quickjs-tart

quickjs-based runtime for wallet-core logic
Log | Files | Refs | README | LICENSE

Hacl_Curve25519.c (22405B)


      1 /* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
      2    Licensed under the Apache 2.0 License. */
      3 
      4 /* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
      5  * KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fbuiltin-uint128 -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
      6  * F* version: 059db0c8
      7  * KreMLin version: 916c37ac
      8  */
      9 
     10 
     11 #include "Hacl_Curve25519.h"
     12 
     13 extern uint64_t FStar_UInt64_eq_mask(uint64_t x0, uint64_t x1);
     14 
     15 extern uint64_t FStar_UInt64_gte_mask(uint64_t x0, uint64_t x1);
     16 
     17 extern uint128_t FStar_UInt128_add(uint128_t x0, uint128_t x1);
     18 
     19 extern uint128_t FStar_UInt128_add_mod(uint128_t x0, uint128_t x1);
     20 
     21 extern uint128_t FStar_UInt128_logand(uint128_t x0, uint128_t x1);
     22 
     23 extern uint128_t FStar_UInt128_shift_right(uint128_t x0, uint32_t x1);
     24 
     25 extern uint128_t FStar_UInt128_uint64_to_uint128(uint64_t x0);
     26 
     27 extern uint64_t FStar_UInt128_uint128_to_uint64(uint128_t x0);
     28 
     29 extern uint128_t FStar_UInt128_mul_wide(uint64_t x0, uint64_t x1);
     30 
     31 static void Hacl_Bignum_Modulo_carry_top(uint64_t *b)
     32 {
     33   uint64_t b4 = b[4U];
     34   uint64_t b0 = b[0U];
     35   uint64_t b4_ = b4 & (uint64_t)0x7ffffffffffffU;
     36   uint64_t b0_ = b0 + (uint64_t)19U * (b4 >> (uint32_t)51U);
     37   b[4U] = b4_;
     38   b[0U] = b0_;
     39 }
     40 
     41 inline static void Hacl_Bignum_Fproduct_copy_from_wide_(uint64_t *output, uint128_t *input)
     42 {
     43   uint32_t i;
     44   for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
     45   {
     46     uint128_t xi = input[i];
     47     output[i] = (uint64_t)xi;
     48   }
     49 }
     50 
     51 inline static void
     52 Hacl_Bignum_Fproduct_sum_scalar_multiplication_(uint128_t *output, uint64_t *input, uint64_t s)
     53 {
     54   uint32_t i;
     55   for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
     56   {
     57     uint128_t xi = output[i];
     58     uint64_t yi = input[i];
     59     output[i] = xi + (uint128_t)yi * s;
     60   }
     61 }
     62 
     63 inline static void Hacl_Bignum_Fproduct_carry_wide_(uint128_t *tmp)
     64 {
     65   uint32_t i;
     66   for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
     67   {
     68     uint32_t ctr = i;
     69     uint128_t tctr = tmp[ctr];
     70     uint128_t tctrp1 = tmp[ctr + (uint32_t)1U];
     71     uint64_t r0 = (uint64_t)tctr & (uint64_t)0x7ffffffffffffU;
     72     uint128_t c = tctr >> (uint32_t)51U;
     73     tmp[ctr] = (uint128_t)r0;
     74     tmp[ctr + (uint32_t)1U] = tctrp1 + c;
     75   }
     76 }
     77 
     78 inline static void Hacl_Bignum_Fmul_shift_reduce(uint64_t *output)
     79 {
     80   uint64_t tmp = output[4U];
     81   uint64_t b0;
     82   {
     83     uint32_t i;
     84     for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
     85     {
     86       uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U;
     87       uint64_t z = output[ctr - (uint32_t)1U];
     88       output[ctr] = z;
     89     }
     90   }
     91   output[0U] = tmp;
     92   b0 = output[0U];
     93   output[0U] = (uint64_t)19U * b0;
     94 }
     95 
