
Journal on Information Security manuscript No.
(will be inserted by the editor)

Byzantine Set-Union Consensus using Efficient Set
Reconciliation

Florian Dold · Christian Grothoff

Received: December 6, 2017

Abstract Applications of secure multiparty computation such as certain elec-
tronic voting or auction protocols require Byzantine agreement on large sets
of elements. Implementations proposed in the literature so far have relied on
state machine replication, and reach agreement on each individual set element
in sequence.

We introduce set-union consensus, a specialization of Byzantine consensus
that reaches agreement over whole sets. This primitive admits an efficient
and simple implementation by the composition of Eppstein’s set reconciliation
protocol with Ben-Or’s ByzConsensus protocol.

A free software implementation of this construction is available in GNUnet.
Experimental results indicate that our approach results in an efficient protocol
for very large sets, especially in the absence of Byzantine faults. We show
the versatility of set-union consensus by using it to implement distributed
key generation, ballot collection and cooperative decryption for an electronic
voting protocol implemented in GNUnet.

This is a revised and extended version of a paper published under the same
title at ARES 2016.

Keywords Byzantine agreement, secure multiparty computation, complexity

F. Dold
Inria
Inria Rennes Bretagne Atlantique
263 Avenue du General Leclerc
F-35042 Rennes
E-mail: florian.dold@inria.fr

C. Grothoff
Inria Rennes Bretagne Atlantique
263 Avenue du General Leclerc
F-35042 Rennes
E-mail: christian.grothoff@inria.fr

2 Florian Dold, Christian Grothoff

1 Introduction

Byzantine consensus is a fundamental building block for fault-tolerant dis-
tributed systems. It allows a group of peers to reach agreement on some value,
even if a fraction of the peers are controlled by an active adversary. Theory-
oriented work on Byzantine consensus often focuses on finding a single agree-
ment on a binary flag or bit string. [29] More recent approaches for practical
applications are mainly based on state machine replication (SMR), wherein
peers agree on a sequence of state machine transitions. State machine repli-
cation makes it relatively easy to lift existing, non-fault-tolerant services to
a Byzantine fault-tolerant implementation [14]. Each request from a client
triggers a state transition in the replicated state machine that provides the
service.

A major shortcoming of SMR is that all requests to the service need to be
individually agreed upon in sequence by the replica peers of the state machine.
This is undesireable since in unoptimized SMR protocols, such as PBFT [14], a
single transition requires O(n2) messages to be exchanged for n replicas. Some
implementations [35] try to address this inefficiency by optimistically process-
ing requests and falling back to individual Byzantine agreements only when
Byzantine behavior is detected. In practice this leads to very complex imple-
mentations whose correctness is hard to verify and that have weak progress
guarantees [16].

The canonical example for a service where this inefficiency becomes appar-
ent is the aggregation of values submitted by clients into a set. This scenario
is relevant for the implementation of secure multiparty computation protocols
such electronic voting [17], where ballots must be collected, and auctions [12],
where bids must be collected. A direct implementation that reaches agree-
ment on a set of m elements with SMR requires m sequential agreements,
each consisting of O(n2) messages.

We introduce Byzantine set-union consensus (BSC) as an alternative com-
munication primitive that allows this aggregation to be implemented more
efficiently. In order to implement the set aggregation service described above,
the peers first reconcile their sets using an efficient set reconciliation protocol
that is not fault-tolerant but where the complexity is bounded even in the case
of failures. Then, they use a variant of ByzConsensus [9] to reach Byzantine
agreement on the union.

We assume a partially synchronous communication model, where non-
faulty peers are guaranteed to successfully receive values transmitted by other
non-faulty peers within an existing but unknown finite time bound [22]. Peers
communicate over pairwise channels that are authenticated. Message delivery
is reliable (i.e. messages arrive uncorrupted and in the right order) but the
receipt of messages may be delayed. We make the same assumption as Castro
and Liskov [14,15] about this delay, namely that it does not grow faster than
some (usually exponential) function of wall clock time. We assume a compu-
tationally unbounded adversary that can corrupt at most t = dn/3e − 1 peers
creating Byzantine faults. The adversary is static, that is the set of corrupted

Byzantine Set-Union Consensus using Efficient Set Reconciliation 3

peers is fixed before the protocol starts, but this set is not available to the
correct peers. The actual number of faulty peers is denoted by f , with f ≤ t.

The BSC protocol has message complexity O(mn + n2) when no peers
show Byzantine behavior. When f peers show Byzantine behavior, the message
complexity is O(mnf + kfn2), where k is the number of valid set elements
exclusively available to the adversary. We will show how k can be bounded
for common practical applications, since in the general case k is only bounded
by the bandwidth available to the adversary. In practice, we expect kf to be
significantly smaller than m. Thus, O(mnf + kfn2) is an improvement over
using SMR-PBFT which would have complexity O(mn2).

We have created an implementation of the BSC protocol by combining Ben-
Or’s protocol for Byzantine consensus [9] with a bounded variant of Eppstein’s
protocol for efficient set reconciliation [23]. We demonstrate the practical ap-
plicability of our resulting abstraction by using BSC to implement distributed
key generation, ballot collection and cooperative decryption from the Cramer-
Gennaro-Schoenmakers remote electronic voting scheme [17] in the GNUnet
framework. Our experimental results show that the behavior of the implemen-
tation matches our predictions from theory.

In summary, we make the following contributions in this paper:

– The introduction of Byzantine Set-Union Consensus (BSC) with Byzantine
Eppstein Set Reconciliation.

– The analysis and proof of correctness of Byzantine Set Union Consensus.
– An implementation and experimental evaluation of the protocol.
– A discussion of practical applications to Secure Multiparty Computation.

2 Background

The Byzantine consensus problem [37] is a generalization of the consensus
problem where the peers that need to reach agreement on some value might
also exhibit Byzantine faults.

Many specific variants of the agreement problem (such as interactive con-
sistency [26], k-set consensus [18], or leader election [38] and many others [27])
exist. We will focus on the consensus problem, wherein each peer in a set of
peers {P1, . . . , Pn} starts with an initial value vi ∈ M for an arbitrary fixed
set M . At some point during the execution of the consensus protocol, each
peer irrevocably decides on some output value v̂i ∈M . Informally, a protocol
that solves the consensus problem must fulfill the following properties:1

– Agreement: If peers Pi, Pj are correct, then vi = vj .
– Termination: The protocol terminates in a finite number of steps.
– Validity: If all correct peers have the same input value ṽ, then all correct

peers decide on ṽ.

1 Different variations and names can be found in the literature. We have chosen a definition
that extends to our generalization to sets later on.

4 Florian Dold, Christian Grothoff

Some definitions of the consensus problem also include strong validity,
which requires the value that is agreed upon to be the initial value of some
correct peer [45]. The consensus protocol presented in this paper does not offer
strong validity; in fact, for a set union operation this is not exactly desirable
as the goal is to have all peers agree a union of all of the original sets, not on
some peer’s initial subset.

2.1 The FLP Impossibility Result

A fundamental theoretical result (often called FLP impossibility for the initials
of the authors) states, informally, that no deterministic protocol can solve the
consensus problem in the asynchronous communication model, even in the
presence of only one crash-fault [28].

While this result initially seems discouraging, the conditions under which
FLP impossibility holds are quite specific and subtle [5]. There are a number
of techniques to avoid these conditions while still resulting in a useful protocol.
For example:

– Common coins: Some protocols introduce a shared source of randomness
that the adversary cannot predict or bias. This avoids the FLP impossi-
bility result, since the protocol is not deterministic anymore. In practice,
these protocols are very complex and often use variants of secret-sharing
and weaker forms of Byzantine agreement to implement the common coin
[25,24,43]. Implementing a common coin oracle resilient against an active
adversary is non-trivial and usually required extra assumptions such as a
trusted dealer in the startup phase [13] or shared memory [6]. Recent de-
signs to implement a Byzantine fault-tolerant bias-resistant public random
generator only scale to hundreds of participants and still have relatively
high failure rates (reported at 0.08% for and adversary power bounded at
1
3 and 32 participants) [53].

– Failure oracles: Approaches based on unreliable failure detectors [33] aug-
ment the model with oracles for the detection of faulty nodes. Much care
has to be taken not to violate correctness of the protocol by classifying
too many correct peers as faulty; this is problem is present in early sys-
tems such as Rampart [50] and SecureRing [34] as noted by Castro and
Liskov [14,15]. While the theory of failure detectors is quite established for
the non-Byzantine case, it is not clear whether they are still useful in the
presence of Byzantine faults.

– Partial synchrony: A model where a bound on the message delay or clock
shift exists but is unknown or is known but only holds from an unknown
future point in time is called partial synchrony. The FLP result does not
hold in this model [22].

