
▶ Technic and Computer Science
▶ Institute for Cybersecurity and Engineering ICE

Cashless to E-Cash
Bachelor’s Thesis

Course of study Bachelor of Science in Computer Science
Author Joel Roman Häberli
Advisor Prof. Dr. Benjamin Fehrensen
Co-advisor Prof. Dr. Christian Grothoff
Expert Dr. Alain Hiltgen, UBS

Version 1.0 of April 13, 2024

Abstract

In order to buy Taler, the Taler Exchange needs guarantees to legally secure the
payment. Buying Taler physically establishes direct trust, since cash can be used
in order to buy Taler and the transaction is completed. If you want to buy Taler
using cashless systems like credit cards, the Exchange has no proof that the pay-
ment has succeeded. In order to fill this cap, this thesis proposes a framework
allowing cashless withdrawals using Taler. A reference implementation is cre-
ated which establishes a trust relationship between the terminal manufacturer
Wallee and the Taler Exchange through a newly created component called C2EC.
This enables a trust relationship between the Taler Exchange and the terminal op-
erator which allows withdrawing Taler without using cash. The liability for the
digital cash is on the side of the terminal operator and therefore establishes the
guarantees for the Taler Exchange.

iii

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 1
1.2. Perspectives . 2

1.2.1. Taler Exchange (C2EC) . 2
1.2.2. Terminal Application . 2
1.2.3. Taler Wallet . 2

1.3. Goal . 2
1.3.1. C2EC . 3
1.3.2. Wallee POS Terminal . 3

2. Overview 5
2.1. Components . 5
2.2. Process . 5

2.2.1. The Terminal . 7
2.2.2. The C2EC . 8
2.2.3. The Wallet . 9

3. Architecture 11
3.1. C2EC . 11

3.1.1. C2EC Perspective . 11
3.1.2. Withdrawal-Operation state transitions 11
3.1.3. Authentication . 12
3.1.4. The C2EC RESTful API . 13
3.1.5. Taler Wirewatch Gateway API 14
3.1.6. The C2EC database . 16

3.2. Payto wallee-transaction extension 17
3.2.1. Payto refund using Wallee 18
3.2.2. Extensibility . 18

3.3. Taler Wallet . 18
3.3.1. Taler Wallet Perspective 19

3.4. Wallee . 19
3.4.1. Wallee Perspective . 19
3.4.2. Wallee Terminal . 19
3.4.3. Wallee Backend and API 20

v

Contents

4. Implementation 23
4.1. Concepts . 23

4.1.1. Consumers and Producers 23
4.1.2. Long-Polling . 23
4.1.3. Publish-Subscribe Pattern 23
4.1.4. Go Language . 24

4.2. Database . 25
4.2.1. Schema . 25
4.2.2. Triggers . 25

4.3. C2EC . 25
4.3.1. Bank-Integration API . 25
4.3.2. Wire-Gateway API . 26
4.3.3. Payment Attestation . 26
4.3.4. Wallee Client . 28
4.3.5. Security . 28

4.4. Wallee POS Terminal . 30
4.5. Wallet . 30

5. Results 31
5.1. Discussion . 31
5.2. Results . 31

Bibliography 35

List of Figures 37

List of Tables 39

Listings 41

Glossary 43

A. Appendix A 45
A.1. API . 45

B. Appendix B 55
B.1. Meeting notes . 55

vi

1. Introduction

1.1. Motivation

Which payment systems do you use in your daily live and why? Probably one you
know it is universally accepted, reliable, secure and the payment goes through
more or less instantly.

The universal acceptance was identified as one of the most important in a re-
portwhichwas published onbehalf of the ECB (EuropeanCentral Bank) inmarch
2022 as result of a focus group concerning the acceptance of a digital euro [1] as
new payment system. The universal acceptance was even identified as themost
important property amongst the general public and tech-savvy people in the re-
port [2].

In a world, where everything is connected and everything is accessible from ev-
erywhere (one might think), it is therefore very important to make it as easy as
possible to on-board people on a product. This is also the case for Taler. For a
wide acceptance of the payment system Taler, it is important that various ways
exist to withdraw digital cash in Taler.

This is where this thesis hooks in. Currenlty it is possible towithdraw digital cash
using Taler at a Bank which runs a Taler Exchange and integrates the respective
API. At time of this writing only one Bank is in the process of running a Taler
Exchange. At the Berner Fachhochschule an Exchange is operated and digital cash
can be withdrawn at the secretariat using cash.

To make the access to digital cash using Taler easier and allow faster spreading
of the payment system Taler, a framework for cashless withdrawal of digital cash
is proposed and implemented in order to open new doors for the integration and
adoption of the Taler payment system within the society.

Tomake the withdrawals using a credit card possible, various loose endsmust be
put together within the Taler ecosystem and the terminal provider.

Therefore a new component C2EC shall help, establishing a trustworthy relation-
ship, whichmakes it possible for the Exchange to issue digital cash to a customer.
Therefore the Exchange is not putting his trust on cash received but rather on the
promise of a trusted third party (a terminal provider) to put the received digital
cash in a location, controlled by the Exchange eventually (e.g. a bank account
owned by the Exchange).

1

1. Introduction

This enables a broader group of people to leverage Taler for their payments.
Which eventually leads to wider adoption of the payment system Taler.

1.2. Perspectives

During the initial analysis of the task, three areas of work were discovered. One
is the Taler Exchange, one the Application for the terminal and the (Taler)Wallet.
This led to different views on the system by two different players within it. To
allow a more concise view on the system and to support the readers and imple-
menter, two perspectives shall be kept in mind. They have different views on the
process but need to interact with each other seamlessly.

1.2.1. Taler Exchange (C2EC)

The perspective of the Taler Exchange includes all processes within C2EC compo-
nent and the interactionwith the terminal application, terminal backend and the
wallet of the user. The Taler Exchange wants to allow withdrawal of digital digital
cash only to users who pay the equivalent value to the Exchange. The Exchange
wants to stay out of any legal implications at all costs.

1.2.2. Terminal Application

The perspective of the terminal application includes all processes within the ap-
plication which interacts with the user, theirWallet and credit card allowing the
withdrawal of digital cash. The terminal application wants to conviently allow
the withdrawal of digital cash and charge fees to cover its costs and risks.

1.2.3. Taler Wallet

The Wallet holds the digital cash owned by the customer. The Wallet wants to
eventually gather the digital cash from the Taler Exchange. The owner of theWal-
letmust therefore present their credit card at a Terminal of the terminal provider
and pay the Exchange as well accept the fees of the provider.

1.3. Goal

The goal of this thesis is to propose a framework for cashless withdrawals and
implement the process which allows withdrawing Taler using a credit card at a
terminal of the terminal providerWallee.

2

1.3. Goal

1.3.1. C2EC

Therefore a new component, named C2EC, will be implemented as part of the
Taler Exchange. C2ECwillmediate between the Taler Exchange and the terminal
provider. This includes checking that the transaction of the debitor reaches the
account of the Exchange and therefore the digital currency can be withdrawn by
the user, using its Wallet.

1.3.2. Wallee POS Terminal

The Wallee payment terminal, also called Point of Sales (POS) terminal, inter-
faces with payment cards (Credit Cards, Debit Cards) to make electronic fund
transfers, i.e. a fund transfer to a givenGNUTaler Exchange. For our purpose, we
will extend the functionality of the terminal to initiate the corresponding counter
payment from the exchange to the GNU Taler wallet of the payee.

3

2. Overview

2.1. Components

Figure 2.1.: Involved components and devices

The component diagram shows the components involved by the withdrawal us-
ing the terminal. Besides the credit card owned by the user, two systems are
involved and within each system two components are required to fulfill the task.
The Taler ecosystem which represents the Taler Wallet and the Taler Exchange
(C2EC is a part of the Exchange) involved in thewithdrawal process. In the Termi-
nal system, the terminal and the backend system of the terminal manufacturer
are leveraged in the process.