     96 static void
     97 Hacl_Bignum_Fmul_mul_shift_reduce_(uint128_t *output, uint64_t *input, uint64_t *input2)
     98 {
     99   uint32_t i;
    100   uint64_t input2i;
    101   {
    102     uint32_t i0;
    103     for (i0 = (uint32_t)0U; i0 < (uint32_t)4U; i0 = i0 + (uint32_t)1U)
    104     {
    105       uint64_t input2i0 = input2[i0];
    106       Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i0);
    107       Hacl_Bignum_Fmul_shift_reduce(input);
    108     }
    109   }
    110   i = (uint32_t)4U;
    111   input2i = input2[i];
    112   Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i);
    113 }
    114 
    115 inline static void Hacl_Bignum_Fmul_fmul(uint64_t *output, uint64_t *input, uint64_t *input2)
    116 {
    117   uint64_t tmp[5U] = { 0U };
    118   memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]);
    119   KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
    120   {
    121     uint128_t t[5U];
    122     {
    123       uint32_t _i;
    124       for (_i = 0U; _i < (uint32_t)5U; ++_i)
    125         t[_i] = (uint128_t)(uint64_t)0U;
    126     }
    127     {
    128       uint128_t b4;
    129       uint128_t b0;
    130       uint128_t b4_;
    131       uint128_t b0_;
    132       uint64_t i0;
    133       uint64_t i1;
    134       uint64_t i0_;
    135       uint64_t i1_;
    136       Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2);
    137       Hacl_Bignum_Fproduct_carry_wide_(t);
    138       b4 = t[4U];
    139       b0 = t[0U];
    140       b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
    141       b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
    142       t[4U] = b4_;
    143       t[0U] = b0_;
    144       Hacl_Bignum_Fproduct_copy_from_wide_(output, t);
    145       i0 = output[0U];
    146       i1 = output[1U];
    147       i0_ = i0 & (uint64_t)0x7ffffffffffffU;
    148       i1_ = i1 + (i0 >> (uint32_t)51U);
    149       output[0U] = i0_;
    150       output[1U] = i1_;
    151     }
    152   }
    153 }
    154 
    155 inline static void Hacl_Bignum_Fsquare_fsquare__(uint128_t *tmp, uint64_t *output)
    156 {
    157   uint64_t r0 = output[0U];
    158   uint64_t r1 = output[1U];
    159   uint64_t r2 = output[2U];
    160   uint64_t r3 = output[3U];
    161   uint64_t r4 = output[4U];
    162   uint64_t d0 = r0 * (uint64_t)2U;
    163   uint64_t d1 = r1 * (uint64_t)2U;
    164   uint64_t d2 = r2 * (uint64_t)2U * (uint64_t)19U;
    165   uint64_t d419 = r4 * (uint64_t)19U;
    166   uint64_t d4 = d419 * (uint64_t)2U;
    167   uint128_t s0 = (uint128_t)r0 * r0 + (uint128_t)d4 * r1 + (uint128_t)d2 * r3;
    168   uint128_t s1 = (uint128_t)d0 * r1 + (uint128_t)d4 * r2 + (uint128_t)(r3 * (uint64_t)19U) * r3;
    169   uint128_t s2 = (uint128_t)d0 * r2 + (uint128_t)r1 * r1 + (uint128_t)d4 * r3;
    170   uint128_t s3 = (uint128_t)d0 * r3 + (uint128_t)d1 * r2 + (uint128_t)r4 * d419;
    171   uint128_t s4 = (uint128_t)d0 * r4 + (uint128_t)d1 * r3 + (uint128_t)r2 * r2;
    172   tmp[0U] = s0;
    173   tmp[1U] = s1;
    174   tmp[2U] = s2;
    175   tmp[3U] = s3;
    176   tmp[4U] = s4;
    177 }
    178 
    179 inline static void Hacl_Bignum_Fsquare_fsquare_(uint128_t *tmp, uint64_t *output)
    180 {
    181   uint128_t b4;
    182   uint128_t b0;
    183   uint128_t b4_;
    184   uint128_t b0_;
    185   uint64_t i0;
    186   uint64_t i1;
    187   uint64_t i0_;
    188   uint64_t i1_;
    189   Hacl_Bignum_Fsquare_fsquare__(tmp, output);
