quickjs-tart

quickjs-based runtime for wallet-core logic
Log | Files | Refs | README | LICENSE

Hacl_Curve25519.c (24161B)


      1 /* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
      2    Licensed under the Apache 2.0 License. */
      3 
      4 /* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
      5  * KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
      6  * F* version: 059db0c8
      7  * KreMLin version: 916c37ac
      8  */
      9 
     10 
     11 #include "Hacl_Curve25519.h"
     12 
     13 extern uint64_t FStar_UInt64_eq_mask(uint64_t x0, uint64_t x1);
     14 
     15 extern uint64_t FStar_UInt64_gte_mask(uint64_t x0, uint64_t x1);
     16 
     17 extern FStar_UInt128_uint128
     18 FStar_UInt128_add(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
     19 
     20 extern FStar_UInt128_uint128
     21 FStar_UInt128_add_mod(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
     22 
     23 extern FStar_UInt128_uint128
     24 FStar_UInt128_logand(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
     25 
     26 extern FStar_UInt128_uint128 FStar_UInt128_shift_right(FStar_UInt128_uint128 x0, uint32_t x1);
     27 
     28 extern FStar_UInt128_uint128 FStar_UInt128_uint64_to_uint128(uint64_t x0);
     29 
     30 extern uint64_t FStar_UInt128_uint128_to_uint64(FStar_UInt128_uint128 x0);
     31 
     32 extern FStar_UInt128_uint128 FStar_UInt128_mul_wide(uint64_t x0, uint64_t x1);
     33 
     34 static void Hacl_Bignum_Modulo_carry_top(uint64_t *b)
     35 {
     36   uint64_t b4 = b[4U];
     37   uint64_t b0 = b[0U];
     38   uint64_t b4_ = b4 & (uint64_t)0x7ffffffffffffU;
     39   uint64_t b0_ = b0 + (uint64_t)19U * (b4 >> (uint32_t)51U);
     40   b[4U] = b4_;
     41   b[0U] = b0_;
     42 }
     43 
     44 inline static void
     45 Hacl_Bignum_Fproduct_copy_from_wide_(uint64_t *output, FStar_UInt128_uint128 *input)
     46 {
     47   uint32_t i;
     48   for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
     49   {
     50     FStar_UInt128_uint128 xi = input[i];
     51     output[i] = FStar_UInt128_uint128_to_uint64(xi);
     52   }
     53 }
     54 
     55 inline static void
     56 Hacl_Bignum_Fproduct_sum_scalar_multiplication_(
     57   FStar_UInt128_uint128 *output,
     58   uint64_t *input,
     59   uint64_t s
     60 )
     61 {
     62   uint32_t i;
     63   for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
     64   {
     65     FStar_UInt128_uint128 xi = output[i];
     66     uint64_t yi = input[i];
     67     output[i] = FStar_UInt128_add_mod(xi, FStar_UInt128_mul_wide(yi, s));
     68   }
     69 }
     70 
     71 inline static void Hacl_Bignum_Fproduct_carry_wide_(FStar_UInt128_uint128 *tmp)
     72 {
     73   uint32_t i;
     74   for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
     75   {
     76     uint32_t ctr = i;
     77     FStar_UInt128_uint128 tctr = tmp[ctr];
     78     FStar_UInt128_uint128 tctrp1 = tmp[ctr + (uint32_t)1U];
     79     uint64_t r0 = FStar_UInt128_uint128_to_uint64(tctr) & (uint64_t)0x7ffffffffffffU;
     80     FStar_UInt128_uint128 c = FStar_UInt128_shift_right(tctr, (uint32_t)51U);
     81     tmp[ctr] = FStar_UInt128_uint64_to_uint128(r0);
     82     tmp[ctr + (uint32_t)1U] = FStar_UInt128_add(tctrp1, c);
     83   }
     84 }
     85 
     86 inline static void Hacl_Bignum_Fmul_shift_reduce(uint64_t *output)
     87 {
     88   uint64_t tmp = output[4U];
     89   uint64_t b0;
     90   {
     91     uint32_t i;
     92     for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
     93     {
     94       uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U;
     95       uint64_t z = output[ctr - (uint32_t)1U];