– Minimal synchrony: The definition of synchrony used by the FLP impossi-
bility result can be split into three types of synchrony: Processor synchrony,
communication synchrony and and message ordering synchrony. Dolev et

Byzantine Set-Union Consensus using Efficient Set Reconciliation 5

al. [21] show that consensus is still possible if only certain subsets of these
three synchrony assumptions are fulfilled.

This work follows the path of [22] in relaxing the full asynchrony assump-
tion behind the FLP impossibility result.

2.2 Byzantine consensus in the partially synchronous model

The protocols presented in this paper operate within the constraints of the
partially synchronous model, where participants have some approximate in-
formation about time.

A fundamental result is that no Byzantine consensus protocol with n peers
can support dn/3e or more Byzantine faults in the partially synchronous
model [22].

Early attempts at implementing Byzantine consensus with state machine
replication are SecureRing [34] and Rampart [50]. A popular design in the
partially synchronous model is Castro and Liskov’s Practical Byzantine Fault
Tolerance (PBFT) [14,15]. PBFT uses a leader to coordinate peers (called
replicas in BPFT terminology). When replicas detect that the leader is faulty,
they run a leader-election protocol to appoint a new leader.

PBFT guarantees progress as long as the message delay does not grow
indefinitely for some fixed growth function2. The approach taken by BPFT
(and several derived protocols) has several problems [16]: In practice, malicious
participants are able to slow down the system significantly. When facing an
adversarial scheduler that violates PBFT’s weak synchrony assumption, PBFT
can fail to make progress entirely [40].

Some more recent Byzantine state machine replication protocols such as
Q/U [3] or Zyzzyva [35] have less overhead per request since they optimize for
the non-Byzantine case. This comes, however, often at the expense of robust-
ness in the presence of Byzantine faults [16], not to mention that correctness
proofs for the respective protocols and the implementation of state machine
replication are notoriously difficult [8].

2.3 Gradecast

A key building block for our protocol is Feldman’s Gradecast protocol [24]. In
contrast to an unreliable broadcast, Gradecast provides correctness properties
to the receivers, even if the leader is exhibiting Byzantine faults.

In a Gradecast, a leader PL broadcasts a message m among a fixed set
P = {P1, . . . , Pn} of peers. For notational convenience, we assume that PL ∈
P. These are the communication steps for peer Pi:

1. LEAD: If i = L, send the input value vL to P
2. ECHO: Send the value received in LEAD to P.

2 In practice, exponential back-off is used.

6 Florian Dold, Christian Grothoff

3. CONFIRM: If a common value v was received at least n− t times in round
ECHO, send v to P. Otherwise, send nothing.

Afterwards, each peer assigns a confidence value ci ∈ {0, 1, 2} that “grades”
the correctness of the broadcast. The result is a graded result tuple 〈v̂i, ci〉
containing the output value v̂i and the confidence ci. The grading is done with
the following rules:

– If some v̂ was received at least n− t times in CONFIRM, output 〈v̂, 2〉.
– Otherwise, if some v̂ was received at least t+1 times in CONFIRM, output
〈v̂, 1〉.

– Otherwise, output 〈⊥, 0〉. Here, ⊥ denotes a special value that indicates
the absence of a meaningful value.

For the ci, the following correctness properties must hold:

1. If ci ≥ 1 then v̂i = v̂j for correct Pi and Pj

2. If PL is correct, then ci = 2 and v̂i = vL for correct Pi.
3. |ci − cj | ≤ 1 for correct Pi and Pj .

When a correct peer Pi receives a Gradecast with confidence 2, it can
deduce that all other peers received the same message, but some other peers
might have only received it with a confidence of 1. Receiving a Gradecast
with confidence 1 also guarantees that all other correct peers received the
same message. However, it indicates that the leader behaved incorrectly. No
assumption can be made about the confidence of other peers. Receiving a
Gradecast with confidence 0 indicates that the leader behaved incorrectly and,
crucially, that all other correct peers know that the leader behaved incorrectly.

A simple counting argument proves that the above protocol satisfies the
three Gradecast properties. [24]

2.4 ByzConsensus

ByzConsensus [9] uses Gradecast to implement a consensus protocol for sim-

ple values. Each peer begins with a starting value s
(1)
i and the list of all n

participants P. Each peer also starts with an empty blacklist of corrupted
peers. If a peer is ever blacklisted, it is henceforth excluded from the protocol.
In ByzConsensus, Gradecast is used to force corrupt peers to either expose
themselves as faulty—and consequently be excluded—by gradecasting a value
with low confidence, or to follow the protocol and allow all peers to reach
agreement.

ByzConsensus consists of at most f +1 sequentially executed super-rounds
r ∈ 1 . . . f + 1 where f ≤ t. In each super-round, each peer leads a Gradecast

using their candidate value s
(r)
i ; these n Gradecasts can be executed in parallel.

Leaders where the Gradecast results in a confidence of less than 2 are put on
the blacklist. Recall that different correct peers might receive a Gradecast with
different confidence; thus peers do not necessarily agree on the blacklist.

Byzantine Set-Union Consensus using Efficient Set Reconciliation 7

At the end of each super-round, each peer computes a new candidate value

s
(r+1)
i using the value that was received most often from the Gradecasts with

a confidence of as least 1. If s
(r)
i was received more than n − t times, then

r = f and the next round is the last round.
If the final candidate value does not receive a majority of at least 2t + 1

among the n Gradecasts, or if the blacklist has more than t entries, then the
protocol failed: either more than t faults happened or, in the partially syn-
chronous model, correct peers did not receive a message within the designated
round due to the delayed delivery.

ByzConsensus has message complexity O(fn3). While the asymptotic mes-
sage complexity is obviously worse than the O(n2) of PBFT, there is a way to
use set reconciliation to benefit from the parallelism of the Gradecast rounds
and thereby reduce the complexity to O(fn2).

2.5 Set reconciliation

The goal of set reconciliation is to identify the differences between two large
sets, say Sa and Sb, that are stored on two different machines in a network.
A simple but inefficient solution would be to transmit the smaller of the two
sets, and let the receiver compute and announce the difference. Research has
thus focused on protocols that are more efficient than this naive approach with
respect to the amount of data that needs to be communicated when the sets
Sa and Sb are large, but their symmetric difference Sa ⊕ Sb is small.

An early attempt to efficiently reconcile sets [41] was based on represent-
ing sets by their characteristic polynomial over a finite field. Conceptually,
dividing the characteristic polynomials of two sets cancels out the common
elements, leaving only the set difference. The characteristic polynomials are
transmitted as a sequence of sampling points, where the number of sampling
points is proportional to the size of the symmetric difference of the sets Sa and
Sb. The number of sampling points can be approximated with an upper bound,
or increased on the fly should a peer be unable to interpolate a polynomial.
While theoretically elegant, the protocol is not efficient in practice. The com-
putational complexity of the polynomial interpolation grows as O(|Sa ⊕ Sb|3)
and uses rather expensive arithmetic operations over large finite fields.

A practical protocol was first proposed by Eppstein et al. in 2011. [23] It
is based on invertible Bloom filters (IBFs), a probabilistic data structure that
is related to Bloom filters [11], and stratas for difference estimation.

2.5.1 Invertible Bloom Filters

An IBF is a constant-size data structure that supports four basic operations,
insert, delete, decode and subtract.

Insert and delete operations are commutative operations encoding a key
that uniquely identifies a set element, typically derived from the element via
a hash function.

8 Florian Dold, Christian Grothoff

The decode operation can be used to extract some or all of the updates,
returning the key and the sign of the operation, that is either insert or delete.
Since the data structure uses constant space, decoding cannot always succeed.
Decoding is a probabilistic operation that is more likely to succeed when the
IBF is sparse, that is the number of encoded operations (excluding the oper-
ations that canceled each other out) is small. The decoding process can also
be partially successful, if some elements could be extracted but the remaining
IBF is non-empty. Extracting an update by decoding an IBF is only possible
if the key was recorded only once in the IBF. However, storing a deletion or
insertion of the same key twice or more (not counting operations that canceled
each other out) makes both updates impossible to decode.

IBFs of the same size can also be subtracted from each other. When sub-
tracting IBFb from IBFa, the resulting structure IBFc := IBFa−IBFb contains
all insertions and deletions from IBFa, and insertions from IBFb are recorded
as deletions in IBFc and deletions from IBFb are recorded as insertions in IBFc.
Effectively, the IBF subtraction allows to compute the difference between two
sets simply by encoding each set as an IBF using only insertion operations.

Under the hood, an IBF of size n is an array of n buckets. Each bucket
holds three values:

– A signed counter that handles overflow via wrap-around. Recording an
insertion or deletion adds −1 or +1 to the counter, respectively.

– An ⊕-sum3, called the keySum, over the keys that identify set the elements
that were recorded in the bucket.