    190   Hacl_Bignum_Fproduct_carry_wide_(tmp);
    191   b4 = tmp[4U];
    192   b0 = tmp[0U];
    193   b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
    194   b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
    195   tmp[4U] = b4_;
    196   tmp[0U] = b0_;
    197   Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
    198   i0 = output[0U];
    199   i1 = output[1U];
    200   i0_ = i0 & (uint64_t)0x7ffffffffffffU;
    201   i1_ = i1 + (i0 >> (uint32_t)51U);
    202   output[0U] = i0_;
    203   output[1U] = i1_;
    204 }
    205 
    206 static void
    207 Hacl_Bignum_Fsquare_fsquare_times_(uint64_t *input, uint128_t *tmp, uint32_t count1)
    208 {
    209   uint32_t i;
    210   Hacl_Bignum_Fsquare_fsquare_(tmp, input);
    211   for (i = (uint32_t)1U; i < count1; i = i + (uint32_t)1U)
    212     Hacl_Bignum_Fsquare_fsquare_(tmp, input);
    213 }
    214 
    215 inline static void
    216 Hacl_Bignum_Fsquare_fsquare_times(uint64_t *output, uint64_t *input, uint32_t count1)
    217 {
    218   KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
    219   {
    220     uint128_t t[5U];
    221     {
    222       uint32_t _i;
    223       for (_i = 0U; _i < (uint32_t)5U; ++_i)
    224         t[_i] = (uint128_t)(uint64_t)0U;
    225     }
    226     memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
    227     Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
    228   }
    229 }
    230 
    231 inline static void Hacl_Bignum_Fsquare_fsquare_times_inplace(uint64_t *output, uint32_t count1)
    232 {
    233   KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
    234   {
    235     uint128_t t[5U];
    236     {
    237       uint32_t _i;
    238       for (_i = 0U; _i < (uint32_t)5U; ++_i)
    239         t[_i] = (uint128_t)(uint64_t)0U;
    240     }
    241     Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
    242   }
    243 }
    244 
    245 inline static void Hacl_Bignum_Crecip_crecip(uint64_t *out, uint64_t *z)
    246 {
    247   uint64_t buf[20U] = { 0U };
    248   uint64_t *a0 = buf;
    249   uint64_t *t00 = buf + (uint32_t)5U;
    250   uint64_t *b0 = buf + (uint32_t)10U;
    251   uint64_t *t01;
    252   uint64_t *b1;
    253   uint64_t *c0;
    254   uint64_t *a;
    255   uint64_t *t0;
    256   uint64_t *b;
    257   uint64_t *c;
    258   Hacl_Bignum_Fsquare_fsquare_times(a0, z, (uint32_t)1U);
    259   Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)2U);
    260   Hacl_Bignum_Fmul_fmul(b0, t00, z);
    261   Hacl_Bignum_Fmul_fmul(a0, b0, a0);
    262   Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)1U);
    263   Hacl_Bignum_Fmul_fmul(b0, t00, b0);
    264   Hacl_Bignum_Fsquare_fsquare_times(t00, b0, (uint32_t)5U);
    265   t01 = buf + (uint32_t)5U;
    266   b1 = buf + (uint32_t)10U;
    267   c0 = buf + (uint32_t)15U;
    268   Hacl_Bignum_Fmul_fmul(b1, t01, b1);
    269   Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)10U);
    270   Hacl_Bignum_Fmul_fmul(c0, t01, b1);
    271   Hacl_Bignum_Fsquare_fsquare_times(t01, c0, (uint32_t)20U);
    272   Hacl_Bignum_Fmul_fmul(t01, t01, c0);
    273   Hacl_Bignum_Fsquare_fsquare_times_inplace(t01, (uint32_t)10U);
    274   Hacl_Bignum_Fmul_fmul(b1, t01, b1);
    275   Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)50U);
    276   a = buf;
    277   t0 = buf + (uint32_t)5U;
    278   b = buf + (uint32_t)10U;
    279   c = buf + (uint32_t)15U;
    280   Hacl_Bignum_Fmul_fmul(c, t0, b);