     96       output[ctr] = z;
     97     }
     98   }
     99   output[0U] = tmp;
    100   b0 = output[0U];
    101   output[0U] = (uint64_t)19U * b0;
    102 }
    103 
    104 static void
    105 Hacl_Bignum_Fmul_mul_shift_reduce_(
    106   FStar_UInt128_uint128 *output,
    107   uint64_t *input,
    108   uint64_t *input2
    109 )
    110 {
    111   uint32_t i;
    112   uint64_t input2i;
    113   {
    114     uint32_t i0;
    115     for (i0 = (uint32_t)0U; i0 < (uint32_t)4U; i0 = i0 + (uint32_t)1U)
    116     {
    117       uint64_t input2i0 = input2[i0];
    118       Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i0);
    119       Hacl_Bignum_Fmul_shift_reduce(input);
    120     }
    121   }
    122   i = (uint32_t)4U;
    123   input2i = input2[i];
    124   Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i);
    125 }
    126 
    127 inline static void Hacl_Bignum_Fmul_fmul(uint64_t *output, uint64_t *input, uint64_t *input2)
    128 {
    129   uint64_t tmp[5U] = { 0U };
    130   memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]);
    131   KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
    132   {
    133     FStar_UInt128_uint128 t[5U];
    134     {
    135       uint32_t _i;
    136       for (_i = 0U; _i < (uint32_t)5U; ++_i)
    137         t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
    138     }
    139     {
    140       FStar_UInt128_uint128 b4;
    141       FStar_UInt128_uint128 b0;
    142       FStar_UInt128_uint128 b4_;
    143       FStar_UInt128_uint128 b0_;
    144       uint64_t i0;
    145       uint64_t i1;
    146       uint64_t i0_;
    147       uint64_t i1_;
    148       Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2);
    149       Hacl_Bignum_Fproduct_carry_wide_(t);
    150       b4 = t[4U];
    151       b0 = t[0U];
    152       b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
    153       b0_ =
    154         FStar_UInt128_add(b0,
    155           FStar_UInt128_mul_wide((uint64_t)19U,
    156             FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
    157       t[4U] = b4_;
    158       t[0U] = b0_;
    159       Hacl_Bignum_Fproduct_copy_from_wide_(output, t);
    160       i0 = output[0U];
    161       i1 = output[1U];
    162       i0_ = i0 & (uint64_t)0x7ffffffffffffU;
    163       i1_ = i1 + (i0 >> (uint32_t)51U);
    164       output[0U] = i0_;
    165       output[1U] = i1_;
    166     }
    167   }
    168 }
    169 
    170 inline static void Hacl_Bignum_Fsquare_fsquare__(FStar_UInt128_uint128 *tmp, uint64_t *output)
    171 {
    172   uint64_t r0 = output[0U];
    173   uint64_t r1 = output[1U];
    174   uint64_t r2 = output[2U];
    175   uint64_t r3 = output[3U];
    176   uint64_t r4 = output[4U];
    177   uint64_t d0 = r0 * (uint64_t)2U;
    178   uint64_t d1 = r1 * (uint64_t)2U;
    179   uint64_t d2 = r2 * (uint64_t)2U * (uint64_t)19U;
    180   uint64_t d419 = r4 * (uint64_t)19U;
    181   uint64_t d4 = d419 * (uint64_t)2U;
    182   FStar_UInt128_uint128
    183   s0 =
    184     FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(r0, r0),
    185         FStar_UInt128_mul_wide(d4, r1)),
    186       FStar_UInt128_mul_wide(d2, r3));
    187   FStar_UInt128_uint128
    188   s1 =
    189     FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r1),
    190         FStar_UInt128_mul_wide(d4, r2)),
    191       FStar_UInt128_mul_wide(r3 * (uint64_t)19U, r3));
    192   FStar_UInt128_uint128
    193   s2 =
    194     FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r2),
    195         FStar_UInt128_mul_wide(r1, r1)),
    196       FStar_UInt128_mul_wide(d4, r3));
    197   FStar_UInt128_uint128