– An ⊕-sum, called the keyHashSum, over a the hash h(·) of each key that
was recorded in the bucket.

As with ordinary Bloom filters, encoding an update in an IBF records the
update in k different buckets of the IBF. The indices of buckets that record
the update are derived via a k independent hash functions from the key of the
element that is subject of the update. We write Pos(x) for the set of array
positions that correspond to the element key x.

Before we describe the decoding process, we introduce some terminology.
A bucket is called a candidate bucket if its counter is −1 or +1, which might
indicate that the keySum field contains the key of an element that was the
subject of an update. Candidate buckets that contain the key of an element
that was previously updated are called pure buckets. Candidate buckets are not
necessarily pure buckets, since a candidate bucket could also result from, for
example, first inserting an element key e1 and then deleting e2 when Pos(e1)∩
Pos(e1) 6= ∅ and Pos(e1) 6= Pos(e2).

The keyHashSum provides a way to detect if a candidate bucket is not a pure
bucket, namely when h(keySum) 6= keyHashSum. The probability of classifying
an impure bucket as pure with this method is dependent on the probability
of a hash collision. Another method to check for an impure candidate bucket
with index i is to check whether i /∈ Pos(keySum).

3 The ⊕ denotes bit-wise exclusive or.

Byzantine Set-Union Consensus using Efficient Set Reconciliation 9

The decoding process then simply searches for buckets that are, with high
probability, pure. When the count field of the bucket is 1, the key decoding
procedure reports the key as “inserted” and exececutes a deletion operation
with that key. When the count field is −1, the key is reported as “deleted”
and subsequently an insertion operation is executed.

With a probability that increases with sparser IBFs, decoding one element
may cause one or more other buckets to become pure, allowing the decoding
to be repeated. If none of the buckets is pure, the IBF is undecodable, and
a larger IBF must be used, or the reconciliation could fall back to the naive
approach of sending the whole set.

The IBF decoding process is particularly suitable for reconciling large sets
with small differences. When the symmetric difference between the sets is small
enough compared to the size of the IBFs, the result IBFc of the subtraction
can be decoded, since the common elements encoded in IBFa and IBFb cancel
each other out. This makes it possible to obtain the elements of the symmetric
difference, even when the IBFs that represent the full sets can not be decoded.

As long as the symmetric difference between the original sets Sa and Sb

can be approximated well enough, IBFs can be used for set reconciliation by
encoding Sa in IBFa and Sb in IBFb. One of the IBFs is sent over the network,
the IBFc = IBFa − IBFb is computed and decoded. Should the decoding
(partially) fail, the same procedure is repeated with larger IBFs.

2.5.2 Difference Estimation with Stratas

In order to select the initial size of the IBF appropriately for the set recon-
ciliation protocol, one needs an estimate of the symmetric difference between
the sets that are being reconciled. Eppstein et al. [23] describe a simple tech-
nique, called strata estimation, that is accurate for small differences. While
Eppstein et al. suggest combining the strata estimator, with a min-wise esti-
mator, which is more accurate for large differences, our work only requires the
strata estimators.

A strata estimator is an array of fixed-size IBFs. These fixed-size IBFs
are called strata since each of them contains a sample of the whole set, with
increased sampling probability towards inner strata. Similar to how two IBFs
can be subtracted, strata estimators are subtracted by pairwise subtraction of
the IBFs they consist of.

The set difference is estimated by having both peers encode their set in a
strata estimator. One of the strata estimators is then sent over to the other
peer, which subtracts the strata estimators from each other. With every IBF
of the strata estimator that results from the subtraction, a decoding attempt
is made. The number of successfully decoded elements in each stratum allows
an estimate to be made on the set difference, which is then used to determine
the size of the IBF for the actual set reconciliation.

10 Florian Dold, Christian Grothoff

3 Our approach

We now describe how to combine the previous approaches into a protocol for
Byzantine fault-tolerant set consensus. The goal of the adversary is to sabotage
timely consensus among correct peers, e.g. by increasing message complexity
or forcing timeouts.

A major difficulty with agreeing on a set of elements as a whole is that
malicious peers can initially withhold elements from the correct peers and later
send them only to a subset of the correct peers. This could possibly happen
at a time when it is too late to reconcile the remaining difference caused by
distributing these elements. We assume that the number of these elements that
are initially known to the adversary but not to all correct peers is bounded by
k, where k exists but is not necessarily known to the correct participants.

3.1 Definition

We now give a definition of set-union consensus that is motivated by practical
applications to secure multiparty computation protocols such as electronic
voting, which are discussed in more detail in Section 7.

Consider a set of n peers P = {P1, . . . , Pn}. Fix some (possibly infinite)
universe M of elements that can be represented by a bit string. Each peer Pi

has an initial set S
(0)
i ⊆M .

Let R : P(M)→ P(M) be an idempotent function that canonicalizes sub-
sets of M by replacing multiple conflicting elements with the lexically smallest
element in the conflict set and removes invalid elements. What is considered
conflicting or invalid is application-specific. During the execution of the set-
union consensus protocol, after finite time each peer Pi irrevocably commits
to a set Si such that:

1. For any pair of correct peers Pi, Pj it holds that Si = Sj .
2. If Pi is correct and e ∈ S0

i then e ∈ Si.
3. The set Si is canonical, that is Si = R(Si).

The canonicalization function allows us to set an upper bound on the num-
ber of elements that can simultaneously be in a set. For example in electronic
voting, canonicalization would remove malformed ballots and combine mul-
tiple different (encrypted) ballots submitted by the same voter into a single
“invalid” ballot for that voter.

3.2 Byzantine set-union consensus (BSC) protocol

Recall that every peer Pi, 0 < i ≤ n starts with a set S
(0)
i . The BSC protocol

incorporates two subprotocols, bounded set reconciliation and lower bound
agreement, and uses those to realize an efficient Byzantine fault-tolerant vari-
ant of ByzConsensus. An existing generalization of IBFs to multi-party set

Byzantine Set-Union Consensus using Efficient Set Reconciliation 11

reconciliation [42] based on network coding is not applicable to this problem,
as it requires trusted intermediaries.

The basic problem solved by the two subprotocols is bounding the cost of
Eppstein’s set reconciliation. Given a set size difference between two peers of
k, the expected cost of Eppstein’s set reconciliation is O(k) if both participants
are honest. However, we need to ensure that malicious peers cannot generally
raise the complexity to O(m) where m is the size of the union.

For this, we use a bounded variant of Eppstein’s set reconciliation protocol,
which is given a lower bound L on the size of the set of elements shared by all
honest participants. Given such a lower bound, the bounded set reconciliation
protocol must detect faulty participants in O(k + (m− L)). We note that for
L = 0, the bounded set reconciliation is still allowed to cost O(m).

3.2.1 Bounded set reconciliation

In bounded set reconciliation we are thus concerned with modifications that
ensure that a set reconciliation step between an honest and a faulty peer either
succeeds after O(k) traffic, or aborts notifying the honest peer that the other
peer is faulty. While we use probabilities to detect faulty behavior, we note
that suitable parameters can be used to ensure that false-positives are rare,
say 1 : 2128, and thus as unlikely as successful brute-force attacks against
canonical cryptographic primitives, which BSC also assumes to be safe.

To begin with, to bound the complexity of Eppstein set reconciliation one
needs to bound the number of iterations the protocol performs. Assuming
honest peers, the initial strata estimation ensures that the IBFs will decode
with high probability, resulting in Eppstein’s claim of single-round complexity.
Given aggressive choices of the parameters to improve the balance between
round-trips and bandwidth consumption, decoding failures can happen with
non-negligible probability in practice. In this case, the process can simply
be restarted using a different set of hash functions and an IBF doubled in
size. This addresses issues caused by conservative choices for IBF sizes that
optimize for the average case. What is critical is that the probability of such
failures remains small enough that after if the number of rounds exceeds some
constant, we can assert faulty behavior and overall remain within the O(k)
bound assuming individual rounds are bounded by O(k).

Another problem with Eppstein’s original protocol related to aggressive
parameter choices is that iterative decoding does not always have to end with
an empty or an undecodable IBF. Specifically, the decoding step can sometimes
decode a key that was never added to the IBF, simply because the two purity
checks are also probabilistic. This is usually not an issue, as when a decoder
requests the transmission of the element corresponding to improperly decoded
key, the presumed element’s owner can indicate a decoding failure at that time.
Here, another round of the protocol is unlikely to produce the same error and
would again fix the problem. However, given reasonably short strings for the
hashKeySum, it is actually even possible to obtain a looping IBF that spawns
an infinite series of “successfully” decoded keys. Here, the implementor has to

12 Florian Dold, Christian Grothoff

be careful to ensure that the iterated decoding algorithm terminates. Instead
of mandating an excessively long hashKeySum to prevent this, it is in practice
more efficient to handle this case by stopping the iteration and reporting the
IBF as undecodable when the number of decoded keys exceeds a threshold
proportional to the size of the IBF.