2.2. Process

The figure 2.2 shows a high level overview of the components involved and how
they interact. In an initial step (before the process is effectively started as de-
picted), the customer or owner of the terminal selects the Exchange, which shall
be used for the withdrawal. The process is then started. The numbers in the di-
agrams are picked up by the description of the steps what is done between the
different components:

5

2. Overview

Figure 2.2.: Diagram of included components and their interactions

1. Wallee Terminal requests to be notified when parameters are selected by
C2EC.

2. The Wallet scans the QR code at the Terminal.

3. The Wallet registers a reserve public key and the wopid.

4. The Bank-Integration API of C2EC notifies the Terminal, that the parame-
ters were selected.

5. The POS initiates a payment to the account of the GNU Taler Exchange.
For the payment the POS terminal requests a payment card and a PIN for
authorizing the payment.

6. The Terminal triggers the payment at the Wallee Backend.

7. The Terminal receives the result of the payment.

a) successful

b) unsuccessful

8. The Terminal sends the payment notification to the Bank Integration API
of C2EC.

9. The C2EC component approves the payment by requesting the transaction
of the Wallee Backend.

10. C2EC updates the database by either setting the status of the withdrawal
operation to confirmed or abort (depending on the response of the Wallee
Backend).

6

2.2. Process

11. Now decoupled from each other the Exchange-Wirewatch asks the Wire
Gateway API of C2EC for a list of transactions and the Bank-Integration API
sends a confirmed or abort message to the wallet.

12. TheWallet asks theExchange tobenotified,whena reservewith the reserve
public key becomes available.

13. The Exchange can send the digital cash back to the Wallet.

Figure 2.3.: Process of a withdrawal using a credit card

The diagram in figure 2.3 shows the high level flow towithdraw digital cash using
the credit card terminal and Taler. It shows when the components of figure 2.2
interact with each other. It shows the implementation of the flow. Terminal,Wal-
let and Exchange are linked leveraging awopid initially generated by the terminal
and presented to the Exchange by the withdrawing Wallet accompanied by a re-
serve public key.

The process requires the Terminal, the Wallet, the C2EC component and the Ex-
change which interact with each other. In this section the highlevel process as
showed in figure 2.3 is explained.

2.2.1. The Terminal

The Terminal initiates the withdrawal leveraging an application which works as
follows:

1. At startup of the application, the terminal loads the C2EC configuration

2. When a user wishes to do a withdrawal, the owner of the terminal opens
the application and initiates a new withdrawal. A withdrawal is basically a
funds transfer to the IBAN account of the Exchange.

7

2. Overview

a) Application creates a wopid

b) The application starts long polling at the C2EC and awaits the selection
of the reserve parameters mapped to the wopid. The parameters are
sent by the Wallet to C2EC.

c) Wopid is packed into a QR code (with Exchange and amount entered
by the terminal owner)

d) Terminal calculates fees and shows summary and the Terms of Service
(ToS) of Taler.

e) The user accepts the offer, agrees with the ToS

f) QR code is displayed

3. The user now scans the QR Code using his Wallet.

4. The application receives the notification of the C2EC, that the parameters
for the withdrawal were selected.

5. The Terminal executes the payment (after user presented their credit card,
using the Terminal Backend).

6. The terminal initiate the fund transfer to theExchange. The customer has to
authorize the payment by presenting his payment card and authorizing the
transaction with his PIN. The terminal processes the payment over the an
available connector configured on theWallee Backend. Possible connectors
are Master Card, VISA, TWINT, Maestro, Post Finance, and others [3].

a) It presents the result to the user.

b) It tells the C2EC, that the payment was successful.

2.2.2. The C2EC

The C2EC component manages the withdrawal using a third party provider (e.g.
Wallee) and seeks guarantees in order to create a reserve containing digital cash
which can be withdrawn by the Wallet.

1. C2EC retrieves a long polling request for a wopid (from the Terminal).

2. C2EC creates a mapping entry with the wopid and an empty reserve public
key field

3. C2EC retrieves a request including a wopid and a reserve public key.

4. C2EC validates the request and adds the key to the mapping. This estab-
lishes the wopid to reserve public key mapping.

8

2.2. Process

5. C2EC ends the long polling from the terminal (by sending back the reserve
public key).

6. C2EC receives payment notification of the terminal.

7. C2EC verifies the notification by asking the terminal backend for confirma-
tion.

8. C2EC, upon successfully checking the notification, checks that the trans-
action went through and therefore a reserve is created by the wirewatch
gateway (using the public key in the payment purpose field).

2.2.3. The Wallet

The Wallet must attest its presence to the terminal by registering a wopid and
belonging reserve public key which will holds the digital currency that can even-
tually be withdrawn by the Wallet.

1. The Wallet scans the QR Code (wopid, Exchange information and amount)
on the Terminal

2. It creates a reserve key pair

3. TheWallet sends the reserve public key and the scannedwopid to the C2EC

4. The Wallet can withdraw digital cash from the created reserve.

9

3. Architecture

3.1. C2EC

The C2EC (cashless2ecash) component is the central coordination component in
the cashless withdrawal of digital cash using Taler. It initializes the parameters
and mediates between the different stakeholders of a withdrawal, which finally
allows the customer to withdraw digital cash from a reserve owned by the Ex-
change. Therefore C2EC provides API which can be integrated and used by the
Terminal,Wallet and the Exchange.

The API of the C2EC (cashless2ecash) component handles the flow from the cre-
ation of a C2EC mapping to the creation of the reserve. For the integration into
the Taler ecosystem, C2ECmust implement the TalerWirewatch Gateway API [4]
and the Taler Bank Integration API [5].

The exact specification can be found in the official Taler docs repository as part
of the core specifications of the bank integration [5] and wire gateway [4]

3.1.1. C2EC Perspective

From the perspective of C2EC, the system looks as follows:

▶ Is requested by the Taler Wallet to register a newwopid to reserve public key
mapping.

▶ Is notified by theWallee Terminal about a payment.

▶ Attests a payment by requesting the payment proof at theWallee Backend

▶ Supplies the Taler Wire Gateway API that the respective Exchange can re-
trieve new transactions and create reserves which are then created and can
be withdrawn by the Taler Wallet.

3.1.2. Withdrawal-Operation state transitions

Basically C2EC mediates between the stakeholders of a withdrawal in order to
maintain the correct state of the withdrawal. Therefore it decides when a with-
drawal’s status can be transitioned. The diagram in figure 3.1 shows the transi-
tions of states in which a withdrawal operation can be and which events will trig-

11

3. Architecture

ger a transition. The term attestation in this context means, that the backend of
the provider was asked and the transaction was successfully processed (or not).
So if a transaction was successfully processed by the provider, the final state is
the success case confirmed, where the Exchange will create a reserve and allow
the withdrawal. If the attestation fails, thus the provider could not process the
transaction successfully, the failure case aborted, is reached as final state.

Figure 3.1.: Withdrawal Operation state transition diagram

3.1.3. Authentication

Terminals and the Exchange which authenticate against the C2EC API must pro-
vide their respective access token. Therefore, they provide a Authorization:
Bearer $ACCESS_TOKEN header, where $ACCESS_TOKEN is a secret authentication
token configured by the exchange and must begin with the prefix specified in
RFC 8959 [6]: secret-token.

12

3.1. C2EC

3.1.4. The C2EC RESTful API

This section describes the various API implemented in the C2EC component. The
description contains a short list of the consumers of the respective API. Con-
sumer in this context does not necessarilymean that data is consumed but rather
that the consumer uses the API to either gather data or send data to C2EC.

Taler Bank Integration API

Withdrawals with a C2EC are based on withdrawal operations which register a
withdrawal identifier (nonce) at the C2EC component. The provider must first
create a unique identifier for the withdrawal operation (the WOPID) to interact
with the withdrawal operation and eventually withdraw using the wallet. The
withdrawal operation API is an implementation of the Bank Integration API [5].

GET - config

▶ Method: GET

▶ Endpoint: /config

▶ Description: Return the protocol version and configuration information
about the C2EC API.

▶ Response:HTTPstatus code 200OK.Theexchange respondswith aC2ECConfig
object.

▶ Consumers: Components who want to use the API and therefore want to
load the config of the instance.