    198   s3 =
    199     FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r3),
    200         FStar_UInt128_mul_wide(d1, r2)),
    201       FStar_UInt128_mul_wide(r4, d419));
    202   FStar_UInt128_uint128
    203   s4 =
    204     FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r4),
    205         FStar_UInt128_mul_wide(d1, r3)),
    206       FStar_UInt128_mul_wide(r2, r2));
    207   tmp[0U] = s0;
    208   tmp[1U] = s1;
    209   tmp[2U] = s2;
    210   tmp[3U] = s3;
    211   tmp[4U] = s4;
    212 }
    213 
    214 inline static void Hacl_Bignum_Fsquare_fsquare_(FStar_UInt128_uint128 *tmp, uint64_t *output)
    215 {
    216   FStar_UInt128_uint128 b4;
    217   FStar_UInt128_uint128 b0;
    218   FStar_UInt128_uint128 b4_;
    219   FStar_UInt128_uint128 b0_;
    220   uint64_t i0;
    221   uint64_t i1;
    222   uint64_t i0_;
    223   uint64_t i1_;
    224   Hacl_Bignum_Fsquare_fsquare__(tmp, output);
    225   Hacl_Bignum_Fproduct_carry_wide_(tmp);
    226   b4 = tmp[4U];
    227   b0 = tmp[0U];
    228   b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
    229   b0_ =
    230     FStar_UInt128_add(b0,
    231       FStar_UInt128_mul_wide((uint64_t)19U,
    232         FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
    233   tmp[4U] = b4_;
    234   tmp[0U] = b0_;
    235   Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
    236   i0 = output[0U];
    237   i1 = output[1U];
    238   i0_ = i0 & (uint64_t)0x7ffffffffffffU;
    239   i1_ = i1 + (i0 >> (uint32_t)51U);
    240   output[0U] = i0_;
    241   output[1U] = i1_;
    242 }
    243 
    244 static void
    245 Hacl_Bignum_Fsquare_fsquare_times_(
    246   uint64_t *input,
    247   FStar_UInt128_uint128 *tmp,
    248   uint32_t count1
    249 )
    250 {
    251   uint32_t i;
    252   Hacl_Bignum_Fsquare_fsquare_(tmp, input);
    253   for (i = (uint32_t)1U; i < count1; i = i + (uint32_t)1U)
    254     Hacl_Bignum_Fsquare_fsquare_(tmp, input);
    255 }
    256 
    257 inline static void
    258 Hacl_Bignum_Fsquare_fsquare_times(uint64_t *output, uint64_t *input, uint32_t count1)
    259 {
    260   KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
    261   {
    262     FStar_UInt128_uint128 t[5U];
    263     {
    264       uint32_t _i;
    265       for (_i = 0U; _i < (uint32_t)5U; ++_i)
    266         t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
    267     }
    268     memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
    269     Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
    270   }
    271 }
    272 
    273 inline static void Hacl_Bignum_Fsquare_fsquare_times_inplace(uint64_t *output, uint32_t count1)
    274 {
    275   KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
    276   {
    277     FStar_UInt128_uint128 t[5U];
    278     {
    279       uint32_t _i;
    280       for (_i = 0U; _i < (uint32_t)5U; ++_i)
    281         t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
    282     }
    283     Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
    284   }
    285 }
    286 
    287 inline static void Hacl_Bignum_Crecip_crecip(uint64_t *out, uint64_t *z)
    288 {
    289   uint64_t buf[20U] = { 0U };
    290   uint64_t *a0 = buf;
    291   uint64_t *t00 = buf + (uint32_t)5U;
    292   uint64_t *b0 = buf + (uint32_t)10U;
    293   uint64_t *t01;
    294   uint64_t *b1;
    295   uint64_t *c0;
    296   uint64_t *a;
    297   uint64_t *t0;
    298   uint64_t *b;
    299   uint64_t *c;
    300   Hacl_Bignum_Fsquare_fsquare_times(a0, z, (uint32_t)1U);
    301   Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)2U);
    302   Hacl_Bignum_Fmul_fmul(b0, t00, z);
    303   Hacl_Bignum_Fmul_fmul(a0, b0, a0);
