
Database Oriented Fuzz
Testing Tool Development

Ulrich ”Feideus” Erwan

September 10, 2018

Supervisors: Christian Grothoff, Pierre Boudes
Promotion: 2017-2018

1

Contents

1 Introduction 3

2 Context and Perimeter 4
2.1 Context . 4
2.2 Perimeter . 5
2.3 When to use it . 5

3 Design 6
3.1 Generic explanation . 6
3.2 SchemaSpy legacy/meta data extraction 9
3.3 SchemaFuzz Core . 10

3.3.1 Constraints . 10
3.3.2 Mutations . 11
3.3.3 Choosing pattern . 13
3.3.4 Tree Based data structure 14
3.3.5 The analyzer . 15

3.4 Known issues . 18
3.4.1 Context Coherence . 18
3.4.2 Foreign Key constraints 18
3.4.3 Tests . 19
3.4.4 Code Quality . 19

4 Results and examples 20
4.1 Results on test environment . 20
4.2 Results on the GNU Taler database 21

5 Upcoming features and changes 23
5.1 General Report . 23
5.2 Code coverage . 23
5.3 Data type Pre-analyzing . 24
5.4 Centralized anonymous user data 24

6 Contributing 25

A Internship organization 26
A.1 Introduction . 26
A.2 The BFH and The GNU Taler package 26
A.3 Calendars . 26
A.4 General Organization . 27
A.5 Positive outcomes . 28

A.5.1 Technical aspect . 28
A.5.2 Human aspect . 29

A.6 Conclusion . 31

B Acknowledgments 32

2

Abstract

The concept of fuzz testing is the result of submitting unexpected data
to a software. It is used in software development in order to reveal errors
or approximations in the source code of a project. Several approaches
exist in order to pursue this goal such as focusing a specific type of data
or using concepts that subscribe in the field of machine learning. This
project is an implementation of the fuzz testing strategy focusing on the
management of a database’s content.
The purpose of this documentation is to provide an introduction on the
concept of fuzz testing and to describe precisely an example of implemen-
tation.
It is hoped that it will give more insights on the philosophy and the drive
that motivated this work as well as a description of the design of the
SchemaFuzz tool for its users and contributers.

Le concept du Fuzz testing est le résultat de la soumission de données
inappropriées à un programme cible. Ce concept est utilisé au cours
du developpement dans le but de reveler les erreurs d’implementation
ainsi que les failles de sécurité dans le code source d’un projet informa-
tique. Plusieurs approches différentes peuvent permettre d’atteindre ce
but telles que la concentration sur un type particuler de données ou en-
core l’utilisation de concepts externes comme l’apprentissage machine. Ce
projet est une implementation de la stratégie du fuzz testing en se con-
centrant sur la gestion d’objets issus d’une base de données
Le but de cette documentation est de fournir une introduction au concept
du fuzz testing et de décrire précisément un exemple d’implémentation.
Nous nourrissons l’espoir qu’elle apportera de plus amples détails sur la
philosophie et sur les motivations qui soutiennent ce projet ainsi que sur
le design de l’outil SchemaFuzz pour ses utilisateurs et contributeurs.

1 Introduction

This project is meant to provide an secure development tool that uses a
database oriented ”fuzzing” strategy. Where a traditional fuzzer would
send malformed input to a program, SchemaFuzz modifies the content of a
database to test that program’s behavior when stumbling on unexpected
data.
This tool’s objective is to bring up the bugs and security breaches that
the code may contain regarding the retrieving and usage of a database’s
content by stressing it with corrupted data. This tool is still at an alpha
state; its development will is still in progress and will be the subject of
further publications which will lead to updates in this document.

3

2 Context and Perimeter

2.1 Context

SchemaFuzz uses the principle of ”fuzz testing” or ”fuzzing” to help find
out which are the weak code paths of one’s project. It is usually defined
as:

”an automated software testing technique that involves pro-
viding invalid, unexpected, or random data as inputs to a com-
puter program”.

Wikipedia contributors [2018a]
This quote is well illustrated by the following example :

Lets consider an integer in a program, which stores the re-
sult of a user’s choice between 3 questions. When the user picks
one, the choice will be 0, 1 or 2. Which makes three practical
cases. But what if we transmit 3, or 255? We can, because
integers are stored in a static size variable. If the default case
hasn’t been implemented securely, the program may crash and
lead to any kind of security issue such as: (un)exploitable buffer
overflows, DoS, ...

Fuzz testing has been used since the 90’s to test one’s software ro-
bustness. The first generation of fuzzing tools was composed of primitive
input injections which was described with the ”infinite monkey theorem”
analogy. It is divided in severals categories that each focus on a specific
type of input.

UI fuzzing focuses on button sequences and more generically any kind
of user input during the execution of a program. This principle has already
been successfully used in existing fuzzing tools such as ”MonkeyFuzz”.