We also need to consider the bandwidth consumption of an individual
round. To cause more than O(k) traffic, a malicious peer could produce strata
that result in a huge initial symmetric difference. In this case, the initial size
of the IBF may exceed O(k). We address this problem by not permitting the
use of Eppstein’s method if the symmetric difference definitively exceeds n−L

2 ,
where n is the smaller of the two set sizes.4 Instead, once the estimate of the
symmetric difference substantially exceeds this threshold, the reconciliation
algorithm falls back to sending the complete set. As this creates O(m) traffic,
it must only be allowed under certain conditions.

First, we consider the case where the honest peer has the larger set. Here,
the honest peer Pi will only send its full set if the set difference is no larger
than |Si|−L, and otherwise report a fault. This ensures that a malicious peer
cannot arbitrarily request the full set from honest peers.

Second, we consider the case where the honest peer Pi is facing a faulty
peer that claims to have a huge set. This is can happen either directly from the
strata estimator, or after Pi observes a constant number of successive IBF de-
coding failures.5 At this point, instead of passively accepting the transmission
of elements, the receiver Pi checks that a sufficient number of the elements
received are not in Si. Let R be the stream of elements e received at any point
in time. We assume that the sender is required to transmit the elements in
randomized order. Thus, if |R∩Si|− |R\Si| ≥ 128, Pi can determine that the
sender is faulty with probability 2128 : 1, as the the n

2 -threshold for converting
to complete set transmission ensures that for an honest sender less than half
of the elements would be in Si.

Finally, we note that the individual insert, delete, decode and subtract op-
erations on the IBF are all constant time and that IBFs are also constant size.
Thus, given a constant number of rounds and a bound on the bandwidth per
round, we have implicitly assured that memory and CPU consumption of the
bounded set reconciliation is also O(k + (m− L)).

3.2.2 Lower bound agreement

To provide a lower bound on the permissable set size for set reconciliation, BSC
first executes a protocol for lower bound agreement (LBA). In this first step,

every correct peer Pi learns a superset S
(1)
i of the union of all correct peers’

4 The optimal formula here depends on the size ratio of IBF element to the transmission
size of an individual element and the estimated size of the set overlap. However, to simplify
the exposition, we will assume a simple 50% threshold henceforth.

5 Each failure causes the IBF size to double and thus corresponds to a doubling of the set
difference estimate. Thus, the number of decoding failures could remain the threshold that
causes an abort, while the set difference estimate substantially exceeds 2(|Si| − L).

Byzantine Set-Union Consensus using Efficient Set Reconciliation 13

initial sets, as well as a lower bound `i for the minimum number of elements

shared by all correct peers where n− `i ≤ k. Note that neither S
(1)
i = S

(1)
j nor

`i = `j necessarily hold even for correct peers Pi and Pj . Our LBA protocol
proceeds in three steps:

(i) All peers reconcile their initial set with each other, using pairwise bounded
set reconciliation using a lower bound of L = 0.

(ii) All peers send their current set size to each other, and each peer Pi sets
sets `i to the (t + 1)-smallest set size that Pi received.

(iii) All peers again reconcile their sets with each other, using pairwise bounded
set reconciliation.

The third step is necessary to ensure that every correct Pi has at least `i
elements, since malicious peers could use the k elements initially withheld to
force an honest peer’s set size below the (t + 1)-smallest set size. Thanks to
the repetition even if `i is different for each peer, it is guaranteed that Pi has
at least `i elements in common with every other good peer.

In subsequent set reconciliations, `i can be used to bound the traffic that
malicious peers are able to cause by falsely claiming to have a large number
of elements missing. LBA itself has complexity O(nmf): initially all malicious
peers can once claim to have empty sets with all other peers. LBA ensures
that for the remainder of the protocol, a correct peer with mi elements can
stop sending elements to malicious peer PM after PM requested mi − `i ≤ k
elements by reducing the complexity of bounded set reconciliation with peer
mi to O(k) using L = `i.

3.2.3 Exact set agreement

After LBA, an exact set agreement is executed, where all peers reach Byzantine
agreement for a super-set of the set reached in LBA. The exact set agreement is
implemented by executing a variant of ByzConsensus which instead of sending
values reconciles sets.

The Gradecast is adapted as follows:

(i) LEAD: If i = L, reconcile the input set VL with P.
(ii) ECHO: Reconcile the set received in LEAD with P.
(iii) CONFIRM: Let UE be the union of all sets received in the ECHO round,

and NE(e) the number of times a single set element e was received.
If

∨
e∈UE t < NE(e) < n − t, send ⊥ (where ⊥ 6= ∅). Otherwise send

UE − {e | NE(e) ≤ t} to P.

The grading rules are also adapted to sets. Let UC be the union of sets re-
ceived in CONFIRM, N+

C (e) the number of times a single element e ∈ UC was
received, and N−C (e) the number of sets (not ⊥) received in CONFIRM that
excluded e.

– If
∧

e∈U N
+
C (e) ≥ n− t ∨N−C (e) ≥ n− t,

output 〈{e | N+
C (e) ≥ n− t}, 2〉.

14 Florian Dold, Christian Grothoff

– Otherwise if
∧

e∈UC N+
C (e) > t ∧N+

C (e) ≥ N−C (e)

or
∧

e∈UC N−C (e) > t ∧N−C (e) > N+
C (e),

output 〈{e | N+
C (e) > t ∧N+

C (e) ≥ N−C (e)}, 1〉.
– Otherwise, output 〈⊥, 0〉.

Similar to ByzConsensus, the BSC consists of at most f + 1 super-rounds,

where f ≤ t. Each peer Pi starts with S
(1)
i as its current set. In sequential

super-rounds, all peers lead a Gradecast for their candidate set. Like in Byz-
Consensus, if Pi receives a Gradecast with a confidence value that is not 2,
then Pi puts the leader of the Gradecast on its blacklist, and correct peers
stop all communictation with peers on their blacklist.

At the end of each super-round, peers update their candidate set as fol-
lows. Let n′ be the number of leaders that gradecasted a set with a non-zero
confidence. The new candidate set contains all set elements that were included
in at least dn′/2e sets that were gradecasted with a non-zero confidence value.
If all elements occur with a (n − t)-majority, then the next round is the last
round. The output of the consensus protocol is the candidate set after the last
round—or failure if f > t.

We give a correctness proof that generalizes Feldman’s proof for Gradecast
of single values [25, Section 4.1].

Lemma 1 If two correct peers send sets A 6= ⊥ and B 6= ⊥ respectively in
CONFIRM, then A = B.

Proof Proof by contradiction and counting argument. Assume w.l.o.g. that
e ∈ A and e /∈ B. At least n− t peers must have echoed a set that includes e
to the first peer. Suppose f of these peers were faulty, then at least n−t−f > t
good peers included e in the ECHO transmission to the second peer. If e /∈ B,
then t < NE(e) < n − t. In this case, an honest second peer must output
B = ⊥. Contradiction.

Theorem 1 The generalization of Gradecast to sets satisfies the three Grade-
cast properties.

Proof We show that each property holds:

– Property 1 (If ci, cj ≥ 1 then V̂i = V̂j for correct Pi and Pj): Assume

w.l.o.g. that e ∈ V̂i \ V̂j .

For e ∈ V̂j , Pi must have received e at least N+
C (e) > t times in CONFIRM.

Given f ≤ t failures, at least one honest peer must thus have included e
in CONFIRM. According to Lemma 1, then all n − f honest peers must
either include e in CONFIRM or send ⊥.
Because ⊥ is not a set, this leaves at most all f ≤ t faulty peers that can
send a set without e. But for e /∈ V̂j we need N−C (e) ≥ t+1. Contradiction.

– Property 2 (If PL is correct, then ci = 2 and V̂i = V̂L for correct Pi): All
n − f ≥ n − t good peers ECHO and CONFIRM the same set. By the
grading rules, they must output a confidence of 2.

Byzantine Set-Union Consensus using Efficient Set Reconciliation 15

– Property 3 (|ci − cj | ≤ 1 for correct Pi and Pj): Proof by contradiction.

Assume w.l.o.g. ci = 2 and cj = 0. ci = 2 implies that for each x ∈ V̂i at
least n− t peers (and thus (n− t)−f ≥ t+ 1 correct peers) must have sent
a set in CONFIRM that includes x. For any y /∈ V̂i, n− t peers (and thus
(n− t)−f ≥ t+1 correct peers) must have sent a non-⊥ set in CONFIRM
that excludes y.
Given cj = 0, there must have been an element e such that, N+

C (e) ≤ t
and N−C (e) ≤ t for Pj . However, we just derived that for all elements either
N+

C (e) > t or N−C (e) > t. Contradiction. ut

Given the Gradecast properties for sets, the correctness argument given
by Ben-Or [9] for the Byzantine consensus applies to BSC’s generalization to
sets.