    304   Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)1U);
    305   Hacl_Bignum_Fmul_fmul(b0, t00, b0);
    306   Hacl_Bignum_Fsquare_fsquare_times(t00, b0, (uint32_t)5U);
    307   t01 = buf + (uint32_t)5U;
    308   b1 = buf + (uint32_t)10U;
    309   c0 = buf + (uint32_t)15U;
    310   Hacl_Bignum_Fmul_fmul(b1, t01, b1);
    311   Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)10U);
    312   Hacl_Bignum_Fmul_fmul(c0, t01, b1);
    313   Hacl_Bignum_Fsquare_fsquare_times(t01, c0, (uint32_t)20U);
    314   Hacl_Bignum_Fmul_fmul(t01, t01, c0);
    315   Hacl_Bignum_Fsquare_fsquare_times_inplace(t01, (uint32_t)10U);
    316   Hacl_Bignum_Fmul_fmul(b1, t01, b1);
    317   Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)50U);
    318   a = buf;
    319   t0 = buf + (uint32_t)5U;
    320   b = buf + (uint32_t)10U;
    321   c = buf + (uint32_t)15U;
    322   Hacl_Bignum_Fmul_fmul(c, t0, b);
    323   Hacl_Bignum_Fsquare_fsquare_times(t0, c, (uint32_t)100U);
    324   Hacl_Bignum_Fmul_fmul(t0, t0, c);
    325   Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)50U);
    326   Hacl_Bignum_Fmul_fmul(t0, t0, b);
    327   Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)5U);
    328   Hacl_Bignum_Fmul_fmul(out, t0, a);
    329 }
    330 
    331 inline static void Hacl_Bignum_fsum(uint64_t *a, uint64_t *b)
    332 {
    333   uint32_t i;
    334   for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
    335   {
    336     uint64_t xi = a[i];
    337     uint64_t yi = b[i];
    338     a[i] = xi + yi;
    339   }
    340 }
    341 
    342 inline static void Hacl_Bignum_fdifference(uint64_t *a, uint64_t *b)
    343 {
    344   uint64_t tmp[5U] = { 0U };
    345   uint64_t b0;
    346   uint64_t b1;
    347   uint64_t b2;
    348   uint64_t b3;
    349   uint64_t b4;
    350   memcpy(tmp, b, (uint32_t)5U * sizeof b[0U]);
    351   b0 = tmp[0U];
    352   b1 = tmp[1U];
    353   b2 = tmp[2U];
    354   b3 = tmp[3U];
    355   b4 = tmp[4U];
    356   tmp[0U] = b0 + (uint64_t)0x3fffffffffff68U;
    357   tmp[1U] = b1 + (uint64_t)0x3ffffffffffff8U;
    358   tmp[2U] = b2 + (uint64_t)0x3ffffffffffff8U;
    359   tmp[3U] = b3 + (uint64_t)0x3ffffffffffff8U;
    360   tmp[4U] = b4 + (uint64_t)0x3ffffffffffff8U;
    361   {
    362     uint32_t i;
    363     for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
    364     {
    365       uint64_t xi = a[i];
    366       uint64_t yi = tmp[i];
    367       a[i] = yi - xi;
    368     }
    369   }
    370 }
    371 
    372 inline static void Hacl_Bignum_fscalar(uint64_t *output, uint64_t *b, uint64_t s)
    373 {
    374   KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
    375   {
    376     FStar_UInt128_uint128 tmp[5U];
    377     {
    378       uint32_t _i;
    379       for (_i = 0U; _i < (uint32_t)5U; ++_i)
    380         tmp[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
    381     }
    382     {
    383       FStar_UInt128_uint128 b4;
    384       FStar_UInt128_uint128 b0;
    385       FStar_UInt128_uint128 b4_;
    386       FStar_UInt128_uint128 b0_;
    387       {
    388         uint32_t i;
    389         for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
    390         {
    391           uint64_t xi = b[i];
    392           tmp[i] = FStar_UInt128_mul_wide(xi, s);
    393         }
    394       }
    395       Hacl_Bignum_Fproduct_carry_wide_(tmp);
    396       b4 = tmp[4U];
    397       b0 = tmp[0U];
    398       b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
    399       b0_ =
    400         FStar_UInt128_add(b0,
    401           FStar_UInt128_mul_wide((uint64_t)19U,
    402             FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