POST - withdrawal-operation

This API is not specified within the standard Bank Integration API and therefore
an extension to the official specification. The Wallet must implement the initial-
ization through this flow.

▶ Method: POST

▶ Endpoint: /withdrawal-operation

▶ Description: Initiate the withdrawal operation, identified by the WOPID.

▶ Request: The request body contains a C2ECWithdrawRegistration object.

▶ Response: The response is HTTP status code 204 No Content on success
and a 400 or 500 status code on failure (with respective ErrorDetail)

▶ Consumers: The Taler Wallet registers and initializes the withdrawal oper-
ation through this API.

GET - withdrawal-operation by wopid

13

3. Architecture

▶ Method: GET

▶ Endpoint: /withdrawal-operation/$WOPID

▶ Description: Query information about a withdrawal operation, identified
by the WOPID.

▶ Response:HTTPstatus code 200OKandbody containing a C2ECWithdrawalStatus
object or 404 Not found.

▶ Consumers: The API is used by the Terminal and Taler Wallet to retrieve
information about the current state of the withdrawal operation. The API
allows long-polling and can therefore be used by the consumer to be up-
dated if the status of the withdrawal operation changes.

POST - withdrawal-operation by wopid

▶ Method: POST

▶ Endpoint: /withdrawal-operation/$WOPID

▶ Description: Notifies C2EC about an executed payment for a specific with-
drawal.

▶ Request: The request body contains a C2ECPaymentNotification object.

▶ Response:HTTPstatus code 204Nocontent, 400Bad request, 404Not found,
or 500 Internal Server error.

▶ Consumers: The API is used by the Terminal to notify the C2EC compo-
nent that a paymentwasmadeand to give theC2ECcomponent information
about the payment itself (e.g. the provider specific transaction identifier).

3.1.5. Taler Wirewatch Gateway API

The Taler Wirewatch Gateway [4] must be implemented in order to capture in-
coming transactions and allow the withdrawal of digital cash. The specification
of the Taler Wirewatch Gateway can be found in the official Taler documenta-
tion [4].

The wirewatch gateway helps the Exchange communicate with the C2EC com-
ponent using a the API. It helps the Exchange to fetch guarantees, that a certain
transaction went through and that the reserve can be created and withdrawn.
This will help C2EC to capture the transaction of the Terminal Backend to the Ex-
change’s account and therefore allow the withdrawal by the customer. Therefore
the wirewatch gateway API is implemented as part of C2EC.When the wirewatch
gateway can get the proof, that a transaction was successfully processed, the ex-
change will create a reserve with the corresponding reserve public key.

14

3.1. C2EC

For C2EC not all endpoints of the Wire Gateway API are needed. Therefore the
endoints which are not neededwill be implemented but always return http status
code 400 with explanatory error details as specified by the specification.

GET - config

▶ Method: GET

▶ Endpoint: /config

▶ Description: Returns a WireConfig object with configuration information
about the Wirewatch Gateway API of the C2EC component.

▶ Response:HTTPstatus code 200OK.Theexchange respondswith aC2ECConfig
object.

▶ Consumers: Components who want to use the API and therefore want to
load the config of the instance.

POST - transfer

▶ Method: GET

▶ Endpoint: /transfer

▶ Description: Allows the Exchange tomake a transaction. This API is used in
caseof a refund. The transferwill thereforepointed towards apayto://wallee-transaction
address.

▶ Request: The request contains a TransferRequest object.

▶ Response:HTTPstatus code 200OK.Theexchange respondswith aC2ECConfig
object.

▶ Consumers: The Exchange who wants to transfer digital cash to a account
which can be handled by the C2EC component.

GET - history of incoming transactions

▶ Method: GET

▶ Endpoint: /history/incoming

▶ Description: Returns a list of transactions which were recently created
in the C2EC component. In case of C2EC, this are withdrawal operations
whichare confirmedanda reserve can thereforebe createdby the exchange.

▶ Response:HTTPstatus code 200OK.Theexchange respondswith aC2ECConfig
object.

▶ Consumers: The Exchange who will create the reserve which then can be
withdrawn by the Taler Wallet.

15

3. Architecture

3.1.6. The C2EC database

Thedatabase of theC2EC componentmust track twodifferent aspects. Thefirst is
themapping of a nonce (the WOPID) to a reserve public key to enable withdrawals
and the second aspect is the authentication of terminals allowing withdrawals
owned by terminal providers likeWallee.

Terminal Provider

Table in figure 3.2 describing providers of C2EC compliant terminals. The name
of the provider is important, because it decides which flow shall be taken in or-
der to attest the payment. For example will the nameWallee signal the terminal
provider to trigger the attestation flow of Wallee once the payment notification
for the withdrawal reaches C2EC.

Figure 3.2.: Terminal Provider Table

Terminal

Table in figure 3.3 contains information about terminals of providers. This in-
cludes the provider they belong to and an authentication token, which is gener-
ated by the Exchange and allows authenticating the terminal. A terminal belongs
to one terminal provider.

Figure 3.3.: Terminal Table

16

3.2. Payto wallee-transaction extension

Withdrawal

Table in figure 3.4 represents the withdrawal processes initiated by terminals.
This table therefore contains information about the withdrawal like the amount,
which terminal the withdrawal was initiated from and which reserve public key
is used to create a reserve in the Exchange.

Figure 3.4.: Withdrawal Table

Relationships

The structure of the three tables forms a tree which is rooted at the terminal
provider. Each provider can have many terminals and each terminal can have
many withdrawals. The reverse does not apply. A withdrawal does always belong
to exactly one terminal and a terminal is always linked to exactly one provider.
These relations are installed by using foreign keys, which link the sub-entities
(Terminal and Withdrawal) to their corresponding owners (Provider and Termi-
nal). A provider owns its terminals and a terminal owns its Withdrawals.

3.2. Payto wallee-transaction extension

RFC 8905 [7] specifies a URI scheme (complying with RFC 3986 [8]), which al-
lows to address a creditor with theoretically any protocol that can be used to pay
someone (such as IBAN, BIC etc.) in a standardized way. Therefore it introduces
a registry which holds the specific official values of the standard. The registry is
supervised by the GANA (GNUnet Assigned Numbers Authority) [9].

In case a refund becomes necessary, which might occur if a credit card transac-
tion does not succeed, a new target type called wallee-transaction is registered. It
takes a transaction identifier as target identifier which identifies the transaction
for which a refund process shall be triggered. The idea is that the handler of the

17

3. Architecture

Figure 3.5.: Relationships of the entities.

payto URI is able to deduct the transaction from the payto-uri and trigger the
refund process.

3.2.1. Payto refund using Wallee

Wallee allows to trigger refunds using the Refund Service of theWallee backend.
The service allows to trigger a refund given a transaction identifier. Therefore
the C2EC component can trigger the refund using the refund service if needed,
and the payto-uri retrieved as debit account by the wirewatch gateway API, is
leveraged to delegate the refund process to theWallee Backend using the Refund
Service and parsing the transaction identifier of the payto-uri.

3.2.2. Extensibility

Theflow is extensible and other providers likeWalleemight be added. Theymust
therefore register their own refund payto-uri with the GANA and then the refund
process can be implemented likewise.

3.3. Taler Wallet

The Taler Wallet is responsible to create a reserve key pair which will allow him
the withdrawal using the Exchange using the reserve public key of the key pair.

The reserve public key is created by the Taler Wallet and sent to C2EC to establish
the mapping between the wopid and the reserve public key. The reserve public

18

3.4. Wallee

key is used to eventually create a reserve at the exchange which contains the dig-
ital cash. The Taler Wallet can then withdraw the digital cash from this reserve
using the withdrawal process of the wallet [10]. The process for the case of C2EC
is slightly different from the present processes because the requests to the Bank-
Integration API contain different properties than the currently supported. This
means the Taler Wallet must be extended in order to allow the withdrawal using
C2EC.

3.3.1. Taler Wallet Perspective

From the perspective of the Wallet, the system looks as follows:

▶ Uses the QR Code displayed on the Wallee Terminal to identify nonce and
read exchange information.

▶ Uses theBank-IntegrationAPI ofC2EC to register the reserve public key and
retrieve information about the confirmation of the withdrawal.

