

The Bank's Problem

3D secure ("verified by visa") is a nightmare:

- Complicated process
- Shifts liability to consumer
- Significant latency
- Can refuse valid requests
- Legal vendors excluded
- No privacy for buyers

Online credit card payments will be replaced, but with what?

The Bank's Problem

- Global tech companies push oligopolies
- Privacy and federated finance are at risk
- ► Economic sovereingity is in danger

PayPal*

Predicting the Future

- Google, Apple or Facebook's Libra will be your bank and run your payment system
- ► They target advertising based on your purchase history, location and your ability to pay
- They will provide more usable, faster and broadly available payment solutions; our federated banking system will be history
- ► After dominating the payment sector, they will start to charge fees befitting their oligopoly size
- Competitors and vendors not aligning with their corporate "values" will be excluded by terms of service and go bankrupt

GNU

(Taler)

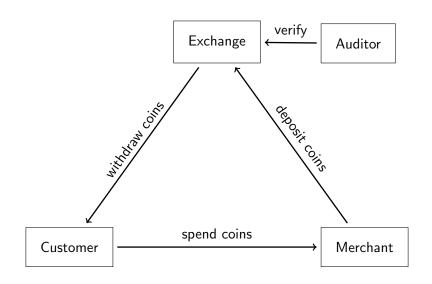
Digital cash, made socially responsible.

taler.net twitter@taler mail@taler.net

Christian Grothoff grothoff@taler.net

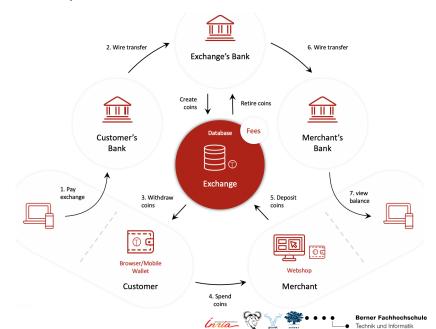
What is Taler?

Taler is an electronic instant payment system.


- Uses electronic coins stored in wallets on customer's device
- Like cash
- Pay in existing currencies (i.e. EUR, USD, CHF)

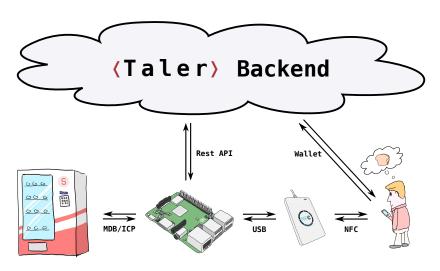
Design goals for the GNU Taler Payment System

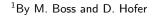
GNU Taler must ...


- 1. ... be implemented as **free software**.
- 2. ... protect the **privacy of buyers**.
- must enable the state to tax income and crack down on illegal business activities.
- 4. ... prevent payment fraud.
- only disclose the minimal amount of information necessary.
- 6. ... be usable.
- 7. ... be efficient.
- 8. ... avoid single points of failure.
- 9. ... foster **competition**.

Taler Overview

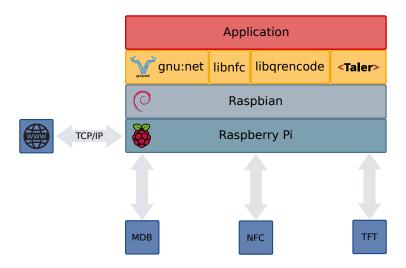
Taler in Operation

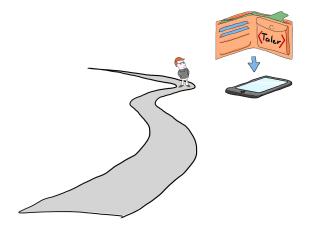

Usability of Taler


https://demo.taler.net/

- 1. Install browser extension.
- 2. Visit the bank.demo.taler.net to withdraw coins.
- 3. Visit the shop.demo.taler.net to spend coins.

The Taler Snack Machine¹


Integration of a MDB/ICP to Taler gateway. Implementation of a NFC or QR-Code to Taler wallet interface.