Certificate fuzzing is another interesting fuzzing approach that has
emerged especially after it was introduced by B. Chandrasekar in Development
of Intelligent Digital Certificate Fuzzer Tool

However, SchemaFuzz is a database oriented fuzzer. This means that
it focuses on triggering unexpected behavior related to the usage of a
external database content

This tool is meant to help developers, maintainers and more generi-
cally anyone that makes use of data coming from a database under his
influence in their task. A good way to sum up the effect of this tool is to
compare it with an ”cyber attack simulator”. This means that the idea
behind it is to emulate the damage that an attacker may cause subtly or
not to a database he possesses privileges on. This might in theory go from
a simple boolean flip (subtle modifications) to removing/adding content
to purely and simply destroying or erasing all the content of the database.
SchemaFuzz focuses on the first part: modification of the content of the
database by sequential modifications that may or may not overlap. These
modifications may be aggressive or subtle. It is interesting to point out
that this last point also qualifies SchemaFuzz as a good ”database struc-
tural flaw detector”. That is to say that errors typically triggered by a
poor management of a database (wrong data type usage, incoherence be-
tween database structure and use of the content etc ...) might also appear

4

clearly during the execution. For a more in depth description of different
fuzzing approaches, one can refer to A systematic review of fuzzing
techniques Chen Chen [2017]

2.2 Perimeter

This tool implements some of the SchemaSpy tool’s source code. More
precisely, it uses the portion of the code that detects and stores the tar-
get database’s structure as well the data type for each of the fields that
it contains. This project’s design revolves around the adaptation of this
existing code. Developing the functionalities required to test the usage of
the database content by any kind of utility is the main stake of Schema-
Fuzz. The resulting software will generate a group of human readable
reports on each modification that was performed.

60 %

MainLoop + Hashing + Parsing (Code created from scratch)

20 %

Data Structure + Clustering (Modified pre-existing code)

20 %

MetaDataExtraction (Unmodified existing routines)

Figure 1: Shows the nature of the code for every component. The slice size is a
rough estimation.

2.3 When to use it

SchemaFuzz is a useful tool for developers trying secure a piece of software
that uses database resources. In its current state, Schemafuzz is only
compatible with C language and more specifically with GDB compatible
softwares. The DBMS (which is the SQL interpretor used by the target
software) has to grant access to the target database through credentials
passed as argument to this tool.

Since this tool does not have a rollback feature yet to restore the first
state of the target database, the database being fuzzed will end up in a
randomly modified state that may not be suitable for production. Thus,
it is strongly advised to use a copy of the target database rather than the
production material

5

3 Design

3.1 Generic explanation

The code for the core of the program is organized as follows:

• Mutation/data-set used as a way to store the inputs, outputs and
other interesting data from the modification that was performed on
the target database

• The mutation tree, used to store the mutations coherently

• An analyzer that scores the mutations to influence the paths that
will be explored afterwards

This organization will be detailed and discussed in the following sections.

6

Main Loop

Target Database

Target Software

C Parser Script

Analyzer

Injects SQL Statement

Runs over

Returns output

Gives score

Generates human readable report file

1

Figure 2: Structural organization of the different components
7

Meta data extraction

Setting constraints
to CASCADE

Pre processing

Choosing
modif.

Creating
mutation

Creation
of SQL
statement

Undo
Routine

(if
necessary)

Hashing
+

Clustering
+ Scoring

Launching
target

software

Parsing
execution
response

Generating
report

Injection+
DB

response
parsing

Main Loop

Rolling back Constraints
+

Building mutation
tree representation

Post processing

Is
maximum
tree depth
reached?

Yes No

2

Figure 3: Main Loop work flow chart

3.2 SchemaSpy legacy/meta data extraction

The only job of the meta data extraction routine is to initialize the con-
nection to the database and retrieve its meta data at the beginning of
the execution (before any actual SchemaFuzz code is run). These meta
data include data types, table and table column names, views and for-
eign/primary key constraints. Having this pool of meta data in a Java
object shape allows the main program to properly mark off what the pos-
sibilities are in terms of modifications as well as dealing with the possible
constraints on the different tables. The modifications that will be created
during the main loop will be designed to respect the data type constraints
built from the result of this extraction.

Table
name: String
primaryKey: ForeignKeyConstraint

ForeignKeyConstraint
name: String
parentField: ForeignKeyConstraint
childFields: List<ForeignKeyConstraint>
updateRule: int

View
name: String
result: ResultSet

CheckConstraint
name: String
targetField: ForeignKeyConstraint
valueColumn: ForeignKeyConstraint
constantValue: Object

Column
name: String
type: String
length: int
unique: boolean

1 n

1

n

1

n

Figure 4: Objects returned by the meta data extraction routine.

In order to do that, the user shall provide this set of mandatory
database related arguments

• The driver to the corresponding database DBMS (only support Post-
gre at the moment)

• The credentials to be used to access the database.

• The name of the database

9

3.3 SchemaFuzz Core

3.3.1 Constraints

The target database often contains constraints on one or several tables.
These constraints have to be taken into account in the process of fabricat-
ing mutations as most of the time they restrict the possible values that the
pointed field can take. These restrictions can take the shape of a Not Null
constraint, Check constraint, Foreign key constraint (value has to exist in
some other table’s field) or Primary key constraint (no doublets of value
allowed). These constraints are stored as Java objects instantiated from
the corresponding class.

ForeignKeyConstraint
name: String
parent: Table
parentColumns: List<TableColumns>
childTable: Table
deleteRule: int
updateRule: int
CompareTo(ForeignKeyConstraint): Boolean

Figure 5: Class diagram of the ForeignKeyConstraint Java object

The last two ones are the problematic ones. They imply specific work
before applying any mutations to make sure that the value respect all the
restrictions. before doing anything else after the meta data extraction is
done, SchemaFuzz performs an update of all the existing constraints on
the database to add the CASCADE clause. This allows the values bonded
by a foreign key constraints to take effect. The tool reverts these updates
to take the constraints back to their initial state before the program exits.

Primary key constraints (PKC): The primary key constraints
require an extra DB query that checks the existence of the value in the
column. If the value already exists (the query’s result is not empty), the
mutation will be dropped before being executed.