▶ Uses the Exchange to withdraw the digital cash.

3.4. Wallee

Wallee offers level 1 PCI-DSS [11] compliant payment processes to its customers
[12] and allows an easy integration of its process into various kinds of merchant
systems (e.g. websites, terminals, etc).

3.4.1. Wallee Perspective

From the perspective of Wallee, the system looks as follows:

▶ Uses the Bank-Integration API of C2EC to get notified about parameter se-
lection and inform C2EC about the payment.

▶ Needs the credit card of the customer in order to execute the payment.

▶ Uses theWallee Backend to execute the payment using the supplied Android
Till SDK sous-sous-section 3.4.2

3.4.2. Wallee Terminal

Wallee Terminals are based on android and run a modified, certified android
version as operating system. Thus they can be used for payments and establish
strong authentication in a trusted way.

19

3. Architecture

Withdrawal Operation Identifier

TheWithdrawal-OPeration-IDentifier (wopid) is leveraged by all components to
establish the connection to an entry in the withdrawal table (figure 3.4) of C2EC.
Thewopid is therefore crucial and every participant of thewithdrawalmust even-
tually gain knowledge about the value of the wopid in order to process the with-
drawal. The wopid is created by the Terminal and advertised to the Exchange by
requesting notification, when the reserve public key belonging to the wopid was
received and the mapping could be created. The Wallet gains the wopid value
when scanning the QR code at the Terminal and then sends the wopid (and the
other parameters) to the Exchange.

Creation of theWOPID

Besides the entropy needed to establish a correct wopid, the hash function lever-
aged must be specified. (TODO - e.g. FIPS 180-4 [13] (SHA-1 and SHA-2 families)
or FIPS-202 [14] (SHA-3 family, which is still beeing reviewed))

Wallee Till API

Wallee supplies the Wallee Android Till SDK [15] which allows the implementa-
tion of custom application for their android based terminals. The API facilitates
the integration with the Wallee backend and using it to create payments.

3.4.3. Wallee Backend and API

Terminals of Wallee are used to communicate with the customer at the shop
of the merchant. The payment and processing of the transaction is run on the
Wallee Backend. The Wallee Backend is used by C2EC to attest a payment, when
a C2ECPaymentNotification message reaches C2EC. The Wallee Backend is also
used in order to do refunds, in case something goes wrong during the payment.
Therefore the API ofWallee Backend is used to collect this information or process
a refund. Wallee structures its API using Services. For C2EC this means that the
Transaction Service [16] and Refund Service [17] must be implemented.

Transaction Service

The Transaction Service is used by C2EC to attest a transaction was successfully
processed and the reserve can be created by the Exchange. Therefore the GET
/api/transaction/read API of the Transaction Service is used. If the returned
transaction is in state fulfill, the transaction can be stored as completion_proof for
the withdrawal as specified in the withdrawal table figure 3.4 and the withdrawal
status can be transitioned to confirmed. This will tell the Exchange to create the
reserve which can eventually be withdrawn by the wallet.

20

3.4. Wallee

Refund Service

The Refund Service is used by C2EC in case of a refund. Therefore the C2EC gets
notified by the Exchange that the transaction shall be refunded. To trigger the
refund process at the Wallee backend, the POST /api/refund/refund is used.

Wallee Transaction State

Inorder todecide if a transactionwas successful, the states of a transactionwithin
Wallee must be mapped to the world of Taler. This means that a reserve shall
only be created, if the transaction is in a state which allows Taler not having any
liabilities regarding the transaction and that Wallee could process the payment
successfully. The documentation states that only in the transaction state fulfill,
the delivery of the goods (in case of withdrawal this means, that the reserve can
be created) shall be started [18]. For the withdrawal this means, that the only in-
teresting state for fulfillment is the fulfill state. Every other state means, that the
transaction was not successful and the reserve shall not be created.

21

4. Implementation

4.1. Concepts

This chapter describes high level concepts which are used in the implementation
of the components. The short explanations aim to support the understanding
of the reader to faster and better understand the implementation of the compo-
nents.

4.1.1. Consumers and Producers

The two terms consumer and producer are used through the entire documen-
tation. They describe the role of a component in an interaction with another
component. The consumer is the component askig or requesting a producer to
gather information or trigger some action. The Producer on the other hand is the
component who receives information or call for action of a consumer.

4.1.2. Long-Polling

Long-Polling is the concept of not closing a connection until a a response can be
delivered or a given duration exceeds. This allows a consumer to ask for infor-
mation which it assumes will arrive in the future at the producer. The producer
therefore will not close the request of the consumer but instead keep the connec-
tion open and respond with the response, once it is available. The consumer and
the producer can both close the connection after a certain amount of time, which
is called the timeout. This can also happen if the wanted result of the producer
cannot be returned to the consumer.

4.1.3. Publish-Subscribe Pattern

The concept of publishers and subscribers is used heavily in the implementation.
It allows decoupling different steps of the process and allows different steps to
be handled and executed in their own processes. Publishers can also be called
notifiers or similar, while the subscriber can also be called listener or similar.

The communication of publishers and subscribers happends through channels.
A publisherwill publish to a certain channel when a defined state is reached. The

23

4. Implementation

subscriber who is subscribed or listens to this channel will capture the message
sent through the channel by the publisher and start processing it.

The publish-subscribe scheme enables loose coupling and therefore helps to im-
prove the performance of individual processes, because they cannot be hindered
by others.

4.1.4. Go Language

Gocomeswithhandy features to implement the concepts likepub/sub sous-section 4.1.3
or long polling sous-section 4.1.2.

Contexts

Go standard library contians a package called context. You will stumble over this
package all the time, even when using third party libraries or when writing your
own code. The context package allows to control the lifetime and cancellation ac-
tivities for function and allows concurrent running threads to be executedwithin
the same context. For example if you have a function which can sort a list con-
currently and will fail if any thread has a failure, supplying each concurrent ex-
ecution of the function the same context allows to leave the function early if the
context is left by propagating the done signal through the Done channel which is
part of each context. A context also defines the cancellation function. This func-
tion shall be called, for each context when it becomes obsolete. The cancella-
tion function will execute cleanup activities related to the specific context. It is
a best practice to defer the cancellation function right after the creation of the
context [19].

Go Routines

In concurrent programs it is a challenge to keep up with the complexity which
they add to the code. Also one has to take care of interprocess communication
and if memory is accessed in shared manner by the program, the access to the
data stored should be mutual exclusive. Go therefore comes with the concept
of Goroutines. They are designed to be very cheap, lightweight threads. They
share the same address space and are just executed besides each other as sim-
ple functions. Also Go encourages the use of channels to communicate between
different goroutines. The use of channels makes lockingmemory for concurrent
access obsolete and therefore removes possible concurrency problems by mak-
ing them impossible by design [20].

24

4.2. Database

Memory safety

Even when Go is a low level language which compiles to native bytecode directly,
it implements a garbage collector andmemory management which takes care of
allocating and releasing memory as needed. This reduces the risk of memory
leaks to bugs in the memory management and the garbage collector.

4.2. Database

The Database is implemented using Postgresql. This database is also used by
other Taler components and therefore is a good fit.

Besides the standard SQL features to insert and select data, Postgres also comes
with handy features like LISTEN and NOTIFY.

This allows the implementation of neat pub/sub models allowing better perfor-
mance and separation of concerns.

4.2.1. Schema

For theC2ECcomponent the schemac2ec is created. It holds three tables, custom
types and triggers.

4.2.2. Triggers

Triggers are used to decouple the different sub processes in the withdrawal flow
from one another.

The trigger runs a Postgres function which will execute a NOTIFY statement us-
ing Postgres built-in function pg_notify, which wraps the statement in a Postgres
function allowing to be used more easy.

4.3. C2EC

4.3.1. Bank-Integration API

The Bank Integration API was implemented according to the specification [5]. It
only implementsmessages andAPI specific to the indirect withdrawal operation.