    281   Hacl_Bignum_Fsquare_fsquare_times(t0, c, (uint32_t)100U);
    282   Hacl_Bignum_Fmul_fmul(t0, t0, c);
    283   Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)50U);
    284   Hacl_Bignum_Fmul_fmul(t0, t0, b);
    285   Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)5U);
    286   Hacl_Bignum_Fmul_fmul(out, t0, a);
    287 }
    288 
    289 inline static void Hacl_Bignum_fsum(uint64_t *a, uint64_t *b)
    290 {
    291   uint32_t i;
    292   for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
    293   {
    294     uint64_t xi = a[i];
    295     uint64_t yi = b[i];
    296     a[i] = xi + yi;
    297   }
    298 }
    299 
    300 inline static void Hacl_Bignum_fdifference(uint64_t *a, uint64_t *b)
    301 {
    302   uint64_t tmp[5U] = { 0U };
    303   uint64_t b0;
    304   uint64_t b1;
    305   uint64_t b2;
    306   uint64_t b3;
    307   uint64_t b4;
    308   memcpy(tmp, b, (uint32_t)5U * sizeof b[0U]);
    309   b0 = tmp[0U];
    310   b1 = tmp[1U];
    311   b2 = tmp[2U];
    312   b3 = tmp[3U];
    313   b4 = tmp[4U];
    314   tmp[0U] = b0 + (uint64_t)0x3fffffffffff68U;
    315   tmp[1U] = b1 + (uint64_t)0x3ffffffffffff8U;
    316   tmp[2U] = b2 + (uint64_t)0x3ffffffffffff8U;
    317   tmp[3U] = b3 + (uint64_t)0x3ffffffffffff8U;
    318   tmp[4U] = b4 + (uint64_t)0x3ffffffffffff8U;
    319   {
    320     uint32_t i;
    321     for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
    322     {
    323       uint64_t xi = a[i];
    324       uint64_t yi = tmp[i];
    325       a[i] = yi - xi;
    326     }
    327   }
    328 }
    329 
    330 inline static void Hacl_Bignum_fscalar(uint64_t *output, uint64_t *b, uint64_t s)
    331 {
    332   KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
    333   {
    334     uint128_t tmp[5U];
    335     {
    336       uint32_t _i;
    337       for (_i = 0U; _i < (uint32_t)5U; ++_i)
    338         tmp[_i] = (uint128_t)(uint64_t)0U;
    339     }
    340     {
    341       uint128_t b4;
    342       uint128_t b0;
    343       uint128_t b4_;
    344       uint128_t b0_;
    345       {
    346         uint32_t i;
    347         for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
    348         {
    349           uint64_t xi = b[i];
    350           tmp[i] = (uint128_t)xi * s;
    351         }
    352       }
    353       Hacl_Bignum_Fproduct_carry_wide_(tmp);
    354       b4 = tmp[4U];
    355       b0 = tmp[0U];
    356       b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
    357       b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
    358       tmp[4U] = b4_;
    359       tmp[0U] = b0_;
    360       Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
    361     }
    362   }
    363 }
    364 
    365 inline static void Hacl_Bignum_fmul(uint64_t *output, uint64_t *a, uint64_t *b)
    366 {
    367   Hacl_Bignum_Fmul_fmul(output, a, b);
    368 }
    369 
    370 inline static void Hacl_Bignum_crecip(uint64_t *output, uint64_t *input)
    371 {
    372   Hacl_Bignum_Crecip_crecip(output, input);
    373 }
    374 
    375 static void
    376 Hacl_EC_Point_swap_conditional_step(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
    377 {
    378   uint32_t i = ctr - (uint32_t)1U;
    379   uint64_t ai = a[i];
    380   uint64_t bi = b[i];
    381   uint64_t x = swap1 & (ai ^ bi);
    382   uint64_t ai1 = ai ^ x;
    383   uint64_t bi1 = bi ^ x;
    384   a[i] = ai1;
    385   b[i] = bi1;