As described, the protocol has complexity O(mnf + fkn3). However, the
n parallel set reconciliation rounds in each super-round can be combined by
tagging the set elements that are being reconciled in the LEAD, ECHO and
CONFIRM rounds with the respective leader L. Because LBA (via n−`i ≤ k)
and bounded set reconciliation limit mischief for the combined super-round,
each malicious peer can, as leader, once cause bounded set reconciliation dur-
ing the ECHO round to all-to-all transmit at most k extra elements, resulting
in a total of O(fkn2) extra traffic over all f +1 rounds. Before exposing them-
selves this way, non-leading malicious peers can only cause O(f2kn) additional
traffic during all ECHO rounds. Finally, malicious peers can also cause at most
O(fkn2) traffic in the CONFIRM round. Thus, BSC has overall message com-
plexity of O(mnf + fkn2).

4 Implementation

We implemented the BSC protocol in the SET and CONSENSUS services of
GNUnet [1].

4.1 The GNUnet framework

GNUnet is composed of various components that run in separate operating sys-
tem processes and communicate via message passing. Components that expose
an interface to other components are called services in GNUnet. The main ser-
vice used by our implementation is the CADET service, which offers pairwise
authenticated end-to-end encryption between all participants. CADET uses
a variation of the Axolotl public key ratcheting scheme and double-encrypts
using both TwoFish and AES. [49] The resulting encryption is relatively ex-
pensive compared to the other operations, and thus dominates in terms of
CPU consumption for the experiments.

16 Florian Dold, Christian Grothoff

4.2 Set reconciliation

Bounded set reconciliation is implemented in the SET service. The SET ser-
vice provides a generic interface for set operations between two peers; the
operations currently implemented are the IBF-based set reconciliation and set
intersection [54].

In addition to the operation-specific protocols, the following aspects are
handled generically (i.e. independent of the specific remote set operation) in
the SET service:

Local set operations
Applications need to create sets and perform actions (iteration, insertion,
deletion) on them locally.

Concurrent modifications
While a local set is in use in a network operation, the application may still
continue to mutate that set. To allow this without interfering with concur-
rent the network operations, changes are versioned. A network operation
only sees the state of a set at the time the operation was started.

Lazy copying
Some applications building on the SET service—especially the CONSEN-
SUS service described in the next section—manage many local sets that
are large but only differ in a few elements. We optimize for this case by pro-
viding a lazy copy operation that returns a logical copy of the set without
duplicating the sets in memory.

Negotiating remote operations
In a network operation, the involved peers have one of two roles: The
acceptor, which waits for remote operation requests and accepts or rejects
them, as well as the initiator, which sends the request.

Our implementation estimates the initial difference between sets only us-
ing strata estimators as described by Eppstein [23]. However, we compress the
strata estimator—which is 60KB uncompressed—using gzip. The compres-
sion is highly effective at reducing bandwidth consumption due to the high
probability of long runs of zeros or ones in the most sparse or most dense
strata respectively.

We also use a salt when deriving the bucket indices from the element keys.
When the decoding of an IBF fails, the IBF size is doubled and the salt is
changed. This prevents decoding failures in scenarios where keys map to the
same bucket indices even modulo a power of two, where doubling the size of
the IBF does not remove the collision.

4.3 Set-Union consensus

To keep the description of the set-union consensus protocol in the previous
section succinct, we merely stated that peers efficiently transmit sets using
the reconciliation protocol. However, given that the receiving peer has usually

Byzantine Set-Union Consensus using Efficient Set Reconciliation 17

many sets to reconcile against, an implementation needs to be careful to ensure
that it scales to large sets as intended.

The key goal is to avoid duplicating full sets and to instead focus on the
differences. New sets usually differ in only a few elements, thus our implemen-
tation avoids copying entire sets. Instead, in the leader round we just store
the set of differences with a reference to the original set. In the ECHO and
CONFIRM round, we also reconcile with respect to the set we received from
the leader, and not a peer’s current set. In the ECHO round, we only store
one set and annotate each element to indicate which peer included or excluded
that element. This also allows for a rather efficient computation of the set to
determine the ⊥-result in the CONFIRM round.

4.4 Evaluating malicious behavior

For the evaluation, our CONSENSUS service can be configured to exhibit the
following types of adversarial behavior:

– SpamAlways: A malicious peer adds a constant number of additional ele-
ments in every reconciliation.

– SpamLeader: A malicious peer adds a constant number of additional ele-
ments in reconciliations where the peer is the leader.

– SpamEcho: A malicious peer adds a constant number of additional ele-
ments in echo rounds.

– Idle: Malicious peers do not participate actively in the protocol, which
amounts to a crash fault from the start of the protocol. This type of behav-
ior is not interesting for the evaluation, but used to test the implementation
with regards to timeouts and majority counting.

For the Spam-* behaviors, two different variations are implemented. One
of them (“*-replace”) always generates new elements for every reconciliation.
This is not typical for real applications where the number of stuffable elements
ought to be limited by set canonicalization. However, this shows the perfor-
mance impact in the worst case. The other variation (“*-noreplace”) reuses the
same set of additional elements for all reconciliations, which is more realistic
for most cases. We did not implement adversarial behaviour where elements
are elided, since the resulting traffic is the same as for additional elements,
and memory usage would only be reduced.

5 Experimental results

All of the experiments were run on a single machine with a 24-core 2.30GHz
Intel Xeon E5-2630 CPU, and GNUnet SVN revision 36765. We used the
gnunet-consensus-profiler tool, which is based on GNUnet’s TESTBED
service [55], to configure and launch multiple peers on the target system. We
configured the profiler to emulate a network of peers connected in a clique

18 Florian Dold, Christian Grothoff

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000

S
E
T
 s

e
rv

ic
e
 u

se
r

C
P
U

 t
im

e
 (

se
co

n
d

s)

total set size

Fig. 1: CPU system time for the SET service in relation to total set size.
Average over 50 executions.

topology (via loopback, without artificial latency). Elements for the set oper-
ations are randomly generated and always 64 bytes large.

Bandwidth consumption was measured using the statistics that GNUnet’s
CADET service [49] provides. Processor time was measured using GNUnet’s
resource reporting functionality, which uses the wait3 system call for that
purpose.

5.1 Bounded set reconciliation

We now summarize the experimental results for the bounded set reconcilia-
tion protocol between two peers. We first measured the behavior of the set
reconciliation if identical sets were given to both peers (Figure 1 and 2). Fig-
ure 1 shows that total CPU utilization generally grows slowly as the set size
increases. The sudden jump in processing time that is visible at around 7,000
elements can most likely be explained by cache effects. The effect could not
be observed when we ran the experiment under profiling tools.

Figure 2 shows that bandwidth consumption does not grow linearly with
the total set size, as long as the set size difference between the two peers is
small. The logarithmic increase of the traffic with larger sets can be explained
by the compression of strata estimators: The k-th strata samples the set with
probability 2−k, and for small input sets the strata tends to contain long runs
of zeros that are more easily compressed.

We also measured the behavior of the set reconciliation implementation
if the sets differed. Figure 3 and 4 show that—as expected—CPU time and

Byzantine Set-Union Consensus using Efficient Set Reconciliation 19

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2000 4000 6000 8000 10000

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

total set size

Fig. 2: CADET traffic for the SET service in relation to total set size. Average
over 50 executions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000

S
E
T
 s

e
rv

ic
e
 u

se
r

C
P
U

 t
im

e
 (

se
co

n
d

s)

symmetric set difference

Fig. 3: CPU system time for the SET service in relation to symmetric set
difference. Average over 50 executions.

20 Florian Dold, Christian Grothoff

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 2000 4000 6000 8000 10000

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

symmetric set difference

Fig. 4: CADET traffic for the SET service in relation to symmetric difference.
Average over 50 executions.

bandwidth do grow linearly with the symmetric difference between the two
sets.

Finally, we analyzed what happens when the algorithm switches from trans-
mitting set differences to full sets. Figure 5 shows the bandwidth in relation
to the symmetric set difference, for different total numbers of elements in the
shared set. Up to the threshold where the algorithm switches from IBFs to
full set transmission, we expect the transmission size to grow steeply, and then
afterwards continue linearly at a lower rate again. If the handover threshold is
chosen well, the two lines should meet. This is the case in the dashed curve in
Figure 5. The small bump at a set difference of ≈ 800 is due to an unlucky size
estimate by the strata estimator causing the algorithm to initially attempt set
reconciliation, before switching to full set transmission. If the threshold be-
tween IBF and full set transmission is picked a bit too high and IBFs are sent
slightly beyond the point where they are beneficial, the curve from the IBF
transmission will peak above the one that represents the full set transmission.
This is the case in the solid curve in Figure 5. Finally, the dotted curve shows
the case where the threshold is picked too low, causing expensive full set trans-
mission to occur when IBFs would have been more useful. Here, we also see
a lucky case of underestimating the size of the difference. We note that given
the size of an IBF entry, the average size of a set element and an estimate
of the size overlap, near-perfect thresholds (instead of the 50%-heuristic we
described earlier) can be trivially computed.