    403       tmp[4U] = b4_;
    404       tmp[0U] = b0_;
    405       Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
    406     }
    407   }
    408 }
    409 
    410 inline static void Hacl_Bignum_fmul(uint64_t *output, uint64_t *a, uint64_t *b)
    411 {
    412   Hacl_Bignum_Fmul_fmul(output, a, b);
    413 }
    414 
    415 inline static void Hacl_Bignum_crecip(uint64_t *output, uint64_t *input)
    416 {
    417   Hacl_Bignum_Crecip_crecip(output, input);
    418 }
    419 
    420 static void
    421 Hacl_EC_Point_swap_conditional_step(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
    422 {
    423   uint32_t i = ctr - (uint32_t)1U;
    424   uint64_t ai = a[i];
    425   uint64_t bi = b[i];
    426   uint64_t x = swap1 & (ai ^ bi);
    427   uint64_t ai1 = ai ^ x;
    428   uint64_t bi1 = bi ^ x;
    429   a[i] = ai1;
    430   b[i] = bi1;
    431 }
    432 
    433 static void
    434 Hacl_EC_Point_swap_conditional_(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
    435 {
    436   if (!(ctr == (uint32_t)0U))
    437   {
    438     uint32_t i;
    439     Hacl_EC_Point_swap_conditional_step(a, b, swap1, ctr);
    440     i = ctr - (uint32_t)1U;
    441     Hacl_EC_Point_swap_conditional_(a, b, swap1, i);
    442   }
    443 }
    444 
    445 static void Hacl_EC_Point_swap_conditional(uint64_t *a, uint64_t *b, uint64_t iswap)
    446 {
    447   uint64_t swap1 = (uint64_t)0U - iswap;
    448   Hacl_EC_Point_swap_conditional_(a, b, swap1, (uint32_t)5U);
    449   Hacl_EC_Point_swap_conditional_(a + (uint32_t)5U, b + (uint32_t)5U, swap1, (uint32_t)5U);
    450 }
    451 
    452 static void Hacl_EC_Point_copy(uint64_t *output, uint64_t *input)
    453 {
    454   memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
    455   memcpy(output + (uint32_t)5U,
    456     input + (uint32_t)5U,
    457     (uint32_t)5U * sizeof (input + (uint32_t)5U)[0U]);
    458 }
    459 
    460 static void Hacl_EC_Format_fexpand(uint64_t *output, uint8_t *input)
    461 {
    462   uint64_t i0 = load64_le(input);
    463   uint8_t *x00 = input + (uint32_t)6U;
    464   uint64_t i1 = load64_le(x00);
    465   uint8_t *x01 = input + (uint32_t)12U;
    466   uint64_t i2 = load64_le(x01);
    467   uint8_t *x02 = input + (uint32_t)19U;
    468   uint64_t i3 = load64_le(x02);
    469   uint8_t *x0 = input + (uint32_t)24U;
    470   uint64_t i4 = load64_le(x0);
    471   uint64_t output0 = i0 & (uint64_t)0x7ffffffffffffU;
    472   uint64_t output1 = i1 >> (uint32_t)3U & (uint64_t)0x7ffffffffffffU;
    473   uint64_t output2 = i2 >> (uint32_t)6U & (uint64_t)0x7ffffffffffffU;
    474   uint64_t output3 = i3 >> (uint32_t)1U & (uint64_t)0x7ffffffffffffU;
    475   uint64_t output4 = i4 >> (uint32_t)12U & (uint64_t)0x7ffffffffffffU;
    476   output[0U] = output0;
    477   output[1U] = output1;
    478   output[2U] = output2;
    479   output[3U] = output3;
    480   output[4U] = output4;
    481 }
    482 
    483 static void Hacl_EC_Format_fcontract_first_carry_pass(uint64_t *input)
    484 {
    485   uint64_t t0 = input[0U];
    486   uint64_t t1 = input[1U];
    487   uint64_t t2 = input[2U];
    488   uint64_t t3 = input[3U];
    489   uint64_t t4 = input[4U];
    490   uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
    491   uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
    492   uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
    493   uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
    494   uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
    495   uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
    496   uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