Namely this are the following endpoints:

▶ GET /config

▶ GET /withdrawal-operation/[WOPID]

25

4. Implementation

▶ POST /withdrawal-operation/[WOPID]

▶ POST /withdrawal-operation/[WOPID]/payment

▶ POST /withdrawal-operation/[WOPID]/abort

4.3.2. Wire-Gateway API

TheWire-GatewayAPI delivers the transactionhistory to the exchangewhichwill
create reserves for the specific public keys and therefore allow the customers to
finally withdraw the digital cash using their wallet.

Following endpoints are implemented by the wire gateway API implementation:

▶ GET /config

▶ POST /transfer

▶ GET /history/incoming

Keeping track of transfers

TheWire-Gateway specification requires the implementor of theAPI to keep track
of incoming transfer requests in order to guarantee the idempotence of the API.
Therefore the implementation keeps track of all transfers in the database table
transfers. It stores a hash of the entire request related to the requests unqiue iden-
tifier. If a request with the same UID is sent to the transfer-API, first it is checked
that the incoming request is exactly the same as the previous one by comparing
the hash of the requests. Only if the hashes are the same, the transfer request is
processed further. Otherwise the API responds with a conflict response.

4.3.3. Payment Attestation

The attestation of a transaction is crucial, since this is the actionwhich allows the
exchange to create a reserve and can proof to the provider and customer, that the
transaction was successful and therefore can put the liability for the money on
the provider. The attestation process is implemented using a provider client in-
terface and a provider transaction interface. This allows the process to be the
same for each individual provider and new providers can be added easily by pro-
viding a specific implementation of the interfaces.

Provider Client

Theprovider client interface is called by the attestationprocess depending on the
notification receivedby thedatabaseupon receiving apaymentnotificationof the

26

4.3. C2EC

provider’s terminal. The specific provider clients are registered at the startup of
the component and the attestation process will delegate the information gather-
ing to the specific client, based on the notification received by the database.

The provider client interface defines three functions:

1. SetupClient: The setup function is called by the startup of the application
and used to initialize the client. Here it makes sense to check that every-
thingneeded for the specific client is in place and that properties like access
credentials are available.

2. GetTransaction: This function is used by the attestation process to retrieve
the transaction of the provider system. It takes the transaction identifier
supplied with the payment notification message and loads the information
about the transaction. Based on this information the decision to confirm or
abort the transaction is done.

3. Refund: Since the transaction of the money itself is done by the provider,
also refunds will be unwind by the provider. This functions mean is to trig-
ger this refund transaction at the provider.

Provider Transaction

Since the attestation process is implemented to support any provider, also the
transaction received by the provider clients GetTransaction function is abstracted
using an interface. This interfacemust be implemented by any provider transac-
tion which belongs to a specific provider client.

The provider client interface defines following functions:

1. AllowWithdrawal: This function shall return true, when the transaction re-
ceived by the provider enters a positive final state. This means that the
provider accepted the transaction and could process it.

2. AbortWithdrawal: It doesn’t mean that if a transaction does not allow to
do the withdrawal, that the transaction shall be cancelled immediately. It
could also be that the transaction was not yet processed by the provider. In
this case we need means to check if the provider transaction is in an abort
state if it is not ready for withdrawal, before aborting it. AbortWithdrawal
shall therefore answer the question if the provider transaction is in a nega-
tive final state, which means the transaction is to be aborted.

3. Bytes: This function shall return a byte level representation of the trans-
action which will be used as proof of the transaction and stored in the ex-
changes database.

27

4. Implementation

Retries

If the attestation fails, but the transaction is not in the refund state as specified
by the provider’s transaction, the problem could simply be that the service was
not available or the transaction was not yet processed by the provider’s backend.
In order to not need to abort the transaction directly and give the system some
robustness, a retry mechanism was implemented which allows retrying the at-
testation step.

The retry will only be executed, when the transaction attestation failed because
the transaction was not in the abort state or if for some reason the transaction
information could not have been retrieved.

4.3.4. Wallee Client

TheWallee client is the first implementation of the provider client interface and
allows the attestation of transactions using theWallee backend system. Theback-
end of Wallee provides a ReST-API to their customers, which allows them to re-
quest information about payments, refunds and so on. To access the API, the
consumer must authenticate themself to Wallee by using their own authentica-
tion token as explained in sous-sous-section 4.3.5.

As indicated by the provider client interface, we will use two API of the Wallee
backend:

▶ Transaction service: The transaction service aims to provide information
about a transaction registered using a Wallee terminal.

▶ Refund service: The refund service allows to trigger a refund for a given
transaction using the transaction identifier. The refund will then be exe-
cuted by the Wallee backend, back to the Customer.

4.3.5. Security

API access

Bank-Integration API

The Bank-Integration API is accessed by Wallets and Terminals. This results in
two different device types for the autentication procedure. The Wallet should
be able to authenticate against the exchange by using an access token according
to the specified authentication flow of the core bank API [21] which leverages a
bearer token as specified by DD-49 [22]. For terminals the authentication mech-
anism is based on a basic auth scheme as specified by RFC-7617 [23]. Therefore a
generated access-tokenused aspassword andausernamewhich is generated reg-

28

4.3. C2EC

istering the terminal using the cli explained in sous-sous-section 4.3.5 are lever-
aged.

Wire-Gateway API

The wire gateway specifies a basic auth flow [24] as described in RFC-7617 [23].
Therefore the C2EC component allows the configuration of a username and pass-
word for the exchange. During the request of the exchange at the wire gateway
API, the credentials are checked.

Database

Authenticating at the Wallee ReST API

TheWallee API specifies fourWallee specific headers which are used to authenti-
cate against the API. It defines its own authentication standard andflow. The flow
builds on a MAC (message authentication code) which is built on a version, user
identifier, and a timestamp. For the creation of the MAC the HMAC (hash based
message authentication code) SHA-512 is leveragedwhich takes the so calledapplication-
user-key (which is basically just an access-token, which the user receives when
creating a new API user) as key and the above mentioned properties plus infor-
mation about the requested http method and the exactly requested path (includ-
ing request parameters) as message [25]. The format of the message is specified
like:

Version|User-Id|Unix-Timestamp|Http-Method|Path

▶ Version: The version of the algorithm

▶ User-Id: The user-id of the requesting user

▶ Unix-Timestamp: A unix timestamp (seconds since 01.01.1970)

▶ Http-Method: one of HEAD, GET, POST, PUT, DELETE, TRACE, CONNECT

▶ Path: The path of the requested URL including the query string (if any)

The resulting string must then be UTF-8 encoded according to RFC-3629 [26].

Registering Providers and Terminals

A provider may want to register a new Terminal or maybe even a new provider
shall be registered for the exchange. To make this step easier for the exchange
operators, a small cli program (command line interface) was implemented. The
cli will either ask for a password or generate an access token in case of the termi-
nal registration. The credentials are stored has hashes using a PBKDF (password
based key derivation function) so that even if the database leaks, the credentials
cannot be easily read by the attackers.

29

4. Implementation

Deactivating Terminals

A Terminal can be stolen, hijacked or hacked by malicious actors. Therefore it
must be possible to disable a terminal immediately and no longer allow with-
drawals using this terminal. Therefore the active flag can be set to false for a
registered terminal. The Bank-Integration API which processes withdrawals and
authenticates terminals, must check that the requesting terminal is active and is
allowed to initiate withdrawals. Since the check for the active flag must be done
for each request of a terminal, the check can be centralized and is implemented
as part of the authentication flow. AWallee terminal can be deactivated using the
cli mentioned in sous-sous-section 4.3.5.

4.4. Wallee POS Terminal

4.5. Wallet

30

5. Results

5.1. Discussion

What is the significance of your results? – the final major section of text in the
paper. The Discussion commonly features a summary of the results that were
obtained in the study, describes how those results address the topic under in-
vestigation and/or the issues that the research was designed to address, and may
expand upon the implications of those findings. Limitations and directions for
future research are also commonly addressed.

5.2. Results

What did you find? – a section which describes the data that was collected and
the results of any statistical tests that were performed. It may also be prefaced
by a description of the analysis procedure that was used. If there were multiple
experiments, then each experiment may require a separate Results section.

31

32

Declaration of Authorship

I hereby declare that I have written this thesis independently and have not used
any sources or aids other than those acknowledged.