Foreign key constraints (FKC): The foreign Key constraint is
the trickiest one. Its inherent nature bonds two values of different table
columns where the value being referenced is called the father, and the
referencing field, the child. In order to change one of the two values, the

10

other has to be changed accordingly in the same transaction. SchemaFuzz
uses the semantics of the CASCADE clause to make the change possible.
This clause allows the DBMS to automatically change the value of the
child if the father has been changed. This mechanic allows to change
any of the bounded values by changing the father’s value. To do so, the
software has a way to transfer the mutation from a child to its parent.

3.3.2 Mutations

A mutation is a Java object that bundles all the informations that are used
to perform a modification in the database. Every mutation is linked to its
parent and inherits some of his parent’s data. In the case of a follow up
mutation the child inherits the database row that was his parent’s target.
Therefore the initial state (state before the injection of the modification) of
its target is exactly the final state (state after injection of the modification)
of his parent’s target. A mutation is created for each iteration of the main
loop and represents a single step in the progress of the fuzzing. It also
holds the information concerning the result of the injection in the shape
of a data vector. This data vector is then used to perform a clustering
calculus to determine the ”uniqueness” of the mutation. This value is
also stored inside the mutation object and is used as the weight of this
mutation in the tree.

Mutation
ID: int
score: int
subTreeWeight: int
depth: int
initialStateRow: Row
postChangeRow: Row
potential_changes: List<SingleChange>
parent: Mutation
children: List<Mutation>
chosenChange: SingleChange
firstAppearance: boolean
rpv: ReportVector
pickPotentialChangeBasedOnWeight(): SingleChange
discoverFieldPossibilities(column, value): List<SingleChange>
inject(mutation, doOrUndo): int
updateQueryBuilder(): String
compare(Mutation): Boolean
findPathTo(Mutation) : List<List<Mutation»
transferToParent(): void

Figure 6: Structure of a Mutation

11

A branch is a succession of mutation that share the same database
row as their modification target. The heuristics determining the next
mutation’s modification are still primitive and will be thinly adjusted in
futures versions.

Creating malformed data As the goal of running SchemaFuzz is to
submit unexpected or invalid data to the target software, it is necessary to
understand that fuzzing a complex type such a timestamps variables has
nothing to do with fuzzing a trivial boolean. In practice, a significant part
of this matter could absolutely be the subject of a more abstract work.
We focused here on a simple approach (as a first step). After retrieving
the current row being fuzzed (may it be a new row or a previously fuzzed
row), the main loop explores the different modification possibilities. The
main loop then builds the possible modification for each of the fields for
the current row. The possible modifications that this tool can produce at
the moment are :
Boolean types:

• Swapping the existing value (F 7→ T OR T 7→ F)

Integer types:

• Extreme values (0, MAXVALUE etc.)

• Random value (0 < value < MAXVALUE etc.)

• Increment/Decrement the existing value (332 7→ 333 OR 332 7→ 331)

String types:

• Change string to “aaa” (“Mount Everest” 7→ “aaa”)

• Increment/Decrement ASCII character at a random position in the
string (“Mount Everest” 7→ “Mount Fverest”)

Date Types: (implemented but not fully functional)

• Increment/Decrement date by 1 day/minutes depending on the pre-
cision of the date

• Set date to 01/01/1970

These ”abnormal” values might in fact be totally legit in some cases. In
that case the analyzer will rank the mutation rather poorly, which will
lead to this tree path not being likely to be developed further.

SQL handling All the SQL statements are generated within the code.
This means that the data concerning the current and future state of the
mutations have to be precise. Otherwise, the SQL statement is likely to
fail. Sadly, since SchemaFuzz only supports PostgreSQL, the implemented
syntax follow the one of Postgre DBMS. The statement is built to target
the row as precisely as possible, meaning that it uses all of the non fuzzed
values from the row to avoid updating other row accidentally. Only the
types that can possibly be fuzzed will be used in the building of the SQL
statement. Since this part of the code is delicate in the sense that it highly
depends on an arbitrary large pool of variables from various types it is
has a tendency of crashing.

12

Injecting: The injection process sends the built statement to the DBMS
so that the modification can be operated. After the execution of the query,
depending of the output of the injection (one modification, several modi-
fications, transfer) informations are updated so that they can match the
database state after the modification. If the modification failed, no trace
of this mutation is kept, it is erased and the execution goes on like nothing
happened.

Special case (mutationTransfer): The mutation transfer is a spe-
cial case of a modification being applied to the database. It is triggered
when the value that was supposed to be fuzzed is under the influence of
a FKC as the child. In the case a FKC (in CASCADE mode), only the
father can be changed, which also triggers the same modification on all
of his children. The algorithm then ”transfers” the modification from the
original mutation to its father. After injecting the transfered mutation,
the children mutation is modified but the modification cascades on some
parts of the database that was not meant to be changed. Hopefully, this
does not impact the life of the algorithm until this mutation is reverted
(see next paragraph).

Do/Undo routine: The Do/Undo mechanism is at the center of this
software. Its behavior is crucial for the execution and will have a strong
impact on the coherence of the data nested in the code or inside the
target database throughout the runtime. This mechanism allows the al-
gorithm to revert a previous mutation or, if necessary inject it one more
time. Undoing a mutation applies the exact opposite modification that
was originally applied to the database ending up in recovering the same
database state as before the mutation was injected. Reverting mutations
is the key to flawlessly shifting the current position in the mutation tree.
The case of the transfered mutation is no exception to this. In this case,
the mutation applied changes on an unknown number of fields in the
database. But, the FKC still bounds all the children to their father at
this point (this is always the case unless this software is not used as in-
tended). Changing the father’s field value back to its original state will
propagate the original values back on all the children. This mechanism
might trigger failing mutations in some cases (usually mutations following
a transfer). This issue will be addressed in the known issues section.