Byzantine Set-Union Consensus using Efficient Set Reconciliation 21

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 100 200 300 400 500 600 700 800 900 1000

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

symmetric set difference

size=32B, shared=1000
size=500B, shared=500

size=1000B, shared=500

Fig. 5: CADET traffic for the SET service in relation to symmetric difference at
the boundary between IBF and full set transmission. Note that we did cherry-
pick runs for this graph. Our goal is to illustrate how the curves evolve with
regard to different thresholds between IBF and full set transmission. We also
wanted to show how significant deviations in set difference estimates generated
by the strata estimator can have a minor impact on performance.

5.2 Byzantine set consensus

For our experiments with the BSC implementation, all ordinary peers start
with the same set of elements; different sets would only affect the all-to-all
union phase of the protocol which does pairwise set reconciliation, resulting in
increased bandwidth and CPU consumption proportional to the set difference
as shown in the previous section.

As expected, traffic increases cubically with the number of peers when
no malicious peers are present (Figure 6). Most of the CPU time (Figure 7)
is taken up by CADET, which uses expensive cryptographic operations [49].
Since we ran the experiments on a multicore machine, the total runtime follows
the same pattern as the traffic (Figure 8).

We now consider the performance implications from the presence of ma-
licious peers. Figures 10 and Figure 11 show that bandwidth and runtime
increase linearly with the additional elements malicious peers can exclusivly
supply, in contrast to the sub-linear growth for the non-Byzantine case (Fig-
ure 2).

Figure 11 highlights how the different attack strategies impact the num-
ber of additional elements that were received during set reconciliations: The
number of stuffed elements for the “SpamEcho” behavior is significantly larger

22 Florian Dold, Christian Grothoff

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 1.8x106

 2 4 6 8 10 12 14 16

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

number of peers

Fig. 6: CADET traffic for BSC per peer for 100 elements and only correct
peers. Average over 50 executions.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16

u
se

r
C

P
U

 t
im

e
 (

se
co

n
d

s)

number of peers

cadet service
set service

consensus service

X X X X X X X X X X X X X X X

X

Fig. 7: CPU of BSC for 100 elements of 64 bytes and only correct peers.
Average over 50 executions.

Byzantine Set-Union Consensus using Efficient Set Reconciliation 23

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 2 4 6 8 10 12 14 16

e
n
d

-t
o
-e

n
d

 l
a
te

n
cy

 i
n
 s

e
co

n
d

s

number of peers

Fig. 8: Runtime of BSC for 100 elements of 64 bytes and only correct peers.
Average over 50 executions.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

C
A

D
E
T
 t

ra
ffi

c
in

 b
y
te

s

number of stuffed elements per reconciliation

SpamEcho-replace
SpamLead-replace
SpamAll-noreplace

X X X X X X X X X X X

X

Fig. 9: CADET traffic for BSC on 100 elements of 64 bytes and one malicious
peer with the indicated mode. Average over 50 executions.

24 Florian Dold, Christian Grothoff

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

la
te

n
cy

 i
n
 s

e
co

n
d

s

number of stuffed elements per reconciliation

SpamEcho-replace
SpamLead-replace
SpamAll-noreplace

Fig. 10: Latency for BSC with 4 peers on 100 elements of 64 bytes and one
malicious peer with the indicated mode. Average over 50 executions.

than for “SpamLead”, since multiple ECHO rounds are executed for one LEAD
round, and the number of stuffed elements is fixed per reconciliation. When

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100

to
ta

l
e
x
tr

a
 e

le
m

e
n
ts

number of stuffed elements per reconciliation

SpamEcho-replace
SpamLead-replace
SpamAll-noreplace

Fig. 11: Total number of extra elements received by each peer for BSC on 100
elements of 64 bytes and one malicious peer with the indicated mode. Average
over 50 executions.

Byzantine Set-Union Consensus using Efficient Set Reconciliation 25

malicious peers add extra elements during the LEAD round, the effect of that
is amplified, since all correct receivers have to re-distribute the additional el-
ements in the ECHO/CONFIRM round. Even though adding elements in the
LEAD round requires the least bandwidth from the leader the effect on traffic
and latency is the largest (see Figures 9 and 10).

As expected, when the number of stuffed elements is limited to a fixed set,
the effect on the performance is limited (“SpamAll-noreplace” in Figures 9,
10, 11).

6 Opportunities for further improving BSC

We now discuss some of the key limitations of the current implementation and,
how it could be optimised further.

6.1 Extension to partial synchrony

The prototype used in the evaluation only works in the synchronous model.
It would be trivial to extend it to the partially synchronous model with syn-
chronous clocks by using the same construction as BPFT [14], namely retrying
the protocol with larger round timeouts (usually doubled on each retry) when
it did not succeed.

It might be worthwhile to further investigate the Byzantine round synchro-
nization protocols discovered independently by Attya and Dolev [7] as well as
Dwork, Lynch and Stockmeyer [22]. Running a Byzantine clock synchroniza-
tion protocol interleaved with consensus protocol might lead to a protocol
with lower latency, since the timeouts are dynamically adjusted instead of
being increased for each failed iteration.

6.2 Persistent data structures

Both the SET and CONSENSUS service have to store many variations of the
same set when faulty peers elide or add elements. While the SET service API
already supports lazy copying, the underlying implementation is inefficient
and based on a log of changes per element with an associated version number.
It might be possible to reduce memory usage and increase performance of the
element storage by using data structures that are more well suited, such as
the persistent data structures described by Okasaki [46].

6.3 Fast dissemination

Recall that in order to be included in the final set, an element must be sent to
at least t+1 peers, so that at least one correct peer will receive the element. In
applications of set-union consensus such as electronic voting, the effort to the

26 Florian Dold, Christian Grothoff

client should be minimized, and thus in practice elements might be sent only
to t+ 1 peers, which would lead to large initial symmetric differences between
peers.

A possible optimization would be to add another dissemination round that
only requires n log2 n reconciliations to achieve perfect element distribution
when only correct peers are present. The n2 reconciliations that follow will
consequently be more efficient, since no difference has to be reconciled when
all peers are correct. In the presence of faulty peers, the optimization adds
more overhead due to the additional dissemination round.

More concretely, in the additional dissemination round the peers reconcile
with their 2`-th neighbour (for some arbitrary, fixed order on the peers) in the
`-th subround of the dissemination round. After dlog2e of these subrounds,
the elements are perfectly distributed as long as every peer passed along their
current set correctly.

7 Application to SMC

Secure multiparty computation (SMC) is an area of cryptography that is con-
cerned with protocols that allow a group of peers P = P1, . . . , Pn to jointly
compute a function y = f(x1, . . . , xn) over private input values x1, . . . , xn

without using a trusted third party [32]. Each peer Pi contributes its own
input value xi, and during the course of the SMC protocol, Pi ideally only
learns the output y, but no additional information about the other peers’ in-
put values. Applications of SMC include electronic voting, secure auctions and
privacy-preserving data mining.

SMC protocols often assume a threshold t < n on the amount of peers
controlled by an adversary, which is typically either honest-but-curious (i.e.
tries to learn as much information as possible but follows the protocol) or
actively malicious. The actively malicious case mandates the availability of
Byzantine consensus as a building block [51].6

In practical applications, the inputs typically consist of sets of values that
were given to the peers P by external clients: In electronic voting protocols
the peers need to agree on the set of votes; with secure auctions, the peers
need to agree on bids, and so on.

In this section, we focus on one practical problem, namely electronic voting.
We show how BSC is useful at multiple stages of the protocol, and discuss how
our approach differs from existing solutions found in the literature.

6 An attempt has been made to relax the definition of SMC to alleviate this requirement,
resulting in a weaker definition that includes non-unanimous aborts as a possible result
[32]. This definition is mainly useful in scenarios without an non-faulty 2/3 majority, where
Byzantine consensus is not possible in the asynchronous model [22].

Byzantine Set-Union Consensus using Efficient Set Reconciliation 27

7.1 Bulletin board for electronic voting

The bulletin board is a communication abstraction commonly used for elec-
tronic voting [10,48]. It is a stateful, append-only channel that participants of
the election can post messages to. Participants of the election identify them-
selves with a public signing key and must sign all messages that they post
to the bulletin board. The posted messages are publicly available to facilitate
independent auditing of elections.