All statements taken from other writings, either literally or in essence, have been
marked as such.

I hereby agree that the present work may be reviewed in electronic form using
appropriate software.

April 13, 2024
J. Häberli

33

Bibliography

[1] Fabio Panetta. A digital euro that serves the needs of the public: striking the
right balance. https://www.ecb.europa.eu/press/key/date/2022/html/
ecb.sp220330_1~f9fa9a6137.en.html, March 2022.

[2] on behalf of ECB Kantar Public (Verian since November 2023). Study on new
digital payment methods. https://www.ecb.europa.eu/euro/digital_
euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_
report.en.pdf, March 2022.

[3] Wallee. Payment connectors. https://app-wallee.com/connectors.

[4] Taler. Taler wire gateway http api. https://docs.taler.net/core/
api-bank-wire.html.

[5] Taler. Taler bank integration api. https://docs.taler.net/core/
api-bank-integration.html.

[6] Mark Nottingham. The "secret-token" URI Scheme. RFC 8959, January 2021.

[7] Florian Dold and Christian Grothoff. The ’payto’ URI Scheme for Payments.
RFC 8905, October 2020.

[8] Tim Berners-Lee, Roy T. Fielding, and Larry MMasinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, January 2005.

[9] GNUnet Project. The gnunet assigned numbers authority (gana). https:
//gana.gnunet.org/.

[10] Taler. Withdrawal. https://docs.taler.net/taler-wallet.html#
withdrawal.

[11] PCI Security Standards Council. Pci data security standard.
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/
PCI-DSS-v4_0.pdf.

[12] Wallee. Transaction states. https://app-wallee.com/de-de/doc/payment.

[13] Quynh Dang. Secure hash standard, 2015-08-04 2015.

[14] National Institute of Standards and Technology. Sha-3 standard:
Permutation-based hash and extendable-output functions. https:
//doi.org/10.6028/NIST.FIPS.202.

35

https://www.ecb.europa.eu/press/key/date/2022/html/ecb.sp220330_1~f9fa9a6137.en.html
https://www.ecb.europa.eu/press/key/date/2022/html/ecb.sp220330_1~f9fa9a6137.en.html
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://app-wallee.com/connectors
https://docs.taler.net/core/api-bank-wire.html
https://docs.taler.net/core/api-bank-wire.html
https://docs.taler.net/core/api-bank-integration.html
https://docs.taler.net/core/api-bank-integration.html
https://gana.gnunet.org/
https://gana.gnunet.org/
https://docs.taler.net/taler-wallet.html#withdrawal
https://docs.taler.net/taler-wallet.html#withdrawal
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf
https://app-wallee.com/de-de/doc/payment
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202

Bibliography

[15] Wallee. Wallee android till sdk. https://github.com/wallee-payment/
android-till-sdk.

[16] Wallee. Transaction service. https://app-wallee.com/de-de/doc/api/
web-service#transaction-service.

[17] Wallee. Refund service. https://app-wallee.com/de-de/doc/api/
web-service#refund-service.

[18] Wallee. Transaction states. https://app-wallee.com/de-de/doc/payment/
transaction-process.

[19] Matt T. Proud Jean de Klerk. Contexts and structs. https://go.dev/blog/
context-and-structs, February 2021.

[20] Go. Share by communicating. https://go.dev/doc/effective_go#
sharing.

[21] Taler. Authentication. https://docs.taler.net/core/api-corebank.
html#authentication.

[22] Taler. Authentication. https://docs.taler.net/design-documents/
049-auth.html.

[23] JulianReschke. The ’Basic’ HTTPAuthentication Scheme. RFC 7617, Septem-
ber 2015.

[24] Taler. Taler wire gateway http api. https://docs.taler.net/core/
api-bank-wire.html#authentication.

[25] Wallee. Authentication. https://app-wallee.com/en-us/doc/api/
web-service#_authentication.

[26] François Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629,
November 2003.

36

https://github.com/wallee-payment/android-till-sdk
https://github.com/wallee-payment/android-till-sdk
https://app-wallee.com/de-de/doc/api/web-service#transaction-service
https://app-wallee.com/de-de/doc/api/web-service#transaction-service
https://app-wallee.com/de-de/doc/api/web-service#refund-service
https://app-wallee.com/de-de/doc/api/web-service#refund-service
https://app-wallee.com/de-de/doc/payment/transaction-process
https://app-wallee.com/de-de/doc/payment/transaction-process
https://go.dev/blog/context-and-structs
https://go.dev/blog/context-and-structs
https://go.dev/doc/effective_go#sharing
https://go.dev/doc/effective_go#sharing
https://docs.taler.net/core/api-corebank.html#authentication
https://docs.taler.net/core/api-corebank.html#authentication
https://docs.taler.net/design-documents/049-auth.html
https://docs.taler.net/design-documents/049-auth.html
https://docs.taler.net/core/api-bank-wire.html#authentication
https://docs.taler.net/core/api-bank-wire.html#authentication
https://app-wallee.com/en-us/doc/api/web-service#_authentication
https://app-wallee.com/en-us/doc/api/web-service#_authentication

List of Figures

2.1. Involved components and devices 5
2.2. Diagram of included components and their interactions 6
2.3. Process of a withdrawal using a credit card 7

3.1. Withdrawal Operation state transition diagram 12
3.2. Terminal Provider Table . 16
3.3. Terminal Table . 16
3.4. Withdrawal Table . 17
3.5. Relationships of the entities. 18

37

List of Tables

39

Listings

A.1. C2EC API specification . 45

41

Glossary

This document is incomplete. Theexternal file associatedwith the glossary ‘main’
(which should be called thesis.gls) hasn’t been created.

Check the contents of the file thesis.glo. If it’s empty, thatmeans you haven’t in-
dexed any of your entries in this glossary (using commands like \gls or \glsadd)
so this list can’t be generated. If the file isn’t empty, the document build process
hasn’t been completed.

If you don’t want this glossary, add nomain to your package option list when you
load glossaries-extra.sty. For example:

\usepackage[nomain]{glossaries-extra}

Try one of the following:

▶ Add automake to yourpackageoption listwhenyou load glossaries-extra.sty.
For example:

\usepackage[automake]{glossaries-extra}

▶ Run the external (Lua) application:

makeglossaries-lite.lua "thesis"

▶ Run the external (Perl) application:

makeglossaries "thesis"

Then rerun LATEX on this document.

This message will be removed once the problem has been fixed.

43

A. Appendix A

A.1. API� �
1 ..
2 This file is part of GNU TALER.
3
4 Copyright (C) 2014-2024 Taler Systems SA
5
6 TALER is free software; you can redistribute it and/or modify it

under the
7 terms of the GNU Affero General Public License as published by

the Free Software
8 Foundation; either version 2.1, or (at your option) any later

version.
9
10 TALER is distributed in the hope that it will be useful, but

WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY

or FITNESS FOR
12 A PARTICULAR PURPOSE. See the GNU Affero General Public License

for more details.
13
14 You should have received a copy of the GNU Affero General Public

License along with
15 TALER; see the file COPYING. If not, see

<http://www.gnu.org/licenses/>
16
17 @author Joel Haeberli
18
19 ===========================
20 The C2EC RESTful API
21 ===========================
22
23 .. note::
24
25 **This API is experimental and not yet implemented**
26

45

A. Appendix A

27 This chapter describe the APIs that third party providers need to
integrate to allow

28 withdrawals through indirect payment channels like credit cards or
ATM.