    386 }
    387 
    388 static void
    389 Hacl_EC_Point_swap_conditional_(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
    390 {
    391   if (!(ctr == (uint32_t)0U))
    392   {
    393     uint32_t i;
    394     Hacl_EC_Point_swap_conditional_step(a, b, swap1, ctr);
    395     i = ctr - (uint32_t)1U;
    396     Hacl_EC_Point_swap_conditional_(a, b, swap1, i);
    397   }
    398 }
    399 
    400 static void Hacl_EC_Point_swap_conditional(uint64_t *a, uint64_t *b, uint64_t iswap)
    401 {
    402   uint64_t swap1 = (uint64_t)0U - iswap;
    403   Hacl_EC_Point_swap_conditional_(a, b, swap1, (uint32_t)5U);
    404   Hacl_EC_Point_swap_conditional_(a + (uint32_t)5U, b + (uint32_t)5U, swap1, (uint32_t)5U);
    405 }
    406 
    407 static void Hacl_EC_Point_copy(uint64_t *output, uint64_t *input)
    408 {
    409   memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
    410   memcpy(output + (uint32_t)5U,
    411     input + (uint32_t)5U,
    412     (uint32_t)5U * sizeof (input + (uint32_t)5U)[0U]);
    413 }
    414 
    415 static void Hacl_EC_Format_fexpand(uint64_t *output, uint8_t *input)
    416 {
    417   uint64_t i0 = load64_le(input);
    418   uint8_t *x00 = input + (uint32_t)6U;
    419   uint64_t i1 = load64_le(x00);
    420   uint8_t *x01 = input + (uint32_t)12U;
    421   uint64_t i2 = load64_le(x01);
    422   uint8_t *x02 = input + (uint32_t)19U;
    423   uint64_t i3 = load64_le(x02);
    424   uint8_t *x0 = input + (uint32_t)24U;
    425   uint64_t i4 = load64_le(x0);
    426   uint64_t output0 = i0 & (uint64_t)0x7ffffffffffffU;
    427   uint64_t output1 = i1 >> (uint32_t)3U & (uint64_t)0x7ffffffffffffU;
    428   uint64_t output2 = i2 >> (uint32_t)6U & (uint64_t)0x7ffffffffffffU;
    429   uint64_t output3 = i3 >> (uint32_t)1U & (uint64_t)0x7ffffffffffffU;
    430   uint64_t output4 = i4 >> (uint32_t)12U & (uint64_t)0x7ffffffffffffU;
    431   output[0U] = output0;
    432   output[1U] = output1;
    433   output[2U] = output2;
    434   output[3U] = output3;
    435   output[4U] = output4;
    436 }
    437 
    438 static void Hacl_EC_Format_fcontract_first_carry_pass(uint64_t *input)
    439 {
    440   uint64_t t0 = input[0U];
    441   uint64_t t1 = input[1U];
    442   uint64_t t2 = input[2U];
    443   uint64_t t3 = input[3U];
    444   uint64_t t4 = input[4U];
    445   uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
    446   uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
    447   uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
    448   uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
    449   uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
    450   uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
    451   uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
    452   uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
    453   input[0U] = t0_;
    454   input[1U] = t1__;
    455   input[2U] = t2__;
    456   input[3U] = t3__;
    457   input[4U] = t4_;
    458 }
    459 
    460 static void Hacl_EC_Format_fcontract_first_carry_full(uint64_t *input)
    461 {
    462   Hacl_EC_Format_fcontract_first_carry_pass(input);
    463   Hacl_Bignum_Modulo_carry_top(input);
    464 }
    465 
    466 static void Hacl_EC_Format_fcontract_second_carry_pass(uint64_t *input)
    467 {
    468   uint64_t t0 = input[0U];
    469   uint64_t t1 = input[1U];
    470   uint64_t t2 = input[2U];
    471   uint64_t t3 = input[3U];
    472   uint64_t t4 = input[4U];