    497   uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
    498   input[0U] = t0_;
    499   input[1U] = t1__;
    500   input[2U] = t2__;
    501   input[3U] = t3__;
    502   input[4U] = t4_;
    503 }
    504 
    505 static void Hacl_EC_Format_fcontract_first_carry_full(uint64_t *input)
    506 {
    507   Hacl_EC_Format_fcontract_first_carry_pass(input);
    508   Hacl_Bignum_Modulo_carry_top(input);
    509 }
    510 
    511 static void Hacl_EC_Format_fcontract_second_carry_pass(uint64_t *input)
    512 {
    513   uint64_t t0 = input[0U];
    514   uint64_t t1 = input[1U];
    515   uint64_t t2 = input[2U];
    516   uint64_t t3 = input[3U];
    517   uint64_t t4 = input[4U];
    518   uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
    519   uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
    520   uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
    521   uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
    522   uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
    523   uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
    524   uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
    525   uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
    526   input[0U] = t0_;
    527   input[1U] = t1__;
    528   input[2U] = t2__;
    529   input[3U] = t3__;
    530   input[4U] = t4_;
    531 }
    532 
    533 static void Hacl_EC_Format_fcontract_second_carry_full(uint64_t *input)
    534 {
    535   uint64_t i0;
    536   uint64_t i1;
    537   uint64_t i0_;
    538   uint64_t i1_;
    539   Hacl_EC_Format_fcontract_second_carry_pass(input);
    540   Hacl_Bignum_Modulo_carry_top(input);
    541   i0 = input[0U];
    542   i1 = input[1U];
    543   i0_ = i0 & (uint64_t)0x7ffffffffffffU;
    544   i1_ = i1 + (i0 >> (uint32_t)51U);
    545   input[0U] = i0_;
    546   input[1U] = i1_;
    547 }
    548 
    549 static void Hacl_EC_Format_fcontract_trim(uint64_t *input)
    550 {
    551   uint64_t a0 = input[0U];
    552   uint64_t a1 = input[1U];
    553   uint64_t a2 = input[2U];
    554   uint64_t a3 = input[3U];
    555   uint64_t a4 = input[4U];
    556   uint64_t mask0 = FStar_UInt64_gte_mask(a0, (uint64_t)0x7ffffffffffedU);
    557   uint64_t mask1 = FStar_UInt64_eq_mask(a1, (uint64_t)0x7ffffffffffffU);
    558   uint64_t mask2 = FStar_UInt64_eq_mask(a2, (uint64_t)0x7ffffffffffffU);
    559   uint64_t mask3 = FStar_UInt64_eq_mask(a3, (uint64_t)0x7ffffffffffffU);
    560   uint64_t mask4 = FStar_UInt64_eq_mask(a4, (uint64_t)0x7ffffffffffffU);
    561   uint64_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
    562   uint64_t a0_ = a0 - ((uint64_t)0x7ffffffffffedU & mask);
    563   uint64_t a1_ = a1 - ((uint64_t)0x7ffffffffffffU & mask);
    564   uint64_t a2_ = a2 - ((uint64_t)0x7ffffffffffffU & mask);
    565   uint64_t a3_ = a3 - ((uint64_t)0x7ffffffffffffU & mask);
    566   uint64_t a4_ = a4 - ((uint64_t)0x7ffffffffffffU & mask);
    567   input[0U] = a0_;
    568   input[1U] = a1_;
    569   input[2U] = a2_;
    570   input[3U] = a3_;
    571   input[4U] = a4_;
    572 }
    573 
    574 static void Hacl_EC_Format_fcontract_store(uint8_t *output, uint64_t *input)
    575 {
    576   uint64_t t0 = input[0U];
    577   uint64_t t1 = input[1U];
    578   uint64_t t2 = input[2U];
    579   uint64_t t3 = input[3U];
    580   uint64_t t4 = input[4U];
    581   uint64_t o0 = t1 << (uint32_t)51U | t0;
    582   uint64_t o1 = t2 << (uint32_t)38U | t1 >> (uint32_t)13U;
    583   uint64_t o2 = t3 << (uint32_t)25U | t2 >> (uint32_t)26U;
    584   uint64_t o3 = t4 << (uint32_t)12U | t3 >> (uint32_t)39U;
    585   uint8_t *b0 = output;
    586   uint8_t *b1 = output + (uint32_t)8U;
    587   uint8_t *b2 = output + (uint32_t)16U;