29
30 .. contents:: Table of Contents
31
32 --------------
33 Authentication
34 --------------
35
36 Terminals which authenticate against the C2EC API must provide

their respective
37 access token. Therefore they provide a ‘‘Authorization: Bearer

$ACCESS_TOKEN‘‘ header,
38 where ‘$ACCESS_TOKEN‘‘ is a secret authentication token configured

by the exchange and
39 must begin with the RFC 8959 prefix.
40
41 ----------------------------
42 Configuration of C2EC
43 ----------------------------
44
45 .. http:get:: /config
46
47 Return the protocol version and configuration information about

the C2EC API.
48
49 **Response:**
50
51 :http:statuscode:‘200 OK‘:
52 The exchange responds with a ‘C2ECConfig‘ object. This request

should
53 virtually always be successful.
54
55 **Details:**
56
57 .. ts:def:: C2ECConfig
58
59 interface C2ECConfig {
60 // Name of the API.
61 name: "taler-c2ec";
62

46

A.1. API

63 // libtool-style representation of the C2EC protocol
version, see

64 //
https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versioning

65 // The format is "current:revision:age".
66 version: string;
67 }
68
69 -----------------------------
70 Withdrawing using C2EC
71 -----------------------------
72
73 Withdrawals with a C2EC are based on withdrawal operations which

register a withdrawal identifier
74 (nonce) at the C2EC component. The provider must first create a

unique identifier for the withdrawal
75 operation (the ‘‘WOPID‘‘) to interact with the withdrawal

operation and eventually withdraw using the wallet.
76
77 .. http:post:: /withdrawal-operation
78
79 Register a ‘WOPID‘ belonging to a reserve public key.
80
81 **Request:**
82
83 .. ts:def:: C2ECWithdrawRegistration
84
85 interface C2ECWithdrawRegistration {
86 // Maps a nonce generated by the provider to a reserve

public key generated by the wallet.
87 wopid: ShortHashCode;
88
89 // Reserve public key generated by the wallet.
90 // According to TALER_ReservePublicKeyP

(https://docs.taler.net/core/api-common.html#cryptographic-primitives)
91 reserve_pub_key: EddsaPublicKey;
92
93 // Optional amount for the withdrawal.
94 amount?: Amount;
95
96 // Id of the terminal of the provider requesting a

withdrawal by nonce.
97 // Assigned by the exchange.
98 terminal_id: SafeUint64;

47

A. Appendix A

99 }
100
101 **Response:**
102
103 :http:statuscode:‘204 No content‘:
104 The withdrawal was successfully registered.
105 :http:statuscode:‘400 Bad request‘:
106 The ‘‘WithdrawRegistration‘‘ request was malformed or

contained invalid parameters.
107 :http:statuscode:‘500 Internal Server error‘:
108 The registration of the withdrawal failed due to server side

issues.
109
110 .. http:get:: /withdrawal-operation/$WOPID
111
112 Query information about a withdrawal operation, identified by

the ‘‘WOPID‘‘.
113
114 **Request:**
115
116 :query long_poll_ms:
117 *Optional.* If specified, the bank will wait up to

‘‘long_poll_ms‘‘
118 milliseconds for operationt state to be different from

‘‘old_state‘‘ before sending the HTTP
119 response. A client must never rely on this behavior, as the

bank may
120 return a response immediately.
121 :query old_state:
122 *Optional.* Default to "pending".
123
124 **Response:**
125
126 :http:statuscode:‘200 Ok‘:
127 The withdrawal was found and is returned in the response body

as ‘‘C2ECWithdrawalStatus‘‘.
128 :http:statuscode:‘404 Not found‘:
129 C2EC does not have a withdrawal registered with the specified

‘‘WOPID‘‘.
130
131 **Details**
132
133 .. ts:def:: C2ECWithdrawalStatus
134

48

A.1. API

135 interface C2ECWithdrawalStatus {
136 // Current status of the operation
137 // pending: the operation is pending parameters selection

(exchange and reserve public key)
138 // selected: the operations has been selected and is

pending confirmation
139 // aborted: the operation has been aborted
140 // confirmed: the transfer has been confirmed and

registered by the bank
141 // Since protocol v1.
142 status: "pending" | "selected" | "aborted" | "confirmed";
143
144 // Amount that will be withdrawn with this operation
145 // (raw amount without fee considerations).
146 amount: Amount;
147
148 // A refund address as ‘‘payto‘‘ URI. This address shall

be used
149 // in case a refund must be done. Only not-null if the

status
150 // is "confirmed" or "aborted"
151 sender_wire?: string;
152
153 // Reserve public key selected by the exchange,
154 // only non-null if ‘‘status‘‘ is ‘‘selected‘‘ or

‘‘confirmed‘‘.
155 // Since protocol v1.
156 selected_reserve_pub?: string;
157 }
158
159
160 .. http:post:: /withdrawal-operation/$WOPID
161
162 Notifies C2EC about an executed payment for a specific

withdrawal.
163
164 **Request:**
165
166 .. ts:def:: C2ECPaymentNotification
167
168 interface C2ECPaymentNotification {
169
170 // Unique identifier of the provider transaction.
171 provider_transaction_id: string;

49

A. Appendix A

172
173 // Specifies the amount which was payed to the provider

(without fees).
174 // This amount shall be put into the reserve linked to by

the withdrawal id.
175 amount: Amount;
176
177 // Fees associated with the payment.
178 fees: Amount;
179 }
180
181 **Response:**
182
183 :http:statuscode:‘204 No content‘:
184 C2EC received the ‘‘C2ECPaymentNotification‘‘ successfully and

will further process
185 the withdrawal.
186 :http:statuscode:‘400 Bad request‘:
187 The ‘‘C2ECPaymentNotification‘‘ request was malformed or

contained invalid parameters.
188 :http:statuscode:‘404 Not found‘:
189 C2EC does not have a withdrawal registered with the specified

‘‘WOPID‘‘.
190 :http:statuscode:‘500 Internal Server error‘:
191 The ‘‘C2ECPaymentNotification‘‘ could not be processed due to

server side issues.
192
193
194 --------------
195 Taler Wire Gateway
196 --------------
197
198 C2EC implements the wire gateway API in order to check for

incoming transactions and
199 let the exchange get proofs of payments. This will allow the C2EC

componente to add reserves
200 and therefore allow the withdrawal of the digital cash. C2EC does

not entirely implement all endpoints,
201 because the it is not needed for the case of C2EC. The endpoints

not implemented are not described
202 further. They will be available but respond with 400 http error

code.
203
204 .. http:get:: /config

50

A.1. API

205
206 Return the protocol version and configuration information about

the bank.
207 This specification corresponds to ‘‘current‘‘ protocol being

version **0**.
208
209 **Response:**
210
211 :http:statuscode:‘200 OK‘:
212 The exchange responds with a ‘WireConfig‘ object. This request

should
213 virtually always be successful.
214
215 **Details:**
216
217 .. ts:def:: WireConfig
218
219 interface WireConfig {
220 // Name of the API.
221 name: "taler-wire-gateway";
222
223 // libtool-style representation of the Bank protocol

version, see
224 //

https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versioning
225 // The format is "current:revision:age".
226 version: string;
227
228 // Currency used by this gateway.
229 currency: string;
230
231 // URN of the implementation (needed to interpret ’revision’

in version).
232 // @since v0, may become mandatory in the future.
233 implementation?: string;
234 }
235
236 .. http:post:: /transfer
237
238 This API allows the exchange to make a transaction, typically to

a merchant. The bank account
239 of the exchange is not included in the request, but instead

derived from the user name in the
240 authentication header and/or the request base URL.

51

A. Appendix A

241
242 To make the API idempotent, the client must include a nonce.

Requests with the same nonce
243 are rejected unless the request is the same.
244
245 **Request:**
246
247 .. ts:def:: TransferRequest
248
249 interface TransferRequest {
250 // Nonce to make the request idempotent. Requests with the

same
251 // ‘‘request_uid‘‘ that differ in any of the other fields
252 // are rejected.
253 request_uid: HashCode;
254
255 // Amount to transfer.
256 amount: Amount;
257
258 // Base URL of the exchange. Shall be included by the bank

gateway
259 // in the appropriate section of the wire transfer details.
260 exchange_base_url: string;
261
262 // Wire transfer identifier chosen by the exchange,
263 // used by the merchant to identify the Taler order(s)
264 // associated with this wire transfer.
265 wtid: ShortHashCode;
266
267 // The recipient’s account identifier as a payto URI.
268 credit_account: string;
269 }
270
271 **Response:**
272
273 :http:statuscode:‘200 OK‘:
274 The request has been correctly handled, so the funds have been

transferred to
275 the recipient’s account. The body is a ‘TransferResponse‘.
276 :http:statuscode:‘400 Bad request‘:
277 Request malformed. The bank replies with an ‘ErrorDetail‘

object.
278 :http:statuscode:‘401 Unauthorized‘:
279 Authentication failed, likely the credentials are wrong.