Software

How to use at WCEF: Install App on Android²

How to use at WCEF: Exchange cash for e-cash

Technik und Informatik

How to use at WCEF: Buy autographed copy of GRM!

Technik und Informatik

How to use afterwards: Shop online³

https://buywith.taler.net/

Use Case: Journalism

Today:

- Corporate structure
- Advertising primary revenue
- Tracking readers critical for business success
- Journalism and marketing hard to distinguish

Use Case: Journalism

Today:

- Corporate structure
- Advertising primary revenue
- Tracking readers critical for business success
- Journalism and marketing hard to distinguish

With GNU Taler:

- One-click micropayments per article
- Hosting requires no expertise
- Reader-funded reporting separated from marketing
- Readers can remain anonymous

Use Case: Anti-Spam

Today, p≡p provides authenticated encryption for e-mail:

- Free software
- Easy to use opportunistic encryption
- Available for Outlook, Android, Enigmail
- Spies & spam filters can no longer inspect content

Use Case: Anti-Spam

Today, p≡p provides authenticated encryption for e-mail:

- Free software
- Easy to use opportunistic encryption
- Available for Outlook, Android, Enigmail
- Spies & spam filters can no longer inspect content

With GNU Taler:

- Peer-to-peer payments via e-mail
- ▶ If unsolicited sender, hide messages from user & automatically request payment from sender
- Sender can attach payment to be moved to inbox
- Receiver may grant refund to sender

Where might this get us exactly?

Visions

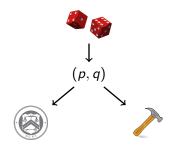
- Be paid to read advertising, starting with spam
- Give welfare without intermediaries taking huge cuts
- Eliminate corruption by making all income visible
- Stop the mining by making crypto-currencies useless for anything but crime

Competitor comparison

	Cash	Bitcoin	Zerocoin	Creditcard	GNU Taler
Online		++	++	+	+++
Offline	+++			+	
Trans. cost	+			_	++
Speed	+			0	++
Taxation	_			+++	+++
Payer-anon	++	0	++		+++
Payee-anon	++	0	++		
Security	_	0	0		++
Conversion	+++			+++	+++
Libre	_	+++	+++		+++

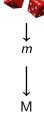
Technology

How does it work?


We use a few ancient constructions:

- Cryptographic hash function (1989)
- ▶ Blind signature (1983)
- ► Schnorr signature (1989)
- Diffie-Hellman key exchange (1976)
- Cut-and-choose zero-knowledge proof (1985)

But of course we use modern instantiations.


Exchange setup: Create a denomination key (RSA)

- 1. Pick random primes p, q.
- 2. Compute n := pq, $\phi(n) = (p-1)(q-1)$
- 3. Pick small $e < \phi(n)$ such that $d := e^{-1} \mod \phi(n)$ exists.
- 4. Publish public key (e, n).

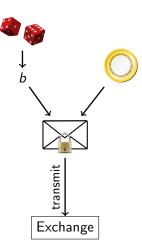
Merchant: Create a signing key (EdDSA)

- pick random m mod o as private key
- ightharpoonup M = mG public key

Capability: $m \Rightarrow$

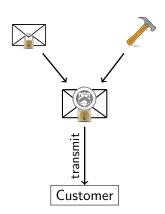
Customer: Create a planchet (EdDSA)

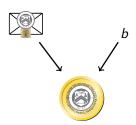
- ▶ Pick random *c* mod *o* private key
- ightharpoonup C = cG public key



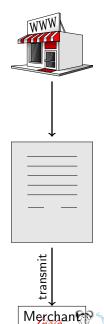
Capability: $c \Rightarrow$

Customer: Blind planchet (RSA)

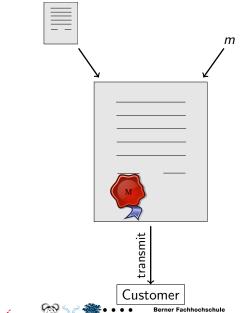

- 1. Obtain public key (e, n)
- 2. Compute f := FDH(C), f < n.
- 3. Pick blinding factor $b \in \mathbb{Z}_n$
- 4. Transmit $f' := fb^e \mod n$


Exchange: Blind sign (RSA)

- 1. Receive f'.
- 2. Compute $s' := f'^d \mod n$.
- 3. Send signature s'.