3.3.3 Choosing pattern

For each iteration of the main loop, a modification has to be picked up
as the next step in the fuzzing process. This is done by considering the
current state of the tree. Three parallel code paths can be triggered from
this point.

• Continue on the current branch of the tree (triggered if the last
mutation scored better than its parent)

• Pick an existing branch in the tree and grow it (triggered if the last
mutation scored worse than its parent on a 50/50 chance with the
next bullet)

13

• Start a new branch (triggered if the last mutation scored worse than
its parent on a 50/50 chance with the previous bullet)

BEGIN

retrieve last two

mutations score marks

Last Mutation scored better
than its parent ?

pick one of the last
Mutation’s possibilites at

random

modification already applied
on this branch ?

pick existing
Mutation’s child

modification [biased by weight]

pick a brand new
row in the database

to fuzz on

END

No

50%50%
Yes

Yes

No

Figure 7: Diagram that shows, for each iteration of the main loop, how the next
modification is chosen

3.3.4 Tree Based data structure

All the mutations that are injected at least once in the course of the
execution of this software are stored properly in a tree data structure.
Having such a data structure makes parent-children relations between
mutations possible. The tree follows the traditional definition of the a n-
ary algorithmic tree. It is made of nodes (mutations) including a root (first
mutation to be processed on a field selected randomly in the database)
Each node has a number of children that depends on the ranking its
mutation and the number of potential modifications that it can perform.

Weight Weighting the nodes is an important part of the runtime. Each
mutation has a weight that is equal to the ranking the analyzer returns
as an output. This value reflects the mutation’s value. If it had an
interesting impact on the target program behavior (if it triggered new
bugs or uncommon code paths) than this value is high. The weight is
then used as a mean of determining the upcoming modification. The
chance that a mutation gets a child is directly proportional to its weight.

Path : Since the weighting of the mutation allows to go back to previous
more interesting mutations, there is a need for a path finding mechanism.

14

In practice, this routine determines the chain of node that separates two
nodes in the tree. This is done by, from both nodes, going in the direction
of the root until a common ancestor is found. Fusing the lists of both
chains results in creating the full path between the two nodes. The path is
then used when the main loop goes through the undo mechanism. Undoing
from mutation A to mutation B is implemented as undoing every mutation
between A and B

Root

Mutation1

Mutation2

Mutation3 Mutation4 Mutation5

Mutation6 Mutation7

Mutation8

Mutation9 Mutation10 Mutation11

current position

target

Figure 8: Example of path between two nodes in the tree

3.3.5 The analyzer

Analyzing the output of the target program is another critical part of
SchemaFuzz. The analyzer parses in the stack trace of the target soft-
ware’s execution in order measure how interesting the output of the exe-
cution was. Since crashes and unexpected behavior from the target soft-
ware is what the tool is triggering, it is the main criteria of a valuable
mutation. A stack trace is a text block structured to present all the in-
formation related to a crash during a software’s execution. The analyzer
in its current state only observes stack traces generated from the GDB C
debugger.

Stack Trace Parser The stack trace parser is a separate Bash script
that processes stack traces generated by the GDB C language debugger
and stores all the relevant informations (function’s name, line number, file
name) into a Java object. The parser also generates a human readable
file for each mutation that synthesizes the stack trace values as well as
additional interesting information useful for other mechanisms (that also
require parsing). These additional informations include the path from
root to mutation (useful for rolling back the database to a specific state).

15

Hashing The clustering algorithm takes a triplet of numerical values
as an input. Therefore, the stack trace of a mutation has to be hashed into
a triplet of numerical values. This set of value is used as a representation
of the original stack trace object. Hashing is usually defined as follows :

”A hash value (or simply hash), also called a message di-
gest, is a number generated from a string of text. The hash is
substantially smaller than the text itself, and is generated by
a formula in such a way that it is extremely unlikely that some
other text will produce the same hash value.”

Wikipedia contributors [2018b]

In the present case, we used a different approach. Since proximity
between two stack traces is the key to a relevant ranking, it is mandatory
to have a hashing function that preserves the proximity of two strings.
In that regard, we implemented a version of the Levenshtein Distance
algorithm. This algorithm can be explained by the following statement:

”The Levenshtein distance between two words is the mini-
mum number of single-character edits (insertions, deletions or
substitutions) required to change one word into the other.”

Wikipedia contributors [2018c]

E X E M P L E
3 3 8 3 3 3 3 8

E X A M P L E S

Figure 9: Example of the levenshtein distance concept.

The distance for this example is 2÷ 8× 100
After hashing the file name and the function name into numerical

values trough Levenshtein distance, the analyzer creates the triplet that
numerically represents the stack trace being parsed. This triplet will be
used in the clustering method detailed in the following paragraph. It is
interesting to note that this triplet is not the most accurate representation
of a stack trace. The analyzer will be improved in the future is that regard.