52

A.1. API

280 :http:statuscode:‘404 Not found‘:
281 The endpoint is wrong or the user name is unknown. The bank

replies with an ‘ErrorDetail‘ object.
282 :http:statuscode:‘409 Conflict‘:
283 A transaction with the same ‘‘request_uid‘‘ but different

transaction details
284 has been submitted before.
285
286 **Details:**
287
288 .. ts:def:: TransferResponse
289
290 interface TransferResponse {
291 // Timestamp that indicates when the wire transfer will be

executed.
292 // In cases where the wire transfer gateway is unable to

know when
293 // the wire transfer will be executed, the time at which the

request
294 // has been received and stored will be returned.
295 // The purpose of this field is for debugging (humans trying

to find
296 // the transaction) as well as for taxation (determining

which
297 // time period a transaction belongs to).
298 timestamp: Timestamp;
299
300 // Opaque ID of the transaction that the bank has made.
301 row_id: SafeUint64;
302 }
303
304 .. http:get:: /history/incoming
305
306 **Request:**
307
308 :query start: *Optional.*
309 Row identifier to explicitly set the *starting point* of the

query.
310 :query delta:
311 The *delta* value that determines the range of the query.
312 :query long_poll_ms: *Optional.* If this parameter is specified

and the
313 result of the query would be empty, the bank will wait up to

‘‘long_poll_ms‘‘

53

A. Appendix A

314 milliseconds for new transactions that match the query to
arrive and only

315 then send the HTTP response. A client must never rely on this
behavior, as

316 the bank may return a response immediately or after waiting
only a fraction

317 of ‘‘long_poll_ms‘‘.
318
319 **Response:**
320
321 .. ts:def:: IncomingReserveTransaction
322
323 interface IncomingReserveTransaction {
324 type: "RESERVE";
325
326 // Opaque identifier of the returned record.
327 row_id: SafeUint64;
328
329 // Date of the transaction.
330 date: Timestamp;
331
332 // Amount transferred.
333 amount: Amount;
334
335 // Payto URI to identify the sender of funds.
336 debit_account: string;
337
338 // The reserve public key extracted from the transaction

details.
339 reserve_pub: EddsaPublicKey;
340
341 }� �

Listing A.1: C2EC API specification

54

B. Appendix B

B.1. Meeting notes

17.01.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Kickoff

▶ Understanding the Task

▶ Device

▶ Taler

Questions

▶ What am I going to do?

▶ Which components are roughly involved?

Action points

▶ Setup Thesis Document

▶ GNU Taler Copyright Assignment

▶ SSH-Public Key for git

▶ Inspect taler-exchange-wirewatch

Decisions

▶ Implement process ’cashless2ecash’ as part of Taler-Exchange

▶ Wallet initializes process by scanningQR code like in the ’cash2ecash’ show-
case

55

B. Appendix B

– cash2ecash was implented by the guy named "windfisch" on matter-
most

20.02.2024

Participants

▶ Jung Florian

▶ Häberli Joel

Topics

▶ Introduce each other and explain ideas

▶ Discuss nonce2ecash draft

▶ Discuss who wants to do what

Action points

▶ I send Flo a plan of what I’m going to do until when (approximately)

▶ I update the sequence diagram as discussed and send the openapi spec to
Flo for review.

Decisions

▶ We can establish a generic approach for both our cases. Therefore the ab-
straction of Providers will be implemented. The Providers abstract and gen-
eralize some endpoint which can accept digital cash in any form (Credit
Card, Cash, and so on) and give the Exchange the guarantee, that the digi-
tal cash will eventually be transferred to the Exchange.

▶ The verification at the provider from the perspective of the exchange must
be optional (withdrawing at an ATMwill not get any better than the amount
the ATM sends to the Excahnge in the payment notification). Therefore an
additional request to the provider will not bring any benefit.

Notes

▶ Flowants to create a Reserve containing digital cash from theATM.He then
wants to trigger a peer to peer transaction. And therefore this reserve deals
as guarantee to the Exchange. This flow is possible if the provider is con-
trolled, which in my case is not given (Wallee is a company and I cannot
easily alter their source code to open a reserve)

22.02.2024

Participants

56

B.1. Meeting notes

▶ Hiltgen Alain

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Task description

▶ Deeper understanding of the topic established?

▶ I contactedFlorian Jung (aliasWindfisch) andwebespokehisworkoncash2ecash.

Questions

▶ Repository ofWallee Applicationwill be different than ’cashless2ecash’? No

▶ Wallee: Master Password? Password received by Ben

▶ Wallee: Which SDK to use? Till-SDK (API to Wallee-Backend)

▶ How do we want to handle different currencies? How about currencies like
Bitcoin? Currency is determined by the currency of the exchange.

06.03.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ API Spec nonce2ecash

▶ Database Spec nonce2ecash

Questions

▶ How can I create a reserve from the mapping table?

▶ Taler / Wallee : Which nonce to use? How to generate the nonce? Is there a
preferred kind to generate nonces within taler?

▶ Dowe add amaximal limit amount for a withdrawal on the side of the Taler
Exchange?

Action points

57

B. Appendix B

▶ write API specification in .rst format (see /docs/core/api-*.rst in taler docs
git)

▶ use Bank integration API

▶ write SQL schema and generate UML using schema-spy instead of writing
UML.

13.03.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ SQL Schema of nonce2ecash.

Action points

▶ Add rst file to official docs Repository

▶ Add proper versioning to the SQL script.

20.03.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Payto Specification.

Action points

▶ Specify payto-uri scheme in GANA repo

20.03.2024 - 2

Participants

▶ Grothoff Christian

58

B.1. Meeting notes

▶ Häberli Joel

Topics

▶ Architecture

▶ Payto

Action points

▶ Look at Wire Gateway and Bank Integration API as specification of an API
and not as individual components of Taler. C2EC must implement those
specification in order to integrate into the Taler ecosystem.

27.03.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Discussion of the Architecture documentation

▶ Feedback of Ben and Christian

Action points

▶ Integrate Feedback into documentation

▶ Use official docs repo to specify theAPI (e.g. Bank-IntegrationAPI andWire
Gateway API specification)

▶ No meeting next week.

10.04.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Discussion of the C2EC code.

59

B. Appendix B

Action points

▶ Use ini-format to parse config

▶ Add support for PGHOST environment variable

▶ Rename config properties to be compliant with other Taler repositories.

– serve

– bind

– unix-path-mode

– etc.

▶ For the attestation there is the additional case that neither confirm nor
abort is an option and instead retries are required.

▶ Remove doubled abstractions (Abstracting attestation is not necessary)

TEMPLATE

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶

Questions

▶

Action points

▶

Decisions

▶

60

	Abstract
	Introduction
	Motivation
	Perspectives
	Taler Exchange (C2EC)
	Terminal Application
	Taler Wallet

	Goal
	C2EC
	Wallee POS Terminal

	Overview
	Components
	Process
	The Terminal
	The C2EC
	The Wallet

	Architecture
	C2EC
	C2EC Perspective
	Withdrawal-Operation state transitions
	Authentication
	The C2EC RESTful API
	Taler Wirewatch Gateway API
	The C2EC database

	Payto wallee-transaction extension
	Payto refund using Wallee
	Extensibility

	Taler Wallet
	Taler Wallet Perspective

	Wallee
	Wallee Perspective
	Wallee Terminal
	Wallee Backend and API

	Implementation
	Concepts
	Consumers and Producers
	Long-Polling
	Publish-Subscribe Pattern
	Go Language

	Database
	Schema
	Triggers

	C2EC
	Bank-Integration API
	Wire-Gateway API
	Payment Attestation
	Wallee Client
	Security

	Wallee POS Terminal
	Wallet

	Results
	Discussion
	Results

	Bibliography
	List of Figures
	List of Tables
	Listings
	Glossary
	Appendix A
	API

	Appendix B
	Meeting notes