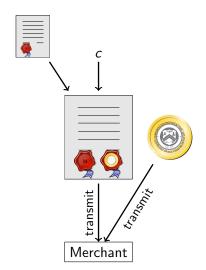

Customer: Unblind coin (RSA)

- 1. Receive s'.
- 2. Compute $s := s'b^{-1} \mod n$


Customer: Build shopping cart

Merchant: Propose contract (EdDSA)

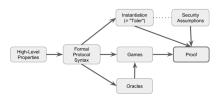
- 1. Complete proposal *D*.
- 2. Send D, $EdDSA_m(D)$



Customer: Spend coin (EdDSA)

- 1. Receive proposal D, $EdDSA_m(D)$.
- 2. Send s, C, $EdDSA_c(D)$

Merchant and Exchange: Verify coin (RSA)


$$s^e \stackrel{?}{\equiv} FDH(C) \mod n$$

Technology

GNU Taler additionally offers:

- Giving change, can provide refunds
- ▶ Integration with HTTP, handles network failures
- High performance
- Bounded losses on key compromise
- Formal security proofs

More information at https://taler.net/.

Conclusion

What can we do?

- Suffer mass-surveillance enabled by credit card oligopolies with high fees, and
- Engage in arms race with deliberately unregulatable blockchains, and
- Enjoy the "benefits" of cash

OR

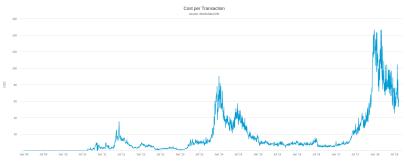
Do you have any questions?

References:

- Christian Grothoff, Bart Polot and Carlo von Loesch. The Internet is broken: Idealistic Ideas for Building a GNU Network. W3C/IAB Workshop on Strengthening the Internet Against Pervasive Monitoring (STRINT), 2014.
- Jeffrey Burdges, Florian Dold, Christian Grothoff and Marcello Stanisci. Enabling Secure Web Payments with GNU Taler. SPACE 2016.
- Florian Dold, Sree Harsha Totakura, Benedikt Müller, Jeffrey Burdges and Christian Grothoff. Taler: Taxable Anonymous Libre Electronic Reserves. Available upon request. 2016.
- Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin. IEEE Symposium on Security & Privacy. 2016.
- David Chaum, Amos Fiat and Moni Naor. Untraceable electronic cash. Proceedings on Advances in Cryptology, 1990.
- 6. Phillip Rogaway. The Moral Character of Cryptographic Work. Asiacrypt, 2015.

The Distraction: Bitcoin

- Unregulated payment system and currency:
 - ⇒ lack of regulation is a feature!
- ► Implemented in free software
- Decentralised peer-to-peer system


The Distraction: Bitcoin

- Unregulated payment system and currency:
 - ⇒ lack of regulation is a feature!
- Implemented in free software
- Decentralised peer-to-peer system
- Decentralised banking requires solving Byzantine consensus
- ▶ Creative solution: tie initial accumulation to solving consensus

The Distraction: Bitcoin

- Unregulated payment system and currency:
 - ⇒ lack of regulation is a feature!
- ► Implemented in free software
- Decentralised peer-to-peer system
- Decentralised banking requires solving Byzantine consensus
- Creative solution: tie initial accumulation to solving consensus
 - \Rightarrow Proof-of-work advances ledger
 - ⇒ Very expensive banking

Current average transaction value: $\approx 1000 \text{ USD}$

What is there?

Components

- ► REST APIs, C APIs
- Command-line, WebExtension (Firefox, Chrome, Chromium, Brave) and Android wallet
- GLS bank integration (libeufin, WiP)
- Escrow/backup solution (Anastasis, WiP)
- Merchant backend & backoffice (needs improvements)
- WooCommerce plugin (needs update)
- ► Taler-enabled vending machine (MDB)
- Sample Web frontends