
   2592  * For a key pair, this concerns the private key.
   2593  */
   2594 #define PSA_KEY_USAGE_SIGN_MESSAGE              ((psa_key_usage_t) 0x00000400)
   2595 
   2596 /** Whether the key may be used to verify a message.
   2597  *
   2598  * This flag allows the key to be used for a MAC verification operation or for
   2599  * an asymmetric message signature verification operation, if otherwise
   2600  * permitted by the key’s type and policy.
   2601  *
   2602  * For a key pair, this concerns the public key.
   2603  */
   2604 #define PSA_KEY_USAGE_VERIFY_MESSAGE            ((psa_key_usage_t) 0x00000800)
   2605 
   2606 /** Whether the key may be used to sign a message.
   2607  *
   2608  * This flag allows the key to be used for a MAC calculation operation
   2609  * or for an asymmetric signature operation,
   2610  * if otherwise permitted by the key's type and policy.
   2611  *
   2612  * For a key pair, this concerns the private key.
   2613  */
   2614 #define PSA_KEY_USAGE_SIGN_HASH                 ((psa_key_usage_t) 0x00001000)
   2615 
   2616 /** Whether the key may be used to verify a message signature.
   2617  *
   2618  * This flag allows the key to be used for a MAC verification operation
   2619  * or for an asymmetric signature verification operation,
   2620  * if otherwise permitted by the key's type and policy.
   2621  *
   2622  * For a key pair, this concerns the public key.
   2623  */
   2624 #define PSA_KEY_USAGE_VERIFY_HASH               ((psa_key_usage_t) 0x00002000)
   2625 
   2626 /** Whether the key may be used to derive other keys or produce a password
   2627  * hash.
   2628  *
   2629  * This flag allows the key to be used for a key derivation operation or for
   2630  * a key agreement operation, if otherwise permitted by the key's type and
   2631  * policy.
   2632  *
   2633  * If this flag is present on all keys used in calls to
   2634  * psa_key_derivation_input_key() for a key derivation operation, then it
   2635  * permits calling psa_key_derivation_output_bytes() or
   2636  * psa_key_derivation_output_key() at the end of the operation.
   2637  */
   2638 #define PSA_KEY_USAGE_DERIVE                    ((psa_key_usage_t) 0x00004000)
   2639 
   2640 /** Whether the key may be used to verify the result of a key derivation,
   2641  * including password hashing.
   2642  *
   2643  * This flag allows the key to be used:
   2644  *
   2645  * This flag allows the key to be used in a key derivation operation, if
   2646  * otherwise permitted by the key's type and policy.
   2647  *
   2648  * If this flag is present on all keys used in calls to
   2649  * psa_key_derivation_input_key() for a key derivation operation, then it
   2650  * permits calling psa_key_derivation_verify_bytes() or
   2651  * psa_key_derivation_verify_key() at the end of the operation.
   2652  */
   2653 #define PSA_KEY_USAGE_VERIFY_DERIVATION         ((psa_key_usage_t) 0x00008000)
   2654 
   2655 /**@}*/
   2656 
   2657 /** \defgroup derivation Key derivation
   2658  * @{
   2659  */
   2660 
   2661 /* Key input steps are not embedded in the persistent storage, so you can
   2662  * change them if needed: it's only an ABI change. */
   2663 
   2664 /** A secret input for key derivation.
   2665  *
   2666  * This should be a key of type #PSA_KEY_TYPE_DERIVE
   2667  * (passed to psa_key_derivation_input_key())
   2668  * or the shared secret resulting from a key agreement
   2669  * (obtained via psa_key_derivation_key_agreement()).
   2670  *
   2671  * The secret can also be a direct input (passed to
   2672  * key_derivation_input_bytes()). In this case, the derivation operation
   2673  * may not be used to derive keys: the operation will only allow
   2674  * psa_key_derivation_output_bytes(),
   2675  * psa_key_derivation_verify_bytes(), or
   2676  * psa_key_derivation_verify_key(), but not
   2677  * psa_key_derivation_output_key().