    473   uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
    474   uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
    475   uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
    476   uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
    477   uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
    478   uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
    479   uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
    480   uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
    481   input[0U] = t0_;
    482   input[1U] = t1__;
    483   input[2U] = t2__;
    484   input[3U] = t3__;
    485   input[4U] = t4_;
    486 }
    487 
    488 static void Hacl_EC_Format_fcontract_second_carry_full(uint64_t *input)
    489 {
    490   uint64_t i0;
    491   uint64_t i1;
    492   uint64_t i0_;
    493   uint64_t i1_;
    494   Hacl_EC_Format_fcontract_second_carry_pass(input);
    495   Hacl_Bignum_Modulo_carry_top(input);
    496   i0 = input[0U];
    497   i1 = input[1U];
    498   i0_ = i0 & (uint64_t)0x7ffffffffffffU;
    499   i1_ = i1 + (i0 >> (uint32_t)51U);
    500   input[0U] = i0_;
    501   input[1U] = i1_;
    502 }
    503 
    504 static void Hacl_EC_Format_fcontract_trim(uint64_t *input)
    505 {
    506   uint64_t a0 = input[0U];
    507   uint64_t a1 = input[1U];
    508   uint64_t a2 = input[2U];
    509   uint64_t a3 = input[3U];
    510   uint64_t a4 = input[4U];
    511   uint64_t mask0 = FStar_UInt64_gte_mask(a0, (uint64_t)0x7ffffffffffedU);
    512   uint64_t mask1 = FStar_UInt64_eq_mask(a1, (uint64_t)0x7ffffffffffffU);
    513   uint64_t mask2 = FStar_UInt64_eq_mask(a2, (uint64_t)0x7ffffffffffffU);
    514   uint64_t mask3 = FStar_UInt64_eq_mask(a3, (uint64_t)0x7ffffffffffffU);
    515   uint64_t mask4 = FStar_UInt64_eq_mask(a4, (uint64_t)0x7ffffffffffffU);
    516   uint64_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
    517   uint64_t a0_ = a0 - ((uint64_t)0x7ffffffffffedU & mask);
    518   uint64_t a1_ = a1 - ((uint64_t)0x7ffffffffffffU & mask);
    519   uint64_t a2_ = a2 - ((uint64_t)0x7ffffffffffffU & mask);
    520   uint64_t a3_ = a3 - ((uint64_t)0x7ffffffffffffU & mask);
    521   uint64_t a4_ = a4 - ((uint64_t)0x7ffffffffffffU & mask);
    522   input[0U] = a0_;
    523   input[1U] = a1_;
    524   input[2U] = a2_;
    525   input[3U] = a3_;
    526   input[4U] = a4_;
    527 }
    528 
    529 static void Hacl_EC_Format_fcontract_store(uint8_t *output, uint64_t *input)
    530 {
    531   uint64_t t0 = input[0U];
    532   uint64_t t1 = input[1U];
    533   uint64_t t2 = input[2U];
    534   uint64_t t3 = input[3U];
    535   uint64_t t4 = input[4U];
    536   uint64_t o0 = t1 << (uint32_t)51U | t0;
    537   uint64_t o1 = t2 << (uint32_t)38U | t1 >> (uint32_t)13U;
    538   uint64_t o2 = t3 << (uint32_t)25U | t2 >> (uint32_t)26U;
    539   uint64_t o3 = t4 << (uint32_t)12U | t3 >> (uint32_t)39U;
    540   uint8_t *b0 = output;
    541   uint8_t *b1 = output + (uint32_t)8U;
    542   uint8_t *b2 = output + (uint32_t)16U;
    543   uint8_t *b3 = output + (uint32_t)24U;
    544   store64_le(b0, o0);
    545   store64_le(b1, o1);
    546   store64_le(b2, o2);
    547   store64_le(b3, o3);
    548 }
    549 
    550 static void Hacl_EC_Format_fcontract(uint8_t *output, uint64_t *input)
    551 {
    552   Hacl_EC_Format_fcontract_first_carry_full(input);
    553   Hacl_EC_Format_fcontract_second_carry_full(input);
    554   Hacl_EC_Format_fcontract_trim(input);