    588   uint8_t *b3 = output + (uint32_t)24U;
    589   store64_le(b0, o0);
    590   store64_le(b1, o1);
    591   store64_le(b2, o2);
    592   store64_le(b3, o3);
    593 }
    594 
    595 static void Hacl_EC_Format_fcontract(uint8_t *output, uint64_t *input)
    596 {
    597   Hacl_EC_Format_fcontract_first_carry_full(input);
    598   Hacl_EC_Format_fcontract_second_carry_full(input);
    599   Hacl_EC_Format_fcontract_trim(input);
    600   Hacl_EC_Format_fcontract_store(output, input);
    601 }
    602 
    603 static void Hacl_EC_Format_scalar_of_point(uint8_t *scalar, uint64_t *point)
    604 {
    605   uint64_t *x = point;
    606   uint64_t *z = point + (uint32_t)5U;
    607   uint64_t buf[10U] = { 0U };
    608   uint64_t *zmone = buf;
    609   uint64_t *sc = buf + (uint32_t)5U;
    610   Hacl_Bignum_crecip(zmone, z);
    611   Hacl_Bignum_fmul(sc, x, zmone);
    612   Hacl_EC_Format_fcontract(scalar, sc);
    613 }
    614 
    615 static void
    616 Hacl_EC_AddAndDouble_fmonty(
    617   uint64_t *pp,
    618   uint64_t *ppq,
    619   uint64_t *p,
    620   uint64_t *pq,
    621   uint64_t *qmqp
    622 )
    623 {
    624   uint64_t *qx = qmqp;
    625   uint64_t *x2 = pp;
    626   uint64_t *z2 = pp + (uint32_t)5U;
    627   uint64_t *x3 = ppq;
    628   uint64_t *z3 = ppq + (uint32_t)5U;
    629   uint64_t *x = p;
    630   uint64_t *z = p + (uint32_t)5U;
    631   uint64_t *xprime = pq;
    632   uint64_t *zprime = pq + (uint32_t)5U;
    633   uint64_t buf[40U] = { 0U };
    634   uint64_t *origx = buf;
    635   uint64_t *origxprime0 = buf + (uint32_t)5U;
    636   uint64_t *xxprime0 = buf + (uint32_t)25U;
    637   uint64_t *zzprime0 = buf + (uint32_t)30U;
    638   uint64_t *origxprime;
    639   uint64_t *xx0;
    640   uint64_t *zz0;
    641   uint64_t *xxprime;
    642   uint64_t *zzprime;
    643   uint64_t *zzzprime;
    644   uint64_t *zzz;
    645   uint64_t *xx;
    646   uint64_t *zz;
    647   uint64_t scalar;
    648   memcpy(origx, x, (uint32_t)5U * sizeof x[0U]);
    649   Hacl_Bignum_fsum(x, z);
    650   Hacl_Bignum_fdifference(z, origx);
    651   memcpy(origxprime0, xprime, (uint32_t)5U * sizeof xprime[0U]);
    652   Hacl_Bignum_fsum(xprime, zprime);
    653   Hacl_Bignum_fdifference(zprime, origxprime0);
    654   Hacl_Bignum_fmul(xxprime0, xprime, z);
    655   Hacl_Bignum_fmul(zzprime0, x, zprime);
    656   origxprime = buf + (uint32_t)5U;
    657   xx0 = buf + (uint32_t)15U;
    658   zz0 = buf + (uint32_t)20U;
    659   xxprime = buf + (uint32_t)25U;
    660   zzprime = buf + (uint32_t)30U;
    661   zzzprime = buf + (uint32_t)35U;
    662   memcpy(origxprime, xxprime, (uint32_t)5U * sizeof xxprime[0U]);
    663   Hacl_Bignum_fsum(xxprime, zzprime);
    664   Hacl_Bignum_fdifference(zzprime, origxprime);
    665   Hacl_Bignum_Fsquare_fsquare_times(x3, xxprime, (uint32_t)1U);
    666   Hacl_Bignum_Fsquare_fsquare_times(zzzprime, zzprime, (uint32_t)1U);
    667   Hacl_Bignum_fmul(z3, zzzprime, qx);
    668   Hacl_Bignum_Fsquare_fsquare_times(xx0, x, (uint32_t)1U);
    669   Hacl_Bignum_Fsquare_fsquare_times(zz0, z, (uint32_t)1U);
    670   zzz = buf + (uint32_t)10U;
    671   xx = buf + (uint32_t)15U;
    672   zz = buf + (uint32_t)20U;
    673   Hacl_Bignum_fmul(x2, xx, zz);
    674   Hacl_Bignum_fdifference(zz, xx);
    675   scalar = (uint64_t)121665U;
    676   Hacl_Bignum_fscalar(zzz, zz, scalar);
    677   Hacl_Bignum_fsum(zzz, xx);
    678   Hacl_Bignum_fmul(z2, zzz, zz);
    679 }
    680 
    681 static void
    682 Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(
    683   uint64_t *nq,
    684   uint64_t *nqpq,
    685   uint64_t *nq2,
    686   uint64_t *nqpq2,
    687   uint64_t *q,