   2678  */
   2679 #define PSA_KEY_DERIVATION_INPUT_SECRET     ((psa_key_derivation_step_t) 0x0101)
   2680 
   2681 /** A low-entropy secret input for password hashing / key stretching.
   2682  *
   2683  * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
   2684  * psa_key_derivation_input_key()) or a direct input (passed to
   2685  * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
   2686  * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
   2687  * the shared secret resulting from a key agreement.
   2688  *
   2689  * The secret can also be a direct input (passed to
   2690  * key_derivation_input_bytes()). In this case, the derivation operation
   2691  * may not be used to derive keys: the operation will only allow
   2692  * psa_key_derivation_output_bytes(),
   2693  * psa_key_derivation_verify_bytes(), or
   2694  * psa_key_derivation_verify_key(), but not
   2695  * psa_key_derivation_output_key().
   2696  */
   2697 #define PSA_KEY_DERIVATION_INPUT_PASSWORD   ((psa_key_derivation_step_t) 0x0102)
   2698 
   2699 /** A high-entropy additional secret input for key derivation.
   2700  *
   2701  * This is typically the shared secret resulting from a key agreement obtained
   2702  * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
   2703  * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
   2704  * a direct input passed to `psa_key_derivation_input_bytes()`.
   2705  */
   2706 #define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
   2707     ((psa_key_derivation_step_t) 0x0103)
   2708 
   2709 /** A label for key derivation.
   2710  *
   2711  * This should be a direct input.
   2712  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
   2713  */
   2714 #define PSA_KEY_DERIVATION_INPUT_LABEL      ((psa_key_derivation_step_t) 0x0201)
   2715 
   2716 /** A salt for key derivation.
   2717  *
   2718  * This should be a direct input.
   2719  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
   2720  * #PSA_KEY_TYPE_PEPPER.
   2721  */
   2722 #define PSA_KEY_DERIVATION_INPUT_SALT       ((psa_key_derivation_step_t) 0x0202)
   2723 
   2724 /** An information string for key derivation.
   2725  *
   2726  * This should be a direct input.
   2727  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
   2728  */
   2729 #define PSA_KEY_DERIVATION_INPUT_INFO       ((psa_key_derivation_step_t) 0x0203)
   2730 
   2731 /** A seed for key derivation.
   2732  *
   2733  * This should be a direct input.
   2734  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
   2735  */
   2736 #define PSA_KEY_DERIVATION_INPUT_SEED       ((psa_key_derivation_step_t) 0x0204)
   2737 
   2738 /** A cost parameter for password hashing / key stretching.
   2739  *
   2740  * This must be a direct input, passed to psa_key_derivation_input_integer().
   2741  */
   2742 #define PSA_KEY_DERIVATION_INPUT_COST       ((psa_key_derivation_step_t) 0x0205)
   2743 
   2744 /**@}*/
   2745 
   2746 /** \defgroup helper_macros Helper macros
   2747  * @{
   2748  */
   2749 
   2750 /* Helper macros */
   2751 
   2752 /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
   2753  *  regardless of the tag length they encode.
   2754  *
   2755  * \param aead_alg_1 An AEAD algorithm identifier.
   2756  * \param aead_alg_2 An AEAD algorithm identifier.
   2757  *
   2758  * \return           1 if both identifiers refer to the same AEAD algorithm,
   2759  *                   0 otherwise.
   2760  *                   Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
   2761  *                   a supported AEAD algorithm.
   2762  */
   2763 #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
   2764     (!(((aead_alg_1) ^ (aead_alg_2)) & \
   2765        ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
   2766 
   2767 /**@}*/
   2768 
   2769 /**@}*/
   2770 
   2771 /** \defgroup interruptible Interruptible operations
   2772  * @{
   2773  */
   2774 
   2775 /** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
   2776  *  the maximum number of ops allowed to be executed by an interruptible
   2777  *  function in a single call.
   2778  */
   2779 #define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
   2780 
   2781 /**@}*/
   2782 
   2783 #endif /* PSA_CRYPTO_VALUES_H */