The scoring mechanism The ”score” (or rank) of a mutation is a
numerical value that reflects how interesting the outcome was. Unique
crashes and unexpected behavior are what makes a mutation valuable
since it indicates a wrongly implemented code piece in the target source in
most cases. Unique crashes detection and processing was brightly detailed
in Mr Mikko’s work which I recommend consulting for further explana-
tion. This value is calculated through a modified version of a K-means
clustering method precisely detailled by Wikipedia contributors [2018d].
This clustering mechanism runs as follows:

• Represent the triplets in a 3 dimensional space

• Create clusters that includes most similar triplets

16

• Calculate the centroid of each cluster

• Calculate the Euclidean distance between the current mutation’s
triplet and all the centroids

• Add up all the distances generated by the last step into a single
value

The centroid of a cluster is the triplet of values that define the math-
ematical center of a cluster. the Euclidean distance is defined as

In mathematics, the Euclidean distance or Euclidean metric
is the ”ordinary” straight-line distance between two points in
Euclidean space

Wikipedia contributors [2018e]

If a triplet represents a unique crash it will be placed far away in the
Euclidean space. This induces that the sum of the Euclidean distances
to the centroids will be a high value compared to a common crash. This
sum is then used as the ”score” of the mutation.

Mutations that do not trigger any crash result in having a null score.
Therefore, the side of the tree they are in has a lower statistical chance of
being chosen for further exploration.

For a more concrete view of what the analyzer outputs, please refer to
the Result and Example section.

17

Figure 10: 2D example of Euclidean Distance calculus

3.4 Known issues

About one mutation out of 15 will fail for undetermined reasons.

3.4.1 Context Coherence

A significant amount of the failing mutations do so because of the mu-
tation transfer mechanism. As said in the dedicated section, this mecha-
nism applies more than one change to the database (potentially the whole
database). In specific cases, this property can become problematic. More
specifically, when the main loop chooses the next mutation and its parent
has been the subject of a transfer. In this case, the data embedded in
the schemaFuzz data structure may not match the data that are present
in the database, this delta may induce a wrong SQL statement that will
result in a SQL error (in practice, the DBMS indicates that 0 rows were
updated by the statement).

3.4.2 Foreign Key constraints

For a reason that is not yet clear, some of the implied FKC of the target
database can’t be properly set to CASCADE mode. This result in a FKC
error (mutation fails but the program can carry on)

18

3.4.3 Tests

Due to a lack of time and a omission in the project planning, this project’s
test suit is not yet complete. In its current state, the test suit includes
the tests written for the meta data extraction routine as well as a bundle
of unit tests that cover the following points :

• instantiation of the Mutation class

• Creation of the modification possibilities

• the do/Undo routine

• Uniformity of the tree weighting

The following list details the tests that will be implemented in future
releases by order of importance.

• Integration tests

• Regression tests

• More complete and specific Unit tests.

• Performance tests

3.4.4 Code Quality

The code in its current state is still in beta. This means that the code
will be the subject of structural and syntax changes. The following list
contains the major aspects of these changes

• Code structure

• Code concision

• Code style. More precisely, updating code pieces that cointain bad
coding habits

For example, the following code: if(myV ariable == 0) should be changed
to: if(0 == myV ariable) to avoid unwanted affectation in the case of the
omission of an = sign.

19

4 Results and examples

4.1 Results on test environment

The project as been developed primarily to be run against the GNU Taler
database. But, a sample database was used throughout the course of the
development in order to evaluate the progress of the tool as well as for
testing it an environment that would not compromise any real data set.
This sample database contains all the supported types and emulates the
structure of a production database. the following figure shows what the
format of output for a standard run is. The tree of mutations is displayed
in a text format where each block stands for a successful mutation injection
and is delimited by a pair of hooks []. Each block is preceded by a visual
representation of the depth in the tree where −− indicates one level in
the tree. The informations provided on each block follow this ordered
structure:

• Mutation ID (ordered)

• Numerical representation of the Depth in the tree

• ID of the mutation the modification is attached to

• The value present in the target field BEFORE the modification

• The value of the target field AFTER the modification

It is noticeable that the algorithm does not display the tree in depth
order but in ID order. This allows the user to analyze in what order the
mutations where injected.

Figure 11: Example of the output for an execution on the development database

After every successful mutation, the analyzer generates a report that
summarizes the response of the target program after the modification was
applied. Every report is structured as follow :

If the program did not crash: report only contains a 0.
If the program crashed:

20

• ”functionNames:” item

• List representation of the function stack from the crash (ordered
from most precise to most general level)

• ”filesNames:” item

• List representation of the file containing the function call

• ”lineNumbers” item

• List representation of the line numbers for each function call (the
line number of the main function does not appear)

• ”end:” item

• ”path:”item

• Text representation of the path in the tree from the root. Every line
described a previously processed mutation

• ”endpath:”item

Figure 12: Example of a generated report for an execution on the development
database

4.2 Results on the GNU Taler database

The outcome of the first executions of SchemaFuzz against a sample of
the GNU Taler database were promising. The tool itself properly fuzzed
the target and the execution ended with a success code on 9 of the 10
attempts.

21

Figure 13: Example of the output for an execution on a sample of the GNU
Taler database

Vanishing bugs Some of the bugs that were encountered during the
test executions were not triggered when running against the GNU Taler
database. After comparing the content and structure of both environ-
ments, it is likely that this behavior was due to the test database’s mini-
malistic content. This difference between the outputs when executing the
tool on the two different environments helped in debugging some of the
code’s unexplained behavior.

For instance, the tool would crash if meeting the following criteria:

• The last mutation scored better than its parent

• The last mutation does not have any other modification possibilities

• In its current state, the tree does not have more than one branch

By running the tool on a more dense database, the bug had vanished.
This allowed us to locate the origin of the issue.