Existing work on electronic voting either does not provide a Byzantine
fault-tolerant bulletin board in the first place [4] and instead relies on trusted
third parties, or suggests the use of state machine replication [17].

Some of the bulletin board protocols surveyed by Peters [48] use threshold
signatures to certify to the voter that the vote was accepted by a sufficiently
large fraction of the peers that jointly provide the bulletin board service. With
a naive approach, the message that certifies acceptance by t peers is the con-
catenation of the peers’ individual signatures and thus O(t) bits large. Thresh-
old signature schemes allow smaller signatures, but at the expense of a more
complex protocol. Since the number of peers is typically not very large, a lin-
ear growth in t is acceptable, which makes the simple scheme sufficient for
practical implementations.

It is easy to implement a variant of the bulletin board with set-union
consensus. In contrast to traditional bulletin boards, this variant has phases,
where posted messages are only visible after the group of peers have agreed
that a phase is concluded. The concept of phases maps well to the requirements
of existing voting protocols. Every phase is implemented with one set-union
consensus execution. To guarantee that a message is posted to the bulletin
board, it must be sent to at least one correct peer from the group of peers
that jointly implements the bulletin board.

7.2 Distributed threshold key generation and cooperative decryption

Voting schemes as well as other secure multiparty computation protocols of-
ten rely on threshold cryptography [19]. The basic intuition behind threshold
cryptography is that some operations—such as signing a message or decrypt-
ing a ciphertext—should only succeed if a large enough fraction of some group
of peers cooperate. Typically the public key of the threshold cryptosystem
is publicly known, while the private key is not known by any entity but re-
constructible from the shares that are distributed among the participants, for
example with Shamir’s secret sharing scheme [52].

Generating this shared secret key either requires a trusted third party, or a
protocol for distributed key generation [30,47]. The former is undesirable for
most practical applications since it creates a single point of failure.

In a distributed key generation protocol, each peer contributes a number of
pre-shares. The peers agree on the set of pre-shares and each peer re-combines
them in a different way, yielding the shares of the private threshold key.

28 Florian Dold, Christian Grothoff

set union consensus

set reconciliation

distributed key generation

bulletin board

cooperative decryption

voting

Fig. 12: Relation of different SMC protocols and communication primitives in
GNUnet. Dashed arrows indicate optional dependencies.

In the key generation protocol used for the Cramer et al. voting scheme,
the number of pre-shares that need to be agreed upon is quadratic in the
number of peers. Every peer needs to know every pre-share, even if it is not
required by the individual peer for reconstructing the share, since the pre-
shares are accompanied by non-interactive proofs of correctness. Thus the
number of values that need to be agreed upon is quadratic in the number
of peers, which makes the use of set-union consensus attractive compared to
individual agreement.

Even though the pre-shares can be checked for correctness, Byzantine con-
sensus on the set of shares is still necessary for the case when a malicious
peer submits a incorrect share to only some peers. Without Byzantine con-
sensus, different correct recipients might exclude different peers, resulting in
inconsistent shares.

Similarly, when a message that was encrypted with the threshold public
key shall be decryped, every peer contributes a partial decryption with a proof
of correctness. While the set of partial decryptions is typically linear in the
number of peers, set-union consensus is still a reasonable choice here, this way
the whole system only needs one agreement primitive.

Byzantine Set-Union Consensus using Efficient Set Reconciliation 29

7.3 Electronic voting with homomorphic encryption

Various conceptually different voting schemes use homomorphic encryption;
we look as the scheme by Cramer et al. [17] as a modern and practical rep-
resentative. A fundamental mechanism of the voting scheme is that a set of
voting authorities A1, . . . , An establish a threshold key pair that allows any
entity that knows the public part of the key to encrypt a message that can only
be decrypted when a threshold of the voting authorities cooperate. The homo-
morphism in the cryptosystem enables the computation of an encrypted tally
with only the ciphertext of the submitted ballots. Ballots represent a choice of
one candidate from a list of candidate options. The validity of encrypted ballot
is ensured by equipping them with a non-interactive zero-knowledge proof of
their validity.

It is assumed that the adversary is not able to corrupt more than 1/3 of the
authorities. The voting process itself is then facilitated by all voters encrypting
their vote and submitting it to the authorities. The encrypted tally is computed
by every authority and then cooperatively decrypted by the authorities and
published. Since correct authorities will only agree to decrypt the final tally
and not individual ballots, the anonymity of the voter is preserved. For the
voting scheme to work correctly, all correct peers must agree on exactly the
same set of ballots before the cooperative decryption process starts, otherwise
the decryption of the tally will fail.

Using BSC for this final step to agree on a set of ballots again makes
sense, as the number of ballots is typically much larger than the number of
authorities. Figure 12 summarizes the various ways how BSC and is used in
our implementation [20] of Cramer-style [17] electronic voting.

7.4 Other applications of BSC

Bitcoin [44] has gained immense popularity over the past few years. Bitcoin
solves a slight variation of Byzantine consensus without strong validity [39,
31]. Given that a block in Bitcoin is basically just a set of (valid) transactions,
BSC could be used to efficiently achieve agreement between participants about
the next transaction group. Here, the most natural application would be to
use BSC to improve the efficiency of proof-of-stake incentivized peers running
BFT consensus in Cosmos [36].

8 Conclusions

Given m ballots, n authorities, f Byzantine faults and k ballots exclusively
available to the adversary, voting with BSC achieves a complexity of O(mn+
(f + k)n3), which in practice is better than the O(mn2) complexity of using
SMR as m is usually significantly larger than n. Equivalent arguments hold for
other applications requiring consensus over large sets. Furthermore, BSC re-
mains advantageous in the absence of Byzantine failures, and the bounded set

30 Florian Dold, Christian Grothoff

reconciliation makes it particularly efficient at handling various non-Byzantine
faults.

To ensure these performance bounds, BSC requires a bounded variant of
Eppstein’s set reconciliation protocol that ensures that individual steps in the
protocol cannot consume unbounded amounts of bandwidth. We are currently
applying bounded set reconciliation in related domains, as any set reconciation
can be made more robust if the complexity of the operation is bounded. For
example, the GNU Name System [56] can use bounded set reconciliation when
gossiping sets of key revocation sets. Here, the use of bounded set reconciliation
protects the key revocation protocol against denial-of-service attacks where an
attacker might have previously sent excessively large IBFs or retransmitted
known revocation messages already known to the recipient. The result is an
efficient and resilient method for disseminating key revocation data.

In future work, it would be interesting to apply bounded set reconciliation
to Byzantine consensus protocols that are more efficient than the simple grade-
cast consensus. It would also be interesting to experimentally compare bulletin
boards using BSC with those using traditional replicated state machines.

Byzantine Set-Union Consensus using Efficient Set Reconciliation 31

9 Declarations

9.1 Ethics approval and consent to particpate

Not applicable.

9.2 Consent for publication

Not applicable.

9.3 Availability of data and material

The software used for the experiments is available in the public Git repos-
itory [2]. Raw experimental data can be made available together with the
publication after acceptance (but is not suitable for the open data repositories
listed in the guidelines). For example, it could simply be embedded with the
PDF (it is not that big).

9.4 Competing interests

None.

9.5 Funding

This work benefits from the financial support of the Brittany Region (ARED
9174) and the Renewable Freedom Foundation.

9.6 Author’s contributions

Both authors contributed to the design, implementation and the writing of
the article. Florian Dold ran the experiments.

9.7 Acknowledgements

We thank Jeffrey Burdges and the anonymous reviewers of ARES 2016 for
comments on an earlier draft of this paper.