    555   Hacl_EC_Format_fcontract_store(output, input);
    556 }
    557 
    558 static void Hacl_EC_Format_scalar_of_point(uint8_t *scalar, uint64_t *point)
    559 {
    560   uint64_t *x = point;
    561   uint64_t *z = point + (uint32_t)5U;
    562   uint64_t buf[10U] = { 0U };
    563   uint64_t *zmone = buf;
    564   uint64_t *sc = buf + (uint32_t)5U;
    565   Hacl_Bignum_crecip(zmone, z);
    566   Hacl_Bignum_fmul(sc, x, zmone);
    567   Hacl_EC_Format_fcontract(scalar, sc);
    568 }
    569 
    570 static void
    571 Hacl_EC_AddAndDouble_fmonty(
    572   uint64_t *pp,
    573   uint64_t *ppq,
    574   uint64_t *p,
    575   uint64_t *pq,
    576   uint64_t *qmqp
    577 )
    578 {
    579   uint64_t *qx = qmqp;
    580   uint64_t *x2 = pp;
    581   uint64_t *z2 = pp + (uint32_t)5U;
    582   uint64_t *x3 = ppq;
    583   uint64_t *z3 = ppq + (uint32_t)5U;
    584   uint64_t *x = p;
    585   uint64_t *z = p + (uint32_t)5U;
    586   uint64_t *xprime = pq;
    587   uint64_t *zprime = pq + (uint32_t)5U;
    588   uint64_t buf[40U] = { 0U };
    589   uint64_t *origx = buf;
    590   uint64_t *origxprime0 = buf + (uint32_t)5U;
    591   uint64_t *xxprime0 = buf + (uint32_t)25U;
    592   uint64_t *zzprime0 = buf + (uint32_t)30U;
    593   uint64_t *origxprime;
    594   uint64_t *xx0;
    595   uint64_t *zz0;
    596   uint64_t *xxprime;
    597   uint64_t *zzprime;
    598   uint64_t *zzzprime;
    599   uint64_t *zzz;
    600   uint64_t *xx;
    601   uint64_t *zz;
    602   uint64_t scalar;
    603   memcpy(origx, x, (uint32_t)5U * sizeof x[0U]);
    604   Hacl_Bignum_fsum(x, z);
    605   Hacl_Bignum_fdifference(z, origx);
    606   memcpy(origxprime0, xprime, (uint32_t)5U * sizeof xprime[0U]);
    607   Hacl_Bignum_fsum(xprime, zprime);
    608   Hacl_Bignum_fdifference(zprime, origxprime0);
    609   Hacl_Bignum_fmul(xxprime0, xprime, z);
    610   Hacl_Bignum_fmul(zzprime0, x, zprime);
    611   origxprime = buf + (uint32_t)5U;
    612   xx0 = buf + (uint32_t)15U;
    613   zz0 = buf + (uint32_t)20U;
    614   xxprime = buf + (uint32_t)25U;
    615   zzprime = buf + (uint32_t)30U;
    616   zzzprime = buf + (uint32_t)35U;
    617   memcpy(origxprime, xxprime, (uint32_t)5U * sizeof xxprime[0U]);
    618   Hacl_Bignum_fsum(xxprime, zzprime);
    619   Hacl_Bignum_fdifference(zzprime, origxprime);
    620   Hacl_Bignum_Fsquare_fsquare_times(x3, xxprime, (uint32_t)1U);
    621   Hacl_Bignum_Fsquare_fsquare_times(zzzprime, zzprime, (uint32_t)1U);
    622   Hacl_Bignum_fmul(z3, zzzprime, qx);
    623   Hacl_Bignum_Fsquare_fsquare_times(xx0, x, (uint32_t)1U);
    624   Hacl_Bignum_Fsquare_fsquare_times(zz0, z, (uint32_t)1U);
    625   zzz = buf + (uint32_t)10U;
    626   xx = buf + (uint32_t)15U;
    627   zz = buf + (uint32_t)20U;
    628   Hacl_Bignum_fmul(x2, xx, zz);
    629   Hacl_Bignum_fdifference(zz, xx);
    630   scalar = (uint64_t)121665U;
    631   Hacl_Bignum_fscalar(zzz, zz, scalar);
    632   Hacl_Bignum_fsum(zzz, xx);
    633   Hacl_Bignum_fmul(z2, zzz, zz);
    634 }
    635 
    636 static void
    637 Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(
    638   uint64_t *nq,
    639   uint64_t *nqpq,
    640   uint64_t *nq2,
    641   uint64_t *nqpq2,
    642   uint64_t *q,
    643   uint8_t byt
    644 )
    645 {
    646   uint64_t bit0 = (uint64_t)(byt >> (uint32_t)7U);
    647   uint64_t bit;
    648   Hacl_EC_Point_swap_conditional(nq, nqpq, bit0);
    649   Hacl_EC_AddAndDouble_fmonty(nq2, nqpq2, nq, nqpq, q);