22

Figure 14: Example of a bug fixed by changing the environment of execution

5 Upcoming features and changes

This section will provide more insights on the future features that might/may/will
be implemented as well as the changes in the existing code.

5.1 General Report

In its future state, SchemaFuzz will generate a synthesized report concern-
ing the overall execution of the tool. This general report will primarily
contain the most ”interesting” mutations (meaning the mutations with
the highest score mark) for the whole run. A more advanced version of
this report would also take into account other parameters in calculating
the ratio for each mutation. By doing so, the analyzer could generate a
”global” score that would represent the global value of each mutations.

5.2 Code coverage

We are considering changing or simply adding code coverage in the clus-
tering method as a parameters. Not only would this increase the accuracy
of the scoring but also give more detail on what the mutation triggered in
the target software’s code therefore helping locate the origin of the crash.
By adding code coverage this tool could make a concrete difference in
terms of scoring and informations being generated in the reports between
a mutation with a new stack trace in a common code path and a common
stack trace in a rarely triggered code path.

23

5.3 Data type Pre-analyzing

This idea for this feature to be is to implement some kind of ”auto learn-
ing” mechanism. To be more precise, this routine is meant to performed
a statistical analysis on a representative portion database’s content. This
analysis would provide the rest of the program the most common values
encountered for each field. More generically, this would allow the software
to have a global view over the format of the data that the database holds.
Such global understanding of the content format is interesting to make
the modifications possibilities more relevant. Indeed, one of the major
limitation of SchemaFuzz is its ”blindness”. That is to say that some of
the modifications performed in the course the execution of the program
are irrelevant due to the lack of information on what is supposed to be
stored in this precise field. For instance, a field that only holds hexadeci-
mal values that go from A01 to A0A even if it has enough bits to encode
from 000 to FFF would have a low chance of triggering a crash if this soft-
ware modifies its value from A01 to A02. on the other end, if the software
modifies this same field from A01 to B01, then a crash is much more likely
to be discovered. Same principle applies to strings. Suppose a field can
encode 10 characters. the pre-analysis, detected that, for this field, most
of the value were surnames beginning with the letter “a”. Changing this
field from “Sylvain” to “Sylvaim” will probably not be effective. However,
changing this same field from “Sylvain” to “NULL” might indeed trigger
an unexpected behavior.

This pre-analysis routine would only be executed once at the start of
the execution, right after the meta data extraction. The result of this
analysis will be held by a specific object. this object’s lifespan is equal to
the duration of the main loop’s execution. That way, every mutation can
benefits from the analysis data.

5.4 Centralized anonymous user data

SchemaFuzz’s efficiency is tightly linked to the quality of its heuristics.
This term includes the following points

• Quality of the possible modifications for a single field

• Quality of the possible modifications for each data type

• Quantity of possible modifications for a single field

• Quantity of supported data types

Knowing this, we are also considering for futures enhancements an anony-
mous data collection for each execution of this tool that will be statistically
computed to determine the best modification in average. This would im-
prove the choosing mechanism by balancing the weights depending on the
modification’s average quality. Modifications with higher average quality
would see their weight increased (meaning they would get picked more
frequently) and vice versa.

24

6 Contributing

You can send your ideas and patch proposals at erwan.ulrich@gmail.com

25

erwan.ulrich@gmail.com

A Internship organization

A.1 Introduction

This section is meant to be added to the University version of this doc-
umentation. It will be written as Erwan Ulrich and will focus on the
different aspects of the organization of the project. The following text
will also be written with a more personal and more critical point of view
as a mean of self analyze.

A.2 The BFH and The GNU Taler package

My internship was supervised by both the Berner Fachhochschule (Bern
University of Applied Sciences) and Christian Grothoff who is the main-
tainer for multiple GNU packages among which the GNU Taler package.

Founded in 1997, is a non-profit public higher education institution
located in the large town of Bern (population range of 50,000-249,999
inhabitants). Berner Fachhochschule (BFH) is a medium-sized (uniRank
enrollment range: 6,000-6,999 students) coeducational higher education
institution. Berner Fachhochschule (BFH) offers courses and programs
leading to officially recognized higher education degrees such as bachelor
degrees in several areas of study.

GNU is a politically engaged, free software and mass-colaboration
project that was created by Richard Stallman in 1983 at the MIT. It
aims to produce and distribute free softwares to help citizens keep control
over their computers and digital activities. Most softwares produced by
the GNU project share the same GNU General Public License that give
rights for it to be run, shared, studied and modified. This subscribes to
the global philosophy and political engagements of the GNU project.

Christian Grothoff is professor at the BFH as well as the main de-
veloper and team leader of the GNU Taler package. The Taler project
is an electronic payment system under development at Inria. It provides
accountability to ensure business operate legally, while also respecting
civil liberties of citizens. Taler is based on open standards and free soft-
ware. Taler was built with the goal of fighting corruption and supporting
taxation. With Taler, the receiver of any form of payment is easily iden-
tified, and the merchant can be compelled to provide the contract that
was accepted by the customer. Governments can use this data to tax
businesses and individuals based on their income, making tax evasion and
black markets less viable.

I was positioned under the supervision of Mr Grothoff with the task of
conceiving, coding and deploying a tool that would help secure database
exchanges as a part of the Taler payment system development.