    688   uint8_t byt
    689 )
    690 {
    691   uint64_t bit0 = (uint64_t)(byt >> (uint32_t)7U);
    692   uint64_t bit;
    693   Hacl_EC_Point_swap_conditional(nq, nqpq, bit0);
    694   Hacl_EC_AddAndDouble_fmonty(nq2, nqpq2, nq, nqpq, q);
    695   bit = (uint64_t)(byt >> (uint32_t)7U);
    696   Hacl_EC_Point_swap_conditional(nq2, nqpq2, bit);
    697 }
    698 
    699 static void
    700 Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(
    701   uint64_t *nq,
    702   uint64_t *nqpq,
    703   uint64_t *nq2,
    704   uint64_t *nqpq2,
    705   uint64_t *q,
    706   uint8_t byt
    707 )
    708 {
    709   uint8_t byt1;
    710   Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
    711   byt1 = byt << (uint32_t)1U;
    712   Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
    713 }
    714 
    715 static void
    716 Hacl_EC_Ladder_SmallLoop_cmult_small_loop(
    717   uint64_t *nq,
    718   uint64_t *nqpq,
    719   uint64_t *nq2,
    720   uint64_t *nqpq2,
    721   uint64_t *q,
    722   uint8_t byt,
    723   uint32_t i
    724 )
    725 {
    726   if (!(i == (uint32_t)0U))
    727   {
    728     uint32_t i_ = i - (uint32_t)1U;
    729     uint8_t byt_;
    730     Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(nq, nqpq, nq2, nqpq2, q, byt);
    731     byt_ = byt << (uint32_t)2U;
    732     Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byt_, i_);
    733   }
    734 }
    735 
    736 static void
    737 Hacl_EC_Ladder_BigLoop_cmult_big_loop(
    738   uint8_t *n1,
    739   uint64_t *nq,
    740   uint64_t *nqpq,
    741   uint64_t *nq2,
    742   uint64_t *nqpq2,
    743   uint64_t *q,
    744   uint32_t i
    745 )
    746 {
    747   if (!(i == (uint32_t)0U))
    748   {
    749     uint32_t i1 = i - (uint32_t)1U;
    750     uint8_t byte = n1[i1];
    751     Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byte, (uint32_t)4U);
    752     Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, i1);
    753   }
    754 }
    755 
    756 static void Hacl_EC_Ladder_cmult(uint64_t *result, uint8_t *n1, uint64_t *q)
    757 {
    758   uint64_t point_buf[40U] = { 0U };
    759   uint64_t *nq = point_buf;
    760   uint64_t *nqpq = point_buf + (uint32_t)10U;
    761   uint64_t *nq2 = point_buf + (uint32_t)20U;
    762   uint64_t *nqpq2 = point_buf + (uint32_t)30U;
    763   Hacl_EC_Point_copy(nqpq, q);
    764   nq[0U] = (uint64_t)1U;
    765   Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, (uint32_t)32U);
    766   Hacl_EC_Point_copy(result, nq);
    767 }
    768 
    769 void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint)
    770 {
    771   uint64_t buf0[10U] = { 0U };
    772   uint64_t *x0 = buf0;
    773   uint64_t *z = buf0 + (uint32_t)5U;
    774   uint64_t *q;
    775   Hacl_EC_Format_fexpand(x0, basepoint);
    776   z[0U] = (uint64_t)1U;
    777   q = buf0;
    778   {
    779     uint8_t e[32U] = { 0U };
    780     uint8_t e0;
    781     uint8_t e31;
    782     uint8_t e01;
    783     uint8_t e311;
    784     uint8_t e312;
    785     uint8_t *scalar;
    786     memcpy(e, secret, (uint32_t)32U * sizeof secret[0U]);
    787     e0 = e[0U];
    788     e31 = e[31U];
    789     e01 = e0 & (uint8_t)248U;
    790     e311 = e31 & (uint8_t)127U;
    791     e312 = e311 | (uint8_t)64U;
    792     e[0U] = e01;
    793     e[31U] = e312;
    794     scalar = e;
    795     {
    796       uint64_t buf[15U] = { 0U };
    797       uint64_t *nq = buf;
    798       uint64_t *x = nq;
    799       x[0U] = (uint64_t)1U;
    800       Hacl_EC_Ladder_cmult(nq, scalar, q);
    801       Hacl_EC_Format_scalar_of_point(mypublic, nq);
    802     }
    803   }
    804 }
    805