32 Florian Dold, Christian Grothoff

References

1. The GNUnet Project. https://gnunet.org/. Accessed 28 Feb 2017
2. The GNUnet Project Git Repository. git://gnunet.org/git/gnunet. Accessed 28 Feb

2017
3. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-

scalable byzantine fault-tolerant services. ACM SIGOPS Operating Systems Review
39(5), 59–74 (2005)

4. Adida, B.: Helios: Web-based open-audit voting. In: Proceedings of the 17th Conference
on Security Symposium, SS’08, pp. 335–348. USENIX Association, Berkeley, CA, USA
(2008). URL http://dl.acm.org/citation.cfm?id=1496711.1496734

5. Aguilera, M.K.: Replication. chap. Stumbling over Consensus Research: Misunder-
standings and Issues, pp. 59–72. Springer-Verlag, Berlin, Heidelberg (2010). URL
http://dl.acm.org/citation.cfm?id=2172338.2172342

6. Aspnes, J.: Lower bounds for distributed coin-flipping and randomized consensus. Jour-
nal of the ACM (JACM) 45(3), 415–450 (1998)

7. Attiya, C., Dolev, D., Gil, J.: Asynchronous byzantine consensus. In: Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing, PODC ’84,
pp. 119–133. ACM, New York, NY, USA (1984). DOI 10.1145/800222.806740. URL
http://doi.acm.org/10.1145/800222.806740

8. Aublin, P.L., Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 bft
protocols. ACM Trans. Comput. Syst. 32(4), 12:1–12:45 (2015). DOI 10.1145/2658994.
URL http://doi.acm.org/10.1145/2658994

9. Ben-Or, M., Dolev, D., Hoch, E.N.: Simple gradecast based algorithms. arXiv preprint
arXiv:1007.1049 (2010)

10. Benaloh, J.D.C.: Verifiable secret-ballot elections. Yale University. Department of Com-
puter Science (1987)

11. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM 13(7), 422–426 (1970)

12. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard, M.,
Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Financial
cryptography and data security. chap. Secure Multiparty Computation Goes Live, pp.
325–343. Springer-Verlag, Berlin, Heidelberg (2009). DOI 10.1007/978-3-642-03549-4
20. URL http://dx.doi.org/10.1007/978-3-642-03549-4_20

13. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Journal of Cryptology 18(3), 219–
246 (2005)

14. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Third Symposium on
Operating Systems Design and Implementation (OSDI), vol. 99, pp. 173–186. USENIX
Association, Co-sponsored by IEEE TCOS and ACM SIGOPS, New Orleans, Louisiana
(1999)

15. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

16. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making byzantine fault tol-
erant systems tolerate byzantine faults. In: Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation, NSDI’09, pp. 153–168. USENIX
Association, Berkeley, CA, USA (2009). URL http://dl.acm.org/citation.cfm?id=

1558977.1558988

17. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. European transactions on Telecommunications 8(5), 481–490
(1997)

18. De Prisco, R., Malkhi, D., Reiter, M.: On k-set consensus problems in asynchronous
systems. Parallel and Distributed Systems, IEEE Transactions on 12(1), 7–21 (2001)

19. Desmedt, Y.G.: Threshold cryptography. European Transactions on Telecommunica-
tions 5(4), 449–458 (1994)

20. Dold, F.: Cryptographically secure, distributed electronic voting. Bachelor’s thesis,
Technische Universität München (2014)

Byzantine Set-Union Consensus using Efficient Set Reconciliation 33

21. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for dis-
tributed consensus. Journal of the ACM (JACM) 34(1), 77–97 (1987)

22. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony.
Journal of the ACM (JACM) 35(2), 288–323 (1988)

23. Eppstein, D., Goodrich, M.T., Uyeda, F., Varghese, G.: What’s the difference?: Efficient
set reconciliation without prior context. SIGCOMM Comput. Commun. Rev. 41(4),
218–229 (2011). DOI 10.1145/2043164.2018462. URL http://doi.acm.org/10.1145/

2043164.2018462

24. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp.
148–161. ACM, New York, NY, USA (1988). DOI 10.1145/62212.62225. URL http:

//doi.acm.org/10.1145/62212.62225

25. Feldman, P.N.: Optimal algorithms for byzantine agreement. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1988)

26. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency.
Tech. rep., DTIC Document (1981)

27. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed con-
sensus problems. Distributed Computing 1(1), 26–39 (1986)

28. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

29. Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement. In: Pro-
ceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’06, pp. 163–168. ACM, New York, NY, USA (2006). DOI
10.1145/1146381.1146407. URL http://doi.acm.org/10.1145/1146381.1146407

30. Fouque, P.A., Stern, J.: One Round Threshold Discrete-Log Key Generation without
Private Channels, pp. 300–316. Springer Berlin Heidelberg, Berlin, Heidelberg (2001).
DOI 10.1007/3-540-44586-2 22. URL https://doi.org/10.1007/3-540-44586-2_22

31. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis and
Applications, pp. 281–310. Springer Berlin Heidelberg, Berlin, Heidelberg (2015). DOI
10.1007/978-3-662-46803-6 10. URL https://doi.org/10.1007/978-3-662-46803-6_

10

32. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. Journal
of Cryptology 18(3), 247–287 (2005)

33. Guerraoui, R., Hurfinn, M., Mostefaoui, A., Oliveira, R., Raynal, M., Schiper, A.:
Consensus in Asynchronous Distributed Systems: A Concise Guided Tour, pp. 33–47.
Springer Berlin Heidelberg, Berlin, Heidelberg (2000). DOI 10.1007/3-540-46475-1 2.
URL https://doi.org/10.1007/3-540-46475-1_2

34. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: The securering protocols for securing
group communication. In: Proceedings of the Thirty-First Annual Hawaii International
Conference on System Sciences - Volume 3, HICSS ’98, pp. 317–. IEEE Computer
Society, Washington, DC, USA (1998). DOI 10.1109/HICSS.1998.656294. URL http:

//dx.doi.org/10.1109/HICSS.1998.656294

35. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative byzantine
fault tolerance. In: Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pp. 45–58. ACM, New York, NY, USA (2007). DOI
10.1145/1294261.1294267. URL http://doi.acm.org/10.1145/1294261.1294267

36. Kwon, J., Buchman, E.: Cosmos: A network of distributed ledgers. https://cosmos.

network/whitepaper (2016). Accessed 22 Feb 2017
37. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Transac-

tions on Programming Languages and Systems (TOPLAS) 4(3), 382–401 (1982)
38. Malpani, N., Welch, J.L., Vaidya, N.: Leader election algorithms for mobile ad hoc

networks. In: Proceedings of the 4th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, DIALM ’00, pp. 96–103.
ACM, New York, NY, USA (2000). DOI 10.1145/345848.345871. URL http://doi.

acm.org/10.1145/345848.345871

39. Miller, A., LaViola Jr, J.J.: Anonymous byzantine consensus from moderately-hard
puzzles: A model for bitcoin. Tech. Rep. CS-TR-14-01, University of Central Florida
(2014)

34 Florian Dold, Christian Grothoff

40. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft protocols. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pp. 31–42. ACM, New York, NY, USA (2016). DOI 10.1145/2976749.
2978399. URL http://doi.acm.org/10.1145/2976749.2978399

41. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal com-
munication complexity. Information Theory, IEEE Transactions on 49(9), 2213–2218
(2003)

42. Mitzenmacher, M., Pagh, R.: Simple multi-party set reconciliation. arXiv preprint
arXiv:1311.2037 (2013)

43. Mostefaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous byzantine con-
sensus with t < n/3 and o(n2) messages. In: Proceedings of the 2014 ACM Sym-
posium on Principles of Distributed Computing, PODC ’14, pp. 2–9. ACM, New York,
NY, USA (2014). DOI 10.1145/2611462.2611468. URL http://doi.acm.org/10.1145/

2611462.2611468

44. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted 1(2012), 28
(2008)

45. Neiger, G.: Distributed consensus revisited. Information Processing Letters 49(4), 195–
201 (1994)

46. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, New
York, NY, USA (1998)

47. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Advances in
CryptologyEUROCRYPT91, pp. 522–526. Springer (1991)

48. Peters, R.: A secure bulletin board. Master’s thesis, Technische Universiteit Eindhoven
(2005)

49. Polot, B., Grothoff, C.: Cadet: Confidential ad-hoc decentralized end-to-end transport.
In: 2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET),
pp. 71–78 (2014). DOI 10.1109/MedHocNet.2014.6849107

50. Reiter, M.K.: The rampart toolkit for building high-integrity services. In: Selected
Papers from the International Workshop on Theory and Practice in Distributed Sys-
tems, pp. 99–110. Springer-Verlag, London, UK, UK (1995). URL http://dl.acm.org/

citation.cfm?id=647369.723763

51. Saia, J., Zamani, M.: Recent Results in Scalable Multi-Party Computation, pp. 24–44.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015). DOI 10.1007/978-3-662-46078-8
3. URL https://doi.org/10.1007/978-3-662-46078-8_3

52. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
53. Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M.J.,

Ford, B.: Scalable bias-resistant distributed randomness. Cryptology ePrint Archive,
Report 2016/1067 (2016). http://eprint.iacr.org/2016/1067, Accessed 22 Feb 2017

54. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. Communications Surveys & Tutorials, IEEE 14(1), 131–155
(2012)

55. Totakura, S.H.: Large scale distributed evaluation of peer-to-peer protocols. Master’s
thesis, Technische Universität München, Garching bei München (2013)

56. Wachs, M., Schanzenbach, M., Grothoff, C.: A censorship-resistant, privacy-enhancing
and fully decentralized name system. In: Proceedings of the 13th International Confer-
ence on Cryptology and Network Security - Volume 8813, pp. 127–142. Springer-Verlag
New York, Inc., New York, NY, USA (2014). DOI 10.1007/978-3-319-12280-9 9. URL
http://dx.doi.org/10.1007/978-3-319-12280-9_9