A.3 Calendars

The SchemaFuzz project has had since its genesis a quiet clear view of
how the development should evolve. The desired features have been dis-
cussed and the big picture had been designed to fit the time that the
main developer had for his work at this position. The project had to pass

26

trough different phases of development that are detailed in the following
time line diagram.

60–90 days 10 days 60–90 days 30 days

Arrival

Studying and separating
the Meta data extraction routine

First Phase
of development

Run against
the GNU Taler database

Second phase
of development

(bug fixes and improvements)

Writing documentation +
Setting website for

the project

Figure 15: Originally planned organization

Some of the tasks of the above time line were completed on time, some
others were delivered late, and some were delayed in the time line because
of the previous point. In the end, the project was lead in a way that is
best described by the following time line diagram.

90–120 days 10–20 days 20–30 days

Arrival

Studying and separating
the Meta data extraction routine

First Phase
of development

Run against
GNU Taler DB

Bug fixes
and improvements

Documentation +
Website for
SchemaFuzz

Figure 16: Organization results

Those two diagrams differ on some points.There are several reasons
that explain why this project could have been lead in a better way. They
will be detailed and discussed in the next section.

A.4 General Organization

The following organizational points help explain why the SchemaFuzz
project did not meet all of its defined goals. It is also a personal reminder

27

of what should be improved in my work habits and general organization
when leading a project of such a large size.

• Defining tasks/features as daily/weekly sub goals

• Improving general project planning

– Include the test writing in the planning as a ”real” task

– Build the project’s code structure beforehand

– Decide what approach to use for each component beforehand

– Decide for each component what technologies should be used
beforehand

• Setting up more fluid communication

A.5 Positive outcomes

Throughout the development of the project, I have had the chance to
acquire many new capacities and improve many of my own skills. I will
give more insights on what this project and, more generically, what this
internship as a developer for a GNU package, has brought me. Apart
from the Java language, which I was already familiar with, I also had the
chance to get my hands of new technologies (or technologies I never really
had the chance to practice in real conditions).

A.5.1 Technical aspect

Java language In many ways, this project has been a real challenge.
But the main difficulty that I encountered was the technical challenge that
rose up when the project started. Indeed, it was my first time conducting
a project of the size of SchemaFuzz. The size of the project and the fact
that I was the only one developing the tool implied that every aspect of
the project, independently of the language that was used for each module,
had to be imagined and implemented with my two hands. Even if I was
already accustomed to Java programming, I got struck by the complexity
and the architecture of a ”real” in-production software like SchemaSpy
which I had to look into to get the meta data extraction routine. This was
my first improvement. Code structure. Even if my coding capacities can
still be perfected in many ways, I feel like understanding/re-using complex
and well structured code gave me a much better idea of what ”good code”
really is. Integrating these concepts empowered my development skills and
I am now much more confident about it.

SQL language SchemaFuzz is a database fuzzer. Naturally, A major
component of the work for its development was to create and handle SQL
requests and responses. In order to do that, I had to document myself for
a while as I was lacking some knowledge on databases in general. After
gaining a better understanding of how databases operate theoretically, I
had to go into more depth concerning the inner structure of constraints
and the way data types are encoded for most DMBS. This brings me to
my next point regarding the handling of SQL in this project.

28

DBMS(PostgreSQL) SchemaFuzz’s first and foremost import goal
is to help in the debugging and maintenance of the GNU Taler payment
system. GNU Taler databases are managed by the PostgreSQL DBMS.
Therefore, the natural choice of technology for SQL management in this
project was obvious. Not having ever worked with PostgreSQL before, I
had to adapt my habits when dealing with the DBMS itself. By doing
so, and stumbling on error messages I had never seen before, I had the
chance to get into more depth in the structure of DBMSes in general.
In particular, I had to get my hands on the inner PostgreSQL tables in
order to understand how different databases were managed within the
same environmental.

Shell/Bash Scripting As a part of the development of the analyzer
for SchemaFuzz, I have had the chance to build up several bash scripts.
This was to me a true pleasure as well as very instructive. Spending some
time on writing parsing script had me look into how parsing is usually
implemented for such jobs. Having this experience with me, I now better
understand how each and every component of a same project connects to
each other. Even though I was aware of the power of scripting in general,
I have now come to understand how much of a crucial skill it is to under-
stand and be able to write scripts when working in a Linux environment.
In the big picture, I feel like I have earned a precious asset by practicing
scripting on a technical level. This also gave me the chance to develop my
own script in the frame of personal use in my own environmental. Going
through more conceptual and theoretical documents on what scripting
really is and how it should be used.

LateX By writing this documentation, I had to learn how to create
and process properly presented and properly styled scientific documents.
In this process, I have first learned and then practiced LateX as well as
the very handy Tikz and metaUML packages used for graphical repre-
sentations. Creating and implementing (in this case) graphics I did not
consider to be a real coding challenge, but some of them proved me terri-
bly wrong. Spending time on finding the right syntax for what I wanted
to show strengthened my project management skills and comforted me
in the belief that presentation and creation of a project are two sides if
the same coin and that both should be treated with the same amount of
seriousness.

A.5.2 Human aspect

Languages The development of my project was conducted in German-
speaking environment, which is a language I am not very familiar with.
This lead to having any kind of communication both regarding the project
and other subjects in English. This participated in my improvement in
both oral and written English (this document is also an excellent training
for written content) as well as my overall comprehension. Apart from the
pure linguistic point of view, discussing complex topics in English gave
me the keys to expressing ideas and concept in a more concise and clearer
way.