    650   bit = (uint64_t)(byt >> (uint32_t)7U);
    651   Hacl_EC_Point_swap_conditional(nq2, nqpq2, bit);
    652 }
    653 
    654 static void
    655 Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(
    656   uint64_t *nq,
    657   uint64_t *nqpq,
    658   uint64_t *nq2,
    659   uint64_t *nqpq2,
    660   uint64_t *q,
    661   uint8_t byt
    662 )
    663 {
    664   uint8_t byt1;
    665   Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
    666   byt1 = byt << (uint32_t)1U;
    667   Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
    668 }
    669 
    670 static void
    671 Hacl_EC_Ladder_SmallLoop_cmult_small_loop(
    672   uint64_t *nq,
    673   uint64_t *nqpq,
    674   uint64_t *nq2,
    675   uint64_t *nqpq2,
    676   uint64_t *q,
    677   uint8_t byt,
    678   uint32_t i
    679 )
    680 {
    681   if (!(i == (uint32_t)0U))
    682   {
    683     uint32_t i_ = i - (uint32_t)1U;
    684     uint8_t byt_;
    685     Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(nq, nqpq, nq2, nqpq2, q, byt);
    686     byt_ = byt << (uint32_t)2U;
    687     Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byt_, i_);
    688   }
    689 }
    690 
    691 static void
    692 Hacl_EC_Ladder_BigLoop_cmult_big_loop(
    693   uint8_t *n1,
    694   uint64_t *nq,
    695   uint64_t *nqpq,
    696   uint64_t *nq2,
    697   uint64_t *nqpq2,
    698   uint64_t *q,
    699   uint32_t i
    700 )
    701 {
    702   if (!(i == (uint32_t)0U))
    703   {
    704     uint32_t i1 = i - (uint32_t)1U;
    705     uint8_t byte = n1[i1];
    706     Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byte, (uint32_t)4U);
    707     Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, i1);
    708   }
    709 }
    710 
    711 static void Hacl_EC_Ladder_cmult(uint64_t *result, uint8_t *n1, uint64_t *q)
    712 {
    713   uint64_t point_buf[40U] = { 0U };
    714   uint64_t *nq = point_buf;
    715   uint64_t *nqpq = point_buf + (uint32_t)10U;
    716   uint64_t *nq2 = point_buf + (uint32_t)20U;
    717   uint64_t *nqpq2 = point_buf + (uint32_t)30U;
    718   Hacl_EC_Point_copy(nqpq, q);
    719   nq[0U] = (uint64_t)1U;
    720   Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, (uint32_t)32U);
    721   Hacl_EC_Point_copy(result, nq);
    722 }
    723 
    724 void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint)
    725 {
    726   uint64_t buf0[10U] = { 0U };
    727   uint64_t *x0 = buf0;
    728   uint64_t *z = buf0 + (uint32_t)5U;
    729   uint64_t *q;
    730   Hacl_EC_Format_fexpand(x0, basepoint);
    731   z[0U] = (uint64_t)1U;
    732   q = buf0;
    733   {
    734     uint8_t e[32U] = { 0U };
    735     uint8_t e0;
    736     uint8_t e31;
    737     uint8_t e01;
    738     uint8_t e311;
    739     uint8_t e312;
    740     uint8_t *scalar;
    741     memcpy(e, secret, (uint32_t)32U * sizeof secret[0U]);
    742     e0 = e[0U];
    743     e31 = e[31U];
    744     e01 = e0 & (uint8_t)248U;
    745     e311 = e31 & (uint8_t)127U;
    746     e312 = e311 | (uint8_t)64U;
    747     e[0U] = e01;
    748     e[31U] = e312;
    749     scalar = e;
    750     {
    751       uint64_t buf[15U] = { 0U };
    752       uint64_t *nq = buf;
    753       uint64_t *x = nq;
    754       x[0U] = (uint64_t)1U;
    755       Hacl_EC_Ladder_cmult(nq, scalar, q);
    756       Hacl_EC_Format_scalar_of_point(mypublic, nq);
    757     }
    758   }
    759 }
    760