29

Political maturity Disclaimer. With this paragraph, I am not push-
ing forward any idea in particular, all I intend to do is explain with more
detail and insights on how rich the environment was during this internship.

Surprisingly, I have had the chance to meet many people that shared
various political points of view regarding computer science and technolo-
gies. In these subjects it was a truly enriching process to debate things
such as morality, ethic or freedom. Some other topics that are further
away from science were brought up such as vegan-ism, green energies,
or anarchism. I hold very dearly the moments I shared speaking and
confronting my own ideas because I feel like this has allowed me to gain
maturity in my political positions.

30

A.6 Conclusion

The development of SchemaFuzz and my work for GNU Taler was spread
out on a 6 months duration. Within this time lapse, I have discovered the
fields of research and real software development. This discovery has been
very beneficial to me in the sens that it gave me the chance to acquire
experience both on the theoretical and technical sides as well as mastering
some new technologies and new aspects in the field of computer science
in general.

My work for GNU Taler was primarily to imagine,conceptualize and
develop a database oriented fuzzing tool. First, I focused on bringing
the software from a shape of ”general idea” that was given to me by my
internship supervisor to a concrete and structured project. In the process
of creation, I started with defining what precise features were critical and
with what technology they would be implemented.

The main task of SchemaFuzz is to inject malformed data into a spe-
cific database in order to trigger crashes or unexpected behavior from
the program that uses the content of this database. By working on this
project for the past 6 months, I have brought it to a point where it fulfills
its main task. I have uses a sample database contain content with a wide
variety in terms of data types to test the project all along the course of
the development. However, the application is meant to evolve to a more
advanced state. Such a big project requires much more time than what I
had to be fully operational.

Finally, I am convinced that the realization of this project was a truly
rewarding experience on all academical, technical and human aspects. All
the knowledge acquired as GNU developer strengthened the concepts I
had learned in my academical courses. Moreover, this internship is an
excellent social experience thanks to the amount of contact with very
bright professors, PhD students and other interns.

31

B Acknowledgments

I would like to express my deepest appreciation to those you helped
throughout the progress of my internship and development of my work. A
special gratitude I give to my project supervisor Mr Christian Grothoff for
his technical and moral support during my work as well as for his infinite
patience. Furthermore, I would like to acknowledge with much appreci-
ation the staff at BFH for their warm welcome and more specifically Ms
Jost for her help regarding administrative duties. A special thanks goes
to Julius Bunger for his moral support and for sharing his experience with
me on many subjects and levels. I also have to appreciate the opportu-
nity of working in a calm space that was given to me by the Dezentrale.
I would also like to thank all my friends for their wise counsel and more
specifically Leo Barouh, Jeremy Wuille and Ruben de Barros for their un-
failing presence in delicate situations. Finally, I can not express enough
gratitude to my dad that gave me all his support when it was needed
the most as well as for his help regarding the coordination of my project
especially in the writing of this report.

References

Wikipedia contributors. Fuzzing — Wikipedia, the free encyclope-
dia, 2018a. URL https://en.wikipedia.org/w/index.php?title=

Fuzzing&oldid=857827063.

Patrick K.Mohanty G.Shobha B. Chandrasekar, S.Sajeev. Development
of intelligent digital certificate fuzzer tool. In Proceedings of the 2017
International Conference on Cryptography, Security and Privacy.

Jinxin Ma Runpu Wu Jianchao Guo Wenqian Liu Chen Chen, Bao-
jiang Cui. A systematic review of fuzzing techniques. Computers and
Security, 2017.

Wikipedia contributors. Hash function — Wikipedia, the free encyclo-
pedia, 2018b. URL https://en.wikipedia.org/w/index.php?title=

Hash_function&oldid=853895468.

Wikipedia contributors. Levenshtein distance — Wikipedia, the free
encyclopedia, 2018c. URL https://en.wikipedia.org/w/index.php?

title=Levenshtein_distance&oldid=855507928.

Pudas Mikko. Improving crash detection in fuzzy testing. Master’s thesis,
JAMK University of Applied Sciences.

Wikipedia contributors. K-means clustering — Wikipedia, the free en-
cyclopedia, 2018d. URL https://en.wikipedia.org/w/index.php?

title=K-means_clustering&oldid=857193101.

Wikipedia contributors. Euclidean distance — Wikipedia, the free en-
cyclopedia, 2018e. URL https://en.wikipedia.org/w/index.php?

title=Euclidean_distance&oldid=855266282.

32

https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=857827063
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=857827063
https://en.wikipedia.org/w/index.php?title=Hash_function&oldid=853895468
https://en.wikipedia.org/w/index.php?title=Hash_function&oldid=853895468
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=855507928
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=855507928
https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=857193101
https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=857193101
https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=855266282
https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=855266282

	Introduction
	Context and Perimeter
	Context
	Perimeter
	When to use it

	Design
	Generic explanation
	SchemaSpy legacy/meta data extraction
	SchemaFuzz Core
	Constraints
	Mutations
	Choosing pattern
	Tree Based data structure
	The analyzer

	Known issues
	Context Coherence
	Foreign Key constraints
	Tests
	Code Quality

	Results and examples
	Results on test environment
	Results on the GNU Taler database

	Upcoming features and changes
	General Report
	Code coverage
	Data type Pre-analyzing
	Centralized anonymous user data

	Contributing
	Internship organization
	Introduction
	The BFH and The GNU Taler package
	Calendars
	General Organization
	Positive outcomes
	Technical aspect
	Human aspect

	Conclusion

	Acknowledgments

